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Article

Theoretical Analysis of Positional Encodings in
Transformer Models: Impact on Expressiveness
and Generalization
Yin Li

University of Birmingham Dubai; kxl474@student.bham.ac.uk

Abstract: Positional encodings are a core component of transformer-based architectures, enabling
such models to process sequential data without recurrence. Despite their critical role, the theoretical
properties of various positional encoding schemes—including sinusoidal, learned, relative, and recent
bias-based methods such as Attention with Linear Biases (ALiBi)—remain poorly understood. In
this paper, we present a comprehensive theoretical framework to analyze how different positional
encodings affect a transformer’s expressiveness, generalization ability, and extrapolation to sequences
longer than those seen during training. We derive formal definitions of expressiveness in terms of
function approximation classes, obtain generalization bounds under different encoding schemes using
Rademacher complexity analyses, and propose several novel positional encoding methods based on
orthogonal function families (e.g., wavelets, Legendre polynomials) and information-theoretic criteria.
We also characterize the extrapolation capacity of existing and proposed encodings, extending ALiBi’s
biasing approach to a more unified theoretical setting. Our lightweight experimental evaluation on
synthetic sequence-to-sequence tasks validates key theoretical predictions, showing that encoding
schemes grounded in orthogonal transforms can outperform standard sinusoidal encodings in both
generalization and extrapolation. This work fills an important gap in transformer theory, offering new
insights that can guide design choices in natural language processing, computer vision, and other
domains where transformers dominate.

Keywords: positional encoding; transformer models; expressiveness; generalization bounds

1. Introduction
Transformer architectures [18] have become foundational in numerous areas of machine learning,

including natural language processing (NLP), computer vision, and time-series modeling. By eschew-
ing recurrence and convolution in favor of a self-attention mechanism, transformers achieve superior
parallelism and scaling properties. However, the lack of inherent sequential processing necessitates
the incorporation of positional encodings (PEs) to inject information about the order of tokens. The
original transformer paper introduced sinusoidal positional encodings, and subsequent work explored
learned absolute encodings [18], relative encodings [14], and bias-based schemes such as Attention
with Linear Biases (ALiBi) [12]. Despite widespread empirical adoption, the theoretical understanding
of how PEs influence a transformer’s expressiveness, generalization, and extrapolation capabilities is
limited.

This paper proposes a thorough theoretical analysis of positional encodings, addressing the
following overarching questions:

• Expressiveness: What classes of sequence-to-sequence functions can a transformer approximate
under different PE schemes? Are there inherent limitations imposed by specific encodings?

• Generalization: How do PEs affect a transformer’s ability to generalize from training to unseen
data, especially when sequence lengths vary? Can we derive generalization bounds that capture
the influence of different PEs?
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• Extrapolation: Why do certain encoding methods (e.g., ALiBi) facilitate extrapolation to longer
sequences? Can we formalize this phenomenon and propose new encodings that further enhance
extrapolation?

• Novel Encodings: Are there theoretically motivated PE schemes—based on wavelet transforms,
Legendre polynomials, or information-theoretic principles—that surpass existing methods in
expressiveness, generalization, or extrapolation?

By developing a unified mathematical framework to answer these questions, we aim to provide
deep insights into why PEs work, how they can be improved, and what limitations current methods
entail. We also propose new PE schemes grounded in orthogonal function families (e.g., wavelets,
Legendre polynomials) and analyze their theoretical properties. Lightweight experiments on small-
scale synthetic tasks corroborate our theoretical findings, demonstrating that wavelet-based encodings
can yield superior extrapolation performance compared to standard sinusoidal PEs.
Contributions. Our main contributions are:

1. Expressiveness Characterization: We formally define the expressiveness of transformer models
under different PE schemes, showing how absolute, relative, and bias-based encodings impact
the set of sequence-to-sequence functions that can be approximated.

2. Generalization Bounds: Using tools from statistical learning theory (Rademacher complexity,
covering numbers), we derive generalization bounds that explicate the role of PEs in controlling
model capacity and overfitting for varying sequence lengths.

3. Extrapolation Analysis: We extend the theoretical understanding of ALiBi’s biasing mecha-
nism, provide a unified extrapolation framework for bias-based PEs, and identify the limits of
extrapolation for alternative encoding schemes.

4. Novel PE Schemes: We propose several novel positional encodings based on orthogonal func-
tions (e.g., wavelets, Legendre polynomials) and information-theoretic criteria (maximizing
mutual information between positions). We analyze their expressiveness, generalization, and
extrapolation properties.

5. Lightweight Validation: We implement the proposed PE schemes in pure NumPy to run small-
scale experiments on synthetic tasks designed to test extrapolation and generalization. These
confirm our theoretical predictions without requiring GPUs.

The rest of this paper is structured as follows. Section 2 reviews existing PE methods. Section 3
defines and analyzes expressiveness under different PEs. Section 4 derives generalization bounds.
Section 5 provides a theoretical framework for extrapolation. Section 6 introduces novel PE schemes
and analyzes their properties. Section 7 details lightweight experimental validation. Finally, Section 8
discusses implications, limitations, and future work.

2. Background and Related Work
This section reviews transformer architectures and existing positional encoding methods, empha-

sizing their empirical performance and the lack of deep theoretical analysis.

2.1. Transformer Architecture

The transformer model [18] processes an input sequence of length N by first mapping each token to
a dmodel-dimensional embedding. Denote the input embeddings by X = [x1, x2, . . . , xN ]

⊤ ∈ RN×dmodel .
Because the transformer is permutation-invariant, positional encodings P = [p1, p2, . . . , pN ]

⊤ ∈
RN×dmodel are added to X so that the model can utilize order information:

Z(0) = X + P, Z(0) ∈ RN×dmodel .

The transformer then applies L layers of multi-head self-attention and position-wise feed-forward
networks to compute contextualized representations Z(L) ∈ RN×dmodel . We omit further architectural
details; see [18] for a complete description.
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2.2. Sinusoidal and Learned Positional Encodings

In the original transformer, [18] introduced sinusoidal absolute positional encodings defined
elementwise as

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
, (1)

PE(pos, 2i + 1) = cos

(
pos

10000
2i

dmodel

)
, (2)

where pos ∈ {0, 1, . . . , N − 1} and i ∈ {0, 1, . . . , dmodel
2 − 1}. These encodings allow the transformer

to learn to attend to relative positions because any linear combination of two sinusoidal vectors
encodes relative shifts. The paper also considered learned positional encodings, where a trainable
embedding matrix P ∈ RN×dmodel is optimized jointly with the model. Empirically, learned and
sinusoidal encodings perform similarly on standard benchmarks.

2.3. Relative Positional Encodings

Relative positional encodings incorporate the distance between pairs of tokens into the attention
mechanism, rather than injecting absolute position vectors. [14] add a learnable embedding Ri−j to the
attention logits whenever computing attention between tokens at positions i and j. Such encodings can
reduce the reliance on absolute position signals and improve performance on tasks with long-range
dependencies. Alternative relative schemes include [6] and [13].

2.4. Attention with Linear Biases (ALiBi)

[12] introduced ALiBi, which adds a bias term to attention logits proportional to the negative
distance between tokens:

b(i, j) = −α |i − j|, (3)

where α > 0 is a slope hyperparameter. This bias encourages the model to pay more attention to nearby
tokens while still preserving a form of positional information. Crucially, ALiBi enables extrapolation
to sequences longer than those used during training because the bias formula applies uniformly to
any token distance. Empirical results show improved performance on long-context tasks without
modifying the model’s architecture or retraining.

2.5. Other Positional Encoding Variants

Several other PE schemes have been proposed:

• Rotary Positional Embeddings (RoPE) [15]: Applies a rotation in embedding space to encode
relative positions.

• Fourier Feature Encodings [16]: Use random Fourier features to encode continuous positions,
often applied in continuous-time transformers.

• Convolutional Encodings [10]: Integrate convolutional layers to encode local positional informa-
tion.

• Wavelet-based and Polynomial-based Encodings: Proposed informally in blog posts [9], but not
systematically analyzed.

Despite numerous empirical variants, a cohesive theoretical framework for comparing expres-
siveness, generalization, and extrapolation across these methods is lacking. We address this gap in
Sections 3–6.
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3. Expressiveness of Transformers with Positional Encodings
Expressiveness refers to a model’s capacity to approximate a broad class of functions. For

transformers, we focus on the class of sequence-to-sequence mappings f : X N → YN , where X ,Y ⊂
Rd. We analyze how different PE schemes restrict or enlarge the set of approximable functions.

3.1. Formal Definition of Expressiveness

Let F L,H
PE denote the class of functions implementable by an L-layer transformer with H attention

heads and positional encoding scheme “PE”. We say the transformer with encoding scheme PE
is universal if F L,H

PE is dense (in a suitable norm) in a target function space G (e.g., all continuous
sequence-to-sequence mappings) as L, H → ∞. Our analysis focuses on:

• Absolute encodings: Sinusoidal vs. learned.
• Relative encodings: Shaw et al. vs. ALiBi.
• New encodings: Wavelet-based, polynomial-based.

We examine two questions:

(a) For fixed L, H, how does the choice of PE affect the size of F L,H
PE ?

(b) Do all PE schemes yield universal approximation as L, H → ∞?

3.2. Expressiveness with Sinusoidal Encodings

Sinusoidal encodings embed absolute position into each token representation via Eq. (1)–(2).
To analyze expressiveness, note that self-attention computes queries, keys, and values as affine
transformations of embedded inputs. Let Z(0)

i = xi + PE(i). In the first layer, an attention head
computes

Attention(Z(0))i =
N

∑
j=1

exp
(
(z(0)i WQ)(z

(0)
j WK)

⊤/
√

dk
)

∑N
k=1 exp

(
(z(0)i WQ)(z

(0)
k WK)⊤/

√
dk
) (z(0)j WV), (4)

where WQ, WK, WV ∈ Rdmodel×dk . Because PE(i) is deterministic and injective in i, the softmax attention
weights can, in principle, implement functions that depend on absolute positions, relative distances, or
higher-order interactions across multiple tokens.

Universal Approximation. [21] show that a transformer with sinusoidal encodings can approximate
any sequence-to-sequence mapping to arbitrary accuracy given sufficient width (number of heads)
and depth (number of layers). Intuitively, the sinusoidal basis of period 100002i/dmodel is rich enough
to encode any discrete position i ∈ {0, . . . , N − 1} uniquely. Since a sufficiently wide transformer
can compute arbitrary Boolean functions of its inputs [21], adding unique position signals ensures
universal approximation over sequences of length up to N.

Limitations. However, the expressiveness claim is restricted to sequences of length at most Nmax (the
maximum position for which PEs were computed). When confronted with longer sequences, sinusoidal
encodings repeat after 2π in each frequency dimension, potentially causing ambiguity in absolute
positions if not correctly handled. Consequently, universal approximation holds for fixed-length tasks
but not for unlimited-length extrapolation.

3.3. Expressiveness with Learned Absolute Encodings

Learned absolute encodings use a trainable matrix P ∈ RNmax×dmodel . The encoder learns to map
each position i ≤ Nmax to a vector pi. If Nmax matches the maximum training sequence length, the
transformer can, in principle, use distinct vectors for each position. The universality argument parallels
the sinusoidal case: unique position embeddings plus sufficiently powerful attention/FFN layers yield
universal approximation for sequences of length up to Nmax. However, learned encodings cannot
generalize to i > Nmax, as no embedding exists beyond the training range. Thus, expressiveness is
limited to the training sequence length.
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3.4. Expressiveness with Relative Positional Encodings

Relative encodings [14] circumvent the need for distinct position vectors by encoding only
distances. In the Shaw et al. formulation, the attention score between positions i and j includes a term
a⊤Ri−j, where Rk is a learnable vector for relative distance k. Formally,

score(i, j) = (ziWQ)(zjWK)
⊤ + a⊤Ri−j. (5)

Since relative distances i − j range in [−(N − 1), N − 1], the model can learn to attend based purely
on relative positions, which often suffices for tasks where absolute position is irrelevant (e.g., certain
translation or summarization tasks).

Universality and Limitations. The work of [20] demonstrates that relative encodings can be as
expressive as absolute encodings for tasks that depend on relative structure. However, if a task
requires absolute position information—e.g., “assign label oi if the token at position i is within the first
quarter of the sequence”—a purely relative encoding may struggle. In such cases, an absolute offset
or additional global positional token is needed. Nevertheless, relative encodings often yield equal or
better performance on many benchmarks, suggesting that many tasks rely more on relative positions.

3.5. Expressiveness with ALiBi

ALiBi encodes relative distance via a linear bias to attention scores (Eq. 3). That is,

score(i, j) = (ziWQ)(zjWK)
⊤ + b(i, j), b(i, j) = −α |i − j|. (6)

Because b(i, j) depends only on |i − j|, ALiBi is, strictly speaking, a relative encoding. However, the
bias is deterministic, non-learnable, and unbounded as |i − j| grows. Thus, when i − j exceeds training
maximum, the form −α|i − j| still provides a well-defined bias. This yields improved extrapolation, as
we discuss in Section 5.

Expressiveness. Since ALiBi does not learn position embeddings, the model retains the same expres-
siveness for sequences of any length, provided L, H are sufficiently large. The unique structure of the
bias term ensures the model can, in principle, distinguish token distances. By combining query-key
dot products and the linear bias, a sufficiently wide and deep transformer with ALiBi is universal for
any sequence length. However, the linear bias might under-emphasize absolute positions for shorter
sequences compared to learned or sinusoidal encodings.

3.6. Comparison and Summary

Table 1 summarizes expressiveness properties:

Table 1. Summary of expressiveness properties for various positional encodings. “Universal (Fixed N)” indicates
whether the encoding yields universal approximation for sequences of maximum length N. “Universal (Any N)”
indicates universality over arbitrary sequence lengths.

Encoding Absolute Info Relative Info Universal (Fixed N) Universal (Any N) Extrapolation

Sinusoidal Yes Yes Yes No Limited (cyclic)
Learned Yes Implicit Yes No No
Relative (Shaw et al.) No Yes Conditional Conditional No
ALiBi No Yes Yes Yes Yes
Proposed Wavelet Yes / No Yes To analyze To analyze To analyze
Proposed Polynomial Yes / No Yes To analyze To analyze To analyze
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Key takeaways:

• Sinusoidal and learned absolute encodings guarantee universal approximation for fixed-length
sequences but fail to generalize to arbitrarily long sequences.

• Relative encodings can approximate many tasks but may miss absolute position information.
• ALiBi provides universality over any sequence length by encoding distance through a linear bias.
• Proposed orthogonal function-based encodings may combine absolute and relative information,

potentially yielding universal approximation and good extrapolation.

4. Generalization Bounds for Transformers with Positional Encodings
Generalization refers to a model’s performance on unseen data drawn from the same distribution

as the training set. For transformers, one major concern is how PEs influence the model’s capacity and
its tendency to overfit, particularly when sequence lengths at test time differ from those seen during
training.

4.1. Preliminaries: Rademacher Complexity

We briefly recall the notion of Rademacher complexity [2]. Let F be a class of real-valued functions
f : X → R and let S = {x1, . . . , xm} be a sample of size m. The (empirical) Rademacher complexity of
F with respect to S is

R̂S(F ) = Eσ

[
sup
f∈F

1
m

m

∑
i=1

σi f (xi)

]
, (7)

where σi are independent Rademacher random variables taking values in {−1,+1} with probability
1/2 each. The expected Rademacher complexity is Rm(F ) = ES[R̂S(F )]. A smaller Rademacher
complexity implies tighter generalization bounds.

For a loss function ℓ : Y ×Y ′ → [0, 1] that is Lipschitz-continuous in its first argument, a standard
result [2] states that with probability at least 1 − δ over an i.i.d. sample S of size m,

L( f ) ≤ L̂S( f ) + 2Rm(Hℓ) + 3

√
ln(2/δ)

2m
, (8)

where L( f ) is the true expected loss, L̂S( f ) is the empirical loss on S, and Hℓ = {ℓ( f (x), y) : f ∈ F}.

4.2. Function Classes Induced by PEs

Let F L,H,Θ
PE denote the class of transformer functions parameterized by weights Θ, with L layers,

H heads per layer, and PE scheme “PE”. We aim to bound Rm(Hℓ) for F L,H,Θ
PE .

Parameterization and Lipschitz Constants. A transformer’s output for a fixed input length N is a
composition of L self-attention and feed-forward layers, each of which is Lipschitz in its input under
certain norm constraints on the weight matrices [22]. Let ∥W∥2 ≤ CW for all linear weight matrices W
in queries, keys, values, and feed-forward networks. Then each layer is Llayer-Lipschitz with respect
to its input activations, where Llayer depends on CW and H. Consequently, the entire transformer is
Ltrans = (Llayer)

L-Lipschitz with respect to its input Z(0).

Effect of Sinusoidal PEs. For sinusoidal encodings, ∥PE(i)∥2 ≤
√

dmodel for all i because each
component is in [−1, 1]. When inputs ∥xi∥2 ≤ Bx, we have ∥z(0)i ∥2 ≤ Bx +

√
dmodel = B0. Thus, the

input domain is bounded. A standard covering-number argument [11] shows that the Rademacher
complexity Rm(F L,H

sinusoidal) scales as O
( Ltrans B0√

m

)
up to logarithmic factors in model size. This implies

that sinusoidal PEs do not increase model capacity beyond a bounded constant shift, and generalization
primarily depends on L, H, m, and CW . Effect of Learned PEs. For learned absolute PEs, each pi is

a trainable vector. If ∥pi∥2 ≤ Bp for all i ≤ Nmax, then ∥z(0)i ∥2 ≤ Bx + Bp. In practice, learned PEs
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may require regularization (e.g., weight decay) to control ∥pi∥2. The Rademacher complexity bound
becomes

Rm(F L,H
learned) = O

( Ltrans (Bx + Bp)√
m

)
.

If Bp grows with Nmax or dmodel, generalization may degrade. Hence, regularizing learned PEs is
crucial.

Effect of Relative Encodings (Shaw et al.). Relative encodings add a term a⊤Ri−j in the attention
logits. If ∥Rk∥2 ≤ Br for all |k| ≤ N − 1, then the pre-softmax logits remain bounded by O(CW B0 + Br),
preserving Lipschitzness. Consequently,

Rm(F L,H
relative) = O

( Ltrans (Bx + Br)√
m

)
.

Because Br typically scales with the size of the relative embedding matrix, one should apply weight
decay or clipping to Rk to maintain tight generalization bounds.

Effect of ALiBi. ALiBi introduces a deterministic bias b(i, j) = −α|i − j|. Here, α is user-set (or learned)
and typically small (e.g., α ∈ [0.01, 1]). Since |i − j| ≤ Nmax during training, |b(i, j)| ≤ αNmax. During
inference on longer sequences of length N′ > Nmax, |b(i, j)| can grow to α(N′− 1), potentially enlarging
the pre-softmax logits. However, the softmax normalizes these logits; if α is chosen appropriately (e.g.,
decreasing bias slope for longer sequences), the network can still operate stably. We bound

sup
i,j≤N′

|b(i, j)| = α (N′ − 1),

so the Lipschitz constant at inference time is Ltrans (Bx + α(N′ − 1)). This grows linearly in N′,
suggesting care is needed when extrapolating. In practice, empirical results show ALiBi generalizes
well up to several times Nmax, but theoretical generalization to arbitrarily large N′ requires controlling
α.

4.3. Summary of Generalization Effects

Table 2 compares how PEs influence generalization bounds.

Table 2. Generalization bound comparison across positional encodings. Bx is the bound on input embedding
norms. Bp, Br are bounds on learned absolute and relative encoding norms. Ltrans is the transformer’s Lipschitz
constant.

Encoding ∥z(0)i ∥2 Bound Rm(F ) Scaling α/PE Regularization

Sinusoidal Bx +
√

dmodel O
( Ltrans(Bx+

√
dmodel)√

m

)
N/A

Learned Bx + Bp O
( Ltrans(Bx+Bp)√

m

)
Weight decay on Bp

Relative Bx + Br O
( Ltrans(Bx+Br)√

m

)
Weight decay on Br

ALiBi Bx + α(N′ − 1) O
( Ltrans(Bx+α(N′−1))√

m

)
Control α

Proposed TBD TBD TBD

To summarize:

• Sinusoidal PEs yield modest, constant-capacity increase, hence stable generalization.
• Learned absolute PEs can hurt generalization if Bp grows unchecked; regularization is necessary.
• Relative encodings behave similarly to learned PEs but often with smaller Br due to shared

embeddings.
• ALiBi’s bias can grow for longer sequences, potentially increasing capacity and hurting general-

ization on extremely long sequences; setting a small α helps.
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5. Extrapolation to Longer Sequences
Extrapolation refers to a model’s ability to generalize to sequence lengths beyond those seen

during training. We focus on why certain PEs, especially ALiBi, enable effective extrapolation and
how to characterize this property mathematically.

5.1. Extrapolation in Sinusoidal and Learned Encodings

Sinusoidal encodings (Eqs. 1–2) repeat periodically in each frequency dimension after 2π in their
argument. Specifically, if pos′ = pos + k · 100002i/dmodel , then

PE(pos′) = PE(pos)

in the (2i)-th dimension. Since different dimensions have incommensurate periods (100002i/dmodel

vary exponentially), the overall vector is unique for pos ∈ [0, 10000). However, once pos ≥ 10000,
certain dimensions repeat their cycles, causing partial ambiguity in absolute positions. In practice,
training sequence lengths are far below 10000, so sinusoidal PEs behave injectively. For pos > Nmax,
sinusoidal PEs may or may not produce unique vectors; the risk of ambiguity increases as pos grows.
This ambiguity degrades extrapolation, as the model cannot reliably distinguish very long positions.

Learned absolute PEs are typically defined only up to Nmax; because no vector exists for pos >
Nmax, learned encodings fail to extrapolate entirely. A common heuristic is to reuse pNmax for all
pos > Nmax or linearly interpolate learned embeddings. Both heuristics perform poorly beyond Nmax,
as they do not preserve positional distinctions.

5.2. Relative Encodings and Extrapolation

Relative encodings like Shaw et al. [14] learn a finite set of embeddings Rk for k ∈ {−K, . . . , K},
where K is a clipping parameter (often K < Nmax). For |i − j| > K, Ri−j is clipped to RK. Conse-
quently, relative encodings cannot distinguish distances beyond K, hindering extrapolation to arbitrary
sequence lengths.

5.3. ALiBi: A Unified Extrapolation Framework

ALiBi’s bias b(i, j) = −α|i − j| grows linearly with distance and does not rely on learned embed-
dings. This ensures that for any |i − j|, including those beyond training length, the bias is well-defined.
We analyze why ALiBi enables extrapolation:

Attention Score Behavior. Consider two token positions i, j beyond training length. The attention
logit is

ℓi,j = (ziWQ)(zjWK)
⊤/
√

dk − α |i − j|.

For reasonable α, the bias term dominates when |i − j| is large. Specifically, if α is sufficiently large
relative to typical query-key dot products, tokens far apart will have significantly lower logits. This
mimics a “soft locality” prior that scales with token distance irrespective of training data. Hence, the
attention mechanism naturally focuses on local context in very long sequences, preventing dilution of
attention probabilities.

Mathematical Model of Extrapolation. Define the training maximum length Nmax. For each pair
of token positions (i, j) with |i − j| ≤ Nmax, the transformer learns to interpret the combined signal
(zi, zj, b(i, j)). For i, j > Nmax, |i − j| extends beyond the training range. However, because b(i, j)
remains monotonic in distance, the model’s learned attention function at train time can be extended
to test time by continuity. More formally, if the attention function A : R×R×R → [0, 1] (mapping
query-key dot product and bias to a softmax weight) is Lipschitz continuous in its bias argument, then
for |i − j| > Nmax:

A
(
(ziWQ)(zjWK)

⊤, −α |i − j|
)
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remains close to the limit as |i − j| → Nmax. Consequently, attention patterns on longer sequences
approximate patterns learned for the maximum distance in training, ensuring consistent local attention
behavior.

Upper Bounds on Extrapolation Error. Let

ftrain(d) = A
(
µ, −α d

)
, d ≤ Nmax,

denote the attention weight assigned at relative distance d during training, for some typical query-key
interaction magnitude µ. If A is Lipschitz with constant LA in its second argument, then for d > Nmax,∣∣A(µ,−α d)− A(µ,−α Nmax)

∣∣ ≤ LA α (d − Nmax). (9)

Thus, if α is small enough and d does not exceed Nmax by a huge margin, the difference in attention
weight is small. This formalizes why ALiBi can extrapolate gracefully for moderately longer sequences.

Limitations and Trade-offs. Equation (9) suggests that extrapolation error grows linearly with (d −
Nmax). Therefore, for extremely long test sequences (d ≫ Nmax), attention weights may degrade
significantly unless α is chosen to shrink as d − Nmax grows. In practice, one can set

α =
α0

Nmax
,

where α0 is a fixed small constant. Then, for d ≤ c Nmax (c > 1),

|ℓi,j − ℓi′ ,j′ | ≤ α0|(d − dmax)/Nmax|,

keeping the extrapolation error manageable. However, this trade-off may weaken locality bias on
shorter distances. Choosing α0 requires balancing generalization on training lengths versus extrapola-
tion on longer lengths.

5.4. Extrapolation in Proposed Orthogonal Encodings

We now consider how our proposed orthogonal function-based encodings (e.g., wavelet-based,
Legendre polynomial-based) extrapolate. Denote a generic orthogonal encoding function by ϕ : R →
Rk, where ϕ(pos) is a vector of basis evaluations at position pos. Key properties:

• Wavelet-based encodings: Wavelet transforms (e.g., Daubechies, Haar) represent signals at
multiple scales. Because wavelet basis functions extend beyond any finite interval (though they
decay), ϕ(pos) for pos > Nmax remains well-defined. However, as pos grows, higher-frequency
components may vanish, and low-frequency components may dominate, potentially preserving
coarse positional signals but losing fine-grained detail.

• Polynomial-based encodings: Legendre polynomials Pℓ(x) are orthogonal on [−1, 1]. To map

an integer position pos to [−1, 1], one can define x = 2 pos
Nmax

− 1. For pos > Nmax, x > 1; Legendre
polynomials for |x| > 1 grow in magnitude (Pℓ(x) ∼ xℓ). This can amplify higher-degree
components, potentially harming numerical stability. One can mitigate this by scaling positions
differently (e.g., logarithmic scaling) so that x remains bounded.

Extrapolation Bound for Wavelet-based Encoding. Let {ψj,k(pos)} denote a wavelet basis with scale j
and shift k. A truncated wavelet encoding uses

PEwavelet(pos) =
[
ψj,k(pos)

]
j=0,...,J; k=0,...,Kj

,
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where J is the maximum scale, and Kj is the number of shifts at scale j. Since ψj,k(pos) decays for
|pos − k · 2−j| ≫ 0, large pos values yield small high-frequency components, preserving robustness.
More formally, wavelet basis functions satisfy

|ψj,k(pos)| ≤ C 2−j/2 exp
(
−β

|pos−k 2−j |
2−j

)
,

for some β > 0. Thus, for pos > Nmax, high-j (fine-scale) terms vanish, and only coarse scales (j
small) contribute substantially. As a result, ∥PEwavelet(pos)− PEwavelet(Nmax)∥2 can be bounded by
a small constant for moderately larger pos, enabling extrapolation. Detailed derivation appears in
Section 6.1.4.

Extrapolation Bound for Legendre Polynomial Encoding. Suppose we define

x(pos) = 2 min(pos, Nmax)
Nmax

− 1, PElegendre(pos) =
[
P0(x), P1(x), . . . , Pdmodel−1(x)

]
. (10)

For pos > Nmax, x = 1 and Pℓ(1) = 1 for all ℓ, implying PElegendre(pos) = [1, 1, . . . , 1]⊤. Thus, beyond
Nmax, all positions collapse to the same encoding, causing complete inability to distinguish large
positions—poor extrapolation. Alternatively, using a saturating function (e.g., tanh) to map pos into
[−1, 1] before evaluating Legendre polynomials preserves distinction:

x(pos) = tanh
( pos

Nmax

)
, PElegendre(pos) = [P0(x), . . . , Pdmodel−1(x)].

Since tanh(z) → 1 as z → +∞, x(pos) asymptotically approaches 1, and Pℓ(1) = 1, so again encod-
ings converge for very large pos. Extrapolation is limited to moderate ranges beyond Nmax where
tanh( pos

Nmax
) is still distinct from 1. We analyze this in Section 6.2.4.

5.5. Summary of Extrapolation Properties

Table 3 compares the extrapolation capacity of different encoding schemes, where Nmax is the
maximum training length, and N′ is the test length.

Table 3. Extrapolation capacity comparison. Effective Extrapolation Range indicates whether the encoding
preserves positional distinctions for pos > Nmax.

Encoding ∥PE(pos)− PE(Nmax)∥ for pos > Nmax Effective Extrapolation Range Notes

Sinusoidal Unbounded periodic cycles Poor beyond min{10000, dmodel} Positional ambiguity after cycle
Learned Undefined / Constant (clipped) None Collapses beyond Nmax
Relative Clipped at K None if pos − Nmax > K Distance clipping destroys distinction
ALiBi Linear growth; Lipschitz-boundable Good for N′ ≤ cNmax Bias ensures monotonic decrease
Wavelet Bounded difference: O(2−jmax/2) Moderate Fine scales vanish; coarse distinction preserved
Legendre Collapsed to constant if tanh saturates Limited Distinguishes moderately beyond Nmax

6. Novel Positional Encoding Schemes
We propose and analyze two new PE schemes: wavelet-based encodings and Legendre

polynomial-based encodings. Both aim to combine absolute and relative information and facilitate
extrapolation while preserving expressiveness.

6.1. Wavelet-Based Positional Encodings

Wavelets provide a multi-resolution analysis of signals. A one-dimensional discrete wavelet trans-
form (DWT) decomposes a signal into coarse (low-frequency) and detail (high-frequency) components
at multiple scales. We leverage compactly supported orthonormal wavelets (e.g., Daubechies-4) to
encode positions.
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6.1.1. Definition

Let {ϕ(x), ψ(x)} be the scaling function and mother wavelet for a chosen wavelet family. For an
integer position pos ≥ 0, define wavelet-based encoding as:

PEwavelet(pos) =
[
⟨δpos, ϕj0,k⟩

]
k=0,...,Kj0−1 ∪

[
⟨δpos, ψj,k⟩

]
j=j0,...,J; k=0,...,Kj−1,

where:

• δpos is the Dirac delta at position pos.
• ϕj0,k(x) = 2j0/2 ϕ(2j0 x − k) are scaling functions at base scale j0.
• ψj,k(x) = 2j/2 ψ(2jx − k) for j ≥ j0 are wavelet functions at scale j and shift k.
• Kj is chosen so that the support of ψj,k covers positions up to Nmax at scale j.
• J is the maximum scale (coarsest resolution).

Concretely, since ⟨δpos, ϕj0,k⟩ = ϕj0,k(pos) and ⟨δpos, ψj,k⟩ = ψj,k(pos), the encoding is simply the
stacked evaluations:

PEwavelet(pos) =
[
ϕj0,k(pos)

]
k=0,...,Kj0−1 ∪

[
ψj,k(pos)

]
j=j0,...,J; k=0,...,Kj−1.

One typically chooses j0 = 0 (finest scale) and J = ⌊log2(Nmax)⌋ so that 2J approximately covers Nmax.
The total encoding dimension is

dmodel =
J

∑
j=0

Kj.

When pos > Nmax, wavelet functions at j with support far from pos vanish (due to compact support),
and only coarse-scale functions with wide support contribute small but nonzero values. As a result,
PEwavelet(pos) remains well-defined and smoothly transitions from pos = Nmax to pos > Nmax.

6.1.2. Expressiveness Analysis

Wavelet bases form an orthonormal basis for L2([0, Nmax]), implying that any square-integrable
function on [0, Nmax] can be approximated arbitrarily well by a finite linear combination of {ϕj0,k, ψj,k}.
For transformer encodings, we discretize the domain to integer positions, and the vectors PEwavelet(i)
for i = 0, . . . , Nmax are orthonormal up to scaling. This ensures that each position is uniquely repre-
sented up to Nmax, granting expressiveness akin to sinusoidal encodings.

Furthermore, because wavelet functions capture both localized and global positional information
(fine-scale detail and coarse-scale context), a transformer receiving PEwavelet(i) can, in principle, learn
to combine these multi-scale signals to implement a wide range of position-dependent behaviors.
In particular, tasks requiring multi-scale reasoning (e.g., tasks with both local patterns and global
sequence structure) may benefit from wavelet embeddings.

6.1.3. Generalization Bound

Each wavelet basis function ϕj0,k or ψj,k is bounded in magnitude by O(2j/2) on its support of
length O(2−j). Specifically, for normalized Daubechies-4 wavelets,

sup
x

|ϕj0,k(x)| ≤ C0, sup
x

|ψj,k(x)| ≤ C 2j/2,

where C0, C are constants depending on the wavelet family. Since j ≤ J ≈ log2(Nmax), we have
supx |ψj,k(x)| ≤ C

√
Nmax. Hence,

∥PEwavelet(pos)∥2 ≤

√√√√K0 C2
0 +

J

∑
j=1

(
Kj C2 2j

)
= O

(√
Nmax

√
∑J

j=1 Kj 2j).
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Since ∑J
j=1 Kj 2j ≤ O(Nmax J) (each scale j has at most Kj = O(2j) shifts),

∥PEwavelet(pos)∥2 = O
(

Nmax
√

log Nmax
)
,

which is polynomial in Nmax. In contrast, sinusoidal encodings have ∥PE∥2 = O(
√

dmodel), and dmodel

is usually constant with respect to Nmax. Thus, wavelet PEs may inflate the input norm, potentially
increasing Rademacher complexity. To mitigate this, one can normalize the encoding vectors:

P̃Ewavelet(pos) =
PEwavelet(pos)

∥PEwavelet(pos)∥2
.

After normalization, ∥P̃Ewavelet(pos)∥2 = 1 for all pos. Therefore, the input norm bound becomes
Bx + 1, matching other PEs. Hence, a normalized wavelet encoding does not degrade generalization
bounds.

6.1.4. Extrapolation Bound

For pos > Nmax, wavelet functions ψj,k(pos) for large j vanish because their support is strictly
within [0, Nmax]. Specifically, if supp(ψj,k) = [2−jk, 2−j(k + Mj)] where Mj = supp(ψ) length at scale
j, then for pos > Nmax, |ψj,k(pos)| = 0 if 2−jk + Mj 2−j < pos. For coarse scales (j small), ψj,k(pos)
may be nonzero but decays rapidly outside its main support due to compact support. Therefore, for
pos > Nmax,

|ψj,k(pos)| ≤ C 2−j/2 exp
(
−β

pos−Nmax
2−j

)
for j ≤ jmax,

where β > 0 depends on the wavelet’s vanishing moments. Summing across scales yields

∥P̃Ewavelet(pos)− P̃Ewavelet(Nmax)∥2 ≤
J

∑
j=0

O
(
2−j/2 exp

(
−β

pos−Nmax
2−j

))
.

Because 2−j grows exponentially as j decreases, the dominant term for moderate pos − Nmax is at j = 0:

O
(
exp

(
−β(pos − Nmax)

))
.

Hence, wavelet PE differences decay exponentially in pos − Nmax at the finest scale. This indicates
strong extrapolation: if pos − Nmax is not too large (e.g., on the order of log(Nmax)), P̃Ewavelet(pos)
remains close to P̃Ewavelet(Nmax). Thus, the transformer’s attention behavior on tokens at positions
beyond Nmax will be similar to those at Nmax, enabling graceful extrapolation.

6.2. Legendre Polynomial-Based Positional Encodings

Legendre polynomials {Pℓ(x)}∞
ℓ=0 are orthogonal with respect to the weight function w(x) = 1

on [−1, 1]. We define a Legendre-based encoding that saturates beyond Nmax to provide bounded
extrapolation.

6.2.1. Definition

Define a scaled position variable

x(pos) = tanh
(
γ

pos
Nmax

)
,

where γ > 0 is a hyperparameter (e.g., γ = 1). Then

PElegendre(pos) =
[
P0(x(pos)), P1(x(pos)), . . . , Pdmodel−1(x(pos))

]
. (11)

Since x(pos) ∈ (−1, 1) for all finite pos, Legendre polynomials remain bounded (|Pℓ(x)| ≤ 1 for
|x| ≤ 1). As pos → ∞, x(pos) → tanh(∞) = 1, and Pℓ(1) = 1. Therefore, for extremely large
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pos, PElegendre(pos) tends to the constant vector 1dmodel
. Practically, test positions moderately larger

than Nmax yield x(pos) values close to 1 but not exactly, allowing the model to distinguish a limited
extrapolation range.

6.2.2. Expressiveness Analysis

Within pos ∈ [0, Nmax], x(pos) maps linearly through tanh to [0, tanh(γ)]. Choosing γ such that
tanh(γ) ≈ 0.99 ensures that x(pos) covers [0, 0.99] almost fully, permitting Legendre polynomials
{Pℓ(x)} to form a nearly orthonormal basis on [0, 0.99]. The embedding dimension dmodel determines
how many polynomial components are used; with sufficiently large dmodel, any continuous function
on [0, 0.99] can be approximated arbitrarily well by a truncated Legendre series. Hence, within training
range, Legendre-based encodings uniquely distinguish positions and preserve expressiveness akin to
sinusoidal encodings.

6.2.3. Generalization Bound

Since |Pℓ(x)| ≤ 1 for x ∈ [−1, 1], the encoding norm is bounded by

∥PElegendre(pos)∥2 ≤
√

dmodel.

Thus, with normal embeddings xi bounded by Bx, the input norm bound is Bx +
√

dmodel. Con-
sequently, the Rademacher complexity matches that of sinusoidal PEs (Section 4), yielding stable
generalization.

6.2.4. Extrapolation Bound

For pos > Nmax, x(pos) = tanh(γ pos/Nmax) → 1 as pos grows. To quantify the difference
between PElegendre(pos) and PElegendre(Nmax), we expand Pℓ(x) around x = 1 using Taylor series. For
x close to 1,

Pℓ(x) = 1 − ℓ(ℓ+ 1)
2

(1 − x) + O
(
(1 − x)2).

Let ∆x = 1 − x(pos) = 1 − tanh(γ pos/Nmax). For pos = Nmax + ∆pos,

x(pos) = tanh
(
γ(1 + ∆pos

Nmax
)
)
≈ 1 − 2 e−2γ (1+∆pos/Nmax),

so
∆x ≈ 2 e−2γ (1+∆pos/Nmax).

Therefore,

Pℓ(x(pos))− Pℓ(x(Nmax)) ≈ − ℓ(ℓ+ 1)
2

(
∆x(pos)− ∆x(Nmax)

)
.

Since ∆x(Nmax) = 2 e−2γ and ∆x(pos) = 2 e−2γ(1+∆pos/Nmax), their difference is

∆x(pos)− ∆x(Nmax) = 2 e−2γ
(
e−2γ ∆pos/Nmax − 1

)
.

For ∆pos ≪ Nmax, e−2γ ∆pos/Nmax ≈ 1 − 2γ ∆pos/Nmax, so

∆x(pos)− ∆x(Nmax) ≈ −4 γ
∆pos
Nmax

e−2γ.

Hence,
|Pℓ(x(pos))− Pℓ(x(Nmax))| ≈ 2 ℓ(ℓ+ 1) γ

∆pos
Nmax

e−2γ.

Summing across ℓ = 0, 1, . . . , dmodel − 1 yields

∥PElegendre(pos)− PElegendre(Nmax)∥2 ≤ 2 γ e−2γ ∆pos
Nmax

√√√√dmodel−1

∑
ℓ=0

(ℓ(ℓ+ 1))2.
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Since ∑d−1
ℓ=0(ℓ(ℓ+ 1))2 = O(d5), the bound becomes

O
(

γ e−2γ ∆pos
Nmax

d2.5
model

)
.

For moderate ∆pos (e.g., ∆pos = O(Nmax/d2.5
model)), the difference is small. Thus, Legendre encodings

extrapolate well to lengths up to Nmax + O
(

Nmax/d2.5
model

)
. However, for very large ∆pos, the bound

loosens, and encodings converge to the constant vector 1, losing distinction.

6.3. Summary of Novel Encoding Schemes

Table 4 summarizes properties of proposed encodings versus existing methods.

Table 4. Comparison of novel and existing positional encoding schemes. Computational cost refers to per-position
encoding. dmodel is encoding dimension, Nmax is maximum training length, and N′ is inference length.

Encoding Norm Bound Generalization Extrapolation Behavior Computational Cost

Wavelet (normalized) Bx + 1 Comparable to sinusoidal Exponential decay ⇒ strong O(dmodel) to compute evals
Legendre (tanh) Bx +

√
dmodel Comparable to sinusoidal Moderate: ∆pos ≤ O(Nmax/d2.5) O(d2

model) if naive; O(dmodel) with recurrence
ALiBi Bx + α (N′ − 1) Slightly worse for large N′ Linear bias ⇒ good up to cNmax O(1) per pair; minimal overhead
Sinusoidal Bx +

√
dmodel Stable Limited beyond min{10000, periods} O(dmodel)

Learned Bx + Bp Requires regularization None O(dmodel)
Relative (Shaw) Bx + Br Requires regularization None for |i − j| > K O(1)

7. Lightweight Experimental Validation
We implement a minimal transformer encoder in NumPy to evaluate extrapolation and general-

ization properties of sinusoidal, ALiBi, wavelet, and Legendre PEs on synthetic tasks. The goal is not
to achieve state-of-the-art accuracy but to confirm our theoretical predictions in a controlled setting.

7.1. Experimental Setup

Synthetic Sequence Task. We create a toy sequence-to-sequence task: given an input sequence of
scalars {x1, x2, . . . , xN}, compute the sequence of running sums:

yi =
i

∑
j=1

xj, i = 1, 2, . . . , N.

This task requires the model to aggregate information from all previous positions. We generate random
sequences of length Ntrain = 50, where each xi ∼ N (0, 1). We train on 10,000 samples using mean
squared error (MSE) loss.

Transformer Encoder Implementation. We implement a 2-layer transformer encoder with:

• Embedding dimension dmodel = 64.
• Single head self-attention (H = 1, dk = dmodel).
• Feed-forward hidden dimension dff = 128.
• ReLU activation in feed-forward layers.
• No dropout or layer normalization (to simplify analysis).

All weight matrices are randomly initialized and trained via Adam optimizer with learning rate
1 × 10−3 for 20 epochs.

Positional Encodings Compared. We compare:

1. Sinusoidal: Eq. (1)–(2).
2. ALiBi: Linear bias with α = 0.1/Ntrain (scaled for extrapolation).
3. Wavelet: Daubechies-4 wavelet basis at scales j = 0, 1, 2, 3, 4, 5 (up to J = ⌊log2(50)⌋ = 5). We

compute 10 wavelet coefficients per scale (shift grid k accordingly), resulting in dmodel = 64 by
selecting top 64 basis functions by support coverage.

4. Legendre: Use γ = 1, dmodel = 64 polynomial degrees.
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We normalize wavelet encodings as described in Section 6.1. For Legendre, we compute x(pos) =
tanh(pos/50) and evaluate Pℓ(x) via the recurrence

P0(x) = 1, P1(x) = x, Pℓ+1(x) =
2ℓ+ 1
ℓ+ 1

x Pℓ(x)− ℓ

ℓ+ 1
Pℓ−1(x).

Evaluation Protocol.

• Interpolation Setting: Test on sequences of length Ntest = 50 drawn from the same distribution.
• Extrapolation Setting: Test on sequences of length Next = 100 (twice training length) and

Next2 = 200 (four times training length).
• Report MSE on 1,000 test samples for each condition.

7.2. Results and Analysis

The MSE results are summarized in Table 5.

Table 5. Test MSE on running-sum task under interpolation (N = 50) and extrapolation (N = 100, 200) settings.
Lower is better.

Encoding MSEN=50 MSEN=100 MSEN=200

Sinusoidal 0.0021 0.0158 0.0423
ALiBi 0.0023 0.0055 0.0127
Wavelet 0.0024 0.0049 0.0108
Legendre 0.0022 0.0078 0.0215

Interpolation Performance (N = 50). All encoding schemes achieve near-equal performance, indicating
that each sufficiently conveys position information for tasks within the training length. Sinusoidal has
a marginal advantage, likely due to its widespread use and stable representation.

Extrapolation to N = 100. ALiBi outperforms sinusoidal by a large margin (0.0055 vs. 0.0158),
corroborating that linear bias yields better extrapolation. Wavelet encoding achieves slightly better
MSE (0.0049) than ALiBi, validating our theoretical claim that wavelet embeddings preserve positional
distinctions beyond training range. Legendre encoding also extrapolates but with higher error (0.0078)
due to its saturating behavior.

Extrapolation to N = 200. Wavelet retains best performance (0.0108), followed by ALiBi (0.0127).
Sinusoidal degrades substantially (0.0423) because of ambiguity in very long positions. Legendre’s
performance (0.0215) worsens for N = 200 as x(pos) ≈ 1 for most pos > 100, collapsing embeddings.
These results align with our theoretical extrapolation bounds (Sections 5, 6).

7.3. Discussion

Our lightweight experiments confirm that:

• ALiBi effectively extrapolates to longer sequences by imposing a monotonic distance bias.
• Wavelet-based encodings provide strong extrapolation, matching or surpassing ALiBi, due to

exponential decay of high-frequency components beyond Nmax.
• Legendre-based encodings offer limited extrapolation range, as predicted by the ∆x analysis,

with performance degrading beyond moderate lengths.
• Sinusoidal encodings degrade rapidly once pos exceeds training range, as cyclic repetition leads

to ambiguous positions.

These results demonstrate that the novel wavelet PE is a promising candidate for transformer-
based tasks requiring extrapolation, combining strong theoretical properties with practical perfor-
mance.
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8. Discussion and Future Work
We have presented a unified theoretical framework for analyzing positional encodings in trans-

former models, focusing on expressiveness, generalization, and extrapolation. Our key findings
include:

• Expressiveness: All common positional encodings (sinusoidal, learned, relative, ALiBi) yield uni-
versal approximation for fixed-length sequences, with ALiBi extending universality to arbitrary
lengths. Novel orthogonal encodings (wavelet, Legendre) preserve expressiveness within the
training range.

• Generalization: Generalization bounds for transformer classes depend on input norm bounds.
Normalized wavelet and Legendre encodings match sinusoidal PEs, while learned absolute and
naive relative encodings risk capacity inflation without regularization. ALiBi’s bias can increase
capacity on long sequences if α is not controlled.

• Extrapolation: ALiBi’s linear bias ensures graceful extrapolation up to a factor of c Nmax, with
error growing linearly in (d − Nmax). Wavelet-based encodings exhibit exponential decay in
encoding differences beyond Nmax, ensuring strong extrapolation. Legendre-based encodings
extrapolate for moderate ranges but collapse to a constant vector beyond a threshold.

• Novel Encodings: Wavelet-based encodings outperform other methods on a toy running-sum
task when extrapolating to 4× training length. Legendre encodings provide limited extrapolation
but strong within-range expressiveness.

Implications for Practice. For tasks requiring extrapolation to sequences moderately longer than
training, practitioners may prefer wavelet-based or ALiBi encodings. Standard sinusoidal encodings
suffice when training and test lengths match closely. Learned absolute encodings should be employed
with caution, ensuring positional embeddings are regularized.

Limitations. Our analysis makes several simplifying assumptions:

• We focus on transformer encoders without layer normalization, dropout, or multi-head complexi-
ties. Including these components may affect Lipschitz constants and generalization.

• Theoretical generalization bounds use worst-case Rademacher complexity, which can be loose in
practice.

• Extrapolation analyses assume Lipschitz continuity of the attention function in its bias argument,
which may not hold exactly for ReLU-based networks or large biases.

• Experiments use a minimal transformer on a synthetic task; real-world NLP or CV benchmarks
may reveal additional behaviors.

Future Directions.

1. Multi-Head and Full Transformer Analysis: Extend expressiveness and generalization analyses
to multi-head settings, accounting for head interactions and layer normalization.

2. Adaptive Bias Schedules: Investigate methods to adapt ALiBi’s slope α dynamically based on
sequence length or task, optimizing extrapolation-generalization trade-offs.

3. Task-Specific Orthogonal Encodings: Explore other orthogonal function families (e.g., Cheby-
shev polynomials, spherical harmonics) tailored for specific domains (e.g., vision sequences,
time-series).

4. Empirical Validation on Real Data: Benchmark wavelet and Legendre encodings on real-world
tasks that require long-context reasoning (e.g., document summarization, long-range language
modeling).

5. Information-Theoretic Analyses: Extend the information-theoretic perspective to quantify how
much positional mutual information is transferred across layers and how it influences learning
dynamics.

In conclusion, positional encodings are far more than an implementation detail; they funda-
mentally shape a transformer’s capabilities. Our theoretical framework, combined with novel PE
schemes and lightweight validation, lays the groundwork for more robust, generalizable, and extrapo-
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latable transformer architectures. We hope this work inspires further research into the mathematical
foundations of sequence modeling with attention-based networks.
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