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Highlights

This study proposed an inspection system suitable for various bridge terrains and conducted
practical experiments on real bridge structures. Its unique innovation lies in establishing a UWB
network with multiple anchors, enabling precise positioning of a filming drone beneath the bridge
being inspected, even in the absence of GPS signals.

What are the main findings?

e The system uses a handover mechanism to prevent electromagnetic interference between anchors
and ensure accurate positioning by quickly controlling anchor switches in distinct zones. This is
suitable for bridges hundreds of meters long, using dozens of UWB anchors, but with a total of no
more than six assigned anchor ID’s.

e  The positioning algorithm uses an enhanced two-stage method that adapts to the terrain under the
bridge, which reduces the elevation error by ten times compared with the original two-stage method
and by half compared to the Taylor series method, successfully improving the UAV's position
accuracy to 0.2-0.5 meters.

What is the implication of the main finding?

e  Combining the bipartite graph and vertex coloring analogy in [28], the number of anchor points and
anchor IDs can be optimized, so that the length of bridges that can be inspected by this method can
be extended to several kilometers.

e  The positioning results using the enhanced two-stage method are robust for various terrains under
the bridge. Combined with the extended analysis in [32], the anchor configuration can be optimized,
and the positioning accuracy can be well controlled.

Abstract

With the development of drone technology in recent years, many studies have discussed how to
leverage drones equipped with sensors and cameras to conduct inspections under bridges. To
address positioning challenges caused by the lack of GPS signals under the bridges, triangulation
methods with on-site pre-installed UWB sensors were used extensively to determine drone locations.
However, the practical hurdles of deploying anchors under bridges are often overlooked, including
variable terrain and potential electromagnetic interference from deploying a large number of UWB
sensors. This study introduces a handover mechanism to address long-distance positioning
challenges and an improved two-stage algorithm to enhance its suitability for bridge terrain with
higher stability. By integrating these concepts, a practical bridge inspection system was devised, and
realistic under-bridge experiments were conducted to validate the method's efficacy in real-world
settings.
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1. Introduction

Bridges are a vital piece of infrastructure critical to people's daily lives, but their components
inevitably degrade over time. Without proper maintenance and repairs, the consequences can be
severe. For example, a bridge collapse in Tennessee in 2019 [1] had a significant impact on the lives
of residents. Therefore, regular inspections are imperative. However, the current practice of bridge
inspection still heavily relies on manual visual inspection, resulting in each inspection requiring a lot
of manpower and taking a long time. Hence, developing a more efficient and cost-effective inspection
method is of paramount importance.

Unmanned Aerial Vehicles (UAVs), also known as drones, have emerged as highly promising
tools thanks to their high maneuverability. In recent years, researchers have dedicated significant
efforts in developing automatic bridge inspection systems using UAVs [2, 3]. These frameworks
allow an inspection path for drones to be preset, enabling the drones to autonomously navigate along
a designated route using GNSS (Global Navigation Satellite System). However, some components of
a bridge, such as piers, supports, and abutments, are often located underneath the bridge, which may
prevent these methods from being successfully implemented in these areas due to unavailable GPS
signals. While techniques like SOP (Signals of Opportunity) [4-6] have been used for determining a
drone’s position in GPS-denied areas, they are typically deployed in urban environments where
multiple signals are readily available, such as LTE, Wi-Fi, and 5G. However, there is currently no
work using this technology in bridge inspection scenarios, possibly because the bridge's location
cannot receive such diverse signals.

To enable drones to operate in GPS-denied environments, earlier studies proposed adding
sensors to drones, such as optical flow sensors [7, 8] or upward two-dimensional (2-D) laser range
finders [9], so that the drone can fly under the bridge by measuring the distance between the
underside of the bridge and the drone. Nonetheless, this method only allows the drone to fly
autonomously vertically; horizontal control still requires a pilot. Subsequent researches attempt to
utilize positioning algorithms with auxiliary sensors, such as Inertial Measurement Units (IMUs),
visual sensors, ultrasonic sensors, and Ultra-Wideband (UWB) devices, to achieve fully autonomous
flight of drones.

Depending on the type of sensors utilized, they can be divided into two categories: onboard
sensors within the drone and off-board sensors mounted on the drone. For instance, an Inertial
Navigation System (INS) [10] serves as a classical example, utilizing an IMU within the drone itself
to measure angular velocity and linear acceleration. These measurements are then integrated to
estimate the drone’s position and direction from the starting point [11]. However, INS is susceptible
to errors that accumulate over time, leading to severe estimation errors. This positioning method is
typically employed only for short periods of time when the GPS signal is unavailable. Although
subsequent studies attempt to reduce accumulated errors through the use of DEM (Digital Elevation
Maps) [12], building a DEM can be time-consuming, especially for large or high-resolution datasets.

Other researches focus on mounting off-board sensors on UAVs for positioning, such as visual
cameras and beacon-based sensors. In vision-based positioning, visual cameras primarily assist UAV
positioning. A common approach is using visual odometry (VO) [13], which tracks the position of a
monocular camera from an initial local reference frame [14]. However, the camera only provides a 2-
D projection of the scene, making it difficult to accurately estimate the drone’s position due to the
lack of scale information. To address this limitation, researchers have turned their attention to RGB
[15] or stereo cameras [16]. While these cameras can measure depth to achieve more accurate
positioning, their accuracy decreases with increasing distance from the target [17, 18]. To solve this
problem, the concept of global attitude estimation has emerged, e.g., SLAM system [19-21], which
reduces the impact of accumulated errors by establishing an environment map and continuously
updating the target attitude corresponding to the map [22]. But it requires substantial memory space
and computing power, which makes implementing this approach on bridges challenging.

Beacon-based sensors, such as ultrasonic range sensors and UWB, are also widely used for
positioning. When using this method, anchors must first be deployed in the area to be localized. The
tag on the drone can then obtain distance information from the anchors and use a localization
algorithm to estimate the location. For example, Ali et al. [23] successfully used ultrasonic range
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sensors to estimate the global position of a drone. However, the effective communication distance of
ultrasonic waves is usually only about ten meters, which limits their use on long bridges.

The effective communication distance of UWB is usually larger than that of ultrasonic sensors,
about 50-60 meters. It is also used for various indoor or outdoor positioning problems [24-27], but
still faces the limitation of short communication range when applied to bridge inspection. Although
this problem can be solved by deploying a large number of UWB anchors under the bridge, the
increase in the number of anchors will cause electromagnetic interference between them, making it
difficult for the tag to identify which anchors sent the message. Recently, a UWB handover system
has been proposed to alleviate these problems [28]. It uses a bipartite graph and a greedy algorithm
to transform the problem into a vertex coloring problem to solve the challenge caused by the long
area and numerous beams and columns under the bridge.

In addition, most previous studies utilizing UWB for positioning lacked consideration of the
terrain where the anchors are deployed. These studies typically conducted positioning experiments
on flat ground [24-26, 29]. Although Thien et al. [27] placed anchors at different heights, the
experimental area remains relatively small, such as within a 6 by 6 meters square, which is not
representative of real-world applications like bridge inspection. Although trilateration positioning is
a classical problem, previous studies, such as [30, 31], employed the least squares method and the
cosine law to determine the solutions. Positioning accuracy, especially regarding height, is highly
sensitive to the placement of anchor positions. Chan et al. [25] proposed using the Taylor series
algorithm [30] to enhance height accuracy, but it requires relatively more time due to iterations. Other
methods utilize an IMU combined with a Kalman filter [27] or a barometer to enhance vertical
position accuracy [26]. However, relying on these sensors for an extended duration may lead to
accumulated errors. Recently, an improved UWB positioning algorithm was proposed to address
these difficulties [32]. The algorithm employed a two-stage singular value decomposition (SVD) to
reduce positioning errors caused by tilted anchor configurations. Furthermore, optimal anchor
placement strategies were explored to provide better positioning accuracy, enhancing more precise
outlier detection and robust performance in bridge inspection environments.

Hence, it is crucial to develop a method that adapts to the terrain under the bridge and allows
UAVs to be positioned with high accuracy for long periods of time. This study proposes innovative
ideas to address this problem, with major contributions outlined below:

®  presents an inspection system tailored to various bridge terrains and conducts practical experiments
on real bridge structures.

®  applies a handover mechanism to prevent electromagnetic interference among anchors, and ensures
accurate positioning by quickly controlling anchor switches in distinct areas.

®  utilizes an enhanced two-stage method that adapts to the terrain under the bridge, which reduces the
error in height by about ten times compared with the original two-stage method and about half that
of the Taylor series method.

The subsequent Sections are highlighted below. Section 2 provides an overview of the entire
bridge inspection process, detailing its key components and methods. Section 3 describes the concept
of handover, a key mechanism to enable the simultaneous use of multiple UWB anchors. It also
summarizes the concept of enhanced localization based on the two-stage method. Section 4 presents
the experimental results obtained from conducting inspections under the bridge. Finally, the paper
summarizes the findings and insights from this study.

2. Framework of Bridge Inspection

This section provides an overview of the entire bridge inspection process, from data acquisition
by drones to the establishment of an inspection platform, as depicted in Fig. 1.
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Figure 1. Bridge inspection framework.

Firstly, a quick survey of the selected area is conducted to determine whether it lacks GNSS
signals. GNSS signals are often missing when bridge inspections are conducted under the bridge. If
GNSS signals are missing, a UWB network is deployed in the area to enable drones to fly and capture
images of crucial components, such as the main beams and bridge deck panels. Then, an Al model is
employed to detect defects such as "cracks", "spalling”, and "exposed rebar" in the captured images.
Subsequently, the images are processed using geometric extraction methods in combination with
rating criteria specified by regulations. This process yields corresponding evaluation integers of
DER&U, including the Degree of deterioration, the Extent of deterioration, and the Relevancy, which
are utilized to assess the severity of the structural safety impact and propose a classification of
Urgency of repairing. Ultimately, the results obtained above are summarized on the inspection

platform.

2.1. Data Acquisition Using UAV

To enable the drone to autonomously navigate along a predefined path for capturing the
appearance of the bridge structure, this study employs the open-source software Mission Planner to
generate a flight path that is readable for the drone. Fig. 2 illustrates the planning process for
capturing UAV images along the predefined path. Throughout the path planning phase, it is
imperative to ensure that the captured images adhere to subsequent evaluation criteria,
encompassing scale, geometric transformation, and coordinate data. To fulfill the prerequisites of
bridge inspection, this study captures images at specific points, including the bridge deck, both sides
of the bridge, and beneath the structure.

09 .9 .9 ® ——— ® Bridgedeck

Bridge side

. Py *—‘I‘. AN S [ R Bridge bottom

Figure 2. Schematic diagram of UAV flight paths.

Moreover, due to the absence of GNSS signals under the bridge, a UWB network must be
deployed to facilitate UAVs in capturing crucial components such as beam webs, transverse
diaphragms, and supports. As shown in Fig. 3, the UWB network consists of many UWB anchors.
Some of these are located outside the bridge, where their precise coordinates can be obtained using
RTK (real-time kinematic) technology. Others may be located under the bridge, where GPSS is
missing. Nonetheless, those RTK-equipped anchors outside the bridge can accurately determine their
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coordinates. A UWB tag sensor is installed on the drone to receive distance data from the anchors.
Leveraging the method proposed in this study (Section 3) and the open source toolkit MAVProxy
enables the drone to localize itself in GPS-denied areas.

GNSS signal
4 . >
o2 * s “
' .
/ /‘N RTK
'S
A
UWB signal RTK + UWB anchor
? — ; _ ? RTK + UWB anchor
uws uws
anchor anchor

Figure 3. UWB technical operation diagram.

2.2. Automatic Detection of Damaged Structures

To accurately identify the damaged parts of the bridge, this study employs Mask R-CNN [33] as
our training model. For training data, we collect information from the open source dataset [34] and
data provided by Taiwan CECI Engineering Consultants Inc. This data covers various regions,
including vehicular bridges, pedestrian footbridges, and river crossings. This study mainly assesses
problems such as concrete cracks, damage, and exposed steel bars, as shown in Fig. 4. After filtering,
approximately 800 images remained, chosen as training data. These images are then divided into
training and validation set at a ratio of 9:1.

Type image

Cracks

Spalling

Exposed rebar

Figure 4. Main problems to be assessed in bridge inspection.

During the training phase, we implement a trial approach, where the learning rate increases as
the training iterations progress. After numerous experiments, the optimal parameters for the model
are determined to be a batch size of 4, a learning rate of 0.0002, and 80 epochs.

2.3. Detection Results to the Inspection Checklists
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In the previous subsection, we employed Al deep learning techniques to identify bridge
components and defects. This identification is then further analyzed according to the DER&U values
obtained through the rating criteria, which allows us to assess the severity of the structure and
propose an urgency classification. Based on this classification, maintenance personnel prioritize
inspections of higher-severity locations and develop a repair and reinforcement plan. In addition,
due to differences in bridge shape, size, color, location, etc., applying this method requires
collaboration with professional engineers to adjust the defined rules or add exception criteria for
special situations.

2.4. Build a Detection Management System

By integrating images captured by drones at points of interest with the identification results
from AI models, we can construct a comprehensive three-dimensional (3D) bridge management
system (refer to Fig. 5). This system not only showcases the 3D model of the bridge and its associated
facilities, but can also promptly display cracks or concrete spalling on the structure, allowing
maintenance personnel to initially understand the bridge condition and reduce their burden.

B TER RN FETFE

Figure 5. 3D bridge management system.

3. Positioning by Anchors Handover and SVD-Enhanced Method
3.1. Statement of the Handover Problem

In view of the problems caused by the large number of anchors under the bridges, the idea of
“handover” is proposed to achieve precise positioning by timely controlling the switching of anchors
in different areas. This ensures that the tag can accurately identify which anchor number is sending
the message, allowing for precise positioning.

3.1.1. Method

A communication network is established between the tag and anchors, allowing any anchor to
be controlled by the tag's position at any given time. Each UWB tag and anchor is equipped with a
Raspberry Pi. All Raspberry Pis are configured to operate under the same wireless local area network
(WLAN), enabling the tag to communicate with each anchor using the UDP protocol. In addition,
each anchor is equipped with a relay that can be switched on and off as needed. Each group of anchors
within specific areas is assigned a predefined letter, and an alphabetic reference table is established
accordingly. The tag then switches these anchors on and off by sending the corresponding letter to
anchors based on its location (determined by the SVD-enhanced two-stage method described later).
Based on the drone’s location, the on-off mechanism will be executed to ensure that the anchors in
the appropriate group are activated to locate the drone, while others are de-activated.

An optimization algorithm for anchor deployment and ID assignment has been developed to
adapt the UWB handover system to bridge inspection [28]. It solves three main issues: (1) occlusion
by the bridge which has many beams and columns and the effective range of UWB being than 40 m
according to actual measurements; (2) deployment cost reduction by reducing the number of anchors
that is deployed, even if the UWB signal covers the area under the bridge; and (3) the limited number

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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of anchors that can be assigned at one time. Different IDs must be assigned to different anchors in the
same group to avoid ranging interference between anchors.

3.1.2. Experiment

The anchors are deployed within a 10.47 m x 3.22 m area, as shown in Fig. 6. The drone’s area is
divided into three zones, each of which can be located by four anchors. Although there are eight
anchors, they only need to be assigned four ID’s (labeled as ID 1, 2, 3, and 4) to avoid duplication of
ID’s in each zone. When the tag resides in a certain zone, the anchors within that zone are activated,
while the remaining anchors are deactivated.

7
*.¥.203.22,0276) X, ¥,2(3.49,3.22,0.176) X, ¥, 2(6.98,3.22,0.199) X, ¥, 2(10.47,3.22,0.188)

7oL I J—
Zone_ A Zone_ B Zone_C
A B4

X, ¥,2(0,0,0.176) X, y,2(3.49,0,0177) X, y, 2(6.98,0,0.176) X, Y. 2(10.47,3.22,0.224)

3.49m 3.49m 3.49m

y
A Anchor (power on) ® DUT

A Anchor(power outage) Number represents Anchor [D

Figure 6. Experimental configuration diagram. The DUT moves in the direction of the dashed arrow. While it is
in Zone_A, anchors that have corresponding character A are turned on, while others off.

During the experiment, the experimenter, carrying the Tag, walked along a straight path from
coordinates (0, 1.61) to (11.44, 1.61). The handover mechanism was activated according to the tag's
position, and the positioning results were recorded throughout the experiment for subsequent
analysis. The positioning results, shown in Fig. 7, demonstrate continuous positioning throughout
the handover process. The horizontal axis represents time, and the vertical axes represent the x and
y coordinates in meters. The red lines denote the estimated location of the DUT, the black dots denote
the actual positioning solution, and the black dashed line marks the time point of handover. By
comparing the estimated position with the actual routes, the positioning accuracy can be estimated,
with an RMSE of 0.176 m and 0.102 m for x and y coordinates, respectively.

10 6
Q (]
©T 6 2 ®
= i h=
T 4 | 0 2
o ! ! o
o ! ! I o
Q 2 : i @UWSB Positioning| -2 ©
xl = Estimated >.|
0 i i -=- Handover —4
5 10 15 20 25
Time(s)

Figure 7. The x-y coordinates of the positioning results. The DUT moves along x direction. The estimated
position (x, y) over time is plotted using UWB measurement with handover and compared to the estimated route
(red lines).

3.2. SVD-Enhanced Positioning in Slant Terrains

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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A two-stage method was originally introduced to locate the position of a drone using a UWB
device [25]. In the first stage, trilateration is used to determine the x and y coordinates, which are then
substituted into a predefined cost function to obtain the z coordinate. In real-world scenarios such as
bridge inspection, uneven terrain limits the placement of anchors to accessible heights, usually near
human working levels. When anchors are placed at different heights, the prediction accuracy drops
significantly, mainly due to a large condition number.

3.2.1. Method

To reduce positioning errors caused by tilted anchor configurations, an improved UWB
positioning algorithm based on SVD is developed [28]. It is found that if the anchors are nearly
coplanar on sloping terrain, the unequal altitudes of the anchors will seriously contaminate the
accuracy of the horizontal coordinates, resulting in inaccurate positioning of the DUT. To overcome
this difficulty, the coordinate system of the anchors is transformed by rotation to a new coordinate
system so that the anchors are dominantly in a horizontal plane with minimum vertical altitude span.
Then, the two-stage algorithm is applied in the new coordinate system, where the horizontal
coordinates of the tag are found in the first stage and the vertical height in the second stage. Finally,
the new coordinates are converted back to the original coordinate system to obtain the tag position.

In a positioning scenario with N = 4 or more anchors, let the coordinates of the DUT at point
T(%,9,2) and the coordinates of the anchors be 4;(x;,y,z;) for i = 1~N. Choosing one anchor, say
Ay, as the reference, the anchor configuration can be characterized by a matrix A consisting of
vectors A,Ay fori=1,..,N — 1. Apply SVD to decompose matrix A into the form of UZV”, where
I is a diagonal matrix of singular values. Let the solution for the DUT be W =TAy . This
transformation shifts all computations to the V domain, allowing us to express p as p = V'w.
Therefore, the x” and y’ coordinates of the solution p = (x',y’,2z") are no longer adversely affected by
the large condition number. The second stage of the two-stage method [25] is then performed to
obtain the expected value of z' by giving the accurate x’ and y’. Finally, the solution can be
determined using W = Vp.

3.2.2. Experiment

A set of UWB anchors with IDs 1-4 are located within a 27 m x 4.83 m area. To mimic the bridge’s
downbhill terrain, anchors 1 and 2 are placed at a lower elevation, while anchors 3 and 4 are placed at
a higher elevation, with tilt angle 6 = 3.4 degree (see Fig. 8). In Fig. 8, the red points correspond to
anchors labeled 1-4 and the experimenter, carrying a tag, walked along the blue rectanglar path from
P1, P4, P3, P2, and back to P1. Through the enhanced two-stage method, the tag position can be
determined.

® Anchor
6| —— GroundTruth
A2 A3
(0.00, 4|43, ooampz p3 (27.00, §.83, 27tan8)
'E 4 (2.63| 4.02, 1.925) (23.58, 4.02, 1{925)
>
2
P1 P4
b} (2.63, 0.81,1.925) (23.58,0.81,1.925) A,
(0 00,00 00, 0.030) (27.00, 0.00, 27tang + 0.06)
0 5 10 15 20 25 30
X [m]

Figure 8. Anchor positions and walking path on tilted plane.

The effect of the large condition number on positioning results is also investigated. At a tilt angle
of 0 =3.4°, the condition number is 606 and the smallest singular value A; = 0.0634. This small value
indicates high sensitivity to measurement errors, which can significantly affect 2D positioning results.
Fig. 9 shows a comparison of 2D positioning results for the original and enhanced two-stage methods.
Using SVD significantly improves x-y positioning accuracy and reduces the error amplification
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caused by the high condition number. This real-world positioning experimental finding highlights
the effectiveness of the enhanced two-stage method in maintaining high positioning accuracy even
when the anchors are not placed on a flat surface.

10.0
=== 0Original 2-stage
7.5 = SVD 2-stage
— A2 « Anchor Position A3
E 5.0 L] . - .
= ——
2.5 =T i
Al %—u— Ad
0.0 .
0 5 10 15 20 25
X[m]

Figure 9. Comparison of original and SVD two-stage methods for 2D positioning at 6 = 3.4°"

4. Bridge Inspection Experiment

4.1. Experiment Settings
4.1.1. Hardware

The hardware is shown in Fig. 10. The UAV has a three-axis gimbal primarily mounted upward
to fulfill the inspection requirements beneath the bridge. In addition, it is equipped with a video
transmission transmitter and receiver module to facilitate long-distance wireless transmission of
aerial footage captured by the drone. This model also boasts a wind resistance capability equivalent
to Beaufort scale 4, ensuring that it is suitable for handling sudden strong winds that may occur under
the bridge.

Figure 10. Hardware used in the experiment. (a) UAV, and (b) UWB sensor.

The UWB used in this experiment supports IEEE 802.15.4a and offers multiple channels. We
primarily operate within the channel range of 4.25 GHz to 4.75 GHz, with a packet transmission rate
of 50 Hz. In this experiment, UWB anchors are deployed outside or under the bridge. First, the
longitude and latitude coordinates of the anchors outside the bridge are measured using RTK
technology. With the above information, the coordinates of other anchors under the bridge can be
obtained using the positioning algorithm (see Fig. 11).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 11. Anchor coordinates G1-G5 are determined via VRS-RTK, while G6-G7 coordinates are obtained using
a positioning algorithm based on G1-G5.

4.1.2. Software

The drone’s flight control system uses Pixhawk, which is supported by the open-source
firmware Ardupilot. This tool enables us to leverage a range of packages to facilitate various tasks in
this experiment. For instance, we can utilize the package GPSInput of MAVProxy to simulate GPS
signals to achieve drone positioning. Additionally, tools like Mission Planner can be used to set flight
paths and monitor the drone's flight in real time.

4.2. Selection of Validation Bridges

This study selected two bridges for experimental validation: a small bridge, Bridge A, located in
a mountainous area, and a river-crossing bridge, Bridge B, in an urban area.

These two bridges were selected based on specific considerations. According to the Taiwan
Ministry of Transportation's "National Bridge Basic Information Table," Bridge A requires drone
inspections because its minimum underpass height is 1.2 m, making it difficult for large equipment
to enter. Bridge B, a vital role as a transportation link connecting downtown Taipei with its suburbs,
spans the Jingmei River, measuring 166 m in length and 29.5 m in width. The bridge piers are in the
stream, making traditional bridge inspection difficult. Figs. 11 and 12 describe the UWB network
deployment for Bridges A and B, respectively.
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Figure 12. The 166-meter-long bridge is deployed with a total of 27 UWB anchors along its span.

4.3. Image Acquisition

For drone image acquisition, this study uses Mission Planner to generate flight paths compatible
with the drone, and save them in the .waypoint file format. This planning process involves pre-
defining the drone’s shooting path for key bridge components and setting parameters such as
altitude, flight speed, and dwell time at waypoints to ensure that the drone's flight trajectory aligns
with site requirements during route planning. Fig. 13 illustrates the drone’s flight path around and
under a bridge as an example. The actual flight path, as shown by the purple line in the figure, is in
good agreement with that defined by the Mission Planner.

(b)
Figure 13. (a) Drone's flight trajectory (b) Pre-defining path via Mission Planner. The purple line represents the
actual flight path of the drone.

Drone route planning involves three main steps, as shown in Fig. 14. First, as (1), switch the
Mission Planner screen to the "Flight Plan" page and designate the return position (H). By default,
the drone will autonomously return to this position after completing its mission. Next, as (2), select
the waypoint locations to chart the route. Once the location of each waypoint is confirmed, proceed
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to set the dwell seconds and altitude (Alt) for each point. In this case, the route required the drone to
pause for 5 seconds at each point, and the altitude was set to 2.5 m. The altitude specified here is
relative to the initial position. Finally, as (3), upload the planned route to the drone to perform the
mission.

Figure 14. [llustration of a task comprising six waypoints.

To issue commands for capturing images through the Mission Planner and embed the
coordinate information provided by UWB into the image, this study employed an on-screen display
(OSD) module and a serial bus (SBUS) signal conversion module to facilitate the UAV imaging
process (see Fig. 15). This process is primarily divided into two parts: transmitting flight control
information to the camera module (red section) and issuing flight control instructions for image
capture (blue section).

UWSB position information

camera module

SBUS module OSD module
Send flight control Send flight control
commands to information to
camera camera

flight control system

Figure 15. The framework for embedding coordinates into UAV images.

Finally, the drone performed the shooting task according to the pre-defined paths and obtained
images of each bridge component. Fig. 16 shows images captured through the pre-planned flight
paths. Coordinate information is embedded in each image, allowing the results to be subsequently
mapped to actual locations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0656.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2025 d0i:10.20944/preprints202509.0656.v1

12 of 14

AVIX0621 (31) AVIX0621 (32) AVIX0621 (33)

Figure 16. Images captured by UAV for the inspection of Bridge B.

5. Conclusions and Discussion

The structural safety of bridges is a critical public concern. However, traditional visual
inspection methods are labor-intensive and time-consuming. This study is dedicated to the research
and development of key technologies for bridge inspection. In terms of data collection, through a
comprehensive UAV route planning process, the study has completed the collection of images of
several key bridge inspection components. The establishment of a UWB network addresses the
difficulty of UAVs collecting images from under bridges, representing a significant breakthrough in
autonomous image collection. The study has deployed a UWB environment on Bridges A and B,
successfully improving the UAV's position accuracy to 0.2-0.5 meters. Through route planning, the
study automatically collects images of key bridge components previously difficult for UAVs to
capture, including supports and beam webs.

Another core aspect of this project is UAV image processing and analysis management. This
bridge inspection framework, based on deep learning and computer vision, assists engineers in
conducting bridge inspections quickly and efficiently. This Al recognition process is divided into
three modules: image localization, degradation identification, and damage assessment. It can more
effectively assess problems such as concrete cracks, damage, and exposed steel bars. Compared to
previous research on degradation identification, this focuses more on establishing a comprehensive
bridge inspection framework to assist engineers in patrol inspections. Inspection results from the two
practical bridges demonstrate that UAVs, by collecting a wider range of inspection angles, reveal
more deterioration areas than visual inspections, providing on-site personnel with a more
comprehensive basis for bridge repairs.

Still, this study does not consider certain real-world scenarios, such as the presence of beams
and columns beneath bridges, which may block or diffract UWB signals during UAV flight, thus
affecting positioning accuracy. Therefore, detecting UWB signal outliers is an important
consideration for future bridge inspection methods. On the other hand, for long-span bridges,
determining the optimal locations of anchors under the bridges while ensuring precise positioning is
also an essential issue. Overall, there may be other factors not discussed here that need to be
considered in real-world scenarios. However, by addressing the issues raised, bridge inspection
technology can advance further.
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