
Article Not peer-reviewed version

A GPS-Free Bridge Inspection Method

Tailored to Bridge Terrain with High

Positioning Stability

Jia-Hau Bai , Jen-Yu Han , Ruey-Beei Wu *

Posted Date: 8 September 2025

doi: 10.20944/preprints202509.0656.v1

Keywords: bridge inspection; GPS-free; Handover; UWB; wireless positioning

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1694578


 

 

Article 

A GPS-Free Bridge Inspection Method Tailored to 

Bridge Terrain with High Positioning Stability 

Jia-Hau Bai 1, Jen-Yu Han 2 and Ruey-Beei Wu 1,* 

1 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 10617 
2 Department of Civil Engineering, National Taiwan University, Taipei, Taiwan 10617 

* Correspondence: rbwu@ntu.edu.tw; Tel.: +886-2-33663630 

Highlights 

This study proposed an inspection system suitable for various bridge terrains and conducted 

practical experiments on real bridge structures. Its unique innovation lies in establishing a UWB 

network with multiple anchors, enabling precise positioning of a filming drone beneath the bridge 

being inspected, even in the absence of GPS signals.  

What are the main findings? 

• The system uses a handover mechanism to prevent electromagnetic interference between anchors 

and ensure accurate positioning by quickly controlling anchor switches in distinct zones. This is 

suitable for bridges hundreds of meters long, using dozens of UWB anchors, but with a total of no 

more than six assigned anchor ID’s.  

• The positioning algorithm uses an enhanced two-stage method that adapts to the terrain under the 

bridge, which reduces the elevation error by ten times compared with the original two-stage method 

and by half compared to the Taylor series method, successfully improving the UAV's position 

accuracy to 0.2–0.5 meters.  

What is the implication of the main finding? 

• Combining the bipartite graph and vertex coloring analogy in [28], the number of anchor points and 

anchor IDs can be optimized, so that the length of bridges that can be inspected by this method can 

be extended to several kilometers. 

• The positioning results using the enhanced two-stage method are robust for various terrains under 

the bridge. Combined with the extended analysis in [32], the anchor configuration can be optimized, 

and the positioning accuracy can be well controlled. 

Abstract 

With the development of drone technology in recent years, many studies have discussed how to 

leverage drones equipped with sensors and cameras to conduct inspections under bridges. To 

address positioning challenges caused by the lack of GPS signals under the bridges, triangulation 

methods with on-site pre-installed UWB sensors were used extensively to determine drone locations. 

However, the practical hurdles of deploying anchors under bridges are often overlooked, including 

variable terrain and potential electromagnetic interference from deploying a large number of UWB 

sensors. This study introduces a handover mechanism to address long-distance positioning 

challenges and an improved two-stage algorithm to enhance its suitability for bridge terrain with 

higher stability. By integrating these concepts, a practical bridge inspection system was devised, and 

realistic under-bridge experiments were conducted to validate the method's efficacy in real-world 

settings. 
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1. Introduction 

Bridges are a vital piece of infrastructure critical to people's daily lives, but their components 

inevitably degrade over time. Without proper maintenance and repairs, the consequences can be 

severe. For example, a bridge collapse in Tennessee in 2019 [1] had a significant impact on the lives 

of residents. Therefore, regular inspections are imperative. However, the current practice of bridge 

inspection still heavily relies on manual visual inspection, resulting in each inspection requiring a lot 

of manpower and taking a long time. Hence, developing a more efficient and cost-effective inspection 

method is of paramount importance. 

Unmanned Aerial Vehicles (UAVs), also known as drones, have emerged as highly promising 

tools thanks to their high maneuverability. In recent years, researchers have dedicated significant 

efforts in developing automatic bridge inspection systems using UAVs [2, 3]. These frameworks 

allow an inspection path for drones to be preset, enabling the drones to autonomously navigate along 

a designated route using GNSS (Global Navigation Satellite System). However, some components of 

a bridge, such as piers, supports, and abutments, are often located underneath the bridge, which may 

prevent these methods from being successfully implemented in these areas due to unavailable GPS 

signals. While techniques like SOP (Signals of Opportunity) [4-6] have been used for determining a 

drone’s position in GPS-denied areas, they are typically deployed in urban environments where 

multiple signals are readily available, such as LTE, Wi-Fi, and 5G. However, there is currently no 

work using this technology in bridge inspection scenarios, possibly because the bridge's location 

cannot receive such diverse signals.  

To enable drones to operate in GPS-denied environments, earlier studies proposed adding 

sensors to drones, such as optical flow sensors [7, 8] or upward two-dimensional (2-D) laser range 

finders [9], so that the drone can fly under the bridge by measuring the distance between the 

underside of the bridge and the drone. Nonetheless, this method only allows the drone to fly 

autonomously vertically; horizontal control still requires a pilot. Subsequent researches attempt to 

utilize positioning algorithms with auxiliary sensors, such as Inertial Measurement Units (IMUs), 

visual sensors, ultrasonic sensors, and Ultra-Wideband (UWB) devices, to achieve fully autonomous 

flight of drones.  

Depending on the type of sensors utilized, they can be divided into two categories: onboard 

sensors within the drone and off-board sensors mounted on the drone. For instance, an Inertial 

Navigation System (INS) [10] serves as a classical example, utilizing an IMU within the drone itself 

to measure angular velocity and linear acceleration. These measurements are then integrated to 

estimate the drone’s position and direction from the starting point [11]. However, INS is susceptible 

to errors that accumulate over time, leading to severe estimation errors. This positioning method is 

typically employed only for short periods of time when the GPS signal is unavailable. Although 

subsequent studies attempt to reduce accumulated errors through the use of DEM (Digital Elevation 

Maps) [12], building a DEM can be time-consuming, especially for large or high-resolution datasets.  

Other researches focus on mounting off-board sensors on UAVs for positioning, such as visual 

cameras and beacon-based sensors. In vision-based positioning, visual cameras primarily assist UAV 

positioning. A common approach is using visual odometry (VO) [13], which tracks the position of a 

monocular camera from an initial local reference frame [14]. However, the camera only provides a 2-

D projection of the scene, making it difficult to accurately estimate the drone’s position due to the 

lack of scale information. To address this limitation, researchers have turned their attention to RGB 

[15] or stereo cameras [16]. While these cameras can measure depth to achieve more accurate 

positioning, their accuracy decreases with increasing distance from the target [17, 18]. To solve this 

problem, the concept of global attitude estimation has emerged, e.g., SLAM system [19-21], which 

reduces the impact of accumulated errors by establishing an environment map and continuously 

updating the target attitude corresponding to the map [22]. But it requires substantial memory space 

and computing power, which makes implementing this approach on bridges challenging. 

Beacon-based sensors, such as ultrasonic range sensors and UWB, are also widely used for 

positioning. When using this method, anchors must first be deployed in the area to be localized. The 

tag on the drone can then obtain distance information from the anchors and use a localization 

algorithm to estimate the location. For example, Ali et al. [23] successfully used ultrasonic range 
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sensors to estimate the global position of a drone. However, the effective communication distance of 

ultrasonic waves is usually only about ten meters, which limits their use on long bridges. 

The effective communication distance of UWB is usually larger than that of ultrasonic sensors, 

about 50-60 meters. It is also used for various indoor or outdoor positioning problems [24-27], but 

still faces the limitation of short communication range when applied to bridge inspection. Although 

this problem can be solved by deploying a large number of UWB anchors under the bridge, the 

increase in the number of anchors will cause electromagnetic interference between them, making it 

difficult for the tag to identify which anchors sent the message. Recently, a UWB handover system 

has been proposed to alleviate these problems [28]. It uses a bipartite graph and a greedy algorithm 

to transform the problem into a vertex coloring problem to solve the challenge caused by the long 

area and numerous beams and columns under the bridge. 

In addition, most previous studies utilizing UWB for positioning lacked consideration of the 

terrain where the anchors are deployed. These studies typically conducted positioning experiments 

on flat ground [24-26, 29]. Although Thien et al. [27] placed anchors at different heights, the 

experimental area remains relatively small, such as within a 6 by 6 meters square, which is not 

representative of real-world applications like bridge inspection. Although trilateration positioning is 

a classical problem, previous studies, such as [30, 31], employed the least squares method and the 

cosine law to determine the solutions. Positioning accuracy, especially regarding height, is highly 

sensitive to the placement of anchor positions. Chan et al. [25] proposed using the Taylor series 

algorithm [30] to enhance height accuracy, but it requires relatively more time due to iterations. Other 

methods utilize an IMU combined with a Kalman filter [27] or a barometer to enhance vertical 

position accuracy [26]. However, relying on these sensors for an extended duration may lead to 

accumulated errors. Recently, an improved UWB positioning algorithm was proposed to address 

these difficulties [32]. The algorithm employed a two-stage singular value decomposition (SVD) to 

reduce positioning errors caused by tilted anchor configurations. Furthermore, optimal anchor 

placement strategies were explored to provide better positioning accuracy, enhancing more precise 

outlier detection and robust performance in bridge inspection environments. 

Hence, it is crucial to develop a method that adapts to the terrain under the bridge and allows 

UAVs to be positioned with high accuracy for long periods of time. This study proposes innovative 

ideas to address this problem, with major contributions outlined below: 

⚫ presents an inspection system tailored to various bridge terrains and conducts practical experiments 

on real bridge structures. 

⚫ applies a handover mechanism to prevent electromagnetic interference among anchors, and ensures 

accurate positioning by quickly controlling anchor switches in distinct areas.  

⚫ utilizes an enhanced two-stage method that adapts to the terrain under the bridge, which reduces the 

error in height by about ten times compared with the original two-stage method and about half that 

of the Taylor series method. 

 

The subsequent Sections are highlighted below. Section 2 provides an overview of the entire 

bridge inspection process, detailing its key components and methods. Section 3 describes the concept 

of handover, a key mechanism to enable the simultaneous use of multiple UWB anchors. It also 

summarizes the concept of enhanced localization based on the two-stage method. Section 4 presents 

the experimental results obtained from conducting inspections under the bridge. Finally, the paper 

summarizes the findings and insights from this study. 

2. Framework of Bridge Inspection 

This section provides an overview of the entire bridge inspection process, from data acquisition 

by drones to the establishment of an inspection platform, as depicted in Fig. 1. 
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Figure 1. Bridge inspection framework. 

Firstly, a quick survey of the selected area is conducted to determine whether it lacks GNSS 

signals. GNSS signals are often missing when bridge inspections are conducted under the bridge. If 

GNSS signals are missing, a UWB network is deployed in the area to enable drones to fly and capture 

images of crucial components, such as the main beams and bridge deck panels. Then, an AI model is 

employed to detect defects such as "cracks", "spalling“, and "exposed rebar" in the captured images. 

Subsequently, the images are processed using geometric extraction methods in combination with 

rating criteria specified by regulations. This process yields corresponding evaluation integers of 

DER&U, including the Degree of deterioration, the Extent of deterioration, and the Relevancy, which 

are utilized to assess the severity of the structural safety impact and propose a classification of 

Urgency of repairing. Ultimately, the results obtained above are summarized on the inspection 

platform. 

 

2.1. Data Acquisition Using UAV 

To enable the drone to autonomously navigate along a predefined path for capturing the 

appearance of the bridge structure, this study employs the open-source software Mission Planner to 

generate a flight path that is readable for the drone. Fig. 2 illustrates the planning process for 

capturing UAV images along the predefined path. Throughout the path planning phase, it is 

imperative to ensure that the captured images adhere to subsequent evaluation criteria, 

encompassing scale, geometric transformation, and coordinate data. To fulfill the prerequisites of 

bridge inspection, this study captures images at specific points, including the bridge deck, both sides 

of the bridge, and beneath the structure. 

  

Figure 2. Schematic diagram of UAV flight paths. 

Moreover, due to the absence of GNSS signals under the bridge, a UWB network must be 

deployed to facilitate UAVs in capturing crucial components such as beam webs, transverse 

diaphragms, and supports. As shown in Fig. 3, the UWB network consists of many UWB anchors. 

Some of these are located outside the bridge, where their precise coordinates can be obtained using 

RTK (real-time kinematic) technology. Others may be located under the bridge, where GPSS is 

missing. Nonetheless, those RTK-equipped anchors outside the bridge can accurately determine their 
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coordinates. A UWB tag sensor is installed on the drone to receive distance data from the anchors. 

Leveraging the method proposed in this study (Section 3) and the open source toolkit MAVProxy 

enables the drone to localize itself in GPS-denied areas. 

  

Figure 3. UWB technical operation diagram. 

2.2. Automatic Detection of Damaged Structures 

To accurately identify the damaged parts of the bridge, this study employs Mask R-CNN [33] as 

our training model. For training data, we collect information from the open source dataset [34] and 

data provided by Taiwan CECI Engineering Consultants Inc. This data covers various regions, 

including vehicular bridges, pedestrian footbridges, and river crossings. This study mainly assesses 

problems such as concrete cracks, damage, and exposed steel bars, as shown in Fig. 4. After filtering, 

approximately 800 images remained, chosen as training data. These images are then divided into 

training and validation set at a ratio of 9:1. 

  

Figure 4. Main problems to be assessed in bridge inspection. 

During the training phase, we implement a trial approach, where the learning rate increases as 

the training iterations progress. After numerous experiments, the optimal parameters for the model 

are determined to be a batch size of 4, a learning rate of 0.0002, and 80 epochs. 

2.3. Detection Results to the Inspection Checklists 
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In the previous subsection, we employed AI deep learning techniques to identify bridge 

components and defects. This identification is then further analyzed according to the DER&U values 

obtained through the rating criteria, which allows us to assess the severity of the structure and 

propose an urgency classification. Based on this classification, maintenance personnel prioritize 

inspections of higher-severity locations and develop a repair and reinforcement plan. In addition, 

due to differences in bridge shape, size, color, location, etc., applying this method requires 

collaboration with professional engineers to adjust the defined rules or add exception criteria for 

special situations. 

2.4. Build a Detection Management System 

By integrating images captured by drones at points of interest with the identification results 

from AI models, we can construct a comprehensive three-dimensional (3D) bridge management 

system (refer to Fig. 5). This system not only showcases the 3D model of the bridge and its associated 

facilities, but can also promptly display cracks or concrete spalling on the structure, allowing 

maintenance personnel to initially understand the bridge condition and reduce their burden. 

 

Figure 5. 3D bridge management system. 

3. Positioning by Anchors Handover and SVD-Enhanced Method 

3.1. Statement of the Handover Problem 

In view of the problems caused by the large number of anchors under the bridges, the idea of 

“handover” is proposed to achieve precise positioning by timely controlling the switching of anchors 

in different areas. This ensures that the tag can accurately identify which anchor number is sending 

the message, allowing for precise positioning. 

3.1.1. Method 

A communication network is established between the tag and anchors, allowing any anchor to 

be controlled by the tag's position at any given time. Each UWB tag and anchor is equipped with a 

Raspberry Pi. All Raspberry Pis are configured to operate under the same wireless local area network 

(WLAN), enabling the tag to communicate with each anchor using the UDP protocol. In addition, 

each anchor is equipped with a relay that can be switched on and off as needed. Each group of anchors 

within specific areas is assigned a predefined letter, and an alphabetic reference table is established 

accordingly. The tag then switches these anchors on and off by sending the corresponding letter to 

anchors based on its location (determined by the SVD-enhanced two-stage method described later). 

Based on the drone’s location, the on-off mechanism will be executed to ensure that the anchors in 

the appropriate group are activated to locate the drone, while others are de-activated.  

An optimization algorithm for anchor deployment and ID assignment has been developed to 

adapt the UWB handover system to bridge inspection [28]. It solves three main issues: (1) occlusion 

by the bridge which has many beams and columns and the effective range of UWB being than 40 m 

according to actual measurements; (2) deployment cost reduction by reducing the number of anchors 

that is deployed, even if the UWB signal covers the area under the bridge; and (3) the limited number 
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of anchors that can be assigned at one time. Different IDs must be assigned to different anchors in the 

same group to avoid ranging interference between anchors. 

3.1.2. Experiment 

The anchors are deployed within a 10.47 m x 3.22 m area, as shown in Fig. 6. The drone’s area is 

divided into three zones, each of which can be located by four anchors. Although there are eight 

anchors, they only need to be assigned four ID’s (labeled as ID 1, 2, 3, and 4) to avoid duplication of 

ID’s in each zone. When the tag resides in a certain zone, the anchors within that zone are activated, 

while the remaining anchors are deactivated. 

 

Figure 6. Experimental configuration diagram. The DUT moves in the direction of the dashed arrow. While it is 

in Zone_A, anchors that have corresponding character A are turned on, while others off. 

During the experiment, the experimenter, carrying the Tag, walked along a straight path from 

coordinates (0, 1.61) to (11.44, 1.61). The handover mechanism was activated according to the tag's 

position, and the positioning results were recorded throughout the experiment for subsequent 

analysis. The positioning results, shown in Fig. 7, demonstrate continuous positioning throughout 

the handover process. The horizontal axis represents time, and the vertical axes represent the x and 

y coordinates in meters. The red lines denote the estimated location of the DUT, the black dots denote 

the actual positioning solution, and the black dashed line marks the time point of handover. By 

comparing the estimated position with the actual routes, the positioning accuracy can be estimated, 

with an RMSE of 0.176 m and 0.102 m for x and y coordinates, respectively. 

  

Figure 7. The x-y coordinates of the positioning results. The DUT moves along x direction. The estimated 

position (x, y) over time is plotted using UWB measurement with handover and compared to the estimated route 

(red lines). 

3.2. SVD-Enhanced Positioning in Slant Terrains 
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A two-stage method was originally introduced to locate the position of a drone using a UWB 

device [25]. In the first stage, trilateration is used to determine the x and y coordinates, which are then 

substituted into a predefined cost function to obtain the z coordinate. In real-world scenarios such as 

bridge inspection, uneven terrain limits the placement of anchors to accessible heights, usually near 

human working levels. When anchors are placed at different heights, the prediction accuracy drops 

significantly, mainly due to a large condition number. 

3.2.1. Method 

To reduce positioning errors caused by tilted anchor configurations, an improved UWB 

positioning algorithm based on SVD is developed [28]. It is found that if the anchors are nearly 

coplanar on sloping terrain, the unequal altitudes of the anchors will seriously contaminate the 

accuracy of the horizontal coordinates, resulting in inaccurate positioning of the DUT. To overcome 

this difficulty, the coordinate system of the anchors is transformed by rotation to a new coordinate 

system so that the anchors are dominantly in a horizontal plane with minimum vertical altitude span. 

Then, the two-stage algorithm is applied in the new coordinate system, where the horizontal 

coordinates of the tag are found in the first stage and the vertical height in the second stage. Finally, 

the new coordinates are converted back to the original coordinate system to obtain the tag position. 

In a positioning scenario with 𝑁 = 4 or more anchors, let the coordinates of the DUT at point 

T(𝑥̂, 𝑦̂, 𝑧̂) and the coordinates of the anchors be 𝐴𝑖(𝑥𝑖, 𝑦𝑖
,𝑧𝑖) for 𝑖 =  1~𝑁. Choosing one anchor, say 

𝐴𝑁 , as the reference, the anchor configuration can be characterized by a matrix 𝑨  consisting of 

vectors 𝐴𝑖𝐴𝑁
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   for 𝑖 = 1,… , 𝑁 − 1. Apply SVD to decompose matrix 𝑨 into the form of 𝑼𝜮𝑽𝑇, where 

𝜮  is a diagonal matrix of singular values. Let the solution for the DUT be w⃗⃗⃗ = 𝑇𝐴𝑁
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   . This 

transformation shifts all computations to the 𝐕  domain, allowing us to express 𝑝   as 𝑝 = 𝑽𝑇 w⃗⃗⃗  . 

Therefore, the x’ and y’ coordinates of the solution 𝑝 = (𝑥′, 𝑦′, 𝑧′) are no longer adversely affected by 

the large condition number. The second stage of the two-stage method [25] is then performed to 

obtain the expected value of 𝑧′  by giving the accurate 𝑥′  and 𝑦′ . Finally, the solution can be 

determined using 𝑤⃗⃗ = 𝑽𝑝 . 

3.2.2. Experiment 

A set of UWB anchors with IDs 1-4 are located within a 27 m × 4.83 m area. To mimic the bridge’s 

downhill terrain, anchors 1 and 2 are placed at a lower elevation, while anchors 3 and 4 are placed at 

a higher elevation, with tilt angle  = 3.4 degree (see Fig. 8). In Fig. 8, the red points correspond to 

anchors labeled 1-4 and the experimenter, carrying a tag, walked along the blue rectanglar path from 

P1, P4, P3, P2, and back to P1. Through the enhanced two-stage method, the tag position can be 

determined. 

 

Figure 8. Anchor positions and walking path on tilted plane. 

The effect of the large condition number on positioning results is also investigated. At a tilt angle 

of  = 3.4°, the condition number is 606 and the smallest singular value λ3 = 0.0634. This small value 

indicates high sensitivity to measurement errors, which can significantly affect 2D positioning results. 

Fig. 9 shows a comparison of 2D positioning results for the original and enhanced two-stage methods. 

Using SVD significantly improves x-y positioning accuracy and reduces the error amplification 
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caused by the high condition number. This real-world positioning experimental finding highlights 

the effectiveness of the enhanced two-stage method in maintaining high positioning accuracy even 

when the anchors are not placed on a flat surface. 

 

Figure 9. Comparison of original and SVD two-stage methods for 2D positioning at 𝜃 = 3.4o°. 

4. Bridge Inspection Experiment 

4.1. Experiment Settings 

4.1.1. Hardware 

The hardware is shown in Fig. 10. The UAV has a three-axis gimbal primarily mounted upward 

to fulfill the inspection requirements beneath the bridge. In addition, it is equipped with a video 

transmission transmitter and receiver module to facilitate long-distance wireless transmission of 

aerial footage captured by the drone. This model also boasts a wind resistance capability equivalent 

to Beaufort scale 4, ensuring that it is suitable for handling sudden strong winds that may occur under 

the bridge. 

  
(a) (b) 

Figure 10. Hardware used in the experiment. (a) UAV, and (b) UWB sensor. 

The UWB used in this experiment supports IEEE 802.15.4a and offers multiple channels. We 

primarily operate within the channel range of 4.25 GHz to 4.75 GHz, with a packet transmission rate 

of 50 Hz. In this experiment, UWB anchors are deployed outside or under the bridge. First, the 

longitude and latitude coordinates of the anchors outside the bridge are measured using RTK 

technology. With the above information, the coordinates of other anchors under the bridge can be 

obtained using the positioning algorithm (see Fig. 11). 
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Figure 11. Anchor coordinates G1-G5 are determined via VRS-RTK, while G6-G7 coordinates are obtained using 

a positioning algorithm based on G1-G5. 

4.1.2. Software 

The drone’s flight control system uses Pixhawk, which is supported by the open-source 

firmware Ardupilot. This tool enables us to leverage a range of packages to facilitate various tasks in 

this experiment. For instance, we can utilize the package GPSInput of MAVProxy to simulate GPS 

signals to achieve drone positioning. Additionally, tools like Mission Planner can be used to set flight 

paths and monitor the drone's flight in real time. 

4.2. Selection of Validation Bridges 

This study selected two bridges for experimental validation: a small bridge, Bridge A, located in 

a mountainous area, and a river-crossing bridge, Bridge B, in an urban area. 

These two bridges were selected based on specific considerations. According to the Taiwan 

Ministry of Transportation's "National Bridge Basic Information Table," Bridge A requires drone 

inspections because its minimum underpass height is 1.2 m, making it difficult for large equipment 

to enter. Bridge B, a vital role as a transportation link connecting downtown Taipei with its suburbs, 

spans the Jingmei River, measuring 166 m in length and 29.5 m in width. The bridge piers are in the 

stream, making traditional bridge inspection difficult. Figs. 11 and 12 describe the UWB network 

deployment for Bridges A and B, respectively. 

  

Figure 12. The 166-meter-long bridge is deployed with a total of 27 UWB anchors along its span. 

4.3. Image Acquisition 

For drone image acquisition, this study uses Mission Planner to generate flight paths compatible 

with the drone, and save them in the .waypoint file format. This planning process involves pre-

defining the drone’s shooting path for key bridge components and setting parameters such as 

altitude, flight speed, and dwell time at waypoints to ensure that the drone's flight trajectory aligns 

with site requirements during route planning. Fig. 13 illustrates the drone’s flight path around and 

under a bridge as an example. The actual flight path, as shown by the purple line in the figure, is in 

good agreement with that defined by the Mission Planner.  

 

 

(a) (b) 

Figure 13. (a) Drone's flight trajectory (b) Pre-defining path via Mission Planner. The purple line represents the 

actual flight path of the drone. 

Drone route planning involves three main steps, as shown in Fig. 14. First, as (1), switch the 

Mission Planner screen to the "Flight Plan" page and designate the return position (H). By default, 

the drone will autonomously return to this position after completing its mission. Next, as (2), select 

the waypoint locations to chart the route. Once the location of each waypoint is confirmed, proceed 
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to set the dwell seconds and altitude (Alt) for each point. In this case, the route required the drone to 

pause for 5 seconds at each point, and the altitude was set to 2.5 m. The altitude specified here is 

relative to the initial position. Finally, as (3), upload the planned route to the drone to perform the 

mission. 

 

Figure 14. Illustration of a task comprising six waypoints. 

To issue commands for capturing images through the Mission Planner and embed the 

coordinate information provided by UWB into the image, this study employed an on-screen display 

(OSD) module and a serial bus (SBUS) signal conversion module to facilitate the UAV imaging 

process (see Fig. 15). This process is primarily divided into two parts: transmitting flight control 

information to the camera module (red section) and issuing flight control instructions for image 

capture (blue section). 

  

Figure 15. The framework for embedding coordinates into UAV images. 

Finally, the drone performed the shooting task according to the pre-defined paths and obtained 

images of each bridge component. Fig. 16 shows images captured through the pre-planned flight 

paths. Coordinate information is embedded in each image, allowing the results to be subsequently 

mapped to actual locations. 
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Figure 16. Images captured by UAV for the inspection of Bridge B. 

5. Conclusions and Discussion  

The structural safety of bridges is a critical public concern. However, traditional visual 

inspection methods are labor-intensive and time-consuming. This study is dedicated to the research 

and development of key technologies for bridge inspection. In terms of data collection, through a 

comprehensive UAV route planning process, the study has completed the collection of images of 

several key bridge inspection components. The establishment of a UWB network addresses the 

difficulty of UAVs collecting images from under bridges, representing a significant breakthrough in 

autonomous image collection. The study has deployed a UWB environment on Bridges A and B, 

successfully improving the UAV's position accuracy to 0.2–0.5 meters. Through route planning, the 

study automatically collects images of key bridge components previously difficult for UAVs to 

capture, including supports and beam webs. 

Another core aspect of this project is UAV image processing and analysis management. This 

bridge inspection framework, based on deep learning and computer vision, assists engineers in 

conducting bridge inspections quickly and efficiently. This AI recognition process is divided into 

three modules: image localization, degradation identification, and damage assessment. It can more 

effectively assess problems such as concrete cracks, damage, and exposed steel bars. Compared to 

previous research on degradation identification, this focuses more on establishing a comprehensive 

bridge inspection framework to assist engineers in patrol inspections. Inspection results from the two 

practical bridges demonstrate that UAVs, by collecting a wider range of inspection angles, reveal 

more deterioration areas than visual inspections, providing on-site personnel with a more 

comprehensive basis for bridge repairs. 

Still, this study does not consider certain real-world scenarios, such as the presence of beams 

and columns beneath bridges, which may block or diffract UWB signals during UAV flight, thus 

affecting positioning accuracy. Therefore, detecting UWB signal outliers is an important 

consideration for future bridge inspection methods. On the other hand, for long-span bridges, 

determining the optimal locations of anchors under the bridges while ensuring precise positioning is 

also an essential issue. Overall, there may be other factors not discussed here that need to be 

considered in real-world scenarios. However, by addressing the issues raised, bridge inspection 

technology can advance further. 
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