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Abstract: In this paper, we consider the generalized sextic functional equation Y, ,7C;(—1)7 7 f (x +
iy) = 0. And by applying the fixed point theory in the sense of L. C\u adariu and V. Radu, we will discuss the
stability of the solutions for this functional equation.
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s+ 1. Introduction

5 The origin of concept for Ulam stability is an open problem, formulated by Ulam [14], concerning
s the stability of group homomorphisms. The first partial answer to Ulam’s problem came within a year,
» when Hyers [6] proved a stability result for the additive Cauchy functional equation in Banach spaces.
s Since then, many mathematicians have dealt with this problem (cf. [5,13]).

The solution of the so-called generalized sextic (sixth order) functional equation

N

Df(xy) =, O(—1)7*"7Cl-f(x +iy) =0, ©)

o for all (x,y) in the domain of {, is called the generalized sextic (sixth order) mapping, where ,C; =

10 ﬁ For example, if a1, ap, a3, a4, as, a¢, and ay are real constants, the mapping f : R — R defined

u by f(x) = a1x® + ax® + azx* + a4x® + asx?® + agx + ay is a solution of the generalized sextic(sixth
12 order) functional equation (1).

13 In this paper, we will use a fixed point theory to prove that there exists only one exact solution
1« F near suitable approximate solution f to functional equation (1) (ref. [2,3]). Specially, in Theorem
15 2 and Theorem 2, the exact solution F to functional equation (1) will be explicitly constructed from
1s the approximate solution f within a reasonable distance. The advantage of this paper over other
1z papers is that we first proved the uniqueness and existence of the exact solution, to the generalized
e sextic(sixth order) functional equation (1), from approximate solution within a reasonable distance. In
1o fact, Lee-Jung[9] obtained similar results by using fixed point theory method for the general quartic
20 functional equation. But, their method can not be generalized to quintic and sextic functional equation.
z  In this paper we will use very technical calculation with useful lemmas to extend lee-Jung’s method to
22 quintic and sextic functional equation.

8 Unfortunately, we could not generalize our fixed point theory method to every n'" functional
22 equation and we leave that as an open problem.
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2s 2. Main results

26 We first recall the following Margolis and Diaz fixed point theorem, which is necessary to obtain
2z the main results of this paper.
([4]) Suppose (X, d) is a complete generalized metric space, which means that the metric d may
assume infinite values, and | : X — X is a strictly contractive mapping with the Lipschitz constant
0 < L < 1. Then, for each given element x € X, either

d(]"x,]"“x) = +oo forall n e NU{0}

2e  or there exists an integer k > 0 such that:

20 (i) d(J"x,]J"x) < +oo foralln > k;

o (if) the sequence {]"x} is convergent to a fixed point y* of J;

s (iii) y* is the unique fixed pointof Jin Y := {y € X : d(J*x,y) < +oo};
2= (iv) d(y,y*) < $27d(y, Jy) forally € Y.

Throughout this paper, let V and W be real vector spaces, X a real normed space, and let Y be a
real Banach space. For a given mapping f : V — W, we use the following abbreviations

fe(x) = f(x) +2f(*x),
7
; “Hf(x +iy)

s forallx,y e V.
34 Now, we will see useful Lemma for the proof of main theorem.

Let 6 be a real constant such that 0 < 6 < ¥ and cos(36) = 21‘\}% Let ¢ : V2 — [0,00) be a
function for which there exists a constant 0 < L < 1 such that
¢(2x,2y) < (4V21cos — 14)Lo(x,y) )

forallx,y € V. Then1 < 4v21cosf — 14 < 2,

(421 cos 6 — 14)3 + 42(4+/21 cos § — 14)2 + 336(4+/21 cos 8 — 14)

512 =1 ®
and the equality
1 3 3
Jlim = Zonc <Z Cj4271336) @, (2% x, 23771 ]y)> 0 @
s holdsforallx,y € V.
36 Proof. When 0 < 6 < 7 and cos30 = 3 \F’ it is not difficult to see that 1.74837 < 36 < 1.7484

sz and 0.83493 < cosf < 0.834925 in the trigonometric function table. So 1.3 < 4v/21cosf — 14 < 1.4.
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We can also obtain the equality (3) by the following calculation :

336(4v/21 cos — 14) N 42(4+/21 cos 0 — 14)? N (4v/21cos 6 — 14)3
512 512 512
134421 cos§ — 4704 14112 cos? § — 4704+/21 cos 0 + 8232

B 512 512
1344+/21 cos® @ — 14112 cos? 0 + 2352+/21 cos § — 2744
* 512
_ 336v/21(4cos®0 —3cosf) + 784
B 512
_ 3361/21cos 30 + 784
N 512
336121 x ——1Z + 784

21+/21
512

=1
And, to obtain the equality (4), by (3) we obtain the following calculation :
lim Li ¢f Z C4277336/ g, (27" x, 23" Ty)
0 1o = Pe y

1 i o imngi Qi op—ii
< ,115{}0 5on lgonci (}g iC;42'771336/ (4\/271c0sﬂ —14) L7 e (2"x,2"y)

2Ci(4V21 cos 6 — 14)*" ( Y iCi427 (4v/21 cos 6 — 14)”336/) X

j=0

A
=
&5
a1
S Ju—

=2
1=

X q)e(Z”x 2"y)

2n-2i i
Tim 517 Z nCi(4V/2T cos 0 — 14)" " (42(4v/21 cos 0 — 14) +336) 9. (2"x,2")

. 1 2 n
< Jim = ((4v2T cos0 — 14)” +42(4v21 cos 0 — 14) +336) . (2"x,2"y)

( (421 cos 0 — 14)3 +42(4+/21 cos 8 — 14)? + 336(4+/21 cos 6 — 14) ) " y
512

lim L"
n—oo

X @e(x,y)
= nl1_r>ro1° L"¢.(x,y) =0, forall x,yeV.

30 In the following main theorem, we will prove the generalized Hyers-Ulam stability of the
s functional equation (1) by using the direct method.
Let6, L, ¢ be as in Lemma prop2. If f : V — Y is a mapping satisfying f(0) = 0 and the inequality

IDf(x, )|l < @(x,y), forall x,yeV, (5)

then there exists the unique solution mapping F : V' — Y of (1) such that

<I>(x)

1f(x) = E(x)]| < )

for all x € V, where

9¢e(—6x,2x) + 56, (—x, x) + 392¢.(—2x, x) + 1008¢, (—3x, x)
4096 '

P(x) :=
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In particular, F is represented by

84)i-71344/ i —42)1-1336/ il
(e CREE e )0

= nlgrolo Z 2 ncuc

i=0j=0

a forallx e V.
Proof. Let S be the set of all functions ¢ : V — Y with ¢(0) = 0. We introduce a generalized
metric on S by

d(g,h) =inf {K € Ry |[|g(x) —h(x)|| < K®(x) forall x € V}.

It is not difficult to show that (S, d) is a complete generalized metric space (see [3, Theorem 2.5] or the
proof of [8, Theorem 3.1]). Now we consider the mapping | : S — S, which is defined by

Tg(x) i 4032g(2x)  1344g(—2x) 420g(4x) n 252¢(—4x) n 9g(8x)  7g(—8x)
S 8190 8192 8192 8192 8192 8192

w2 forallx e V.
And, by using the oddness and the evenness of g, and g, and ,C;_1 + ,C; = ,41C;, due to
mathematical induction we can get

" i (—84)-713441 5 . . (—42)73360 4. i
x):;)nci];)iq(ng(zn ' ]x)+Tgo(2” "x)

s holdsforalln € Nand x € V.
Let g,h € Sand let K € [0, co] be an arbitrary constant with d(g, ) < K. From the definition of d
and (3), we have

1780 = T03) | < 02 g 22) — (2| + Ao g(2)  (~2x)|
8412902||g(4X) h(4x)|| + 8215922||g( x) — h(—4x)||
+ 105 18(8%) B0 + o ll8(~8x) — h(~8v)|

< K(336d>( ) + 22 3 (4x) + 1@(8x))

512 512 512
oK 336(4+v/21cosf — 14)L N 42(4+/21 cos 8 — 14)%L?
= 512 512
(4v/21cos 6 — 14)313
+ 510 d(x)
<K 336(4v/21 cos 6§ — 14) N 42(4+/21 cos 8 — 14)?
512 512
( ﬂcos@— 14)3 >L<D(x)
<LK®(x)

for all x € V, which implies that
d(Jg, Jh) < Ld(g, h)

4 forany g, h € S. Thatis, | is a strictly contractive self-mapping of S with the Lipschitz constant L.
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Now, after long and tedious calculation, we have
L (Df(—6x,2x) +8Df.(—x,x) + 56D fo(—2x, x) + 112D fo(—3%, x))

flx) = Jf(x) = 2096
=B (Dfo(—6x,2x) + 6D fo(—x,x) +42D f,(—2x,x) + 112D f,(—3x, x))

And, by (5) we obtain

£ (x )— el
—— ||Dfe(—6x,2x) 4+ 8Df(—x, x) + 56D f(—2x, x) + 112D f,(—3x, x)|

- 4096
512||Df0( 6x,2x) + 6D fo(—x,x) +42Df,(—2x,x) + 112D f,(—3x, x) ||

9¢e(—6x,2x) 4+ 56¢,(—x, x) + 392¢.(—2x, x) + 1008¢,(—3x, x)
4096

=®(x)
for all x € V. It means that d(f,]f) < 1 < oo by the definition of d and due to Proposition 2 the

sequence {J" f} converges to the unique fixed point F : V. — Y of Jintheset T = {g€ S : d(f,g) <

co} which implies (7). Moreover, by Proposition 2, we have
1

1
d(f,F) < =7 af ) < =1

«s  which implies (6).
Also, by the equality (4), since one has

c —84)1 771344/ D f, (23" T x, 23017
y

nl—>004096"
.C.84'77 n—i—j n—i—j
;115304096 g" <J§)lc}84 1344/ ¢ (27" /x, 2 y)>
" .
— 1500 512 2 <Z C421 ]336](Pe(23” i ]x 23n—i ]y)) -0
i=0 j=0
and
n i . .
i- n—i— n—i—
ey (fr-or o o)

l . . . . . . .
4277336/ g, (23", 23"’]y)> =0,

< lim chz < Zicj

~ n—oo 512” =0

forall x,y € V, we obtain

. " i —84)i-11344 e
DF(x,y) = lim <ZnCi Zicj<(4i)%ane(23" "x)
i=0  j=0
—_42)i—] ] .. o
WDfO(Z?’"’]x,Ze’"’]y))) =0,

forallx,y € V.

46
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Therefore, F is the unique solution of the functional equation (1) with (6). Finally se see that if F is
a solution of the sextic functional equation (1) with F(0) = 0, then we can derive that F is a fixed point

of | from the equality
F(x) — JF(x)
1
= 109¢ (DF(=6x,2x) + 8DF.(—x,x) + 56DF. (2%, x) + 112DF,(~3x, x))
+ %(DFO(—&C, 2x) + 6DF,(—x,x) + 42DF,(—2x, x) + 112DF,(—3x, x)).

a7

Let 0 be a real constant such that 0 < 6 < ¥ and cos(30) = -8Z. Let ¢ : V2 — [0,00) be a

7777
function for which there exists a constant 0 < L < 1 such that
Lo(2x,2y) > (8V77 cos b + 28)¢(x,y) 8)
forall x,y € V. Then we have 97 < 8v/77 cos 28 < 97.8,
84 n 1344 n 4096 _ ©)
(8v/77cos 0 +28)  (8v/77cos +28)2  (8y/77cosb + 28)3
and the equality
R i ' i—j n—i X Y
lim ,g"ci Jgicj8471344 4096" " @, (23”_1_] 2311_1_]> =0 (10)

s holdsforallx,y € V.

Proof. When 0 < 6 < ¥ and cos(30) = 7763777, it is not difficult to see that 0 < 30 < 0.33997 and

97 < 8v77 cos 8 + 28 < 97.8 in the trigonometric function table. Also we obtain the equality (9) from
the following calculation :

4096 + 1344(8v/77 cos 6 + 28) + 84(8v/77 cos 0 + 28)% — (8+/77 cos 6 + 28)°
= 4096 + 10752V/77 cos 0 + 37632 + 413952 cos? 6 + 376321/77 cos 6 + 65856
— 39424\/77 cos® 6 — 413952 cos? 6 — 18816+/77 cos 6 — 21952
— 98561/77(4 cos® 0 — 3 cos §) + 81536
— 9856+/77 cos(30) + 81536 = 0.
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And by (8) and (9) we have

n i ) . . x y
Y nCi Y iCi84/1344'774096" " g, (23,”] 23,”])

i=0  j=0

' , 1344L i=j 4 x y )
<V .Y .c8 | ——= ) 4096 g, [ e, T
_1;” l,;,’ J (8\/ﬁcose+28> (PE(23"—21 23n-2i

1344L x y >
=2 nCi ) 4096" e [ e, s
gn 1 < 8v/77 cos 6 + 28) e <23n—21 93n—2i
Zn: Ci ( 1344L )l< 409612 )”‘i ( x y)
z:On i 8v/77 cos 6 + 28 (Sx/ﬁcos 6 + 28)2 Pe on’ on

1344L 409612 " L "
+ 2 qog(x, y)
8\/ 77cos0 +28  (8v/77cosf + 28) 8v/77 cos 6 + 28

IN

+ 1344 + 4096 >nLn (x,v)
8ﬁ cosf+28  (8v77cosf+28)2  (8v/77cosf +28)3 el Y
L"¢.(x,y)

+ forall x,y € V. Therefore, by taking the limit we complete the proof of (10).
Let6, L, ¢ be as in Lemma 2. If f : V — Y be a mapping such that the inequality (5) holds for all
x,y € V, then there exists the unique solution F : V — Y of (1) satisfying the inequality

I£(x) = Ell < 72 )
for all x € V, where
P(x) = 200 (8, 5) 4 1400 (25, 1) £ 9890 (25, 1) + 22400 (TF, )
= 29: (o) + oo g) + 980 g P58
In particular, F is represented by
v : ' i—jeqon—i X
F x):r}g%o;]nci;),-cj 42/(—336)' /512 f0<23n_l._].>
i= j=
. P s x
+ 84/ (—1344)"774096" fe(z?m—z—])] (12)

so forallx € V.

Proof. As we did in the proof of Theorem 2, we let S as the set of all functions g : V — Y with
¢(0) = 0 and we define a generalized metric on S by

d(g,h) =inf{K € Ry||g(x) — h(x)|| < K¥(x) forall x € V}.

We now consider the mapping | : S — S defined by

() () -s(3) o)
() ()
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for all x € V. Then, as in the proof of Theorem 2, by mathematical induction we obtain that

n i . . x
zlgnclzlcj (42] —336)' /512" 1g0<23nl.].)

j=0
; - i x
s1 holdsforalln € Nandx € V.
Let g, h € Sand let K € [0, 00| be an arbitrary constant with d(g, ) < K. From the definition of d

and (9), we have

17§ (x) = Jh(x)

<fs(3) 1
rools(5) 13|+ fs(-
<(5) 1)l +m2ls(-

<84K‘I’( >+1344K‘I’< )+4096K‘I’(

84LKY (x 1344L2K¥ (x) N 4096 L3KY¥ (x)
- 8ﬁcose +28 (8v/77 cos 0 +28)2  (8v/77 cos 6 + 28)3
84 1344 4096
< 4 + LKY¥(x
- <8\/ﬁc059+28 (84/77 cos 6 + 28)2 (8\/ﬁ€059+28)3> ()

< LK¥(x)

Jx2s(=2)—+(=3)]
NS
)5

N R
N R

»mx

)|

B~ =

00\><
OO\R

+ 2304

®| R

for all x € V, which implies that
d(Jg, Jh) < Ld(g, h)

forany g, h € S. That s, ] is a strictly contractive self-mapping of S with the Lipschitz constant L

) Moreover, .by the definition of Df(x, y), with long and tedious calculation, we have
f(x) = Jf(x)
[Dfe( = z)+8Dfe( =, 8>+56Dfe( =, 8)+112Dfe< 3 g)}
{ch,( jx Z>+6Df0< = 8>+42Df0< 8>+112Df0( 3",;)}
And, by (5) we obtain
1560~ 1)l
gHDfE< jx z>+8Dfe< =, 8)4—56ng< =, g>+112Dfe( 3x,§)'
o (25)on() o (35) o (2

—3x —3x x
qu)e( 4> +14:(P < 8 8) +98§0e< 4 8) +224q0g< ,8>

=Y¥(x)
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ss forallx e V.
54 It means that d(f, Jf) <1 < oo by the definition of d. Therefore according to Proposition 2.1, the
ss sequence {]"f} converges to the unique fixed point F : V — Y of Jintheset T = {g € S|d(f,g) < oo},
ss which is represented by (12) forall x € V.

We also due to Proposition 2.1 obtain that

1 1
d(f,F) < 7 d(f ) < 7

sz which implies (11).
Now, since by (10) we have

Tim iionci gicjsﬂ(1344)1'—1'4096”—fo€ (23nx—z—] 23”y_1_]> H
v : ' i—j n—i X y
Sr}ggognci];icjwmg 14096 (pe(zan_i_j,w_i_j) =0
and
) .
lim Z Ci 20 (CiA21( 336)1'1‘512"in0(23;1"”,23}”)“

n j x y
nlnolog 2Ci Z C42]3361 ~i512"~ lqoe<23m_i_j,23n_i_j)

g Y _

for all x,y € V, due to the equality (12) we obtain

DF(x,y) :,115’2‘0Z;O"Ci]gicf‘lz’(—336)’ I512" ZDf‘7<23n—i—]"23n—z‘—j>
v i ' i—j n—i X y
+ lim i§:0ncij§:0icj841(—1344) 4096 Dfe(w,?niJ —0

ss which conclude that F is a solution of the sextic functional equation (1).
Finally we see that if F is a solution of the sextic functional equation (1), then the equality

+56DF, +112DE [ =X %
8 '8
—3x x

)+42DF0< >+112DFD( . 8)}

eo Acknowledgments: This work was supported by Hallym University Research Fund (HRF-201910-014).

F(x) — JF(x)

—3x x
{DFE( 1 4>+8DF8<

—3x x
+[DF0< 1 4>+6DF0<

°°‘>< °°‘><
OO‘R m‘R
*';‘x H;‘R
m‘k | R

so implies that F is a fixed point of |.
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