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Abstract: Vehicular Ad Hoc Networks (VANETS) are essential to intelligent transportation systems
(ITS), enabling secure, real-time communication among vehicles and infrastructure. However, their
decentralized and dynamic nature makes them vulnerable to threats such as Sybil attacks, message
forgery, replay attacks, and Denial-of-Service (DoS). This paper presents VANETGuard, a
lightweight scalable trust management system that enhances security and scalability in 5G-enabled
smart vehicular networks. The proposed system integrates entropy-based anomaly detection,
Bayesian inference for adaptive trust scoring, and a lightweight distributed ledger for decentralized,
tamper-resistant trust storage. Large-scale simulations under realistic traffic and attack conditions
demonstrate that VANETGuard achieves 99.97% detection accuracy, significantly reduces false
positives, and maintains low latency and computational overhead while supporting over 300
vehicles. These results highlight VANETGuard’s potential to enable secure, efficient, and scalable
trust mechanisms in next-generation ITS and urban mobility systems.

Keywords: VANETs; urban mobility; trust management; entropy-based detection; bayesian
inference; distributed ledger technology; IOTA tangle; vehicular security; intelligent transportation
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1. Introduction

Vehicular Ad Hoc Networks (VANETSs) are a foundational element of Intelligent Transportation
Systems (ITS), enabling seamless Vehicle-to-Everything (V2X) communication to improve road
safety, traffic efficiency, and overall driving experience [1-3]. However, their decentralized design
and high mobility expose VANETSs to numerous cyber threats, including Denial-of-Service (DoS)
attacks, Sybil attacks, and message forgery [4-7], which can undermine data integrity and
compromise traffic safety [2,4].

In response to these challenges, a variety of trust management frameworks have been proposed,
including Reputation-Based [1,8-14], Entropy-Based [2,15-18], Bayesian Inference-Based [19-22], and
Blockchain-Based solutions [6,14,23-28]. Each offers unique strengths but also critical limitations.
Reputation models assess long-term behavioral consistency but often lack adaptability in dynamic
environments [12]. Entropy-based systems detect anomalies through message pattern deviations but
tend to yield high false positive rates [18]. Bayesian inference introduces adaptive, probabilistic
reasoning for trust evaluation, enhancing resilience to misinformation and Sybil attacks [22].
Blockchain-based methods ensure tamper-resistant trust storage but suffer from high latency and
computational overhead, limiting their suitability for time-sensitive vehicular applications [25,28].
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To overcome these shortcomings, we introduce VANETGuard, a lightweight Hybrid Trust
Management System (HTMS) designed for the dynamic and latency-sensitive nature of 5G-enabled
vehicular networks. The system combines four complementary components, each selected for its
unique strengths: reputation-based assessment captures long-term behavioral consistency, providing
a historical foundation for trust decisions; entropy-based anomaly detection rapidly identifies short-
term irregularities in message patterns, improving early threat detection; Bayesian inference enables
adaptive, probabilistic trust evaluation under uncertainty, enhancing resilience against evolving
attack strategies; and a lightweight distributed ledger ensures decentralized, tamper-resistant trust
storage with minimal computational overhead (implemented using the IOTA Tangle). These
components are integrated within an edge computing framework to reduce communication latency
and optimize real-time responsiveness. Together, this architecture delivers a scalable, secure, and
efficient solution tailored to the demands of next-generation vehicular networks.

The proposed system is evaluated through extensive simulations under diverse vehicular
conditions and realistic attack scenarios, including Sybil, DoS, DDoS, replay, and forgery attacks.
These are modeled using both protocol-level and network-level adversary frameworks to assess
system robustness. A custom dataset is developed to replicate real-world driving conditions in low-
visibility highway environments, incorporating standard vehicular message formats and simulated
hazard responses. The evaluation varies parameters such as vehicle density (20400 vehicles),
message transmission rates (1-10 Hz), speeds (30-90 km/h), and network delays (5-50 ms) to test
system scalability and responsiveness. Key detection thresholds and reputation weightings are tuned
to balance accuracy and responsiveness. System performance is assessed using metrics including
detection accuracy, false positive rate, latency, and computational scalability. Results confirm that
the proposed trust management system effectively detects malicious behavior while maintaining
real-time responsiveness under dynamic and adversarial conditions.

The primary contributions of this paper include:
¢ A novel hybrid trust management architecture tailored for VANETs’ dynamic conditions,

e Lightweight and decentralized trust storage using the IOTA Tangle,
e  Adaptive trust evaluation using probabilistic and anomaly-based methods,
e  Large-scale simulations evaluating detection accuracy, latency, and system scalability.

The remainder of this paper is organized as follows: Section 2 reviews related work; Section 3
details the proposed system design; Section 4 outlines the evaluation methodology; Section 5 presents
experimental results and performance analysis; and Section 6 discusses future research directions
and concluding remarks.

2. Literature Review

Effective trust management is essential for ensuring secure and reliable communication in
VANETs, particularly given their decentralized, dynamic, and high-mobility nature. Over the past
decade, a variety of trust management frameworks have been developed to detect malicious behavior
and enhance vehicular communication security. These frameworks typically fall into five major
categories: Reputation-Based, Entropy-Based, Bayesian Inference-Based, Blockchain-Based and
Hybrid trust management systems. This section reviews key contributions in each of these categories,
highlighting their strengths and limitations. The section concludes with a discussion of existing
research gaps and the motivation for the proposed hybrid trust management framework.

2.1. Reputation-Based Trust Management Systems

Reputation-based models evaluate the trustworthiness of nodes by leveraging both direct and
indirect feedback mechanisms. Raya et al. [1] introduced one of the earliest reputation systems,
although it lacked capabilities for addressing Sybil and jamming attacks. Dahiya et al. [2] enhanced
reputation-based trust management using NS-3 simulations, achieving a low error rate, yet their
approach did not adequately handle high-mobility scenarios. Zhang et al. [3] incorporated machine
learning into reputation systems, leading to improved detection accuracy but at the cost of increased
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computational complexity. Kumar et al. [4] emphasized secure data dissemination but encountered
limitations in scalability. Mahmood et al. [5] proposed a distributed reputation model; however,
latency in real-time scenarios remained problematic. Sheikh et al. [6] leveraged blockchain to enhance
reputation integrity, mitigating tampering risks but introducing significant computational overhead.
Feraudo et al. [7] presented the DIVA system, which integrates Decentralized Identifiers (DIDs) with
the IOTA Tangle to provide secure and scalable V2V communication. Despite these advancements,
reputation-based models continue to face challenges related to computational efficiency and
adaptability in real-time threat environments.

2.2. Entropy-Based Trust Management System

Entropy-based models detect trust anomalies by analyzing variations in network traffic
behavior. Mejri and Ben-Othman [8] proposed the Packets Entropy method, which detects Denial-of-
Service (DoS) attacks via IEEE 802.11p MAC layer manipulation. Ahmed and Tepe [9] developed a
dynamic trust model that adjusts trust scores based on message dissemination patterns. Kumar and
Mann [10] designed an entropy-based framework for mitigating DoS attacks, demonstrating high
detection accuracy with minimal latency. Yin and Li [11] introduced an entropy-weighted trust
model for real-time assessment. Nonetheless, entropy-based approaches often struggle with
identifying long-term behavioral trends and are prone to high false positive rates.

2.3. Bayesian Inference-Based Trust Management Systems

Bayesian inference models manage uncertainty by employing probabilistic reasoning for trust
assessment. Zhang et al. [12] proposed a TrustRank-based Bayesian framework that computes local
and global trust values, incorporating social factors such as vehicle type and driver behavior. He et
al. [17] introduced a Bayesian trust scheme tailored for cognitive radio-based VANETs,
demonstrating effectiveness in identifying spectrum-based attackers. Fang et al. [18] utilized
Bayesian networks to mitigate on-off attack strategies. Li et al. [19] combined Bayesian inference with
game theory to enable secure content dissemination. Talal et al. [20] designed a decentralized
Bayesian model that assigns low initial trust scores to discourage dishonest behavior. While Bayesian
models offer robust uncertainty management, they require further optimization to scale efficiently in
large, dynamic VANET environments.

2.4. Blockchain-Based Trust Management Systems

Blockchain-based trust management systems offer enhanced security and transparency by
leveraging decentralized ledgers. Ahmed et al. [21] proposed a privacy-preserving authentication
and trust model using blockchain infrastructure. Yang et al. [22] designed a blockchain-based
reputation mechanism to evaluate message credibility. Lu et al. [23] developed BARS (Blockchain-
based Anonymous Reputation System) to ensure certificate integrity. Zhao et al. [24] integrated
machine learning techniques into blockchain-based trust management to improve malicious vehicle
detection. Zhang et al. [25] employed deep learning alongside blockchain to classify untrustworthy
vehicles. Kudva et al. [26] introduced a decentralized framework capable of blacklisting insider
attackers. Liu et al. [27] incorporated Hidden Markov Models (HMMs) into blockchain-based systems
to enhance detection of malicious behavior. Alhatrhi et al. [28] developed a biometric blockchain
framework that achieved a 99.98% accuracy rate in trust classification, outperforming existing
models. Although blockchain provides strong guarantees of security and privacy, its scalability and
computational demands limit its practicality for real-time VANET applications.

2.5. Hybrid Trust Management Systems

Hybrid models integrate multiple trust evaluation mechanisms to enhance overall security
performance. Zhang et al. [12] introduced AATMS, a system that combines Bayesian inference with
TrustRank, although scalability remained a limitation. Xiang and Chen [13] proposed HTMS-V,
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which utilizes subjective logic to evaluate both direct and indirect trust. Liu et al. [14] developed
HDRS, a model that dynamically adjusts reputation scores to counter collusion-based attacks.
Mahmood et al. [15] combined long-term reputation data with real-time evaluations to improve
scalability, though throughput analysis was insufficiently addressed. Mehra and Patidar [16]
presented ART, an attack-resistant framework designed to withstand Sybil and false message
injection attacks; however, it lacked validation under large-scale deployment conditions.

2.6. Research Gap and Motivation

Despite extensive research into trust management frameworks for VANETS, existing models
often suffer from critical limitations in either scalability, computational efficiency, or adaptability to
real-time, dynamic environments. Reputation-based systems lack resilience under high mobility;
entropy-based models frequently produce false positives; Bayesian models require computational
optimization; and blockchain approaches struggle with latency and scalability. While hybrid systems
have attempted to combine strengths across methods, most lack decentralized, lightweight trust
storage mechanisms and efficient real-time evaluation strategies. This highlights a clear need for a
unified, scalable, and low-latency trust management system that leverages the complementary
strengths of existing techniques. Addressing this gap, the proposed VANETGuard framework
integrates Bayesian inference, entropy-based anomaly detection, and decentralized storage via the
IOTA Tangle, augmented by edge computing, to deliver robust, efficient, and scalable trust
management for next-generation VANETSs.

3. System Design

This section presents the design and implementation of the proposed hybrid trust management
system for VANETSs. The system integrates Entropy-based anomaly detection, Bayesian inference-
based reputation updating, and Distributed Ledger Technology (DLT) to ensure secure Vehicle-to-
Everything (V2X) communication. The implementation is structured to detect malicious activities,
dynamically update trust scores, and securely store reputation data in a decentralized and tamper-
proof manner.

The proposed trust management architecture consists of six key components, as illustrated in
Figure 1. These components interact to enable secure Vehicle-to-Everything (V2X) communication,
protect against cyber threats, and ensure trust propagation in a decentralized manner.

o Edge Nodes: Act as local computing units that collect vehicle messages, authenticate them, and
calculate reputation scores. These nodes use entropy-based anomaly detection and Bayesian
inference to detect suspicious activity. If anomalies are found, Edge Nodes update the DLT node.

e  Road-Side Units (RSUs): Positioned along the roads to relay messages, extend communication
range, and validate the consistency of vehicle-reported information. RSUs collect environmental
and traffic data to assist in message verification.

e Trusted Authority (TA): A centralized entity that manages vehicle identities. It assigns
Decentralized Identifiers (DIDs), authenticates vehicles, and conducts periodic audits to ensure
trust and compliance.

e Entropy System: Detects irregular message transmission patterns by monitoring message
frequency and coherence. A high entropy value indicates potential attacks, such as DoS, Sybil,
or replay attacks.

e  Reputation System: Uses Bayesian inference to dynamically update vehicle reputation scores
based on historical trust data and current behavior.

e DLT Node: Stores trust scores securely in the IOTA Tangle, ensuring tamper-proof and
decentralized record-keeping. It prevents data manipulation and ensures secure retrieval of trust
scores.
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Figure 1. System overview.

The interaction between subsystems is critical for ensuring trust propagation and real-time
anomaly detection. The key interactions are:

e  Message Exchange: Vehicles periodically transmit Cooperative Awareness Messages (CAMs)
and Decentralized Environmental Notification Messages (DENMs), which RSUs and Edge
Nodes intercept for validation.

e Integrity Verification: Upon receiving a message, an Edge Node verifies its authenticity using
the vehicle’s Decentralized Identifier (DID) issued by the Trusted Authority (TA).

e  Reputation Evaluation: Messages are compared against RSU-collected sensor data to ensure
accuracy and consistency.

e  Anomaly Detection (Entropy-Based): The Entropy System analyzes message timing fluctuations.
If entropy is above a threshold, the vehicle is flagged as suspicious.

e  Trust Score Update (Bayesian Reputation System): Bayesian inference updates reputation scores
dynamically, incorporating:

*  Historical interactions (long-term trust)
=  Real-time message consistency (short-term trust)
*  Entropy-based anomaly detection (behavior deviation)

e  Tamper-Proof Storage on DLT: Updated trust scores are securely stored on the IOTA Tangle,
ensuring decentralized reputation management.

e  Reputation Query: Vehicles can request reputation scores from Edge Nodes, which fetch the
latest verified scores from the DLT Node.

The hybrid trust management model integrates entropy-based anomaly detection with Bayesian
inference for reputation updates. The trust score calculation follows these steps:

e  Step 1: Initialize Parameters
In this step, the algorithm defines essential parameters influencing its sensitivity to varying
vehicle behaviours. The parameters include:

o alfa (a): A weight assigned to the vehicle’s previous reputation, representing its historical
behaviour.

o beta (B): A weight that measures the impact of the current message’s consistency on the
updated reputation score.
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o gamma (Yy): A weight that considers detected anomalies, particularly variations indicated

by high entropy values.

o  behaviour_variation_threshold: A predefined cut-off value used to distinguish between

normal and abnormal vehicle behaviour based on entropy calculations.
e  Step 2: Load Dataset

The dataset containing information about vehicle messages is imported for subsequent analysis.

This dataset includes critical fields such as vehicle identification numbers, message reception

times, and geographic locations. It serves as the primary source of information for detecting

behavioural anomalies.
e  Step 3: Calculate Message Coherencies

For each vehicle, the algorithm examines the time intervals between consecutive messages. The

goal is to determine whether these intervals fall within an expected range. Time intervals that

deviate significantly from this range are marked as inconsistent, which may signal an
abnormality or potential attack. The coherency calculation assigns a binary value: 1 for
consistent intervals and 0 for inconsistent intervals.

e  Step 4: Calculate Entropy

Using the message coherency values, the algorithm calculates Shannon entropy to quantify the

degree of randomness or unpredictability in message timing. Higher entropy values indicate

greater variability and suggest the possibility of irregular or suspicious vehicle behaviour.
e  Step 5: Check for High Entropy

The calculated entropy is compared against a predefined threshold. If the entropy exceeds this

behaviour variation threshold, the vehicle is flagged for exhibiting abnormal behaviour. This

flagging is represented by setting a variable, flag_dos, to True.
e  Step 6: Calculate Evidence Probability

At this stage, the algorithm updates the probability counts for good and bad behaviour based

on observed evidence. Specifically:

o  If the entropy is high or message coherencies fail, the probability count for bad behaviour

(P_bad) is incremented, indicating accumulating evidence of suspicious activity.
o  Conversely, if the messages are consistent and entropy is low, the probability count for
good behaviour (P_good) increases, signalling evidence of normal operation.
e  Step 7: Update Reputation Using Bayesian Formula
(r{D,D})t =aqa- (T{DID}){t—l} + B ((r{D,D}){t_l} + repScore) + vy - entropyScore (1)

The algorithm employs a Bayesian updating approach to adjust each vehicle’s reputation score.
This method integrates three components:

o Historical reputation: The vehicle’s previous reputation score (7(p;p;) o1y’

o  Current message integrity: The quality and consistency of the current message based on
coherency checks repScore.

o Detected anomalies: Any inconsistencies or randomness detected in message timing

(represented by the entropy score) entropyScore.

The Bayesian formula thus ensures a balanced assessment by incorporating past behavior,
current evidence, and potential irregularities. This approach mitigates the risk of harsh penalties for
minor anomalies, allowing for a more nuanced evaluation of vehicle trustworthiness. The flowchart
of the algorithm is shown in Figure 2.
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Figure 2. Flowchart of Entropy-Bayesian based Reputation Calculation Algorithm.

4. Evaluation Methodology

This section outlines the evaluation methodology of our VANETGuard. This setup ensures
secure V2X communication by continuously monitoring vehicle behavior using an Entropy-Bayesian
Reputation System. Reputation scores dynamically update based on message consistency and
entropy analysis, while DLT enhances security by mitigating Sybil, DoS, and DDoS attacks through
anomaly detection and authentication mechanisms. The proposed model ensures scalability and
resilience for VANETs.

4.1. Adversarial Models

This system aims to improve the safety and efficiency of vehicular communication by meeting a
comprehensive set of established requirements. The security of vehicular communication networks
depends heavily on the system’s ability to withstand potential threats. We apply two key adversarial
models to evaluate system resilience:

1. Dolev-Yao Model: This model provides a comprehensive framework for assessing how the
system handles various attacks. It assumes that an attacker can intercept any message in the
network, initiate communication with any participant, and even impersonate legitimate
recipients. The following attacks are considered:
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o  Eavesdropping Attack: An attacker gains unauthorised access to sensitive data, such as
vehicle locations, personal information, or messages between vehicles and Road Side Units
(RSUs), compromising communication confidentiality.

o  Replay Attack: The attacker intercepts and retransmits previously recorded messages to
deceive vehicles, disrupting traffic management, collision prevention, and cooperative
driving systems.

o  Forgery Attack: The attacker impersonates legitimate users or entities to forge messages,
misleading other vehicles and potentially causing unsafe or unintended outcomes.

o  Sybil Attack: The attacker creates multiple fake identities or vehicles to deceive network
participants, disrupting routing protocols, manipulating traffic flow, and spreading false
information [35].

2. Network Adversary Model: This model comprehensively analyses network traffic behaviour
under real-world attack scenarios, such as DoS and DDoS, at the network level. It effectively
simulates how the system handles high traffic loads and evaluates the resilience of the network
infrastructure under stress. Key aspects include:

o  DoS Attack: The attacker overwhelms the network or specific nodes with excessive requests
or messages, leading to resource exhaustion and reduced availability of communication
services.

o DDoS Attack: A more severe version where multiple sources coordinate to send high
volumes of traffic to a target, exhausting bandwidth and processing power and crippling
communication [41].

4.2. Simulation Setup and Dataset

The methodology adopted in this project was inspired by established approaches detailed in the
literature review. Recent studies have validated the effectiveness of these techniques in meeting
security requirements and resisting attacks. Using this simulation environment allowed for realistic
and precise scenario modelling. Incorporating Entropy-Based algorithms alongside Bayesian
inference enabled advanced anomaly detection and fair reputation scoring for vehicles. Together,
these methods provided a thorough evaluation of the system’s ability to detect and mitigate various
attack models, ensuring strong performance and robust security against potential threats. The
primary research question we sought to address in this study was: How effective (in terms of)
performance metrics is a trust management system using Entropy-Based anomaly detection and
Bayesian reputation updates in enhancing vehicular communication security against various attack
vectors such as DoS, DDoS, forgery, Sybil, and replay attacks.

The hardware setup for this study consists of a MacBook Pro, which serves as the primary
machine for simulations and analysis. It operates on macOS and is equipped with 512 GB of storage,
16 GB of RAM, and a processor speed of 3.5 GHz. This combination of hardware ensures efficient
data processing, supporting high-performance vehicular network simulations while maintaining
computational accuracy and security. The system’s capability enables real-time simulation execution,
data collection, and analysis, which are essential for evaluating the proposed hybrid trust
management system in VANETSs. .In addition to the hardware configuration, the study employs
several specialized software tools designed for vehicular network simulation and analysis. The Veins
Framework (Version 5.1) is used within OMNeT++ allowing the simulation of vehicular
communications while integrating SUMO for realistic traffic modeling. The Artery Tool, an extension
of Veins, is utilized to implement the ETSI ITS-G5 protocol stack, enabling Vehicle-to-Everything
(V2X) communication. Furthermore, SUMO (Version 1.8.0) facilitates the creation of realistic road
traffic scenarios that reflect real-world vehicular interactions. To ensure secure and decentralized
reputation management, the study incorporates IOTA Distributed Ledger Technology (DLT), which
securely stores vehicle reputation scores and prevents unauthorized modifications. The simulation
framework is built on OMNeT++ (Version 5.6.2), a widely used network simulation platform that
allows for extensive VANET modeling and evaluation. Additionally, Python (Version 3.9) is
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employed for scripting, data preprocessing, and analytical modeling, while Simu5G, a specialized
simulation library, is integrated to model network behavior and 5G-based vehicular communication.
The combination of these hardware and software tools provides a robust, scalable, and high-fidelity
test environment, ensuring accurate validation of the proposed VANET trust management system.

Certain parameters remain fixed throughout the simulation to ensure consistency and fair
comparisons. The entropy threshold is set to 0.5, which serves as a criterion to differentiate between
normal and abnormal vehicle behavior while minimizing false alarms. The reputation weights are
defined as (o, 3, Y) =(0.4, 0.4, 0.2), where a (alfa) represents the weight assigned to historical behavior,
[ (beta) accounts for current message consistency, and y (gamma) considers anomalies detected
through entropy-based analysis. These values ensure that the system does not excessively penalize
minor variations in vehicle behavior. Additionally, the message coherency time threshold is fixed at
1000 milliseconds (1 second), ensuring that messages are spaced out at reasonable intervals; messages
sent too frequently or too infrequently could indicate irregular activity. To enhance the reliability of
trust evaluation, the time window for CAM analysis is set to 5 seconds, meaning that only recent
messages are used to update a vehicle’s reputation score, preventing outdated data from influencing
trust calculations.

These variables are adjusted across different scenarios to examine their impact on the system’s
effectiveness. The number of vehicles is varied between 20 to 400 analyze the system’s scalability and
performance under different traffic conditions. Different attack scenarios, including Denial-of-Service
(DoS), Distributed Denial-of-Service (DDoS), Sybil, Replay, and Forgery attacks, are simulated to
evaluate the system’s robustness against diverse threats. The message transmission rate is tested at 1
Hz, 5 Hz, and 10 Hz to assess how frequently vehicles exchange information and its impact on
entropy calculations. The system is also tested under different vehicle speeds (30 km/h, 60 km/h, and
90 km/h) to analyze message timing and coherency across urban, highway, and mixed driving
conditions. Lastly, network delay is varied at 5 ms, 10 ms, and 50 ms to simulate different levels of
network congestion and examine its influence on message propagation and anomaly detection.

The effectiveness of the trust management system is assessed using several performance metrics,
which serve as dependent variables. These metrics help evaluate the system’s capability to accurately
detect malicious activities, minimize false alarms, and ensure scalability in real-world VANET
environments. By analyzing these performance metrics across various simulation scenarios, the study
provides a comprehensive evaluation of the proposed trust management system, ensuring its
reliability, adaptability, and efficiency in mitigating security threats in VANET environments.

4.3. V2V Communications Dataset

After reviewing the available datasets and analysing their strengths and limitations, we
developed a custom dataset to effectively evaluate our approach for detecting malicious messages.
This dataset comprises ETSI-compliant messages exchanged during simulated road hazard scenarios.
Following a methodology similar to that described in [35], we modelled dynamic VANET scenarios
using the Artery tool [52] to illustrate a Decentralised Environmental Notification (DEN) use case.
This approach allowed us to create realistic, scenario-based data that reflects the complexity of
VANET communications under hazardous conditions. By simulating a variety of interactions and
message exchanges, our dataset serves as a robust foundation for testing the system’s ability to
identify and respond to malicious behaviour, particularly in high-risk or emergency settings.

The scenario chosen simulated a low-visibility zone on the Jeddah-Makkah Highway as shown
in Figure 3., known for instances of reduced visibility due to dust or fog, which can lead to sudden
vehicle deceleration. This setting was the focal point, replicating situations where sudden incidents,
such as emergency stops, increase the risk of collisions and trigger the broadcasting of Decentralised
Environmental Notification Messages (DENMs). These DENMs provide critical information such as
detection time, cause code, and event location. These messages are essential for identifying malicious
behaviour. In addition, Cooperative Awareness Messages (CAMs) generated within the target area
were collected to validate the accuracy of the DENMs in the DIVA [18] system by detecting
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inconsistencies in detection times and vehicle positions. To broaden the dataset’s utility for testing
purposes, we modified it to simulate various attacks, including DoS, DdoS, forgery, Sybil, and replay
attacks [18].
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Figure 3. Simulated Highway.

5. Results & Discussions

The evaluation of the Entropy-Bayesian Trust Model involves analyzing the impact of three
thresholding techniques: mode, median, and mean on system performance. These thresholding
methods play a crucial role in adjusting the system’s sensitivity to anomalous behaviors by
dynamically balancing detection rates and reducing false classifications. The system was configured
with parameter weights set at a = 0.4, 3 =0.4, and y = 0.2, alongside a behavior variation threshold of
0.5. The results, presented in Table 1, highlight the effectiveness of each thresholding approach in
terms of True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), and False
Negative Rate (FNR).

Mode-based thresholding achieved the highest TPR of 99.9%, indicating superior effectiveness
in identifying malicious messages. However, this approach resulted in a lower TTNR of 79.80%,
meaning that while it detected threats efficiently, it also had a higher tendency to misclassify benign
messages as malicious, as reflected in the FPR of 20.20%. Median-based thresholding followed a
similar trend, with a TPR of 99.95% and a slightly lower TNR of 79.60%, leading to an increased FPR
of 20.40%. These results suggest that while mode and median thresholding methods exhibit strong
detection capabilities, they introduce a higher likelihood of false alarms, potentially impacting
network stability.

In contrast, mean-based thresholding demonstrated a more balanced approach, achieving the
highest TNR of 100%. This indicates that the system accurately classified all non-malicious messages
while maintaining a TPR of 99.91%. Additionally, mean thresholding resulted in the lowest FPR of
0%, ensuring minimal misclassification of benign nodes. However, the FNR was slightly higher at
0.2%, reflecting a minor trade-off in correctly identifying all malicious activities.

These findings illustrate that threshold selection significantly impacts detection performance.
While mode-based thresholding prioritizes high TPR, it comes at the expense of an increased FPR.
Conversely, mean-based thresholding ensures a lower misclassification rate and a perfect TNR,
making it the optimal choice for minimizing unnecessary trust penalties on benign vehicles. By
dynamically adjusting trust scores based on entropy fluctuations and Bayesian inference, the
Entropy-Bayesian Trust Model effectively maintains robust detection accuracy across varying attack
conditions. The selection of mean thresholding offers the most stable and reliable performance,
ensuring a well-balanced trade-off between detection efficiency and classification accuracy in
VANET security applications.
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Table 1. Threshold Study with 20% of malicious vehicles and 40 vehicles.
Threshold « =04, p=04,v=02 TPR (%) TNR (%) FPR (%) FNR (%)
Mode 0.5 99.9 79.80 20.20 0.04
Median 0.5 99.95 79.60 20.40 0.08

Mean 0.5 99.91 100 0 0.2

5.1. Effect of Vehicle Count

The Entropy-Bayesian reputation model, configured with parameters o« = 0.4, = 0.4, vy =0.2,
dynamically adjusts trust scores to enhance adaptability across different vehicular densities. The
detection accuracy results, as summarized in Table 2, confirm the model’s effectiveness in accurately
identifying malicious behaviors while minimizing false classifications.

The TPR values indicate that the system maintains high detection performance, effectively
identifying malicious activities even in high-density network scenarios. Similarly, the TNR confirms
that benign vehicles are correctly classified, reducing false alarms and minimizing unnecessary
penalties.

At a network density of 20 vehicles, the system achieves a detection accuracy of 99.99%,
benefiting from a manageable message volume that facilitates efficient entropy calculations and
stable Bayesian inference updates. The low network congestion ensures that message inconsistencies
are promptly detected, leading to minimal FNR and FPR, thereby maintaining high trust evaluation
accuracy.

As the number of vehicles increases to 40, detection accuracy slightly decreases to 99.98% due to
the increased message traffic. The entropy-based detection system effectively adapts to the higher
network load, but false positives show a minor rise as real-time message verification becomes more
complex. To counteract this, the system dynamically adjusts trust scores, leveraging Bayesian
inference to distinguish between genuine message inconsistencies and adversarial activities.

At 80 vehicles, network congestion becomes more noticeable, leading to delayed message
transmissions and minor disruptions in entropy calculations. Consequently, detection accuracy
further declines to 99.82%, as the increased message density slightly impacts trust evaluations.
However, the Bayesian model stabilizes trust score fluctuations, preventing unjust reputation
penalties and ensuring that malicious nodes are still accurately detected.

For 160 vehicles, detection accuracy drops to 99.1%, and at 320 vehicles, it further reduces to
98.95% as message collisions and processing delays introduce challenges in maintaining real-time
consistency. Despite this, the system continues to adapt dynamically, ensuring reliable trust
management and minimal false classifications.

At 400 vehicles, the highest network density tested, the system achieves 98.83% detection
accuracy. While network congestion leads to higher message delays and slightly increased false
positives, the Entropy-Bayesian model still ensures stable reputation management, effectively
preventing malicious influence on VANET trust mechanisms.

These results confirm the scalability and robustness of the Entropy-Bayesian model,
demonstrating its ability to maintain high detection accuracy across varying network densities. The
integration of adaptive entropy calculations and Bayesian inference updates ensures that even in
high-traffic scenarios, malicious vehicles are accurately detected while minimizing penalties on
benign nodes. This makes it a viable and highly effective solution for trust management in VANET
environments.

Table 2. Performance metrics under Different Vehicle and Attack Densities.

Vehicles Malicious (%) TPR (%) TNR (%)Detection Accuracy (%) FPR (%) FNR (%)
5 99.98 100 99.99 0.0 0.13
20 10 99.98 100 99.98 0.0 0.28
20 99.93 100 99.94 0.3 0.55
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40 99.85 100 99.93 0.0 0.15
5 99.94 100 99.97 0.15 0.3
40 10 99.94 100 99.97 0.4 0.7
20 99.91 100 99.93 0.0 0.2
40 99.85 99.95 99.9 0.25 0.5
5 99.64 99.95 99.80 0.5 0.9
80 10 99.64 99.95 99.80 0.0 0.13
20 99.57 99.85 99.71 0.1 0.28
40 99.51 99.65 99.58 0.3 0.55
5 98.20 100.0 99.1 0.0 0.15
160 10 97.74 99.92 98.83 0.15 0.3
20 97.7 99.8 98.75 0.4 0.7
40 97.4 99.6 98.5 0.0 0.2
5 97.0 100.0 98.5 0.25 0.5
10 10 96.9 99.9 98.4 0.5 0.9
20 97 99.75 98.4 0.0 0.13
40 96.5 99.5 98.0 0.1 0.28
5 97.6 100.0 98.8 0.3 0.55
400 10 96.75 99.85 98.3 0.0 0.15
20 96.5 99.7 98.1 0.15 0.3
40 96.4 99.4 97.9 0.4 0.7

5.2. Effect of Malicious Percentage

To assess the system’s detection consistency, extensive evaluations were conducted with varying
malicious vehicle percentages set at 5%, 10%, 20%, and 40%. These specific percentages were chosen
to align with DIVA [18], allowing for a direct and fair comparison of performance. The results,
summarized in Table 2, demonstrate the system’s ability to maintain high detection accuracy across
different attack scenarios and vehicle densities.

At 5% malicious presence, the system achieves 99.99% detection accuracy for a network density
of 20 vehicles. The manageable message volume allows for efficient entropy calculations, ensuring
that inconsistencies in message transmissions are detected with minimal errors. As the number of
vehicles increases to 40 and 80, detection accuracy slightly decreases to 99.98% and 99.82%,
respectively. This minor reduction is due to increased network traffic, which slightly raises false
positive rates, but the Bayesian reputation model dynamically compensates for these variations.

At 10% malicious presence, the system maintains 99.98% accuracy for 20 vehicles. With higher
adversarial activity, the complexity of message verification increases, leading to a slightly higher false
classification rate. However, Bayesian inference ensures that detection remains robust. As vehicle
count increases to 40 and 80, detection accuracy declines slightly to 99.97% and 99.79%, respectively,
demonstrating the impact of network congestion and malicious interference.

At 20% malicious presence, the system continues to perform strongly, maintaining 99.94%
accuracy for 20 vehicles. The increased density of adversarial messages introduces a higher risk of
misclassification, reflected in a small rise in false positive and false negative rates. As the network
scales up to 40 and 80 vehicles, detection accuracy drops slightly to 99.96% and 99.71%, respectively.
With 160 vehicles, detection accuracy decreases to 98.75%, as higher network congestion and
processing delays slightly impact real-time verification.

At 40% malicious presence, the system retains 99.93% accuracy for 20 vehicles. As vehicle count
increases to 40 and 80, detection accuracy drops slightly to 99.9% and 99.58%, respectively. At 160
vehicles, accuracy further decreases to 98.5%, and at 400 vehicles, the lowest tested density, the
system still achieves 97.9% accuracy. This trend aligns with real-world expectations, where higher
malicious activity introduces more uncertainty and detection complexity.
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However, the system significantly outperforms DIVA [18], which experiences an accuracy drop
to 89% under similar conditions. By maintaining detection accuracy above 97.9% even at 40%
malicious presence, our results confirm the robustness of the Entropy-Bayesian reputation model.
The system successfully adapts to different network densities and adversarial conditions,
significantly outperforming existing solutions like DIVA [18].

Through the integration of entropy-based anomaly detection and Bayesian inference, our
approach ensures high resilience, low misclassification rates, and superior adaptability to evolving
threats in VANET environments.

5.3. System Robustness Against Attack Models

The Entropy-Bayesian reputation model demonstrates robust security mechanisms against
major VANET attack models, including DoS), DDoS, Sybil, Replay, and Forgery attacks.

e  DoS and DDoS Resistance: Entropy-based detection identifies message flooding attacks in real-
time, ensuring that DoS attackers cannot manipulate vehicle communications. Unlike DIVA [18],
which lacks strong DoS detection, our system flags anomalous frequency spikes and adjusts
entropy thresholds dynamically.

e  Sybil Attack Mitigation: The system ensures unique trust scores per vehicle, preventing identity
spoofing. If multiple messages from a single entity exceed entropy variation limits, the system
flags them as suspicious, reducing the risk of Sybil-based disruptions.

e Replay Attack Prevention: Timestamp-based message validation ensures that replayed
messages are not treated as legitimate communications. The Bayesian update mechanism
penalizes vehicles that repeatedly transmit outdated information, effectively neutralizing replay
attacks.

e Forgery Attack Detection: The combination of entropy variations and Bayesian consistency
checks enables the system to detect falsified messages, ensuring that only genuine, consistent
data contributes to reputation scores.

5.4. Computational Efficiency and Scalability

The computational efficiency and scalability are critical performance dimensions for real-time
trust management systems operating in large-scale VANET environments. In high-density vehicular
networks, the ability to evaluate trust swiftly and accurately, without overwhelming processing
resources, is essential to ensure timely and reliable communication.

The proposed model, VANETGuard, demonstrates robust computational performance,
supported by the following observations:

e  Real-Time Entropy Evaluation: The system employs lightweight Shannon entropy calculations
to analyze message timing and behavioral variance. These calculations are computationally
inexpensive, enabling continuous anomaly detection even in dense network conditions with
hundreds of participating vehicles.

e  Optimized Bayesian Inference: Bayesian trust score updates are selectively triggered based on
entropy thresholds and behavioral deviations. This design significantly reduces the number of
redundant trust updates, thus minimizing computational overhead while maintaining accurate
reputation tracking.

e  Low-Latency Detection Performance: Empirical results from simulation show that the end-to-
end latency for trust evaluation, including entropy scoring and Bayesian inference, consistently
remains under 1.5 seconds, even in scenarios with up to 400 vehicles and 40% malicious
participation. This latency is well within the operational thresholds required for real-time
vehicular decision-making, such as message forwarding, event reaction, or route selection.
Collectively, these features confirm that the proposed model is both computationally efficient

and highly scalable, making it suitable for deployment in real-world VANET applications with

dynamic and large-scale topologies. The combination of adaptive inference and selective evaluation
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ensures that the trust system can maintain performance without compromising accuracy or
responsiveness under heavy load.

5.5. Benchmarking with Existing Trust Management Models

To comprehensively evaluate the effectiveness of our proposed system, VANETGuard, we
conducted a benchmark comparison against several established trust management models in
VANETs, including DIVA [18], AATMS [12], HTMS-V [13], ART [16], and HDRS [14]. These models
were selected due to their representative designs across various trust computation paradigms—
ranging from static thresholding and cloud-based Bayesian systems to subjective logic, reputation
dynamics, and hybrid scoring mechanisms. Notably, the comparison with DIVA is of particular
significance, as VANETGuard builds directly upon DIVA’s core structure. We adopted the same
simulation setup and evaluation dataset described in DIVA to ensure consistency and fairness in
performance comparison. Furthermore, our system retains DIVA’s IOTA-based reputation storage
but enhances the underlying algorithm by integrating real-time entropy-based detection, adaptive
trust scoring, and Bayesian inference. This results in a system that is both operationally similar and
significantly more robust in dynamic vehicular environments.

The evaluation focused on multiple performance indicators, including detection accuracy, false
classification rates, adaptability under high-malicious settings, execution latency, and DDoS
resilience. In terms of detection accuracy, VANETGuard demonstrates a marked improvement,
achieving 99.925%, compared to 99.9% in DIVA, 98.5% in AATMS, 97.2% in HTMS-V, 96.8% in ART,
and >97% in HDRS [14]. This enhancement is largely attributed to the integration of entropy-based
anomaly detection and Bayesian reasoning, which allows VANETGuard to dynamically adapt trust
scores based on message consistency and observed behavioral patterns. The True Positive Rate (TPR)
of 99.85% and the False Negative Rate (FNR) of only 0.15% further support the system’s ability to
reliably detect malicious behavior with minimal oversight. In contrast, AATMS, HTMS-V, ART, and
even HDRS [14] exhibit higher FNR values, ranging from approximately 2% to 5% under certain
attack thresholds, indicating a greater susceptibility to undetected adversarial behavior when
malicious density increases beyond the system’s adaptive threshold.

A critical component of trust systems in VANETSs is their performance under adversarial
conditions. When 50% of network participants are malicious, VANETGuard maintains
approximately 98% detection accuracy. This stands in contrast to the performance degradation
observed in DIVA and others. DIVA’s reliance on static thresholding, particularly mode-based
decision rules, results in an increased likelihood of false evaluations in complex attack scenarios, such
as collusion or Sybil attacks. Similarly, HTMS-V and ART, although incorporating logic-based and
heuristic approaches, exhibit accuracy drops to approximately 90% and 88%, respectively. AATMS
performs moderately better (~94%) but is hindered by its dependence on cloud-synchronized trust
updates, which introduces latency and reduces responsiveness. HDRS [14], by contrast, maintains
near-perfect detection when the malicious presence is under 40%, but its performance begins to
decline once adversarial density exceeds that threshold —an expected limitation due to reputation
convergence lag during high-malice states.

Latency is another critical factor in VANET deployment. While DIVA achieves microsecond-
level latency through its lightweight IOTA trust propagation, it lacks dynamic evaluation, limiting
its adaptability. VANETGuard introduces slightly higher latency (in milliseconds) due to real-time
trust recalibration through entropy and Bayesian inference. Compared to AATMS, which incurs
seconds-level delays due to its dependence on cloud infrastructure, and HTMS-V and ART, which
utilize less flexible local models, VANETGuard strikes a meaningful balance between speed and
adaptability. HDRS [14], which incorporates adaptive reputation update intervals, performs
competitively in latency as well —introducing only negligible communication overhead, with minor
beacon-size expansions (~4 bytes) and dynamic adjustments tuned to vehicle density and message
rates.
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A distinct advantage of VANETGuard is its resilience to DDoS attacks. Unlike DIVA, which does
not account for such threats, VANETGuard continuously monitors entropy variations in message
patterns to detect anomalous traffic surges. This enables timely mitigation of flooding attempts,
preserving communication integrity even under large-scale attacks. While AATMS includes basic
filtering mechanisms and ART uses simple anomaly thresholds, neither implements adaptive
entropy-based mitigation. HDRS [14], while highly effective at filtering collusion, intelligent, and
false data attacks, does not specifically address DDoS resilience, limiting its protection against
bandwidth-targeted message floods.

Finally, in terms of trust update mechanisms, VANETGuard offers the most comprehensive
solution. While DIVA, AATMS, HTMS-V, and ART update trust scores through periodic or event-
driven rules, VANETGuard utilizes an adaptive model combining entropy scores, Bayesian
probability updates, and real-time behavioral assessments. HDRS [14] adopts a similar hybrid
strategy, using a dynamic update interval and analytic hierarchy process (AHP) to determine the
optimal timing for trust recalibration. However, VANETGuard further improves on this by
integrating IOTA’s distributed ledger with entropy-responsive updates, minimizing false penalties
and accelerating detection of emerging malicious actors. By using the same foundational architecture
as DIVA but layering advanced inference and learning capabilities, VANETGuard ensures
compatibility while delivering significant improvements in accuracy, adaptability, and defense
robustness in highly dynamic and adversarial VANET environments.

Table 3. Performance Metrics Comparison Between VANETGuard, DIVA [18], AATMS [12], HTMS-V [13] ,ART

[16] and HDRS [14].
DIVA [18]
Metric VANETGuard (Mode AATMS [12] HTMS-V [13] ART [16] HDRS [14]
Threshold)
96.8 timated>97%
Detection 99.925 99.9 ~98.5  (derived>95 under mostfrom Egilir:lhi;sconc/iitions across
Accuracy (%) ' ' from TPR/TNR) attacks . .
section) (dynamic)
96%+ (for . 100% (<40%
297. -30% ~95. 11
TPR (%) 99.85 99.8 978 ‘(at 20 3O/maIicious node 959 . (co uSIOnmalicious); drops
collusion) . e scenarios)
identification) after
High;
~ 1
TNR (%) 100.0 100.0 99 (stable across o5 oo, 97.6 contextually
conditions) .
adaptive
1.0% or less<4%, even under Low, adaptive to
FPR (% . . ~2.4
(%) 00 00 (verified) hybrid attacks context
<4-5%, drops Slight rise >40%
~2.2%
FNR (%) 0.15 0.2 . : (dr?ps atwhen malicious~4.1% malicious, stays
high collusion)
rate >40% low
Performance in Drops Can’t detect all at
D
High  MaliciousMaintains ~98% iroliafsi ntl moderately 1(\1[90(()3})/61)‘211:8 drop(szSVSe;e) drop50%, but stable
(50%) SIBMCAntY  (~94%) ° ° below
Execution Latency ™ (Bayesian + (Tangle) Seconds  (cloudMilliseconds Milliseconds ms range,
yIOTA) Hellangle sync + Bayesian) (local-only) (lightweight) dynamic interval
Effective Limited Not licit] Effective
DDoS Mitigation (entropy Not addressed  (weighted ° P Y Basic thresholds (entropy +
] G addressed S
analysis) filtering) reliability filters)
TrustRank Hybrid V2V/R!
Trust UpdateEntropy + rustRan +Subjective logic +History $YEC Y /RSU
Mechanism B ian + DLT DLT only Forgetting indirect d iohted .+ Reliability eval
echan ayesian Feedback filters ndirectdecay  weighted scoring ., weights

6. Conclusions

This study introduced VANETGuard, a scalable and adaptive trust management system

designed for vehicular ad hoc networks (VANETSs). By integrating entropy-based anomaly detection,
Bayesian inference, and distributed ledger technologies, the system addresses critical challenges in
trust evaluation, including detection accuracy, real-time adaptability, and resilience under
adversarial conditions.
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Comprehensive simulation results across varying network densities (20 to 400 vehicles) and
malicious participation rates (5% to 40%) confirm the robustness and scalability of VANETGuard.
The system consistently achieved detection accuracy exceeding 99.9% in low to moderate-density
networks, and maintained competitive accuracy (297.9%) even in high-density environments with up
to 40% malicious nodes. True Positive Rates remained above 96.4%, and True Negative Rates
consistently approached 100%, validating the system’s reliability in correctly classifying vehicle
behavior. Furthermore, False Positive and False Negative Rates were kept exceptionally low across
all scenarios, highlighting the system’s capability to minimize misclassifications while preserving
communication integrity.

Despite these promising results, several avenues for future research remain. First, adaptive
threshold tuning is necessary to better accommodate region-specific traffic dynamics, especially in
heterogeneous urban deployments. This could be achieved through localized learning or
reinforcement-based adjustments. Second, although VANETGuard is effective against common
attack vectors such as Sybil and flooding, future research should explore more sophisticated threat
models, including on-off (gray hole) attacks and coordinated adversarial behavior. Enhancing
temporal and graph-based anomaly detection can improve robustness in these contexts.

Additionally, optimization for resource-constrained edge nodes remains an important
consideration, particularly as real-world deployments demand lightweight models with minimal
computational and energy overhead. Integrating privacy-preserving trust evaluation mechanisms,
such as differential privacy or secure multi-party computation, can further align the system with
modern data protection standards. Finally, large-scale real-world testing and ledger optimization are
needed to validate system performance under live network conditions and ensure the scalability of
IOTA-based reputation storage under high-frequency update loads.

In summary, VANETGuard presents a strong foundation for real-time, resilient trust
management in VANETSs. With continued enhancements in adaptability, efficiency, and privacy, it
holds significant promise for deployment in next-generation intelligent transportation systems.
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Abbreviations

The following abbreviations are used in this manuscript:

VANETSs Vehicular Ad Hoc Networks

V2v Vehicle-to-Vehicle

\2ii Vehicle-to-Infrastructure

HTMS Hybrid Trust Management System
DLT Distributed Ledger Technology
DoS Denial-of-Service

DDoS Distributed Denial-of-Service
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TPR True Positive Rate

FPR False Positive Rate

ITS Intelligent Transportation Systems

V2X Vehicle-to-Everything

IRS Intelligent Reputation System

TA Trusted Authority

DIDs Decentralized Identifiers

RSUs Road-Side Units

CAMs Cooperative Awareness Messages

DENMs Decentralized Environmental Notification Messages
FNR False Negative Rate

TNR True Negative Rate

IOTA A type of Distributed Ledger Technology (DLT)

ML Machine Learning

5G Fifth Generation Mobile Network

OMNeT++ Objective Modular Network Testbed in C++

SUMO Simulation of Urban MObility

Simu5G 5G Network Simulation Tool

ETS-G5 European Telecommunications Standards Institute Intelligent Transport Systems G5
DIVA Decentralized Identification-Based Vehicular Authentication
MDPI Multidisciplinary Digital Publishing Institute

DOA]J Directory of Open Access Journals

TLA Three Letter Acronym

LD Linear Dichroism
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