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Abstract: Automated Guided Vehicles are self-guided vehicles used in manufacturing and

warehouses for material transport. They play a vital role in just-in-time material delivery, ensuring

smooth production lines. However, disruptions in their fixed routes can lead to efficiency losses. This

paper studies unexpected disruptions in mobile robot routes, assessing the costs of rectification using

the E* analysis. The study highlights the significant additional cost of such disruptions, underscoring

the importance of their consideration in AGV route planning to enhance system resilience.

Keywords: mobile robots; AGV; route planning

1. Introduction

Automated Guided Vehicles (AGVs) play a pivotal role in flexible manufacturing systems, material

transportation, and stock management. Their adoption stems from their ability to enhance productivity,

system flexibility, and cost reduction [1]. However, designing efficient AGV systems is intricate due to

interrelated decision-making processes and the array of available algorithms and solutions [2].

AGVs employ diverse technologies for workplace navigation, including magnetic or optical

guide tracking, Global Positioning System (GPS), and Laser Imaging Detection and Ranging (LIDAR)

sensors [3]. Particularly, the organization of the workspace into nodes and arcs, forming a Flow

Network Model graph [4], is common in applications where AGVs follow optical or magnetic guides.

In this model, nodes denote material pickup and delivery points, and arcs represent predefined paths

for AGV movement. The graph-based approach simplifies route planning and optimization.

Algorithms like Bellman-Ford [5], Dijkstra [6] and A* [1] have been applied to determine optimal

paths between nodes. While they often prioritize the shortest path, the occurrence of impediments

during operation necessitates recalculating routes, potentially leading to costly detours and disruptions

of the service. Such scenarios could adversely impact production schedules and necessitate halting

manufacturing lines.

This study delves into the emergence of unexpected disruptions in robot trajectories, evaluating

the costs associated with rectifying these situations using an approach we named E* analysis. Results

make it clear that that the additional cost incurred due to disruptions can be substantial. Therefore,

considering this aspect during AGV route identification holds potential for enhancing the resilience of

the entire system.

In the subsequent sections, this paper presents a comprehensive analysis of disruptions, explores

related works in the field, outlines the proposed methodology for route planning and robustness

assessment, and offers insights into the attained results and their implications.

2. Related Work

In the pursuit of optimal paths between origin and destination nodes in a graph, a range of

techniques and algorithms have been developed to enhance route planning efficiency and effectiveness.

These approaches aim to minimize travel time, prevent collisions with obstacles and other vehicles,
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and mitigate the likelihood of congestion. A selection of prominent algorithms and their applications

in this context are discussed below.

2.1. Dijkstra’s Algorithm

One of the most renowned algorithms for finding the shortest path, Dijkstra’s algorithm was

formulated by computer scientist Edsger W. Dijkstra in 1956. It addresses the shortest path problem

within a graph with non-negative arcs [7]. By choosing the closest node with the lowest weight (arc

value), Dijkstra’s algorithm systematically processes each node in the graph. The speed of finding a

solution depends on the number of nodes, and this algorithm treats the shortest path as the optimal

outcome [6,8–13].

2.2. Yen’s Algorithm

Yen’s algorithm [14,15] can be used to find the k-shortest paths between two nodes. An efficient

single shortest path algorithm (like Dijkstra’s algorithm) is repeatedly ran on selectively modified

versions of the original graph, producing in this way alternative deviations from the single optimal

path solution.

2.3. Bellman-Ford’s Algorithm

The Bellman-Ford algorithm is employed to compute the shortest distance in a weighted flow

network [16]. Unlike Dijkstra’s algorithm, Bellman-Ford accommodates negative weights on arcs

connecting two vertices. This algorithm is capable of parallel searching and counting of paths, allowing

nodes to perform simultaneous processes (multiprocessing). It is especially suitable for scenarios

where negative weights are incorporated into the routing decision [5,16–20].

2.4. A Star Algorithm

The A Star (A*) algorithm employs heuristic information to identify an ideal path. Executing node

exploration and a heuristic evaluation, this algorithm continually selects the best node for expansion

until the destination node is reached [21]. Maintaining both an open list (nodes to be considered)

and a closed list (nodes already visited), A* benefits from rapid convergence due to the heuristic

approach [1]. A* is extensively utilized for route and path planning problems [22–29].

2.5. Time Enhanced A* Algorithm

A variant of A*, the Time Enhanced A* algorithm, enhances the algorithm’s predictive capability

in scenarios involving multiple AGVs. Incorporating time as an additional parameter, this algorithm

predicts vehicle movements during runtime [30]. The approach constructs trajectories for each

vehicle by considering the movements of other mobile robots. This technique facilitates the

creation of collision-free routes while dynamically recalculating paths and updating map information

iteratively [1,20,31,32].

2.6. Other Algorithms

Additional algorithms, including Probabilistic Roadmaps [20,33–36], Rapidly Exploring Random

Trees [1,21,29,32,37,38], and Genetic Algorithms [35,39–42], have been explored for optimal path

determination. These algorithms are particularly suited for open spaces and free-form environments.

Ongoing research in this area aims to enhance heuristics and approaches for path selection,

especially in graphs with a high number of nodes [11,43].

3. Resilience in the Presence of Pre-Planned Path Disturbances

The concept of robustness considered in this work refers to the capacity to reroute an AGV

partially along the pre-planned route, when unforeseen disturbances block parts of pre-planned paths,
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with minor or even no cost in terms of increased distance required to reach the target destination.

This concept of robustness is different from the one discussed in [44], which is concerned with

algebraic connectivity.

The concept of robustness considered in our work is illustrated using the graph in Figure 1a,

adapted from [45].

By applying Dijkstra’s or A* algorithms, three optimal paths between nodes 1 and 10 can be

found, namely:

(i) 1-5-9-10
(ii) 1-5-6-10

(iii) 1-2-6-10

Because all arcs in Figure 1a correspond to 10 meter segments, these paths correspond to alternative 30

meter routes from origin to destination (Figure 1b).

Although they are equivalent from that perspective, considering some specific scenarios of arc

disturbance and AGV positioning:

• Consider path (i), represented in red in Figure 1b, with the AGV in arc 1-5 and arc 5-9 becoming

unavailable. In this scenario, the AGV can be rerouted successfully via the arc 5-6 and 6-10,

leading to the AGV reaching the destination via the route 1-5-6-10, with total distance 30 meter.

In this case, the disturbance did not have any actual impact on the total distance that the AGV

must travel to reach the destination.
• Consider path (ii), represented in green in Figure 1b, with the AGV in arc 1-5 and arc 5-6 becoming

unavailable. Rerouting through 5-9-10 is possible, resulting in a total travel distance of 30 meters

from origin to destination. Again, the disturbance has no negative impact on travelled distance.
• Consider path (iii), represented in blue in Figure 1b, with the AGV in arc 1-2 and arc 2-6 becoming

unavailable. Four rerouting possibilities exist, based on the AGV’s current position and the

destination, leading to the AGV travelling the path 1-2-3-7-11-10, 1-2-3-7-6-10, 1-2-1-5-9-10 or

1-2-1-5-6-10. In any one of these cases, the total travelled distance is 50 meter. In this case, the

disturbance has an actual negative impact on total travelled distance.

(a) (b)

Figure 1. Illustrative example of the concept of robustness. (a) Example graph; (b) Optimal paths

between origin node 1 and destination node 10.

This example makes it clear that some paths are more susceptible to being negatively impacted by

unforeseen disturbances on the pre-planned route than others. In our example, we describe paths (i)

and (ii) as being more robust than path (iii). One interesting metric is to consider the probability of

accidental robustness, that is, the probability of randomly selecting a robust path from the entire set of
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distance-optimal paths. In the example scenario, two paths out of three are robust, so the probability of

accidental robustness is 2/3=66.6%. This is the probability of randomly selecting a robust route if the

only criteria used to obtain the candidate routes is path length. Similarly, another metric to consider

would be the actual impact in travelled distance when path disturbances occur and non-robust paths

are being followed. In the example, travelled distance increases to 50 in non-robust reroutes over 30 in

robust routes, so robust routes would only travel on average in 30/50=60% the distance of non-robust

reroutes when a disturbance occurs1.

4. Methodology

The main objective of this work is to evaluate the robustness of AGV paths using the E* analysis,

which verifies the impact of unexpected disturbances and obstructions that might unexpectedly appear

along the route during operation. The E* analysis evaluates the robustness of the routes by considering

the cost of re-routing the AGVs through a new path. In the context of this work, we consider a route

to be more robust than other, of similar cost, if the cost of rerouting the AGVs in the presence of a

disturbance is lower in the former than in the latter, in terms of total distance travelled, including

re-routing movement.

The E* analysis includes the following steps:

1) Generating candidate paths. These are the paths that are going to be considered in the analysis.
2) Generating path disturbances in each candidate path.
3) Assessing route repair cost for each disturbance, dependent on AGV position.

These steps are described in further detail in the next sections.

4.1. Generating Candidate Paths

The first step of E* entails generating a set of paths among which will be considered in the

ensuing resilience analysis. This set of paths should include the shortest path or paths, which are most

commonly used to determine the preferred routes, as well as possible alternatives. Two approaches

that can be considered for generating the candidate set:

– An optimal shortest path solution is obtained using a traditional algorithm (e.g., A*). Alternative

paths are then obtained by modification of this initial path using a stochastic approach such as

mutation followed by hill-climbing search.
– A k-set of optimal shortest paths is explicitly computed using Yen’s algorithm [14,15]. This set

might include all alternative possibilities for shortest paths, or also include sub-optimal solutions

within a specified threshold of the optimal solution. A hard limit in the size of the candidate set

can be imposed for practical purposes.

The first approach ensures at least one route with optimal distance is included in the candidate set.

The stochastic process will then generate other variations of this original path. Because this requires

computing only a single optimal path, an efficient single solution algorithm such as A* can be used to

compute the initial solution. Advantages of this approach are higher efficiency, even for large networks.

However, the stochastic algorithm may fail to identify all optimal paths.

In contrast, the second approach entails the systematic generation of all optimal paths using

Yen’s algorithm. While this ensures all these paths are considered in the E* analysis, Yen’s algorithm

requires repeated use of Dijkstra’s algorithm, which might result in a performance-intensive operation,

especially in large graphs.

1 This analysis is simplified by considering only the specific disturbances and AGV positioning described in the example. In
practice, all other possibilities would also be accounted for.
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4.2. Generating Path Disturbances

Once the candidate paths are found, disturbances will be applied. To do so, different scenarios

are generated for each candidate path. In each such scenario, a single arc along the path is made

unavailable, representing an unforeseen disturbance during operation. Scenarios will include

disturbances for all possible arcs. Furthermore, each possible position (arc-wise) of the AGV along

the path up to the unavailable arc is also considered in an independent scenario. In this way,

the disturbance scenario set will contemplate all possible combinations of arc unavailability and

positioning of the AGV along the path up to the disturbance. It is not necessary to consider AGV

positions beyond the disturbance for the purposes of our analysis, because the target node may be

reached by following along the pre-planned route in that scenario.

4.3. Assessing Route Repair Cost

On each of the disturbance scenarios that is identified using the approach discussed in Section 4.2,

it is no longer possible for the AGV to follow along the pre-planned path towards the destination node,

because one of the required path arcs is no longer available.

For the AGV to progress towards the desired destination, it will be necessary to find an alternative

path originating at the current position of the AGV. This alternative route can be found by applying

one of the standard optimal path algorithms (such as A* or Dijkstra algorithms). It is possible that

a new route may be discovered which does not extend the remaining distance to be covered before

reaching the destination; however, this is not always guaranteed. In the latter scenario, there is a

risk that the AGV could fail to meet the necessary deadlines for ensuring just-in-time distribution of

materials. Such a delay could have a detrimental effect on the overall efficiency of the manufacturing

plant. Consequently, we calculate the route repair cost as the additional distance that must now be

traversed in comparison to the original path.

5. Results

To assess the gains in robustness when the E* analysis is considered, we devised a set of

experiments aimed at determining:

a) What is the magnitude of the improvement obtained by using robust paths vs. non-robust paths,

in the presence of disturbances?
b) What is the likelihood of obtaining a robust path when not specifically looking for it?
c) What are the trade-offs of using Yen’s algorithm vs. using the stochastic algorithm, particularly

with respect to execution time and result quality?

To answer these questions, we applied the E* approach to two sets of data:

• Input Set A: Ten AGV paths described in the literature (adapted from [4,10,11,45–51]).
• Input Set B: A set of 100 randomly generated graphs, with varying dimensions ranging up to

240 edges and up to 150 nodes.

5.1. Ratio of Robust vs. Non-Robust Paths

To address the first question, results for input set A are presented in Figure 2, representing the

number of optimal paths identified by Dijkstra’s algorithm and stochastic approach (considering

only on the route distance), compared to the number of optimal paths identified after the E* analysis

(considering not only the route distance but also the costs of rerouting due to disturbances in the path).

As it can be expect, not all paths considered optimal in the former sense are optimal when considering

the rerouting costs. By comparing the number of optimal solutions found for each metric, we can

determine the probability of obtaining a robust path when not specifically looking for it, as indicated

by the percentage displayed in each pair of columns in Figure 2.
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Figure 2. Number of optimal paths obtained by using Dijkstra’s algorithm and stochastic approach

and E*. The number of optimal solutions is described on a logarithmic scale. The percentage values

describe the relation between the number of optimal solutions found according to the E* approach and

shortest-path only solutions.

Similar results can be found for Set B in Figure 3. In this case, both the stochastic approach and

Yen’s algorithm were used to compute the optimal path set, and the ratio of robust vs. non-robust

paths is obtained.
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Figure 3. Robust path ratios computed using both Yen’s algorithm and the stochastic approach when

applied to input set B, composed of 100 randomly generated graphs. The vertical axis represents

the ratio expressed in the range 0-1, while the horizontal axis represents the number of edges of the

corresponding graph.

5.2. Magnitude of Improvement Achieved by Robust Paths under the Presence of Disturbances

Figure 4 represents the average values of the ratio of the distance travelled under the presence

of disturbances when robust paths are used, with respect to the distance travelled when shortest but

non-robust paths are used. To obtain these values, disturbances in all possible arcs of the path between

the current AGV position and the target destination were considered, that forced the identification

of a new path to the destination starting at the current AGV position. Furthermore, to do this, we

considered all possible intermediate location of the AGV along the predetermined path.
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Figure 4. Average reduction distance of rerouted robust paths with respect to the distance of rerouted

non-robust paths.

To assess the impact of the path generation approach and also to collect results from a wider range

of graphs, a similar analysis was applied to the graphs in input set B. Figure 5 presents the reduction

in the length of the path when a disturbance occurs, for both path generation algorithms.

Figure 5. Reduction of path length when a disturbance occurs and the E* approach is used, using both

Yen’s algorithm and the stochastic approach. Input set B, composed of 100 randomly generated graphs,

was used. The vertical axis represents a percentage representing the reduction in path length: the ratio

of the disturbed path size when using E* to the disturbed path size when E* is not used. The horizontal

axis represents the number of edges of the corresponding graph.
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5.3. Execution Time Performance of Yen’s and Stochastic Algorithms

To assess whether there are significant advantages in using the stochastic approach with respect to

Yen’s algorithm in terms of execution speed we applied both to the graphs in input set B and collected

the results. Input set A was not considered for this purpose because of it mostly includes graphs of

low to medium dimension, for which execution time differences are not very meaningful. Execution

time for all graphs is presented in Figure 6, while Figure 7 presents a zoomed in view of the results for

graphs with a lower number of edges.

Figure 6. Execution time of path generation using both Yen’s algorithm and the stochastic approach

applied to input set B, composed of 100 randomly generated graphs. The vertical axis represents

the execution time in seconds, while the horizontal axis represents the number of edges of the

corresponding graphs.
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Figure 7. Detail of the information presented in Figure 6, zooming in on the graphs with lower edge

count.

6. Discussion

Results in Figure 2, obtained with input set A, demonstrate that path robustness is not ensured if

the only criteria for route creating are based on path distance. In average, for all scenarios, 73,42% of

all paths generated using only shortest-distance criteria were robust to disturbances. Further analysis

of results reveals, however, that while the probability of accidental robustness is reasonably high for

simpler graphs with fewer alternative paths, it will decrease rapidly as the complexity of the graph

and number of alternative paths increases. In the most complex graph of input set A, only 7.87% of

the distance-optimal solutions are also robust. There is, however, a large variance of results, so for

definitive conclusions we should also consider similar metrics for input set B, which includes a larger

number of randomly generated graphs.

The results disturbed path ratios for input set B can be seen in Figure 3. It can be observed that,

when using the stochastic algorithm for generating optimal paths, the observed ratio of robust to

non-robust paths was much higher (on average 91%) than those of input set A. In contrast, when

Yen’s algorithm is used,the same metric drops to an average value of 47%. The values obtained when

using Yen’s algorithm are most likely more representative of the real ratio, because it generates all

distance-optimal paths, while the stochastic algorithm can only provide a best-effort approximation of

the distance-optimal path set.

Concerning the average improvement of total distance travelled when re-routing is required due

to unexpected disturbances, results in Figure 4 indicate that, when using E* with input set A, the

length of the paths subjected to disturbances is reduced to only 61.22% of the solutions based only on

distance-optimal criteria. For input set B, no significant difference is found when comparing the results

using either distance-optimal path generators (61.5% for the stochastic algorithm and 63.5% when

using Yen’s algorithm) (See Figure 5). These results are also in line with those that were obtained using

input set A. This result demonstrates that significant improvements of performance on disturbance

scenarios can be gained if path robustness is considered during route selection.
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Results in Figures 6 and 7 demonstrate that, as expected, the stochastic algorithm is faster than

Yen’s algorithm. The speedup gained from using the stochastic algorithm instead of Yen’s algorithm is

represented in Figure 8. It can be seen that the speedup slowly improves with increasing number of

graph edges, with a speedup of approximately 3 for an average sized graph of input set B.

Figure 8. Speedup obtained when using the Stochastic algorithm instead of Yen’s algorithm. The

vertical axis represents the ratio of execution time in seconds (Yen’s to Stochastic algorithm), while the

horizontal axis represents the number of edges of the corresponding graphs.

Summarizing our findings, and answering the questions posed at the start of Section 5:

a) What is the magnitude of the improvement obtained by using robust paths vs. non-robust paths, in the

presence of disturbances?

When in the presence to unforeseen disturbances requiring rerouting an AGV from its current

route, we found that the length of robust routes was just slightly over 60% of the corresponding

values. This improvement of nearly 40% demonstrates the usefulness of considering robustness

in route design.
b) What is the likelihood of obtaining a robust path when not specifically looking for it?

While specific results depend on the input set and route generator being used, data in Figure 2

and Figure 3 demonstrate that accidental robustness is generally unlikely to occur when routing

only with optimal distance considerations.
c) What are the trade-offs of using Yen’s algorithm vs. using the stochastic algorithm, particularly with

respect to execution time and result quality?

No discernible difference in effectiveness is found when using either approach (Figure 5).

Execution time benefits the stochastic approach, with speedups in the range of 2 to 4 for the

tested graphs (Figures 6–8). In spite of this improvement, it appears that the benefit is mostly

linear which might not be sufficient to scale well for operation in graphs of very high dimension.
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7. Conclusions and Future Work

In this paper, we propose the E* analysis approach, that identifies AGV routes with high

robustness, in terms of resilience against unexpected disturbances in pre-planned routes. We

demonstrated that routes of equivalent distance may have different robustness properties, suggesting

that route planning based on distance criteria only may not be generate robust solutions.

High robustness mitigates unforeseen disruptions of planned routes in industrial applications,

reducing wasted time and allowing the continued operation of production processes.

Future work can address issues such as improving the efficiency of E*, or exploring its use in

other contexts such as scenarios with multiple AGVs and multiple routes.

Conflicts of Interest: The authors declare no conflict of interest.
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