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Abstract: In this paper, we consider the generalized sextic functional equation ∑i
7
=0 7Ci(−1)7−i f (x + 

iy) = 0. And by applying the fixed point theory in the sense of L. C\u adariu and V. Radu, we will discuss the 
stability of the solutions for this functional equation.
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1. Introduction4

The origin of concept for Ulam stability is an open problem, formulated by Ulam [14], concerning5

the stability of group homomorphisms. The first partial answer to Ulam’s problem came within a year,6

when Hyers [6] proved a stability result for the additive Cauchy functional equation in Banach spaces.7

Since then, many mathematicians have dealt with this problem (cf. [5,13]).8

The solution of the so-called generalized sextic (sixth order) functional equation

D f (x, y) :=
7

∑
i=0

(−1)7−i
7Ci f (x + iy) = 0, (1)

for all (x,y) in the domain of f, is called the generalized sextic (sixth order) mapping, where nCi =9

n!
i!(n−i)! . For example, if a1, a2, a3, a4, a5, a6, and a7 are real constants, the mapping f : R→ R defined10

by f (x) = a1x6 + a2x5 + a3x4 + a4x3 + a5x2 + a6x + a7 is a solution of the generalized sextic(sixth11

order) functional equation (1).12

In this paper, we will use a fixed point theory to prove that there exists only one exact solution13

F near suitable approximate solution f to functional equation (1) (ref. [2,3]). Specially, in Theorem14

2 and Theorem 2, the exact solution F to functional equation (1) will be explicitly constructed from15

the approximate solution f within a reasonable distance. The advantage of this paper over other16

papers is that we first proved the uniqueness and existence of the exact solution, to the generalized17

sextic(sixth order) functional equation (1), from approximate solution within a reasonable distance. In18

fact, Lee-Jung[9] obtained similar results by using fixed point theory method for the general quartic19

functional equation. But, their method can not be generalized to quintic and sextic functional equation.20

In this paper we will use very technical calculation with useful lemmas to extend lee-Jung’s method to21

quintic and sextic functional equation.22

Unfortunately, we could not generalize our fixed point theory method to every nth functional23

equation and we leave that as an open problem.24
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2. Main results25

We first recall the following Margolis and Diaz fixed point theorem, which is necessary to obtain26

the main results of this paper.27

([4]) Suppose (X, d) is a complete generalized metric space, which means that the metric d may
assume infinite values, and J : X → X is a strictly contractive mapping with the Lipschitz constant
0 < L < 1. Then, for each given element x ∈ X, either

d
(

Jnx, Jn+1x
)
= +∞ for all n ∈ N∪ {0}

or there exists an integer k ≥ 0 such that:28

(i) d(Jnx, Jn+1x) < +∞ for all n ≥ k;29

(ii) the sequence {Jnx} is convergent to a fixed point y∗ of J;30

(iii) y∗ is the unique fixed point of J in Y := {y ∈ X : d(Jkx, y) < +∞};31

(iv) d(y, y∗) ≤ 1
1−L d(y, Jy) for all y ∈ Y.32

Throughout this paper, let V and W be real vector spaces, X a real normed space, and let Y be a
real Banach space. For a given mapping f : V →W, we use the following abbreviations

fe(x) :=
f (x) + f (−x)

2
,

fo(x) :=
f (x)− f (−x)

2
,

D f (x, y) :=
7

∑
i=0

7Ci(−1)7−i f (x + iy)

for all x, y ∈ V.33

Now, we will see useful Lemma for the proof of main theorem.34

Let θ be a real constant such that 0 < θ < π
4 and cos(3θ) = −17

21
√

21
. Let ϕ : V2 → [0, ∞) be a

function for which there exists a constant 0 < L < 1 such that

ϕ(2x, 2y) ≤ (4
√

21 cos θ − 14)Lϕ(x, y) (2)

for all x, y ∈ V. Then 1 < 4
√

21 cos θ − 14 < 2,

(4
√

21 cos θ − 14)3 + 42(4
√

21 cos θ − 14)2 + 336(4
√

21 cos θ − 14)
512

= 1 (3)

and the equality

lim
n→∞

1
512n

n

∑
i=0

nCi

( i

∑
j=0

iCj42i−j336j ϕe(23n−i−jx, 23n−i−jy)
)
= 0 (4)

holds for all x, y ∈ V.35

Proof. When 0 < θ < π
4 and cos 3θ = − 17

21
√

21
, it is not difficult to see that 1.74837 < 3θ < 1.748436

and 0.83493 < cos θ < 0.834925 in the trigonometric function table. So 1.3 < 4
√

21 cos θ − 14 < 1.4.37
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We can also obtain the equality (3) by the following calculation :

336(4
√

21 cos θ − 14)
512

+
42(4
√

21 cos θ − 14)2

512
+

(4
√

21 cos θ − 14)3

512

=
1344
√

21 cos θ − 4704
512

+
14112 cos2 θ − 4704

√
21 cos θ + 8232

512

+
1344
√

21 cos3 θ − 14112 cos2 θ + 2352
√

21 cos θ − 2744
512

=
336
√

21(4 cos3 θ − 3 cos θ) + 784
512

=
336
√

21 cos 3θ + 784
512

=
336
√

21× −17
21
√

21
+ 784

512
= 1.

And, to obtain the equality (4), by (3) we obtain the following calculation :

lim
n→∞

1
512n

n

∑
i=0

nCi

(
i

∑
j=0

iCj42i−j336j ϕe
(
23n−i−jx, 23n−i−jy

))

≤ lim
n→∞

1
512n

n

∑
i=0

nCi

(
i

∑
j=0

iCj42i−j336j(4√21 cos θ − 14
)2n−i−jL2n−i−j ϕe(2nx, 2ny)

)

≤ lim
n→∞

1
512n

n

∑
i=0

nCi
(
4
√

21 cos θ − 14
)2n−2i

(
i

∑
j=0

iCj42i−j(4√21 cos θ − 14
)i−j336j

)
×

× ϕe(2nx, 2ny)

= lim
n→∞

1
512n

n

∑
i=0

nCi
(
4
√

21 cos θ − 14
)2n−2i

(
42
(
4
√

21 cos θ − 14
)
+ 336

)i
ϕe(2nx, 2ny)

≤ lim
n→∞

1
512n

((
4
√

21 cos θ − 14
)2

+ 42
(
4
√

21 cos θ − 14
)
+ 336

)n
ϕe(2nx, 2ny)

= lim
n→∞

Ln
(
(4
√

21 cos θ − 14)3 + 42(4
√

21 cos θ − 14)2 + 336(4
√

21 cos θ − 14)
512

)n

×

× ϕe(x, y)

= lim
n→∞

Ln ϕe(x, y) = 0, for all x, y ∈ V.

38

In the following main theorem, we will prove the generalized Hyers-Ulam stability of the39

functional equation (1) by using the direct method.40

Let θ, L, ϕ be as in Lemma prop2. If f : V → Y is a mapping satisfying f (0) = 0 and the inequality

‖D f (x, y)‖ ≤ ϕ(x, y), for all x, y ∈ V, (5)

then there exists the unique solution mapping F : V → Y of (1) such that

‖ f (x)− F(x)‖ ≤ Φ(x)
1− L

(6)

for all x ∈ V, where

Φ(x) :=
9ϕe(−6x, 2x) + 56ϕe(−x, x) + 392ϕe(−2x, x) + 1008ϕe(−3x, x)

4096
.
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In particular, F is represented by

F(x) = lim
n→∞

n

∑
i=0

i

∑
j=0

nCi iCj

(
(−84)i−j1344j

4096n fe(23n−i−jx) +
(−42)i−j336j

512n fo(23n−i−jx)
)

(7)

for all x ∈ V.41

Proof. Let S be the set of all functions g : V → Y with g(0) = 0. We introduce a generalized
metric on S by

d(g, h) = inf
{

K ∈ R+

∣∣ ‖g(x)− h(x)‖ ≤ KΦ(x) for all x ∈ V
}

.

It is not difficult to show that (S, d) is a complete generalized metric space (see [3, Theorem 2.5] or the
proof of [8, Theorem 3.1]). Now we consider the mapping J : S→ S, which is defined by

Jg(x) :=
4032g(2x)

8192
− 1344g(−2x)

8192
− 420g(4x)

8192
+

252g(−4x)
8192

+
9g(8x)
8192

− 7g(−8x)
8192

for all x ∈ V.42

And, by using the oddness and the evenness of go and ge, and nCi−1 + nCi = n+1Ci, due to
mathematical induction we can get

Jng(x) =
n

∑
i=0

nCi

i

∑
j=0

iCj

(
(−84)i−j1344j

4096n ge(23n−i−jx) +
(−42)i−j336j

512n go(23n−i−jx)
)

holds for all n ∈ N and x ∈ V.43

Let g, h ∈ S and let K ∈ [0, ∞] be an arbitrary constant with d(g, h) ≤ K. From the definition of d
and (3), we have

‖Jg(x)− Jh(x)‖ ≤4032
8192

‖g(2x)− h(2x)‖+ 1344
8192

‖g(−2x)− h(−2x)‖

+
420

8192
‖g(4x)− h(4x)‖+ 252

8192
‖g(−4x)− h(−4x)‖

+
9

8192
‖g(8x)− h(8x)‖+ 7

8192
‖g(−8x)− h(−8x)‖

≤ K
(

336
512

Φ(2x) +
42

512
Φ(4x) +

1
512

Φ(8x)
)

≤ K
(

336(4
√

21 cos θ − 14)L
512

+
42(4
√

21 cos θ − 14)2L2

512

+
(4
√

21 cos θ − 14)3L3

512

)
Φ(x)

≤ K
(

336(4
√

21 cos θ − 14)
512

+
42(4
√

21 cos θ − 14)2

512

+
(4
√

21 cos θ − 14)3

512

)
LΦ(x)

≤LKΦ(x)

for all x ∈ V, which implies that
d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L.44
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Now, after long and tedious calculation, we have

f (x)− J f (x) =
1

4096
(D fe(−6x, 2x) + 8D fe(−x, x) + 56D fe(−2x, x) + 112D fe(−3x, x))

+
1

512
(D fo(−6x, 2x) + 6D fo(−x, x) + 42D fo(−2x, x) + 112D fo(−3x, x)).

And, by (5) we obtain

‖ f (x)− J f (x)‖

≤ 1
4096

‖D fe(−6x, 2x) + 8D fe(−x, x) + 56D fe(−2x, x) + 112D fe(−3x, x)‖

+
1

512
‖D fo(−6x, 2x) + 6D fo(−x, x) + 42D fo(−2x, x) + 112D fo(−3x, x)‖

≤ 9ϕe(−6x, 2x) + 56ϕe(−x, x) + 392ϕe(−2x, x) + 1008ϕe(−3x, x)
4096

= Φ(x)

for all x ∈ V. It means that d( f , J f ) ≤ 1 < ∞ by the definition of d and due to Proposition 2 the
sequence {Jn f } converges to the unique fixed point F : V → Y of J in the set T = {g ∈ S : d( f , g) <
∞} which implies (7). Moreover, by Proposition 2, we have

d( f , F) ≤ 1
1− L

d( f , J f ) ≤ 1
1− L

which implies (6).45

Also, by the equality (4), since one has

lim
n→∞

1
4096n

∥∥∥∥ n

∑
i=0

nCi

( i

∑
j=0

iCj(−84)i−j1344jD fe(23n−i−jx, 23n−i−jy)
)∥∥∥∥

≤ lim
n→∞

1
4096n

n

∑
i=0

nCi

( i

∑
j=0

iCj84i−j1344j ϕe(23n−i−jx, 23n−i−jy)
)

≤ lim
n→∞

1
512n

n

∑
i=0

nCi

( i

∑
j=0

iCj42i−j336j ϕe(23n−i−jx, 23n−i−jy)
)
= 0

and

lim
n→∞

1
512n

∥∥∥∥ n

∑
i=0

nCi

( i

∑
j=0

iCj(−42)i−j336jD fo(23n−i−jx, 23n−i−jy)
)∥∥∥∥

≤ lim
n→∞

1
512n

n

∑
i=0

nCi

( i

∑
j=0

iCj42i−j336j ϕe(23n−i−jx, 23n−i−jy)
)
= 0,

for all x, y ∈ V, we obtain

DF(x, y) = lim
n→∞

( n

∑
i=0

nCi

i

∑
j=0

iCj

(
(−84)i−j1344j

4096n D fe(23n−i−jx)

+
(−42)i−j336j

512n D fo(23n−i−jx, 23n−i−jy)
))

= 0,

for all x, y ∈ V.46
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Therefore, F is the unique solution of the functional equation (1) with (6). Finally se see that if F is
a solution of the sextic functional equation (1) with F(0) = 0, then we can derive that F is a fixed point
of J from the equality

F(x)− JF(x)

=
1

4096
(DFe(−6x, 2x) + 8DFe(−x, x) + 56DFe(−2x, x) + 112DFe(−3x, x))

+
1

512
(DFo(−6x, 2x) + 6DFo(−x, x) + 42DFo(−2x, x) + 112DFo(−3x, x)).

47

Let θ be a real constant such that 0 < θ < π
4 and cos(3θ) = 637

77
√

77
. Let ϕ : V2 → [0, ∞) be a

function for which there exists a constant 0 < L < 1 such that

Lϕ(2x, 2y) ≥ (8
√

77 cos θ + 28)ϕ(x, y) (8)

for all x, y ∈ V. Then we have 97 < 8
√

77 cos θ + 28 < 97.8,

84
(8
√

77 cos θ + 28)
+

1344
(8
√

77 cos θ + 28)2
+

4096
(8
√

77 cos θ + 28)3
= 1 (9)

and the equality

lim
n→∞

n

∑
i=0

nCi

i

∑
j=0

iCj84j1344i−j4096n−i ϕe

(
x

23n−i−j ,
y

23n−i−j

)
= 0 (10)

holds for all x, y ∈ V.48

Proof. When 0 < θ < π
4 and cos(3θ) = 637

77
√

77
, it is not difficult to see that 0 < 3θ < 0.33997 and

97 < 8
√

77 cos θ + 28 < 97.8 in the trigonometric function table. Also we obtain the equality (9) from
the following calculation :

4096 + 1344(8
√

77 cos θ + 28) + 84(8
√

77 cos θ + 28)2 − (8
√

77 cos θ + 28)3

= 4096 + 10752
√

77 cos θ + 37632 + 413952 cos2 θ + 37632
√

77 cos θ + 65856

− 39424
√

77 cos3 θ − 413952 cos2 θ − 18816
√

77 cos θ − 21952

= − 9856
√

77(4 cos3 θ − 3 cos θ) + 81536

= − 9856
√

77 cos(3θ) + 81536 = 0.
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And by (8) and (9) we have

n

∑
i=0

nCi

i

∑
j=0

iCj84j1344i−j4096n−i ϕe

(
x

23n−i−j ,
y

23n−i−j

)

≤
n

∑
i=0

nCi

i

∑
j=0

iCj84j
(

1344L
8
√

77 cos θ + 28

)i−j

4096n−i ϕe

(
x

23n−2i ,
y

23n−2i

)

=
n

∑
i=0

nCi

(
84 +

1344L
8
√

77 cos θ + 28

)i

4096n−i ϕe

(
x

23n−2i ,
y

23n−2i

)

≤
n

∑
i=0

nCi

(
84 +

1344L
8
√

77 cos θ + 28

)i( 4096L2

(8
√

77 cos θ + 28)2

)n−i

ϕe

(
x
2n ,

y
2n

)
≤
(

84 +
1344L

8
√

77 cos θ + 28
+

4096L2

(8
√

77 cos θ + 28)2

)n( L
8
√

77 cos θ + 28

)n

ϕe(x, y)

≤
(

84
8
√

77 cos θ + 28
+

1344
(8
√

77 cos θ + 28)2
+

4096
(8
√

77 cos θ + 28)3

)n

Ln ϕe(x, y)

=Ln ϕe(x, y)

for all x, y ∈ V. Therefore, by taking the limit we complete the proof of (10).49

Let θ, L, ϕ be as in Lemma 2. If f : V → Y be a mapping such that the inequality (5) holds for all
x, y ∈ V, then there exists the unique solution F : V → Y of (1) satisfying the inequality

‖ f (x)− F(x)‖ ≤ Ψ(x)
1− L

(11)

for all x ∈ V, where

Ψ(x) := 2ϕe
(−3x

4
,

x
4
)
+ 14ϕe

(−x
8

,
x
8
)
+ 98ϕe

(−x
4

,
x
8
)
+ 224ϕe

(−3x
8

,
x
8
)
.

In particular, F is represented by

F(x) = lim
n→∞

n

∑
i=0

nCi

i

∑
j=0

iCj

[
42j(−336)i−j512n−i fo

(
x

23n−i−j

)

+ 84j(−1344)i−j4096n−i fe

(
x

23n−i−j

)]
, (12)

for all x ∈ V.50

Proof. As we did in the proof of Theorem 2, we let S as the set of all functions g : V → Y with
g(0) = 0 and we define a generalized metric on S by

d(g, h) = inf
{

K ∈ R+

∣∣ ‖g(x)− h(x)‖ ≤ KΨ(x) for all x ∈ V
}

.

We now consider the mapping J : S→ S defined by

Jg(x) := 63g
(

x
2

)
+ 21g

(
− x

2

)
− 840g

(
x
4

)
− 504g

(
− x

4

)
+ 2304g

(
x
8

)
+ 1792g

(
− x

8

)
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for all x ∈ V. Then, as in the proof of Theorem 2, by mathematical induction we obtain that

Jng(x) =
n

∑
i=0

nCi

i

∑
j=0

iCj

(
42j(−336)i−j512n−igo

(
x

23n−i−j

)

+ 84j(−1344)i−j4096n−ige

(
x

23n−i−j

))

holds for all n ∈ N and x ∈ V.51

Let g, h ∈ S and let K ∈ [0, ∞] be an arbitrary constant with d(g, h) ≤ K. From the definition of d
and (9), we have

‖Jg(x)− Jh(x)‖

≤ 63
∥∥∥∥g
(

x
2

)
− h
(

x
2

)∥∥∥∥+ 21
∥∥∥∥g
(
− x

2

)
− h
(
− x

2

)∥∥∥∥
+ 840

∥∥∥∥g
(

x
4

)
− h
(

x
4

)∥∥∥∥+ 504
∥∥∥∥g
(
− x

4

)
− h
(
− x

4

)∥∥∥∥
+ 2304

∥∥∥∥g
(

x
8

)
− h
(

x
8

)∥∥∥∥+ 1792
∥∥∥∥g
(
− x

8

)
− h
(
− x

8

)∥∥∥∥
≤ 84KΨ

(
x
2

)
+ 1344KΨ

(
x
4

)
+ 4096KΨ

(
x
8

)
≤ 84LKΨ(x)

8
√

77 cos θ + 28
+

1344L2KΨ(x)
(8
√

77 cos θ + 28)2
+

4096L3KΨ(x)
(8
√

77 cos θ + 28)3

≤
(

84
8
√

77 cos θ + 28
+

1344
(8
√

77 cos θ + 28)2
+

4096
(8
√

77 cos θ + 28)3

)
LKΨ(x)

≤ LKΨ(x)

for all x ∈ V, which implies that
d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L.52

Moreover, by the definition of D f (x, y), with long and tedious calculation, we have

f (x)− J f (x)

=

[
D fe

(
−3x

4
,

x
4

)
+ 8D fe

(
−x
8

,
x
8

)
+ 56D fe

(
−x
4

,
x
8

)
+ 112D fe

(
−3x

8
,

x
8

)]
+

[
D fo

(
−3x

4
,

x
4

)
+ 6D fo

(
−x
8

,
x
8

)
+ 42D fo

(
−x
4

,
x
8

)
+ 112D fo

(
−3x

8
,

x
8

)]
.

And, by (5) we obtain

‖ f (x)− J f (x)‖

≤
∥∥∥∥D fe

(
−3x

4
,

x
4

)
+ 8D fe

(
−x
8

,
x
8

)
+ 56D fe

(
−x
4

,
x
8

)
+ 112D fe

(
−3x

8
,

x
8

)∥∥∥∥
+

∥∥∥∥D fo

(
−3x

4
,

x
4

)
+ 6D fo

(
−x
8

,
x
8

)
+ 42D fo

(
−x
4

,
x
8

)
+ 112D fo

(
−3x

8
,

x
8

)∥∥∥∥
≤ 2ϕe

(
−3x

4
,

x
4

)
+ 14ϕe

(
−x
8

,
x
8

)
+ 98ϕe

(
−x
4

,
x
8

)
+ 224ϕe

(
−3x

8
,

x
8

)
= Ψ(x)
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for all x ∈ V.53

It means that d( f , J f ) ≤ 1 < ∞ by the definition of d. Therefore according to Proposition 2.1, the54

sequence {Jn f } converges to the unique fixed point F : V → Y of J in the set T = {g ∈ S|d( f , g) < ∞},55

which is represented by (12) for all x ∈ V.56

We also due to Proposition 2.1 obtain that

d( f , F) ≤ 1
1− L

d( f , J f ) ≤ 1
1− L

,

which implies (11).57

Now, since by (10) we have

lim
n→∞

∥∥∥ n

∑
i=0

nCi

i

∑
j=0

iCj84j(−1344)i−j4096n−iD fe

(
x

23n−i−j ,
y

23n−i−j

)∥∥∥
≤ lim

n→∞

n

∑
i=0

nCi

i

∑
j=0

iCj84j1344i−j4096n−i ϕe

(
x

23n−i−j ,
y

23n−i−j

)
= 0

and

lim
n→∞

∥∥∥ n

∑
i=0

nCi

i

∑
j=0

iCj42j(−336)i−j512n−iD fo

(
x

23n−i−j ,
y

23n−i−j

)∥∥∥
≤ lim

n→∞

n

∑
i=0

nCi

i

∑
j=0

iCj42j336i−j512n−i ϕe

(
x

23n−i−j ,
y

23n−i−j

)

≤ lim
n→∞

n

∑
i=0

nCi

i

∑
j=0

iCj84j1344i−j4096n−i ϕe

(
x

23n−i−j ,
y

23n−i−j

)
= 0

for all x, y ∈ V, due to the equality (12) we obtain

DF(x, y) = lim
n→∞

n

∑
i=0

nCi

i

∑
j=0

iCj42j(−336)i−j512n−iD fo

(
x

23n−i−j ,
y

23n−i−j

)

+ lim
n→∞

n

∑
i=0

nCi

i

∑
j=0

iCj84j(−1344)i−j4096n−iD fe

(
x

23n−i−j ,
y

23n−i−j

)
= 0

which conclude that F is a solution of the sextic functional equation (1).58

Finally we see that if F is a solution of the sextic functional equation (1), then the equality

F(x)− JF(x)

=

[
DFe

(
−3x

4
,

x
4

)
+ 8DFe

(
−x
8

,
x
8

)
+ 56DFe

(
−x
4

,
x
8

)
+ 112DFe

(
−3x

8
,

x
8

)]
+

[
DFo

(
−3x

4
,

x
4

)
+ 6DFo

(
−x
8

,
x
8

)
+ 42DFo

(
−x
4

,
x
8

)
+ 112DFo

(
−3x

8
,

x
8

)]
.

implies that F is a fixed point of J.59
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