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Abstract: This study discussed the nexus between Artificial Intelligence (AI) and carbon emissions in 
road transportation. It highlighted AI’s potential as a promising tool for carbon footprint 
management in this sector. The study considered different carbon emission reduction strategies, such 
as fuel consumption optimization, speed management, traffic control systems, and vehicle fleet 
policies. This study acknowledged AI’s emerging roles in providing real-time information, reducing 
implementation costs, and minimizing human bias in road traffic control and emission monitoring. 
In this study, it was observed that different AI algorithms, such as artificial neural networks and 
support vector machines have been used for traffic management and CO2 emission prediction. This 
study reported the growing global market for AI technologies in transportation due to its potential 
to analyse historical data and optimize various aspects of transportation systems. However, several 
challenges affect AI adoption in this sector.  This includes limited information on how to manage 
data quality and availability in the industry, issues of system failures and cyber-attacks, lack of trust, 
and fear of job displacement that are associated with AI adoption in the transportation sector.  The 
study further provided insights into the complexity of integrating AI into this sector’s operations. 
Lastly, this study acknowledged the need for continued research on AI in the transport sector, while 
acknowledging the need for more investment in AI and robust policy development in order to sustain 
an efficient transportation system.   

Keywords: Artificial intelligence; carbon emissions; machine learning; road transportation; traffic 
management; sustainability  
 

1. Introduction 

Greenhouse gas emission (GHG) is a global issue that has made stakeholders continually 
formulate policies to control it; yet, its emission is increasing (Figure 1). Using 1990 as a baseline 
period, stakeholders in environmental sustainability expect a 60% GHG emission reduction in 2050  
[1]. In 2015, these stakeholders reached an agreement in Paris, termed the Paris Agreement, on the 
need to maintain an average global temperature of 2oC. Currently, stakeholders in environmental 
sustainability agreed that a robust national action policy is required to achieve a 2021 follow-up 
agreement on climate change that was held in Glasgow [2]. One objective of the National action policy 
is to address the issue of urbanisation, which has led to an increase in GHG emissions [2]. 

Urbanisation is inevitable in today’s global economy [3]. This need has made the campaign 
against climate change challenging because scholarly reports have shown that the transportation 
sector is the major contributor to carbon emissions globally because it has failed to implement 
efficient decarbonisation strategies for GHG emissions [4,5–7]. The emissions come from the 
transportation modes – road, marine, rail and air – used to transport humans and goods worldwide 
[8,9]. The machinery used for transportation are major source of GHG gases such as carbon dioxide 
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(CO2), methane (CH4), and nitrous oxide (N2O) [10]. These gases are the by-products of fossil fuels 
used as the major energy source in transportation systems [11].  

 
Figure 1. Global CO2 emission [12]. 

Today’s volume of transportation sector calls for an urgent need to minimise greenhouse gases, 
especially CO2, which have adverse environmental consequences on our planet – such as the 
depletion of natural resources  [2,6,13]. The current rise in global temperatures is among the 
environmental problems of CO2 emissions [14,15]. By implication, this problem has led to extreme 
weather conditions, which have resulted in the ecosystem and biodiversity disruption [4]. Human 
health and well-being have been on the receiving end of these disruptions [4,11]. Poor air quality in 
our environment resulting from air pollution and smog formation from transportation-related 
emissions are responsible for several public health problems, for example [1,16]. 

Stakeholders have recognised this problem by proposing frameworks that will assist 
communities in transit to sustainable transportation means - they will depend on low-carbon energy 
sources [7]. First, the proposed frameworks have established the need for behavioural changes 
toward clean energy sources, such as solar energy [17]. Second, their frameworks contain 
technological innovations that minimise dependence on fossil fuels for transporting humans and 
goods. Third, there is documentation on the policy interventions that seek to improve energy 
management in this sector. Lastly, some frameworks contain infrastructure improvements in the 
transportation industry towards a sustainable environment [7]. Artificial intelligence (AI) integration 
in transportation systems is among the infrastructural improvements that will help to reduce carbon 
footprint in transportation systems. 

AI integration in the transportation sector has several benefits that will help to solve some of the 
environmental impacts of this sector. For instance, this sector will enhance its safety, improve 
accessibility and increase its system reliability. Beyond these benefits, AI tools in the transportation 
sector will help to optimise different operations that are not limited to traffic management, logistics 
operations and route planning. Furthermore, AI tools can optimise fuel consumption, reduce 
greenhouse emissions, and improve this sector’s overall efficiency. 

This study’s objectives are tripartite: it provides an overview of carbon emissions in the 
transportation sector and discusses the justification for this emission reduction. Under this objective, 
the study examines recent challenges and the environmental impacts of carbon emissions from 
different sectors in the transportation industry, such as vehicles and ships. The second objective 
considered AI as a promising tool for managing and reducing carbon footprint in the transportation 
industry. Under this objective, this study reviewed different AI tools and algorithms regarding 
optimising greenhouse emissions, transportation networks, operations and energy consumption.  
The last objective deals with case studies and directions for further studies. Based on this study’s 
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tripartite objectives, this study aims to contribute to the ongoing discussion on climate change 
mitigation strategies. 

 

Figure 2. Sectorial CO2 emission  [18]. 

2. Carbon Emissions and Transportation systems  

The increase in travelling and growth in global trade is responsible for the rise in carbon 
emissions from the transportation system [19]. According to  [20], the contributions of the different 
transportation means are different, with road transport (cars, trucks, buses)  about 48% of global 
CO2 emission (Figure 3). This problem has led to the proliferation of electric vehicles (EVs), especially 
in developing countries such as the United States and England [21,22], to cut down on CO2 emissions. 
Figure 4 shows that the revenue from global sales of EVs is rising exponentially because of the 
campaign against climate change [23].  

 
Figure 3. CO₂ emissions in the transportation sector   [20]. 
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Figure 4. Projected EV revenue [23]. 

Scholarly publications about climate change are among the reasons for the projected rise in EVs 
[17]. This attempt to control climate change via technology has been recognised as an approach to 
mitigate GHG emissions from road transport systems [17]. Technology and energy users’ behaviours 
nexus will help to further mitigate against climate change [17].  Behavioural change in road transport 
will improve human health due to pollutants reduction, such as dust and gases. For example, [1] used 
a life cycle assessment approach to assess the GHG impact on the environment and human health. 
This approach enables them to establish that vehicles are the major contributors to CO2 emissions 
into our environment. On the other hand, the NOx from vehicles are responsible for human health 
problems. [2] expanded the analysis of road transport on climate change from a circular economy 
perspective. They investigated the relationship between vehicle life cycle production and energy 
consumption based on three transportation scenarios – micro, meso, and macro transportation 
systems. The investigation showed that it is difficult to address climate change in a community where 
economic, societal and environmental sustainability is unbounded [2].  

[24] established that public transportation modes are major carbon emission contributors 
compared to private transportation modes - they observed that more vehicles are used for public 
transportation than private. Based on this observation, they developed a system thinking model that 
improves carbon emissions from road transport systems. They recommended incorporating efficient 
pricing and prioritisation, transport mobility, and transport accessibility for improving quality public 
transportation. [25]  analysed the life-cycle carbon emissions in urban and rural settings from a 
private transportation perspective. They observed a 7.69% increase in life-cycle carbon emissions 
when a petrol-powered vehicle in a rural community (260 g) was compared with a similar vehicle in 
an urban setting. This difference is due to the prevalence of traffic in urban settings [26].   

[27] investigated the environmental impacts of two transportation systems: road and rail 
transportation systems. Their methodology entails analysing carbon emissions from passengers 
using these transportation systems. They observed that an average of 1.58% increase in carbon 
emission would come from passengers using the road as a means of transportation when compared 
with when the same passengers use rail as a means of transportation (30 grCO2epkm–1). Their study 
concluded that a rail transportation system is environmentally friendly when compared with a road 
transportation system. This conclusion aligns with the work of [28]. They pointed out that the average 
carbon emissions from road and rail transport systems are 31.9 and 120.4 gCO2/km, respectively. 
According to [28], an aggregator system is required to control carbon emissions from road and rail 
transport systems. After investigating different policy scenarios that were aimed at aggregating these 
systems, they observed that Euro emissions standard implementation in the UK does not yield 
satisfactory results for carbon emission reduction. On the other hand, they found out that a policy 
that deals with changing of vehicle fleet enhance emission reduction.  
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The implementation of a vehicle fleet policy as a strategy for reducing carbon emissions yields 
better results when it is implemented using an inhomogeneous fleet with vehicles of different sizes 
[29]. According to  [29], focusing fuel on consumption, instead of distance travelled, is a more 
reliable way of reducing carbon emissions. This assertion is based on the fact that a proportional 
relationship does not exist between a vehicle’s fuel consumption and distance travelled due to weight 
variation in a vehicle. Hence, they established that a vehicle’s fuel consumption depends on its gross 
weight – net weight and actual payload. [30] explained that drivers’ driving style affects a vehicle’s 
fuel consumption rate. Furthermore, they reported that tolling on roads affects fuel consumption, 
especially on roads with a non-electronic tolling system. Areas with non-electronic tolling systems 
can improve fuel consumption with a traffic control system [31]. 

A traffic control system helps to reduce travelling time and road traffic congestion [32]. These 
benefits have made scholars consider traffic emissions as a means of reducing carbon emissions [32]. 
According to [32], the intelligent-vehicle-based method is used to improve driving behaviours and 
reduce carbon emissions.   The traffic-management-based method is another traffic control system, 
that is used to balance traffic emissions, hence optimising traffic schedules on a road network. Traffic 
control systems produce efficient results that optimise traffic delays and emissions are synergically 
analysed for a situation [32]. According to [33], vehicle speed management in traffic management is 
a viable approach to reducing carbon emissions, especially in residential communities. In practice, 
the bi-objective of reducing traffic and carbon emissions sometimes conflicts [34]. To address this 
problem,  [34] recommended a Pareto optimisation approach for generating a compromise solution 
to get a win-win situation for traffic control and carbon emissions. 

The trade-off between traffic control and carbon emissions is a complex problem [35]. The 
complexity has made scholars apply different approaches towards reducing carbon emissions in the 
transport industry [36–38]. For instance, traffic light optimisation has been used to reduce vehicles’ 
carbon emissions in urban communities [36]. This optimisation considered traffic flow and fuel 
consumption as the objective function, and they are optimised and solved using meta-heuristics such 
as differential evolution [36]. [35] modelled traffic flow, safety and carbon emission as a multi-
objective optimisation problem. They considered this problem as a ramp metering problem. In the 
model, they included bottlenecks and feeders in the ramp metering algorithm. This inclusion allowed 
them to generate compromise solutions for traffic flow, safety and emissions. 

AI model benefits have made it a promising tool for carbon emission management in the 
transport industry, especially road transport. AI implementation in road transport systems comes 
with several benefits: First, AI can generate real-time information about road traffic and carbon 
emissions. Second, AI implementation in transport systems does not require specialised skills. Third, 
the implementation cost of AI in transport systems is low when compared with other solutions for 
traffic control and carbon emissions monitoring. Lastly, AI implementation in road transport systems 
does not come with a bias because it reduces human interference with traffic control and carbon 
emisions monitoring. The next section contains a review of AI applications in road transport systems.  

3. AI and Carbon Emission Nexus in the Road Transport System  

Intelligent transport system (ITS),  AI applications in the transport sector, have found several 
applications in the transportation industry (Figure 5). First, it has been established that ITS can 
address transportation tracking problems. Internet of Things [39] and fuzzy logic [40] are among the 
tools used for designing transportation tracking systems. Second, ITS generates information about 
route scheduling for transportation problems. Addressing this problem involves the application of 
meta-heuristics because of its complexity – genetic algorithm [41], branch and cut algorithm [42], and 
differential evolution algorithm [43] have been successfully used to optimise a vehicle’s route 
schedule.  
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Figure 5. Roles of ITS [44]. 

The remaining paragraphs in this section focused on AI applications in road transport systems 
with an emphasis on carbon emissions.  

3.1. Traffic Management 

Traffic management has been transformed by AI implementation [45,46]. AI has helped to 
improve traffic flow and safety in different communities. This improvement has led to an increase in 
AI in the transportation market (Figure 6). With AI technologies, traffic prediction has been enhanced 
and optimised during long and short-term transportation within a community. The enhancement is 
due to the adoption of sensors and cameras that have impacted GPS devices’ performance in 
supporting traffic congestion prediction and bottleneck in a road network. The prediction enables the 
implementation of proactive measures that enable timely congestion alleviation and travelling time 
reduction.  

 

Figure 6. Global AI in the transportation market [47]. 
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With AI technologies, historical data on road accidents have been analysed in order to identify 
patterns and implement strategies for safety measures’ implementations [48]. Speed cameras and 
speed bumps are among the safety measures that traffic management authorities are deploying to 
improve road safety. These devices can minimise accidents’ likelihood in a community. Apart from 
this benefit, AI technologies have helped to improve decisions on road conditions and traffic flow 
[49]. Furthermore, AI technologies have assisted experts in making informed decisions on 
infrastructure improvements, such as identifying areas where bridges or roads expanded, and should 
be constructed for improved traffic flow [50].  

Route management is another benefit of AI in road transport management [51]. AI algorithms 
make it easier to consume less fuel by suggesting the best route that vehicles should use to optimise 
time and energy – this benefit improves ridership expectations [52]. Autonomous vehicle 
proliferation is contained in the subset of AI technologies benefits in road transport systems [53]. 
These vehicles have not only reduced road accidents but have also improved traffic flow and 
congestion in urban communities. They have made our roads to be safer and more sustainable for 
commuters.  

3.2. Fuel Consumption  

Reduction in fuel consumption is a major benefit of AI technology implementation in the road 
transport sector [54]. AI technologies can predict the amount of fuel that a vehicle will consume to 
get to its destination [30]. This prediction is carried out by rerouting vehicles to avoid congestion and 
bottlenecks as a means of minimising fuel consumption. The aggregation of this benefit reduces the 
amounts of CO2 from road transport systems.  

Autonomous vehicles can improve driving efficiency when compared with human drivers [55]. 
They achieve this by minimising a vehicle’s acceleration and braking which has direct impacts on 
fuel consumption [30]. The vehicle capacity of optimising routes has an impact on a vehicle’s fuel 
usage. Furthermore, the use of AI technologies to optimise engine design and tyre efficiency helps to 
reduce vehicles’ fuel consumption [56]– thereby reducing CO2 emission. AI technology’s capacity to 
reduce CO2 emissions is enormous through EV adoption. The presence of AI technologies in EVs 
allows these vehicles to process information about driving patterns and battery technology [57]. This 
benefit has enhanced the transition from gasoline-powered vehicles to EVs which is a major boost to 
the fight against CO2 emission.  

3.3. CO2 Prediction  

As mentioned previously, the transportation sector is a major contributor to CO2; hence, CO2 
prediction from this sector is a major endeavour [58]. There is a need to carry out this prediction 
accurately to support the fight against climate change. Scholars have identified AI as a robust tool for 
developing predictive models that will support policies about CO2 emissions from the transport 
sector [49]. AI algorithms use information about road conditions, fuel consumption, and traffic 
patterns to design models that generate information about vehicle CO2 generation. In some models, 
vehicle characteristics, such as speed and acceleration,  and weather conditions are considered as 
features for such predictive models [59].  

AI models can learn a vehicle’s attributes that are not apparent to humans based on historical 
data about a vehicle [60]. The models achieve this task by learning from large data which are used to 
train the model and validate its accuracy. The training enables models to generate real-time 
information about CO2 from a vehicle [61]. Implementation of the information from the trained model 
helps to promote public transportation and EVs in urban centres. In addition, AI-based prediction 
enables stakeholders to select appropriate strategies for dealing with CO2 emissions in the transport 
sector [62].  

4. Roles of Artificial Intelligence in Road Traffic Management 
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Studies have shown that traffic has a direct relationship with the volume of CO2 emission [63–
65]. Hence, scholarly reports have been presented on the importance of AI as a tool for managing 
traffic to minimise CO2 emissions. Some of the AI algorithms, that has found applications in road 
traffic management and the transportation sector include Artificial Neural Networks (ANN) [63], 
Support Vector Machines (SVM) [66], and Particle Swarm Optimization (PSO)[67]. Table 1 presents 
some of the studies dedicated to the application of AI in traffic management, outlining the specific 
applications and locations. 

[61] used ANN to forecast short-term traffic conditions by analyzing traffic volume, speed, 
density, time and day-of-a week pattern. This helped planning routes better and reduced fuel 
consumption for vehicles operating in the area. Likewise, [62] implemented LSTM neural networks 
to forecast traffic speed in China using real-time data from the field (travel time tables and traffic 
volume) for adaptive traffic signal control and route optimization. These studies demonstrate that 
the use of AI enables precise short-term traffic forecasts with which transport authorities can adjust 
traffic flows ahead of time to reduce idle time and thereby minimize emissions. In these densely 
populated urban areas, the models themselves bring about significant improvements in flow and CO₂ 
reduction. 

Table 1. Selected articles on AI applications in road traffic management. 

Authors Algorithms  Application  Country Year 

[63] ANN  

Evaluated short-term prediction of 
traffic flow using traffic volume, 
speed, density, time and day of 

week.  

India  2013 

[67] 
ANN and particle swarm 

optimization (PSO) 

Identified the causes of traffic 
congestion using speed, categories 
of vehicles, traffic density, time, 

and traffic volume. 

South Africa  2021 

[64] ANN  
Forecasted inter-urban traffic using 

speed, flow, and occupancy.  
Netherlands  1997 

[68] 
Long short-term memory 

neural network 
Predicted traffic speed using travel 

time, speed and volume 
China  2015 

[69] ANN and genetic algorithm  
Evaluated traffic flow using traffic 

volumes, travel speeds and 
occupancies.  

Greece  2005 

[70] ANN  
Predicted traffic conditions using 

traffic volume and speed.  
UK  2016 

[65] 
ANN, support vector machine 

(SVM) and Radial Base 
Function 

Optimise traffic prediction using 
traffic volumes, travel speed, and 

travel time. 
Greece 2015 

[66] 

SVM, Holt’s exponential 
smoothing, ANN, and 

Gaussian maximum likelihood 
(GML) approach 

Predicted freeway traffic flow under 
both typical and atypical conditions 

using travel time.  
USA 2009 

Other AI technologies like deep learning and reinforcement learning have also been adopted in 
enhancing traffic management systems. [68] used Reinforcement learning to dynamically modify 
traffic signal timings in real time by learning from pattern from pervious data. Benefiting from the 
advantages related to occupancy and speed, hybridization of algorithm such as ANN and genetic 
algorithms have also been found to be effective in traffic management [69]. Another advantage of this 
approach is that it has the capability of simultaneously managing multiple objectives to ensure a 
compromise between traffic management and emission reduction. 
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[68]AI-controller traffic management can also be incorporated into smart city infrastructure to 
minimize emission and enhance services. This would involve installation of Io-enabled sensors at 
intersection to monitor traffic and provide real-time data to AI algorithms for assessment. The output 
of this process is then used to control the traffic. the efficient control of traffic reduces commuting 
time and consequently emissions. Cities such as Barcelona and Amsterdam have incorporated 
adopted AI-driven technologies into their cities; these align urban mobility with sustainability goals 
[71].   

The implementation of AI-controlled traffic management although comes at a high cost of 
infrastructure including purchase of sensors, communication networks, and establishment of data 
centre, has its inherent long term benefits. It lowers fossil fuel consumption which reduces emissions 
translating to improved air quality. Research has shown that a CO2 emission reduction of between 
10-15% can be achieved deploying AI-optimized traffic flow infrastructure. This would result in 
significant fuel savings and a reduction in public health costs associated with air pollution [72]. AI-
ontrolled traffic management system can also improve safety outcomes on the road. 

Despite the advantages of deploying AI for traffic management, it also comes with various 
ethical and technical concerns. Because of the quantity of data required, one of the major ethical issues 
is related to data privacy. Another threat is cybersecurity; a cyber-attack can compromise and disrupt 
the system. Furthermore, AI may prioritize the optimization of certain neighborhoods over others 
leading to the question of justice and equity [73]. In addressing these concerns, effective regulations 
and frameworks is essential. These framework and regulatory policies must prioritize accountability, 
security, data privacy, data protection, and safety. 

5. Challenges of AI Implementation in the Road Transport System  

As AI continues to transform and revolutionise the transportation industry, stakeholders have 
yet to harmonise and optimise the activities in the transportation ecosystem due to diverse challenges 
that are technical and non-technical [74]. For example, data availability and computational power are 
major challenges when deploying AI models in the transportation industry [44]. There are also social 
and security concerns about AI deployment in the transportation industry. Likewise, human factors, 
infrastructure and environmental issues are contained in the web of challenges which are limiting AI 
deployment in the transportation industry. Table 2 presents a summary of AI challenges in road 
transport. The next sections discussed the impacts of the factors mentioned above on AI 
implementation in the transportation industry.  

Table 2. Summary of AI challenges in road transports. 

Challenge Factors  

Technical  
Computational power, data availability, data processing, data quality, biases and 

fairness  
Safety and Security  Data privacy, cyberattack, human error, intellectual property theft, system failure  

Human factors  Accessibility, accountability, complexity, equity, resistance to change, skill gap, trust 

Infrastructure 
Communication protocol, energy efficiency, energy supply, network infrastructure, 

sensor deployment, system upgrading 
Environmental  Autonomous vehicles, smart infrastructure  

5.1. Technical Challenges 

Data quality and availability are at the front burners of the technical challenges that have limited 
AI implementation in the transportation industry [75]. Machine learning models’ performance 
depends on the quantity of data used to develop models [76]. In terms of road transport, large data 
about traffic and accident patterns as well as road conditions matter when developing an AI model 
for road users [77]. Further, information about vehicle speed and weather conditions is required to 
develop robust AI models for community use [49]. Unfortunately, most communities lack the 
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infrastructure to reliably collect and store information about the features mentioned above. On the 
one hand, unreliable data affect the predictive power of an AI model thereby undermining the AI 
system’s efficiency. On the other hand, processing reliable data for real-time applications requires 
infrastructure with high computational power.  

Infrastructure is required for designing dynamic traffic systems that will process incoming data 
for identifying patterns within a split-second. Currently, several communities lack a budget for 
infrastructure that can make traffic decisions within a split-second [78]. In short, the existing traffic 
infrastructure in several communities is obsolete and those cannot collect and store large amounts of 
data to support AI technology implementation in their transportation industry. Attempts to upgrade 
such infrastructure are not only expensive, but it is also incompatible with modern traffic 
management software. This challenge is intricate in communities where multiple agencies are 
responsible for transport management because multi-system upgrading will be required.  

5.2. Safety and Security Challenges  

Safety is at the heart of every transport system because any system failure has severe 
implications that might lead to loss of life [79]. Hence, stakeholders are sceptical about transferring 
certainty transport management activities to AI systems because misinterpreting information about 
their transport attributes will lead to unpredictable consequences, such as accidents and injuries. For 
example, an AI system can fail to perform satisfactorily in areas with poor lighting and this might 
lead to poor pedestrian detection – the consequence might be accidents. Apart from system 
malfunction, AI systems are prone to cyber-attacks. The consequences of cyber attacks, security 
threats, are enormous in transport systems because of the interconnectivity that exists in these 
systems. 

Gridlocks and accidents are some of the consequences of cyber attacks on a transport system 
once the system is hacked [80]. Designing a robust AI system for the transport system is a formidable 
challenge because hackers are continually devising techniques to perpetuate their evil acts in the 
transportation industry. Hence, there is a need for stringent regulations that will support AI 
implementations in transportation to prevent the implementation of non-robust AI systems in the 
transportation industry. Unfortunately, several communities are yet to draft laws and policies that 
will make it difficult for robust AI systems implementation in the transport industry. For example, 
there are limited policies on penalties for failed AI systems usage that lead to accidents [81]. This 
ethical concern has made several stakeholders jettison AI implementation in the transport industry. 
They are waiting for directions on who is responsible for a failed AI system: the manufacturer, the 
driver, or the AI developer.  

5.3. Human Factors Challenges  

Trust is a major issue in AI systems’ implementations in the transport industry [82]. For example, 
people are apprehensive and sceptical about assigning their responsibility to AI technologies – this 
issue has led to a poor proliferation of autonomous vehicles, especially in communities with high 
road transport accident records. When autonomous vehicles fail in such communities, it will not only 
affect public trust in autonomous vehicles but will also affect their implementations for other 
transport management systems in the environment.  

Investigations on AI failures have been tracked to unpredictable human behaviours [83]. This 
unpredictableness has limited AI implementation in transport systems. Jaywalking and sudden lane 
changes are among the unpredictableness of drivers’ behaviours. The nexus between drivers, 
pedestrians and other road conditions has not been perfected. Autonomous vehicle manufacturers 
need to design mechanisms that will adequately address this problem to improve drivers’ experience 
and expectations.  

The myth that AI will displace people from jobs is also affecting its implementation in the 
transport system. Drivers, traffic controllers and maintenance workers are among the people that AI 
implementation will affect in the transport sector [84]. These workers are among the people 
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discouraging AI implementation in this sector. Rather than opposing AI implementations, 
technocrats opined that their concern should be about retraining and upskilling to catch up with 
innovations in the AI tech space. Upskilled workers will be required to take up the new job 
opportunities generated by AI implementation. Retraining and upskilling costs in AI are capital 
intensive; investment in retraining and upskilling is a major challenge for stakeholders in the 
transport sector.  

5.4. Infrastructure Challenges  

Apart from investment in the transport sector workforce, investment in this sector’s 
infrastructure is a major challenge. A community needs to invest in data centres to optimise AI 
implementation in its transport sector [85]. Furthermore, investment is required for communication 
networks, sensors and cameras for AI implementation to be successful in a transport system. This 
infrastructure is required for data collection for AI systems to provide real-time information in the 
transport ecosystem. Therefore, a community with inadequate infrastructure might need to upgrade 
their system or build infrastructure that will enable AI implementation; the cost of upgrading, or 
building, a system is capital-intensive.  

When upgrading a transport system, experts are often faced with interoperability challenges 
because they might need to connect traffic systems and other road safety technologies [86]. This task 
is challenging because the technologies are owned and operated by different stakeholders. For 
example, the government are often in charge of traffic management systems, while individuals 
control and manage vehicle fleets. Experts will have to find a common ground for these stakeholders 
to come together to design a smart transport system for a community – this activity is complex, 
cumbersome and challenging because of conflicting stakeholders’ interests.   

5.5. Environmental  Challenges  

AI infrastructure consumes energy to collect and process data for real-time information 
generation [85]. For example, equipment, such as sensors and processors, in autonomous vehicles 
consume energy continuously when collecting and analysing information from their environments. 
Likewise, smart traffic management systems depend on data centres for their operations – data 
centres are energy-consuming centres. Therefore, AI infrastructure competes with other energy 
centres in a community. This competition increases a community’s energy storage in a community 
where energy generation is a major challenge.  

This problem also creates energy inequality because AI systems are most likely to be deployed 
in communities where wealthier people live. Communities where wealthier people dominate are 
therefore likely to have improved traffic management systems compared to communities where poor 
people live. This imbalance creates a societal problem. Hence, equitable accessibility of AI 
technologies, in respective of socio-economic status, is a chanllenge, especially in developing 
countries.  

6. Conclusions   

This study presented the AI and carbon emission nexus concerning road transportation.  The 
nexus was considered because of global concern about greenhouse gas (GHG) emissions from the 
transportation sector. It was observed that stakeholders are aiming for a 60% reduction by 2050 
compared to 1990 levels. In the transportation sector, road transport contribution accounts for about 
48% of global CO2 emissions. Attempts at addressing this problem have led to the proliferation of  
Electric vehicles (EVs) in developed countries, such as United Kingdom and the US. EVs can reduce 
CO2 emissions to an acceptable level. Scholars’ reports showed that EVs, which are privately owned, 
have not contributed more to CO2 reduction because public transportation modes contribute more 
to carbon emissions than private modes. Furthermore, this study observed that rail transportation is 
generally more environmentally friendly than road transportation. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2025 doi:10.20944/preprints202501.2103.v1

https://doi.org/10.20944/preprints202501.2103.v1


 12 of 17 

 

The literature showed that different strategies have been documented for carbon emissions 
reduction in the transportation sector. Vehicle fleet policies, fuel consumption optimization, traffic 
control systems, and speed management were among the frequently used strategies in this sector. 
Also, this study observed that AI is emerging as a promising tool for carbon emission management 
in the transport sector. It offers several benefits for the sector. For example, it provides real-time 
information about low implementation costs and reduces human bias in traffic control and emission 
monitoring. Other benefits of AI in this sector include tracking problems and route scheduling 
optimization. In addition, it was observed that the global market for AI in the transportation sector 
is growing because of its capacity to analyse historical data.  

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Long Short-Term 
Memory Neural Networks are among the AI algorithms in the transport system. These algorithms 
use historical data to predict CO2 emissions from the transport sector based on different features. 
Road conditions, fuel consumption, and traffic patterns were among the features used to predict CO2 
emissions. Furthermore, it was observed that there is traffic and CO2 emissions.  Apart from  CO2 
emissions management, AI technologies have helped to optimise traffic prediction and management. 

This study observed that the implementation of AI in transportation faces technical challenges.  
Data quality, availability, and high-performance infrastructure are among the challenges affecting AI 
implementation in the transportation industry. In terms of safety and security concerns, it observed 
that system failures and vulnerability to cyber-attacks are hindering AI adoption in transportation 
systems. Furthermore, lack of trust in AI technologies and fear of job displacement contribute to 
human challenges in AI implementation. This study observed that low investment in data centres 
and communication networks are among the major infrastructure challenges affecting AI adoption 
in transportation systems. Lastly, high energy consumption affects AI adoption in this system.   
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