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Abstract: Vehicular Ad Hoc Networks (VANETs) are essential to intelligent transportation systems 

(ITS), enabling secure, real-time communication among vehicles and infrastructure. However, their 

decentralized and dynamic nature makes them vulnerable to threats such as Sybil attacks, message 

forgery, replay attacks, and Denial-of-Service (DoS). This paper presents VANETGuard, a 

lightweight scalable trust management system that enhances security and scalability in 5G-enabled 

smart vehicular networks. The proposed system integrates entropy-based anomaly detection, 

Bayesian inference for adaptive trust scoring, and a lightweight distributed ledger for decentralized, 

tamper-resistant trust storage. Large-scale simulations under realistic traffic and attack conditions 

demonstrate that VANETGuard achieves 99.97% detection accuracy, significantly reduces false 

positives, and maintains low latency and computational overhead while supporting over 300 

vehicles. These results highlight VANETGuard’s potential to enable secure, efficient, and scalable 

trust mechanisms in next-generation ITS and urban mobility systems. 

Keywords: VANETs; urban mobility; trust management; entropy-based detection; bayesian 

inference; distributed ledger technology; IOTA tangle; vehicular security; intelligent transportation 

systems 

 

1. Introduction 

Vehicular Ad Hoc Networks (VANETs) are a foundational element of Intelligent Transportation 

Systems (ITS), enabling seamless Vehicle-to-Everything (V2X) communication to improve road 

safety, traffic efficiency, and overall driving experience [1–3]. However, their decentralized design 

and high mobility expose VANETs to numerous cyber threats, including Denial-of-Service (DoS) 

attacks, Sybil attacks, and message forgery [4–7], which can undermine data integrity and 

compromise traffic safety [2,4]. 

In response to these challenges, a variety of trust management frameworks have been proposed, 

including Reputation-Based [1,8–14], Entropy-Based [2,15–18], Bayesian Inference-Based [19–22], and 

Blockchain-Based solutions [6,14,23–28]. Each offers unique strengths but also critical limitations. 

Reputation models assess long-term behavioral consistency but often lack adaptability in dynamic 

environments [12]. Entropy-based systems detect anomalies through message pattern deviations but 

tend to yield high false positive rates [18]. Bayesian inference introduces adaptive, probabilistic 

reasoning for trust evaluation, enhancing resilience to misinformation and Sybil attacks [22]. 

Blockchain-based methods ensure tamper-resistant trust storage but suffer from high latency and 

computational overhead, limiting their suitability for time-sensitive vehicular applications [25,28]. 
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To overcome these shortcomings, we introduce VANETGuard, a lightweight Hybrid Trust 

Management System (HTMS) designed for the dynamic and latency-sensitive nature of 5G-enabled 

vehicular networks. The system combines four complementary components, each selected for its 

unique strengths: reputation-based assessment captures long-term behavioral consistency, providing 

a historical foundation for trust decisions; entropy-based anomaly detection rapidly identifies short-

term irregularities in message patterns, improving early threat detection; Bayesian inference enables 

adaptive, probabilistic trust evaluation under uncertainty, enhancing resilience against evolving 

attack strategies; and a lightweight distributed ledger ensures decentralized, tamper-resistant trust 

storage with minimal computational overhead (implemented using the IOTA Tangle). These 

components are integrated within an edge computing framework to reduce communication latency 

and optimize real-time responsiveness. Together, this architecture delivers a scalable, secure, and 

efficient solution tailored to the demands of next-generation vehicular networks. 

The proposed system is evaluated through extensive simulations under diverse vehicular 

conditions and realistic attack scenarios, including Sybil, DoS, DDoS, replay, and forgery attacks. 

These are modeled using both protocol-level and network-level adversary frameworks to assess 

system robustness. A custom dataset is developed to replicate real-world driving conditions in low-

visibility highway environments, incorporating standard vehicular message formats and simulated 

hazard responses. The evaluation varies parameters such as vehicle density (20–400 vehicles), 

message transmission rates (1–10 Hz), speeds (30–90 km/h), and network delays (5–50 ms) to test 

system scalability and responsiveness. Key detection thresholds and reputation weightings are tuned 

to balance accuracy and responsiveness. System performance is assessed using metrics including 

detection accuracy, false positive rate, latency, and computational scalability. Results confirm that 

the proposed trust management system effectively detects malicious behavior while maintaining 

real-time responsiveness under dynamic and adversarial conditions. 

The primary contributions of this paper include: 

• A novel hybrid trust management architecture tailored for VANETs’ dynamic conditions, 

• Lightweight and decentralized trust storage using the IOTA Tangle, 

• Adaptive trust evaluation using probabilistic and anomaly-based methods, 

• Large-scale simulations evaluating detection accuracy, latency, and system scalability. 

The remainder of this paper is organized as follows: Section 2 reviews related work; Section 3 

details the proposed system design; Section 4 outlines the evaluation methodology; Section 5 presents 

experimental results and performance analysis; and Section 6 discusses future research directions 

and concluding remarks. 

2. Literature Review 

Effective trust management is essential for ensuring secure and reliable communication in 

VANETs, particularly given their decentralized, dynamic, and high-mobility nature. Over the past 

decade, a variety of trust management frameworks have been developed to detect malicious behavior 

and enhance vehicular communication security. These frameworks typically fall into five major 

categories: Reputation-Based, Entropy-Based, Bayesian Inference-Based, Blockchain-Based and 

Hybrid trust management systems. This section reviews key contributions in each of these categories, 

highlighting their strengths and limitations. The section concludes with a discussion of existing 

research gaps and the motivation for the proposed hybrid trust management framework. 

2.1. Reputation-Based Trust Management Systems 

Reputation-based models evaluate the trustworthiness of nodes by leveraging both direct and 

indirect feedback mechanisms. Raya et al. [1] introduced one of the earliest reputation systems, 

although it lacked capabilities for addressing Sybil and jamming attacks. Dahiya et al. [2] enhanced 

reputation-based trust management using NS-3 simulations, achieving a low error rate, yet their 

approach did not adequately handle high-mobility scenarios. Zhang et al. [3] incorporated machine 

learning into reputation systems, leading to improved detection accuracy but at the cost of increased 
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computational complexity. Kumar et al. [4] emphasized secure data dissemination but encountered 

limitations in scalability. Mahmood et al. [5] proposed a distributed reputation model; however, 

latency in real-time scenarios remained problematic. Sheikh et al. [6] leveraged blockchain to enhance 

reputation integrity, mitigating tampering risks but introducing significant computational overhead. 

Feraudo et al. [7] presented the DIVA system, which integrates Decentralized Identifiers (DIDs) with 

the IOTA Tangle to provide secure and scalable V2V communication. Despite these advancements, 

reputation-based models continue to face challenges related to computational efficiency and 

adaptability in real-time threat environments. 

2.2. Entropy-Based Trust Management System 

Entropy-based models detect trust anomalies by analyzing variations in network traffic 

behavior. Mejri and Ben-Othman [8] proposed the Packets Entropy method, which detects Denial-of-

Service (DoS) attacks via IEEE 802.11p MAC layer manipulation. Ahmed and Tepe [9] developed a 

dynamic trust model that adjusts trust scores based on message dissemination patterns. Kumar and 

Mann [10] designed an entropy-based framework for mitigating DoS attacks, demonstrating high 

detection accuracy with minimal latency. Yin and Li [11] introduced an entropy-weighted trust 

model for real-time assessment. Nonetheless, entropy-based approaches often struggle with 

identifying long-term behavioral trends and are prone to high false positive rates. 

2.3. Bayesian Inference-Based Trust Management Systems 

Bayesian inference models manage uncertainty by employing probabilistic reasoning for trust 

assessment. Zhang et al. [12] proposed a TrustRank-based Bayesian framework that computes local 

and global trust values, incorporating social factors such as vehicle type and driver behavior. He et 

al. [17] introduced a Bayesian trust scheme tailored for cognitive radio-based VANETs, 

demonstrating effectiveness in identifying spectrum-based attackers. Fang et al. [18] utilized 

Bayesian networks to mitigate on-off attack strategies. Li et al. [19] combined Bayesian inference with 

game theory to enable secure content dissemination. Talal et al. [20] designed a decentralized 

Bayesian model that assigns low initial trust scores to discourage dishonest behavior. While Bayesian 

models offer robust uncertainty management, they require further optimization to scale efficiently in 

large, dynamic VANET environments. 

2.4. Blockchain-Based Trust Management Systems 

Blockchain-based trust management systems offer enhanced security and transparency by 

leveraging decentralized ledgers. Ahmed et al. [21] proposed a privacy-preserving authentication 

and trust model using blockchain infrastructure. Yang et al. [22] designed a blockchain-based 

reputation mechanism to evaluate message credibility. Lu et al. [23] developed BARS (Blockchain-

based Anonymous Reputation System) to ensure certificate integrity. Zhao et al. [24] integrated 

machine learning techniques into blockchain-based trust management to improve malicious vehicle 

detection. Zhang et al. [25] employed deep learning alongside blockchain to classify untrustworthy 

vehicles. Kudva et al. [26] introduced a decentralized framework capable of blacklisting insider 

attackers. Liu et al. [27] incorporated Hidden Markov Models (HMMs) into blockchain-based systems 

to enhance detection of malicious behavior. Alhatrhi et al. [28] developed a biometric blockchain 

framework that achieved a 99.98% accuracy rate in trust classification, outperforming existing 

models. Although blockchain provides strong guarantees of security and privacy, its scalability and 

computational demands limit its practicality for real-time VANET applications. 

2.5. Hybrid Trust Management Systems 

Hybrid models integrate multiple trust evaluation mechanisms to enhance overall security 

performance. Zhang et al. [12] introduced AATMS, a system that combines Bayesian inference with 

TrustRank, although scalability remained a limitation. Xiang and Chen [13] proposed HTMS-V, 
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which utilizes subjective logic to evaluate both direct and indirect trust. Liu et al. [14] developed 

HDRS, a model that dynamically adjusts reputation scores to counter collusion-based attacks. 

Mahmood et al. [15] combined long-term reputation data with real-time evaluations to improve 

scalability, though throughput analysis was insufficiently addressed. Mehra and Patidar [16] 

presented ART, an attack-resistant framework designed to withstand Sybil and false message 

injection attacks; however, it lacked validation under large-scale deployment conditions. 

2.6. Research Gap and Motivation 

Despite extensive research into trust management frameworks for VANETs, existing models 

often suffer from critical limitations in either scalability, computational efficiency, or adaptability to 

real-time, dynamic environments. Reputation-based systems lack resilience under high mobility; 

entropy-based models frequently produce false positives; Bayesian models require computational 

optimization; and blockchain approaches struggle with latency and scalability. While hybrid systems 

have attempted to combine strengths across methods, most lack decentralized, lightweight trust 

storage mechanisms and efficient real-time evaluation strategies. This highlights a clear need for a 

unified, scalable, and low-latency trust management system that leverages the complementary 

strengths of existing techniques. Addressing this gap, the proposed VANETGuard framework 

integrates Bayesian inference, entropy-based anomaly detection, and decentralized storage via the 

IOTA Tangle, augmented by edge computing, to deliver robust, efficient, and scalable trust 

management for next-generation VANETs. 

3. System Design 

This section presents the design and implementation of the proposed hybrid trust management 

system for VANETs. The system integrates Entropy-based anomaly detection, Bayesian inference-

based reputation updating, and Distributed Ledger Technology (DLT) to ensure secure Vehicle-to-

Everything (V2X) communication. The implementation is structured to detect malicious activities, 

dynamically update trust scores, and securely store reputation data in a decentralized and tamper-

proof manner. 

The proposed trust management architecture consists of six key components, as illustrated in 

Figure 1. These components interact to enable secure Vehicle-to-Everything (V2X) communication, 

protect against cyber threats, and ensure trust propagation in a decentralized manner. 

• Edge Nodes: Act as local computing units that collect vehicle messages, authenticate them, and 

calculate reputation scores. These nodes use entropy-based anomaly detection and Bayesian 

inference to detect suspicious activity. If anomalies are found, Edge Nodes update the DLT node. 

• Road-Side Units (RSUs): Positioned along the roads to relay messages, extend communication 

range, and validate the consistency of vehicle-reported information. RSUs collect environmental 

and traffic data to assist in message verification. 

• Trusted Authority (TA): A centralized entity that manages vehicle identities. It assigns 

Decentralized Identifiers (DIDs), authenticates vehicles, and conducts periodic audits to ensure 

trust and compliance. 

• Entropy System: Detects irregular message transmission patterns by monitoring message 

frequency and coherence. A high entropy value indicates potential attacks, such as DoS, Sybil, 

or replay attacks. 

• Reputation System: Uses Bayesian inference to dynamically update vehicle reputation scores 

based on historical trust data and current behavior. 

• DLT Node: Stores trust scores securely in the IOTA Tangle, ensuring tamper-proof and 

decentralized record-keeping. It prevents data manipulation and ensures secure retrieval of trust 

scores. 
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Figure 1. System overview. 

The interaction between subsystems is critical for ensuring trust propagation and real-time 

anomaly detection. The key interactions are: 

• Message Exchange: Vehicles periodically transmit Cooperative Awareness Messages (CAMs) 

and Decentralized Environmental Notification Messages (DENMs), which RSUs and Edge 

Nodes intercept for validation. 

• Integrity Verification: Upon receiving a message, an Edge Node verifies its authenticity using 

the vehicle’s Decentralized Identifier (DID) issued by the Trusted Authority (TA). 

• Reputation Evaluation: Messages are compared against RSU-collected sensor data to ensure 

accuracy and consistency. 

• Anomaly Detection (Entropy-Based): The Entropy System analyzes message timing fluctuations. 

If entropy is above a threshold, the vehicle is flagged as suspicious. 

• Trust Score Update (Bayesian Reputation System): Bayesian inference updates reputation scores 

dynamically, incorporating: 

▪ Historical interactions (long-term trust) 

▪ Real-time message consistency (short-term trust) 

▪ Entropy-based anomaly detection (behavior deviation) 

• Tamper-Proof Storage on DLT: Updated trust scores are securely stored on the IOTA Tangle, 

ensuring decentralized reputation management. 

• Reputation Query: Vehicles can request reputation scores from Edge Nodes, which fetch the 

latest verified scores from the DLT Node. 

The hybrid trust management model integrates entropy-based anomaly detection with Bayesian 

inference for reputation updates. The trust score calculation follows these steps: 

• Step 1: Initialize Parameters 

In this step, the algorithm defines essential parameters influencing its sensitivity to varying 

vehicle behaviours. The parameters include: 

o alfa (α): A weight assigned to the vehicle’s previous reputation, representing its historical 

behaviour. 

o beta (β): A weight that measures the impact of the current message’s consistency on the 

updated reputation score. 
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o gamma (γ): A weight that considers detected anomalies, particularly variations indicated 

by high entropy values. 

o behaviour_variation_threshold: A predefined cut-off value used to distinguish between 

normal and abnormal vehicle behaviour based on entropy calculations. 

• Step 2: Load Dataset 

The dataset containing information about vehicle messages is imported for subsequent analysis. 

This dataset includes critical fields such as vehicle identification numbers, message reception 

times, and geographic locations. It serves as the primary source of information for detecting 

behavioural anomalies. 

• Step 3: Calculate Message Coherencies 

For each vehicle, the algorithm examines the time intervals between consecutive messages. The 

goal is to determine whether these intervals fall within an expected range. Time intervals that 

deviate significantly from this range are marked as inconsistent, which may signal an 

abnormality or potential attack. The coherency calculation assigns a binary value: 1 for 

consistent intervals and 0 for inconsistent intervals. 

• Step 4: Calculate Entropy 

Using the message coherency values, the algorithm calculates Shannon entropy to quantify the 

degree of randomness or unpredictability in message timing. Higher entropy values indicate 

greater variability and suggest the possibility of irregular or suspicious vehicle behaviour. 

• Step 5: Check for High Entropy 

The calculated entropy is compared against a predefined threshold. If the entropy exceeds this 

behaviour variation threshold, the vehicle is flagged for exhibiting abnormal behaviour. This 

flagging is represented by setting a variable, flag_dos, to True. 

• Step 6: Calculate Evidence Probability 

At this stage, the algorithm updates the probability counts for good and bad behaviour based 

on observed evidence. Specifically: 

o If the entropy is high or message coherencies fail, the probability count for bad behaviour 

(P_bad) is incremented, indicating accumulating evidence of suspicious activity. 

o Conversely, if the messages are consistent and entropy is low, the probability count for 

good behaviour (P_good) increases, signalling evidence of normal operation. 

• Step 7: Update Reputation Using Bayesian Formula 

(𝑟{𝐷𝐼𝐷})𝑡
=  𝛼 ⋅ (𝑟{𝐷𝐼𝐷}){𝑡−1}

+  𝛽 ⋅ ((𝑟{𝐷𝐼𝐷}){𝑡−1}
+  𝑟𝑒𝑝𝑆𝑐𝑜𝑟𝑒) + 𝛾 ⋅ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑐𝑜𝑟𝑒 (1) 

The algorithm employs a Bayesian updating approach to adjust each vehicle’s reputation score. 

This method integrates three components: 

o Historical reputation: The vehicle’s previous reputation score (𝑟{𝐷𝐼𝐷})
{𝑡−1}

. 

o Current message integrity: The quality and consistency of the current message based on 

coherency checks 𝑟𝑒𝑝𝑆𝑐𝑜𝑟𝑒. 

o Detected anomalies: Any inconsistencies or randomness detected in message timing 

(represented by the entropy score) 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑆𝑐𝑜𝑟𝑒. 

The Bayesian formula thus ensures a balanced assessment by incorporating past behavior, 

current evidence, and potential irregularities. This approach mitigates the risk of harsh penalties for 

minor anomalies, allowing for a more nuanced evaluation of vehicle trustworthiness. The flowchart 

of the algorithm is shown in Figure 2. 
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Figure 2. Flowchart of Entropy-Bayesian based Reputation Calculation Algorithm. 

4. Evaluation Methodology 

This section outlines the evaluation methodology of our VANETGuard. This setup ensures 

secure V2X communication by continuously monitoring vehicle behavior using an Entropy-Bayesian 

Reputation System. Reputation scores dynamically update based on message consistency and 

entropy analysis, while DLT enhances security by mitigating Sybil, DoS, and DDoS attacks through 

anomaly detection and authentication mechanisms. The proposed model ensures scalability and 

resilience for VANETs. 

4.1. Adversarial Models 

This system aims to improve the safety and efficiency of vehicular communication by meeting a 

comprehensive set of established requirements. The security of vehicular communication networks 

depends heavily on the system’s ability to withstand potential threats. We apply two key adversarial 

models to evaluate system resilience: 

1. Dolev–Yao Model: This model provides a comprehensive framework for assessing how the 

system handles various attacks. It assumes that an attacker can intercept any message in the 

network, initiate communication with any participant, and even impersonate legitimate 

recipients. The following attacks are considered: 
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o Eavesdropping Attack: An attacker gains unauthorised access to sensitive data, such as 

vehicle locations, personal information, or messages between vehicles and Road Side Units 

(RSUs), compromising communication confidentiality. 

o Replay Attack: The attacker intercepts and retransmits previously recorded messages to 

deceive vehicles, disrupting traffic management, collision prevention, and cooperative 

driving systems. 

o Forgery Attack: The attacker impersonates legitimate users or entities to forge messages, 

misleading other vehicles and potentially causing unsafe or unintended outcomes. 

o Sybil Attack: The attacker creates multiple fake identities or vehicles to deceive network 

participants, disrupting routing protocols, manipulating traffic flow, and spreading false 

information [35]. 

2. Network Adversary Model: This model comprehensively analyses network traffic behaviour 

under real-world attack scenarios, such as DoS and DDoS, at the network level. It effectively 

simulates how the system handles high traffic loads and evaluates the resilience of the network 

infrastructure under stress. Key aspects include: 

o DoS Attack: The attacker overwhelms the network or specific nodes with excessive requests 

or messages, leading to resource exhaustion and reduced availability of communication 

services. 

o DDoS Attack: A more severe version where multiple sources coordinate to send high 

volumes of traffic to a target, exhausting bandwidth and processing power and crippling 

communication [41]. 

4.2. Simulation Setup and Dataset 

The methodology adopted in this project was inspired by established approaches detailed in the 

literature review. Recent studies have validated the effectiveness of these techniques in meeting 

security requirements and resisting attacks. Using this simulation environment allowed for realistic 

and precise scenario modelling. Incorporating Entropy-Based algorithms alongside Bayesian 

inference enabled advanced anomaly detection and fair reputation scoring for vehicles. Together, 

these methods provided a thorough evaluation of the system’s ability to detect and mitigate various 

attack models, ensuring strong performance and robust security against potential threats. The 

primary research question we sought to address in this study was: How effective (in terms of) 

performance metrics is a trust management system using Entropy-Based anomaly detection and 

Bayesian reputation updates in enhancing vehicular communication security against various attack 

vectors such as DoS, DDoS, forgery, Sybil, and replay attacks. 

The hardware setup for this study consists of a MacBook Pro, which serves as the primary 

machine for simulations and analysis. It operates on macOS and is equipped with 512 GB of storage, 

16 GB of RAM, and a processor speed of 3.5 GHz. This combination of hardware ensures efficient 

data processing, supporting high-performance vehicular network simulations while maintaining 

computational accuracy and security. The system’s capability enables real-time simulation execution, 

data collection, and analysis, which are essential for evaluating the proposed hybrid trust 

management system in VANETs. .In addition to the hardware configuration, the study employs 

several specialized software tools designed for vehicular network simulation and analysis. The Veins 

Framework (Version 5.1) is used within OMNeT++, allowing the simulation of vehicular 

communications while integrating SUMO for realistic traffic modeling. The Artery Tool, an extension 

of Veins, is utilized to implement the ETSI ITS-G5 protocol stack, enabling Vehicle-to-Everything 

(V2X) communication. Furthermore, SUMO (Version 1.8.0) facilitates the creation of realistic road 

traffic scenarios that reflect real-world vehicular interactions. To ensure secure and decentralized 

reputation management, the study incorporates IOTA Distributed Ledger Technology (DLT), which 

securely stores vehicle reputation scores and prevents unauthorized modifications. The simulation 

framework is built on OMNeT++ (Version 5.6.2), a widely used network simulation platform that 

allows for extensive VANET modeling and evaluation. Additionally, Python (Version 3.9) is 
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employed for scripting, data preprocessing, and analytical modeling, while Simu5G, a specialized 

simulation library, is integrated to model network behavior and 5G-based vehicular communication. 

The combination of these hardware and software tools provides a robust, scalable, and high-fidelity 

test environment, ensuring accurate validation of the proposed VANET trust management system. 

Certain parameters remain fixed throughout the simulation to ensure consistency and fair 

comparisons. The entropy threshold is set to 0.5, which serves as a criterion to differentiate between 

normal and abnormal vehicle behavior while minimizing false alarms. The reputation weights are 

defined as (α, β, γ) = (0.4, 0.4, 0.2), where α (alfa) represents the weight assigned to historical behavior, 

β (beta) accounts for current message consistency, and γ (gamma) considers anomalies detected 

through entropy-based analysis. These values ensure that the system does not excessively penalize 

minor variations in vehicle behavior. Additionally, the message coherency time threshold is fixed at 

1000 milliseconds (1 second), ensuring that messages are spaced out at reasonable intervals; messages 

sent too frequently or too infrequently could indicate irregular activity. To enhance the reliability of 

trust evaluation, the time window for CAM analysis is set to 5 seconds, meaning that only recent 

messages are used to update a vehicle’s reputation score, preventing outdated data from influencing 

trust calculations. 

These variables are adjusted across different scenarios to examine their impact on the system’s 

effectiveness. The number of vehicles is varied between 20 to 400 analyze the system’s scalability and 

performance under different traffic conditions. Different attack scenarios, including Denial-of-Service 

(DoS), Distributed Denial-of-Service (DDoS), Sybil, Replay, and Forgery attacks, are simulated to 

evaluate the system’s robustness against diverse threats. The message transmission rate is tested at 1 

Hz, 5 Hz, and 10 Hz to assess how frequently vehicles exchange information and its impact on 

entropy calculations. The system is also tested under different vehicle speeds (30 km/h, 60 km/h, and 

90 km/h) to analyze message timing and coherency across urban, highway, and mixed driving 

conditions. Lastly, network delay is varied at 5 ms, 10 ms, and 50 ms to simulate different levels of 

network congestion and examine its influence on message propagation and anomaly detection. 

The effectiveness of the trust management system is assessed using several performance metrics, 

which serve as dependent variables. These metrics help evaluate the system’s capability to accurately 

detect malicious activities, minimize false alarms, and ensure scalability in real-world VANET 

environments. By analyzing these performance metrics across various simulation scenarios, the study 

provides a comprehensive evaluation of the proposed trust management system, ensuring its 

reliability, adaptability, and efficiency in mitigating security threats in VANET environments. 

4.3. V2V Communications Dataset 

After reviewing the available datasets and analysing their strengths and limitations, we 

developed a custom dataset to effectively evaluate our approach for detecting malicious messages. 

This dataset comprises ETSI-compliant messages exchanged during simulated road hazard scenarios. 

Following a methodology similar to that described in [35], we modelled dynamic VANET scenarios 

using the Artery tool [52] to illustrate a Decentralised Environmental Notification (DEN) use case. 

This approach allowed us to create realistic, scenario-based data that reflects the complexity of 

VANET communications under hazardous conditions. By simulating a variety of interactions and 

message exchanges, our dataset serves as a robust foundation for testing the system’s ability to 

identify and respond to malicious behaviour, particularly in high-risk or emergency settings. 

The scenario chosen simulated a low-visibility zone on the Jeddah-Makkah Highway as shown 

in Figure 3., known for instances of reduced visibility due to dust or fog, which can lead to sudden 

vehicle deceleration. This setting was the focal point, replicating situations where sudden incidents, 

such as emergency stops, increase the risk of collisions and trigger the broadcasting of Decentralised 

Environmental Notification Messages (DENMs). These DENMs provide critical information such as 

detection time, cause code, and event location. These messages are essential for identifying malicious 

behaviour. In addition, Cooperative Awareness Messages (CAMs) generated within the target area 

were collected to validate the accuracy of the DENMs in the DIVA [18] system by detecting 
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inconsistencies in detection times and vehicle positions. To broaden the dataset’s utility for testing 

purposes, we modified it to simulate various attacks, including DoS, DdoS, forgery, Sybil, and replay 

attacks [18]. 

 

Figure 3. Simulated Highway. 

5. Results & Discussions 

The evaluation of the Entropy-Bayesian Trust Model involves analyzing the impact of three 

thresholding techniques: mode, median, and mean on system performance. These thresholding 

methods play a crucial role in adjusting the system’s sensitivity to anomalous behaviors by 

dynamically balancing detection rates and reducing false classifications. The system was configured 

with parameter weights set at α = 0.4, β = 0.4, and γ = 0.2, alongside a behavior variation threshold of 

0.5. The results, presented in Table 1, highlight the effectiveness of each thresholding approach in 

terms of True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), and False 

Negative Rate (FNR). 

Mode-based thresholding achieved the highest TPR of 99.9%, indicating superior effectiveness 

in identifying malicious messages. However, this approach resulted in a lower TTNR of 79.80%, 

meaning that while it detected threats efficiently, it also had a higher tendency to misclassify benign 

messages as malicious, as reflected in the FPR of 20.20%. Median-based thresholding followed a 

similar trend, with a TPR of 99.95% and a slightly lower TNR of 79.60%, leading to an increased FPR 

of 20.40%. These results suggest that while mode and median thresholding methods exhibit strong 

detection capabilities, they introduce a higher likelihood of false alarms, potentially impacting 

network stability. 

In contrast, mean-based thresholding demonstrated a more balanced approach, achieving the 

highest TNR of 100%. This indicates that the system accurately classified all non-malicious messages 

while maintaining a TPR of 99.91%. Additionally, mean thresholding resulted in the lowest FPR of 

0%, ensuring minimal misclassification of benign nodes. However, the FNR was slightly higher at 

0.2%, reflecting a minor trade-off in correctly identifying all malicious activities. 

These findings illustrate that threshold selection significantly impacts detection performance. 

While mode-based thresholding prioritizes high TPR, it comes at the expense of an increased FPR. 

Conversely, mean-based thresholding ensures a lower misclassification rate and a perfect TNR, 

making it the optimal choice for minimizing unnecessary trust penalties on benign vehicles. By 

dynamically adjusting trust scores based on entropy fluctuations and Bayesian inference, the 

Entropy-Bayesian Trust Model effectively maintains robust detection accuracy across varying attack 

conditions. The selection of mean thresholding offers the most stable and reliable performance, 

ensuring a well-balanced trade-off between detection efficiency and classification accuracy in 

VANET security applications. 
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Table 1. Threshold Study with 20% of malicious vehicles and 40 vehicles. 

Threshold α = 0.4, β = 0.4, γ = 0.2 TPR (%) TNR (%) FPR (%) FNR (%) 

Mode 0.5 99.9 79.80 20.20 0.04 

Median 0.5 99.95 79.60 20.40 0.08 

Mean 0.5 99.91 100 0 0.2 

5.1. Effect of Vehicle Count 

The Entropy-Bayesian reputation model, configured with parameters α = 0.4, β = 0.4, γ = 0.2, 

dynamically adjusts trust scores to enhance adaptability across different vehicular densities. The 

detection accuracy results, as summarized in Table 2, confirm the model’s effectiveness in accurately 

identifying malicious behaviors while minimizing false classifications. 

The TPR values indicate that the system maintains high detection performance, effectively 

identifying malicious activities even in high-density network scenarios. Similarly, the TNR confirms 

that benign vehicles are correctly classified, reducing false alarms and minimizing unnecessary 

penalties. 

At a network density of 20 vehicles, the system achieves a detection accuracy of 99.99%, 

benefiting from a manageable message volume that facilitates efficient entropy calculations and 

stable Bayesian inference updates. The low network congestion ensures that message inconsistencies 

are promptly detected, leading to minimal FNR and FPR, thereby maintaining high trust evaluation 

accuracy. 

As the number of vehicles increases to 40, detection accuracy slightly decreases to 99.98% due to 

the increased message traffic. The entropy-based detection system effectively adapts to the higher 

network load, but false positives show a minor rise as real-time message verification becomes more 

complex. To counteract this, the system dynamically adjusts trust scores, leveraging Bayesian 

inference to distinguish between genuine message inconsistencies and adversarial activities. 

At 80 vehicles, network congestion becomes more noticeable, leading to delayed message 

transmissions and minor disruptions in entropy calculations. Consequently, detection accuracy 

further declines to 99.82%, as the increased message density slightly impacts trust evaluations. 

However, the Bayesian model stabilizes trust score fluctuations, preventing unjust reputation 

penalties and ensuring that malicious nodes are still accurately detected. 

For 160 vehicles, detection accuracy drops to 99.1%, and at 320 vehicles, it further reduces to 

98.95% as message collisions and processing delays introduce challenges in maintaining real-time 

consistency. Despite this, the system continues to adapt dynamically, ensuring reliable trust 

management and minimal false classifications. 

At 400 vehicles, the highest network density tested, the system achieves 98.83% detection 

accuracy. While network congestion leads to higher message delays and slightly increased false 

positives, the Entropy-Bayesian model still ensures stable reputation management, effectively 

preventing malicious influence on VANET trust mechanisms. 

These results confirm the scalability and robustness of the Entropy-Bayesian model, 

demonstrating its ability to maintain high detection accuracy across varying network densities. The 

integration of adaptive entropy calculations and Bayesian inference updates ensures that even in 

high-traffic scenarios, malicious vehicles are accurately detected while minimizing penalties on 

benign nodes. This makes it a viable and highly effective solution for trust management in VANET 

environments. 

Table 2. Performance metrics under Different Vehicle and Attack Densities. 

Vehicles Malicious (%) TPR (%) TNR (%) Detection Accuracy (%) FPR (%) FNR (%) 

20 

5 99.98 100 99.99 0.0 0.13 

10 99.98 100 99.98 0.0 0.28 

20 99.93 100 99.94 0.3 0.55 
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40 99.85 100 99.93 0.0 0.15 

40 

5 99.94 100 99.97 0.15 0.3 

10 99.94 100 99.97 0.4 0.7 

20 99.91 100 99.93 0.0 0.2 

40 99.85 99.95 99.9 0.25 0.5 

80 

5 99.64 99.95 99.80 0.5 0.9 

10 99.64 99.95 99.80 0.0 0.13 

20 99.57 99.85 99.71 0.1 0.28 

40 99.51 99.65 99.58 0.3 0.55 

160 

5 98.20 100.0 99.1 0.0 0.15 

10 97.74 99.92 98.83 0.15 0.3 

20 97.7 99.8 98.75 0.4 0.7 

40 97.4 99.6 98.5 0.0 0.2 

320 

5 97.0 100.0 98.5 0.25 0.5 

10 96.9 99.9 98.4 0.5 0.9 

20 97 99.75 98.4 0.0 0.13 

40 96.5 99.5 98.0 0.1 0.28 

400 

5 97.6 100.0 98.8 0.3 0.55 

10 96.75 99.85 98.3 0.0 0.15 

20 96.5 99.7 98.1 0.15 0.3 

40 96.4 99.4 97.9 0.4 0.7 

5.2. Effect of Malicious Percentage 

To assess the system’s detection consistency, extensive evaluations were conducted with varying 

malicious vehicle percentages set at 5%, 10%, 20%, and 40%. These specific percentages were chosen 

to align with DIVA [18], allowing for a direct and fair comparison of performance. The results, 

summarized in Table 2, demonstrate the system’s ability to maintain high detection accuracy across 

different attack scenarios and vehicle densities. 

At 5% malicious presence, the system achieves 99.99% detection accuracy for a network density 

of 20 vehicles. The manageable message volume allows for efficient entropy calculations, ensuring 

that inconsistencies in message transmissions are detected with minimal errors. As the number of 

vehicles increases to 40 and 80, detection accuracy slightly decreases to 99.98% and 99.82%, 

respectively. This minor reduction is due to increased network traffic, which slightly raises false 

positive rates, but the Bayesian reputation model dynamically compensates for these variations. 

At 10% malicious presence, the system maintains 99.98% accuracy for 20 vehicles. With higher 

adversarial activity, the complexity of message verification increases, leading to a slightly higher false 

classification rate. However, Bayesian inference ensures that detection remains robust. As vehicle 

count increases to 40 and 80, detection accuracy declines slightly to 99.97% and 99.79%, respectively, 

demonstrating the impact of network congestion and malicious interference. 

At 20% malicious presence, the system continues to perform strongly, maintaining 99.94% 

accuracy for 20 vehicles. The increased density of adversarial messages introduces a higher risk of 

misclassification, reflected in a small rise in false positive and false negative rates. As the network 

scales up to 40 and 80 vehicles, detection accuracy drops slightly to 99.96% and 99.71%, respectively. 

With 160 vehicles, detection accuracy decreases to 98.75%, as higher network congestion and 

processing delays slightly impact real-time verification. 

At 40% malicious presence, the system retains 99.93% accuracy for 20 vehicles. As vehicle count 

increases to 40 and 80, detection accuracy drops slightly to 99.9% and 99.58%, respectively. At 160 

vehicles, accuracy further decreases to 98.5%, and at 400 vehicles, the lowest tested density, the 

system still achieves 97.9% accuracy. This trend aligns with real-world expectations, where higher 

malicious activity introduces more uncertainty and detection complexity. 
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However, the system significantly outperforms DIVA [18], which experiences an accuracy drop 

to 89% under similar conditions. By maintaining detection accuracy above 97.9% even at 40% 

malicious presence, our results confirm the robustness of the Entropy-Bayesian reputation model. 

The system successfully adapts to different network densities and adversarial conditions, 

significantly outperforming existing solutions like DIVA [18]. 

Through the integration of entropy-based anomaly detection and Bayesian inference, our 

approach ensures high resilience, low misclassification rates, and superior adaptability to evolving 

threats in VANET environments. 

5.3. System Robustness Against Attack Models 

The Entropy-Bayesian reputation model demonstrates robust security mechanisms against 

major VANET attack models, including DoS), DDoS, Sybil, Replay, and Forgery attacks. 

• DoS and DDoS Resistance: Entropy-based detection identifies message flooding attacks in real-

time, ensuring that DoS attackers cannot manipulate vehicle communications. Unlike DIVA [18], 

which lacks strong DoS detection, our system flags anomalous frequency spikes and adjusts 

entropy thresholds dynamically. 

• Sybil Attack Mitigation: The system ensures unique trust scores per vehicle, preventing identity 

spoofing. If multiple messages from a single entity exceed entropy variation limits, the system 

flags them as suspicious, reducing the risk of Sybil-based disruptions. 

• Replay Attack Prevention: Timestamp-based message validation ensures that replayed 

messages are not treated as legitimate communications. The Bayesian update mechanism 

penalizes vehicles that repeatedly transmit outdated information, effectively neutralizing replay 

attacks. 

• Forgery Attack Detection: The combination of entropy variations and Bayesian consistency 

checks enables the system to detect falsified messages, ensuring that only genuine, consistent 

data contributes to reputation scores. 

5.4. Computational Efficiency and Scalability 

The computational efficiency and scalability are critical performance dimensions for real-time 

trust management systems operating in large-scale VANET environments. In high-density vehicular 

networks, the ability to evaluate trust swiftly and accurately, without overwhelming processing 

resources, is essential to ensure timely and reliable communication. 

The proposed model, VANETGuard, demonstrates robust computational performance, 

supported by the following observations: 

• Real-Time Entropy Evaluation: The system employs lightweight Shannon entropy calculations 

to analyze message timing and behavioral variance. These calculations are computationally 

inexpensive, enabling continuous anomaly detection even in dense network conditions with 

hundreds of participating vehicles. 

• Optimized Bayesian Inference: Bayesian trust score updates are selectively triggered based on 

entropy thresholds and behavioral deviations. This design significantly reduces the number of 

redundant trust updates, thus minimizing computational overhead while maintaining accurate 

reputation tracking. 

• Low-Latency Detection Performance: Empirical results from simulation show that the end-to-

end latency for trust evaluation, including entropy scoring and Bayesian inference, consistently 

remains under 1.5 seconds, even in scenarios with up to 400 vehicles and 40% malicious 

participation. This latency is well within the operational thresholds required for real-time 

vehicular decision-making, such as message forwarding, event reaction, or route selection. 

Collectively, these features confirm that the proposed model is both computationally efficient 

and highly scalable, making it suitable for deployment in real-world VANET applications with 

dynamic and large-scale topologies. The combination of adaptive inference and selective evaluation 
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ensures that the trust system can maintain performance without compromising accuracy or 

responsiveness under heavy load. 

5.5. Benchmarking with Existing Trust Management Models 

To comprehensively evaluate the effectiveness of our proposed system, VANETGuard, we 

conducted a benchmark comparison against several established trust management models in 

VANETs, including DIVA [18], AATMS [12], HTMS-V [13], ART [16], and HDRS [14]. These models 

were selected due to their representative designs across various trust computation paradigms—

ranging from static thresholding and cloud-based Bayesian systems to subjective logic, reputation 

dynamics, and hybrid scoring mechanisms. Notably, the comparison with DIVA is of particular 

significance, as VANETGuard builds directly upon DIVA’s core structure. We adopted the same 

simulation setup and evaluation dataset described in DIVA to ensure consistency and fairness in 

performance comparison. Furthermore, our system retains DIVA’s IOTA-based reputation storage 

but enhances the underlying algorithm by integrating real-time entropy-based detection, adaptive 

trust scoring, and Bayesian inference. This results in a system that is both operationally similar and 

significantly more robust in dynamic vehicular environments. 

The evaluation focused on multiple performance indicators, including detection accuracy, false 

classification rates, adaptability under high-malicious settings, execution latency, and DDoS 

resilience. In terms of detection accuracy, VANETGuard demonstrates a marked improvement, 

achieving 99.925%, compared to 99.9% in DIVA, 98.5% in AATMS, 97.2% in HTMS-V, 96.8% in ART, 

and >97% in HDRS [14]. This enhancement is largely attributed to the integration of entropy-based 

anomaly detection and Bayesian reasoning, which allows VANETGuard to dynamically adapt trust 

scores based on message consistency and observed behavioral patterns. The True Positive Rate (TPR) 

of 99.85% and the False Negative Rate (FNR) of only 0.15% further support the system’s ability to 

reliably detect malicious behavior with minimal oversight. In contrast, AATMS, HTMS-V, ART, and 

even HDRS [14] exhibit higher FNR values, ranging from approximately 2% to 5% under certain 

attack thresholds, indicating a greater susceptibility to undetected adversarial behavior when 

malicious density increases beyond the system’s adaptive threshold. 

A critical component of trust systems in VANETs is their performance under adversarial 

conditions. When 50% of network participants are malicious, VANETGuard maintains 

approximately 98% detection accuracy. This stands in contrast to the performance degradation 

observed in DIVA and others. DIVA’s reliance on static thresholding, particularly mode-based 

decision rules, results in an increased likelihood of false evaluations in complex attack scenarios, such 

as collusion or Sybil attacks. Similarly, HTMS-V and ART, although incorporating logic-based and 

heuristic approaches, exhibit accuracy drops to approximately 90% and 88%, respectively. AATMS 

performs moderately better (~94%) but is hindered by its dependence on cloud-synchronized trust 

updates, which introduces latency and reduces responsiveness. HDRS [14], by contrast, maintains 

near-perfect detection when the malicious presence is under 40%, but its performance begins to 

decline once adversarial density exceeds that threshold—an expected limitation due to reputation 

convergence lag during high-malice states. 

Latency is another critical factor in VANET deployment. While DIVA achieves microsecond-

level latency through its lightweight IOTA trust propagation, it lacks dynamic evaluation, limiting 

its adaptability. VANETGuard introduces slightly higher latency (in milliseconds) due to real-time 

trust recalibration through entropy and Bayesian inference. Compared to AATMS, which incurs 

seconds-level delays due to its dependence on cloud infrastructure, and HTMS-V and ART, which 

utilize less flexible local models, VANETGuard strikes a meaningful balance between speed and 

adaptability. HDRS [14], which incorporates adaptive reputation update intervals, performs 

competitively in latency as well—introducing only negligible communication overhead, with minor 

beacon-size expansions (~4 bytes) and dynamic adjustments tuned to vehicle density and message 

rates. 
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A distinct advantage of VANETGuard is its resilience to DDoS attacks. Unlike DIVA, which does 

not account for such threats, VANETGuard continuously monitors entropy variations in message 

patterns to detect anomalous traffic surges. This enables timely mitigation of flooding attempts, 

preserving communication integrity even under large-scale attacks. While AATMS includes basic 

filtering mechanisms and ART uses simple anomaly thresholds, neither implements adaptive 

entropy-based mitigation. HDRS [14], while highly effective at filtering collusion, intelligent, and 

false data attacks, does not specifically address DDoS resilience, limiting its protection against 

bandwidth-targeted message floods. 

Finally, in terms of trust update mechanisms, VANETGuard offers the most comprehensive 

solution. While DIVA, AATMS, HTMS-V, and ART update trust scores through periodic or event-

driven rules, VANETGuard utilizes an adaptive model combining entropy scores, Bayesian 

probability updates, and real-time behavioral assessments. HDRS [14] adopts a similar hybrid 

strategy, using a dynamic update interval and analytic hierarchy process (AHP) to determine the 

optimal timing for trust recalibration. However, VANETGuard further improves on this by 

integrating IOTA’s distributed ledger with entropy-responsive updates, minimizing false penalties 

and accelerating detection of emerging malicious actors. By using the same foundational architecture 

as DIVA but layering advanced inference and learning capabilities, VANETGuard ensures 

compatibility while delivering significant improvements in accuracy, adaptability, and defense 

robustness in highly dynamic and adversarial VANET environments. 

Table 3. Performance Metrics Comparison Between VANETGuard, DIVA [18], AATMS [12], HTMS-V [13] ,ART 

[16] and HDRS [14]. 

Metric VANETGuard  

DIVA [18] 

(Mode 

Threshold) 

AATMS [12] HTMS-V [13] ART [16] HDRS [14] 

Detection 

Accuracy (%) 
99.925 99.9 

~98.5 (derived 

from TPR/TNR) 

>95 under most 

attacks 

96.8 (estimated 

from robustness 

section) 

>97% across 

conditions 

(dynamic) 

TPR (%) 99.85 99.8 
≥97.8 (at 20–30% 

collusion) 

96%+ (for 

malicious node 

identification) 

~95.9 (collusion 

scenarios) 

100% (≤40% 

malicious); drops 

after 

TNR (%) 100.0 100.0 
~99 (stable across 

conditions) 
>95–97% 97.6 

High; 

contextually 

adaptive 

FPR (%) 0.0 0.0 
1.0% or less 

(verified) 

<4%, even under 

hybrid attacks 
~2.4 

Low, adaptive to 

context 

FNR (%) 0.15 0.2 
~2.2% (drops at 

high collusion) 

<4–5%, drops 

when malicious 

rate >40% 

~4.1% 

Slight rise >40% 

malicious, stays 

low 

Performance in 

High Malicious 

(50%) 

Maintains ~98% 
Drops 

significantly 

Drops 

moderately 

(~94%) 

Moderate drop 

(~90%) 

Severe drop 

(~88%) 

Can’t detect all at 

50%, but stable 

below 

Execution Latency 
ms (Bayesian + 

IOTA) 
µs (Tangle) 

Seconds (cloud 

sync + Bayesian) 

Milliseconds 

(local-only) 

Milliseconds 

(lightweight) 

ms range, 

dynamic interval 

DDoS Mitigation 

Effective 

(entropy 

analysis) 

Not addressed 

Limited 

(weighted 

filtering) 

Not explicitly 

addressed 
Basic thresholds 

Effective 

(entropy + 

reliability filters) 

Trust Update 

Mechanism 

Entropy + 

Bayesian + DLT 
DLT only 

TrustRank + 

Forgetting + 

Feedback filters 

Subjective logic + 

indirect decay 

History + 

weighted scoring 

Hybrid V2V/RSU 

+ Reliability eval 

+ AHP weights 

6. Conclusions 

This study introduced VANETGuard, a scalable and adaptive trust management system 

designed for vehicular ad hoc networks (VANETs). By integrating entropy-based anomaly detection, 

Bayesian inference, and distributed ledger technologies, the system addresses critical challenges in 

trust evaluation, including detection accuracy, real-time adaptability, and resilience under 

adversarial conditions. 
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Comprehensive simulation results across varying network densities (20 to 400 vehicles) and 

malicious participation rates (5% to 40%) confirm the robustness and scalability of VANETGuard. 

The system consistently achieved detection accuracy exceeding 99.9% in low to moderate-density 

networks, and maintained competitive accuracy (≥97.9%) even in high-density environments with up 

to 40% malicious nodes. True Positive Rates remained above 96.4%, and True Negative Rates 

consistently approached 100%, validating the system’s reliability in correctly classifying vehicle 

behavior. Furthermore, False Positive and False Negative Rates were kept exceptionally low across 

all scenarios, highlighting the system’s capability to minimize misclassifications while preserving 

communication integrity. 

Despite these promising results, several avenues for future research remain. First, adaptive 

threshold tuning is necessary to better accommodate region-specific traffic dynamics, especially in 

heterogeneous urban deployments. This could be achieved through localized learning or 

reinforcement-based adjustments. Second, although VANETGuard is effective against common 

attack vectors such as Sybil and flooding, future research should explore more sophisticated threat 

models, including on-off (gray hole) attacks and coordinated adversarial behavior. Enhancing 

temporal and graph-based anomaly detection can improve robustness in these contexts. 

Additionally, optimization for resource-constrained edge nodes remains an important 

consideration, particularly as real-world deployments demand lightweight models with minimal 

computational and energy overhead. Integrating privacy-preserving trust evaluation mechanisms, 

such as differential privacy or secure multi-party computation, can further align the system with 

modern data protection standards. Finally, large-scale real-world testing and ledger optimization are 

needed to validate system performance under live network conditions and ensure the scalability of 

IOTA-based reputation storage under high-frequency update loads. 

In summary, VANETGuard presents a strong foundation for real-time, resilient trust 

management in VANETs. With continued enhancements in adaptability, efficiency, and privacy, it 

holds significant promise for deployment in next-generation intelligent transportation systems. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

VANETs Vehicular Ad Hoc Networks 

V2V Vehicle-to-Vehicle 

V2I Vehicle-to-Infrastructure 

HTMS Hybrid Trust Management System 

DLT Distributed Ledger Technology 

DoS Denial-of-Service 

DDoS Distributed Denial-of-Service 
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TPR True Positive Rate 

FPR False Positive Rate 

ITS Intelligent Transportation Systems 

V2X Vehicle-to-Everything 

IRS Intelligent Reputation System 

TA Trusted Authority 

DIDs Decentralized Identifiers 

RSUs Road-Side Units 

CAMs Cooperative Awareness Messages 

DENMs Decentralized Environmental Notification Messages 

FNR False Negative Rate 

TNR True Negative Rate 

IOTA A type of Distributed Ledger Technology (DLT) 

ML Machine Learning 

5G Fifth Generation Mobile Network 

OMNeT++ Objective Modular Network Testbed in C++ 

SUMO Simulation of Urban MObility 

Simu5G 5G Network Simulation Tool 

ETS-G5 European Telecommunications Standards Institute Intelligent Transport Systems G5 

DIVA Decentralized Identification-Based Vehicular Authentication 

MDPI Multidisciplinary Digital Publishing Institute 

DOAJ Directory of Open Access Journals 

TLA Three Letter Acronym 

LD Linear Dichroism 
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