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Abstract

Over the past few decades, lithium-ion batteries (LIBs) have gained significant attention due to their
inherent potential for environmental sustainability and unparalleled energy storage efficiency. To
enhance the performance of lithium-ion batteries, electrolytes have garnered considerable attention
as a key component of these batteries. Meanwhile, polymer electrolytes have gained popularity in
several fields due to their ability to adapt to various battery geometries, enhanced safety features,
greater thermal stability, and effectiveness in reducing dendrite growth on the anode. In general,
polymer electrolytes are composed of polymer matrices and lithium salts, mainly categorized as solid
polymer electrolytes (SPEs) and gel polymer electrolytes (GPEs), which provide higher energy
densities while maintaining structural integrity and safety. Despite many advantages, offering
relatively lower ionic conductivity as compared to liquid electrolytes, polymer electrolytes are
limited to advanced applications. This limitation has led to recent studies revolving around the
development of poly (ionic liquids) (PILs), particularly imidazolium-mediated polymer backbones
as novel electrolyte materials, which can increase the conductivity with fine-tuning structural
benefits, while maintaining the advantages of both solid and gel electrolytes. There have been various
structural conformations explored in the design of multiple PILs, and the accurate measurement of
conductivity is typically performed in laboratories, which can be both costly and time-consuming.
Therefore, in this study, we aimed to develop intelligent models for the accurate estimation of ionic
conductivity in exclusive imidazolium polymeric ionic liquids (PILs). For this purpose, a dataset
consisting of 120 datapoints, including 8 different polymers, encompassing all the imidazolium-
based PILs reported to date, was compiled from the literature. Most importantly, this study foresees
the benefits of newly integrated PIL substructures, so-called ionenes, toward the performance of LIB
applications. Four machine learning (ML) models of CatBoost, RF, XGBoost, and LightGBM were
developed in this study by incorporating chemical structure and temperature as the models’ inputs.
The results indicated the superior performance of the CatBoost model compared to other models with
R?, RMSE, and MAE of 0.986, 0.000187, and 0.0000952, respectively. The importance of features in
predicting conductivity was investigated using the CatBoost model. The results indicated that
temperature plays the leading role, followed by chemical descriptors such as,
PIL_BCUT2D_MRLOW, PIL_SMR_VSA6, and PIL_EState_ VSA8. Moreover, the best-performing
model (CatBoost) was used to predict conductivity for three novel ionenes, paving the way for a new
approach to utilizing innovative polymer architecture toward LIB applications.

Keywords: poly (ionic liquids); polymer electrolytes; lithium-ion batteries; machine LEARNING;
CatBoost model
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1. Introduction

As the world moves towards green energy, storage systems, including hydrogen storage [1,2],
pumped hydrogen storage [3], flow batteries[4], and especially lithium-ion batteries[5] are
increasingly in demand. A revolution in electronic devices began 30 years ago when Sony
successfully commercialized the world’s first lithium-ion battery (LIB) [5]. Since then, LIBs have
gained significant attention due to their inherent potential for environmental sustainability and
unparalleled energy storage efficiency. LIBs application is not limited to portable electronics; they are
also used in various energy sectors and devices, including but not limited to hybrid and big electric
vehicles, remote-controlled devices, solar energy equipment, medical tools, and more. Their use is
also increasing in the aerospace and military industries[5-7]. LIBs are a part of the rechargeable
family of batteries, similar to other batteries, and consist of four main components: the anode,
cathode, electrolyte, and separator (Figure 1).

Poly(ionic liquid)s: PILs
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Figure 1. Schematic of a lithium-ion battery illustrating the cathode, anode, electrolyte, and common types of

poly(ionic liquid) electrolytes.

To enhance lithium-ion battery performance, electrolytes have garnered significant attention as
a key component of batteries. = Organic electrolytes consisting of linear and alkyl carbonates are
well-known and utilized for their wide operating voltage [1]. Meanwhile, polymer electrolytes have
gained popularity in the fields of electrical, aerospace, automotive, and electronics due to their ability
to adapt to various battery geometries, improved safety features, low manufacturing costs, higher
thermal stability, and effectiveness in reducing dendrite growth on the anode. Polymer electrolytes
are composed of polymer matrices and lithium salts that were initially introduced during the
1970s[2-5]. Despite these advantages, polymer electrolytes are highly volatile and flammable,
posing significant safety risks. Consequently, research on non-flammable electrolytes with a high
lithium-ion transfer number is ongoing to enhance the safety and efficiency of lithium batteries [6].
Solutions being investigated include solid ceramic electrolytes, polymer electrolytes (solid, gel, and
composite), aqueous lithium-ion batteries, fluorinated structures, and ionic liquids [3,7,8].

Lithium batteries rely on liquid electrolytes, which have the advantages of high ionic
conductivity and superior wetting performance at the electrode surface [9]. Ionic liquids (ILs) are
considered emerging potential candidates for replacing carbonate-based electrolytes in the market.
ILs are salts with a melting point below 100 °C that have high chemical and thermal stability, as well
as very low or zero vapor pressure. Such characteristics enable room-temperature ILs to be ideal
options for a broad range of uses, particularly in electrochemical devices like LIBs [9,10]. In general,
ILs are a class of molten salts consisting of an array of asymmetric organic cations and organic or
inorganic anions. The most widely studied ILs are ammonium-based ILs such as imidazolium,
pyrrolidinium, and quaternary ammonium-based ILs [11]. At the same time, polymerized ionic
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liquids (PILs) are a subset of polyelectrolytes that share many features of ‘free’ ILs, including high
conductivity, while offering inherent safety and performance issues as full assembled LIBs. Although
many PILs have various ammonium-based cations tethered to the polymeric backbones, imidazolium
cations are reported to dominate due to their structural integrity and ease of synthesis. Overall, by
combining the benefits of polymer electrolytes and ILs, many research studies still have potential
chances to discuss and investigate toward high-performance LIBs [12].

On the other hand, the emergence of machine learning (ML) has entered the material science
field into a new era. ML has accelerated the process of material discovery, design, and optimization
by employing large datasets and advanced algorithms [13]. Most interestingly, ML models can make
precise predictions by identifying patterns within the existing datasets while avoiding the pressing
challenges of experimentation, including related timeframe and costs. Although ML models are
simple mathematical calculations, the complex nature of materials, particularly polymers, presents
intricate challenges in developing ML models. Therefore, recent advances in ML models have been
widely examined, with more contemporary applications in macromolecular studies, discussing
group contributions and chemical structures via SMILES representation. Furthermore, recent ML
advancements in the polymer field include accelerated polymer simulations [14], prediction of
polymer properties [15,16], adhesion strength prediction[17], and polymer discovery and design
[18,19].

Technically, large datasets are necessary to train machine learning (ML) models. Nevertheless,
a recent study employed a self-supervised strategy using a graph neural network (GNN) to predict
polymer properties solely based on polymer structure data, as reported by Gao et al. [20]. Those
results paved the way for tuning to be possible on smaller datasets for specific property prediction
tasks, thanks to the pre-trained GNN. In data-scarce scenarios, the results further indicated that the
ensemble pre-training approach outperforms other approaches, for electron affinity and ionization
potential root mean square error (RMSE) was reduced by 28.39% and 19.09%, respectively. Kazemi-
Khasragh et al. [28] employed a transfer strategy approach to focus on the prediction of mechanical
and thermal properties of linear polymers. Firstly, the artificial neural network (ANN) algorithm was
pre-trained to predict heat capacity at constant pressure (Cp) using 124 data points, then the pre-
trained model was fine-tuned to predict specific capacity, shear modulus flexural stress strength, and
dynamic viscosity. In addition to transfer learning, researchers in this field have also employed other
machine learning models. Babbar et al [21], developed three ML models, namely ANN, convolutional
neural network (CNN), and ridge regression (RR), to predict the glass transition temperature (Tg) of
polymers. In this study, two types of molecular fingerprints were used as input features:
physicochemical and topological fingerprints. The former was extracted from RDKit and used as
input for RR and ANN models, while the latter was derived from the SMILES representation using
one-hot encoding and used as input for the CNN model. The results highlighted the reasonable
performance of RR compared to powerful non-linear models of ANN and CNN. Ascencio-Medina et
al [22], by analyzing a dataset of 86 polymers, investigated the dielectric permittivity in polymers.
They employed a genetic algorithm to select the most relevant descriptors from a set of 1273
descriptors. Then, by using a gradient boosting regressor (GBR), the dielectric constant was
predicted. This model achieved high accuracy with a correlation coefficient (R2) of 0.938 and 0.822
for the training and test sets, respectively.

Electrical conductivity is another essential property of polymers, which plays a vital role in their
ability to transport charge. However, limited research has been conducted in this field for predicting
the conductivity of polymers, as summarized in Table 1. Hatakeyama-Sato et al[23], constructed a
104-entry database of lithium-conducting solid polymers, the largest of its kind. The authors
employed a transfer-learned graph neural network (GNN) for predicting the conductivity of
electrolytes, resulting in a mean absolute error (MAE) of less than 1. The unbiased predictions of the
model led to the discovery of superionic conductors with ionic conductivities of about 10-3 at room
temperature. Li et al [24], incorporated GNNs with quantum calculations to develop an automatic
system for identifying potential ionic liquids (ILs) for ionic liquid polymer electrolytes (IPEs). Firstly,
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based on the ensemble learning of support vector machine (SVM), random forest (RF), XGBoost, and
graph convolutional neural networks (GCNN) the phase of ILs was predicted. After identifying the
IL candidates, the datapoints were classified based on conductivity type (0 25 and o < 5). XGBoost
and SVM performed better than other models. According to the results, the median values reported
for the groups with 0 <5 and 0 25 are 1.8 and 9.1 mS cm-1, respectively. Most recently, Bradford et
al [19] constructed a chemistry-informed ML workflow that predicted the conductivity of solid
polymers by using chemical structure, temperature, molecular weight (Mw), and salt concentration.
The results were primarily developed using the novel approach of ChemArr, which was
benchmarked against two other machine learning models, Chemprop and XGBoost. Among the
developed models, XGBoost exhibited weak performance, while ChemArr outperformed other
models by showing low MAE and a high Spearman rank correlation coefficient.

Taking into account the importance of designing polymerized ionic liquids (PILs) as
polyelectrolytes in LIB applications, in this study, we have exclusively considered the structural and
electrical performance of imidazolium-based poly (IL)s via machine learning (ML) approaches. As
such, four impressive ML models, namely: CatBoost, RF, XGBoost, and LightGBM, have been
meticulously selected to predict ionic conductivity of imidazolium-based PILs both in the form of
solid polymer electrolytes (SPE) as well as gel polymer electrolytes (GPE). Regarding this purpose,
input features, including chemical structure and temperature, were gathered from the literature. The
models were trained and tested on the dataset that was collected. Afterwards, the importance of the
input features on conductivity prediction was investigated by the best-performing model. After
training and testing the models, the best-performing model was used to predict conductivity for a
new set of data points. Most importantly, we have aimed to anticipate the potential candidacy of
ionene materials having conventional polymeric functional groups such as amides and imides.
Specifically, we have focused on investigating the electrochemical performance in terms of
conductivity data of our recently developed new type of ionic polymer, in which imidazolium cations
are tethered within the rigid polyimide (PI) and polyamide (PA) substructures, as depicted in Figure
2[25-27]. Overall, this study is organized into four sections. First, an introduction to lithium batteries,
polymer electrolytes, and ML studies is provided. Then, in the methodology section, a description of
each of the developed models is given. Moreover, this section describes the data gathering process.
In the Results and Discussion section, the performance of the models will be assessed using various
graphical and statistical methods. Additionally, a section is dedicated to the employment of ML
models in predicting conductivity for ionenes with robust polymeric backbones. Ultimately,
conclusions are drawn toward the insight of the usage of ionene polymeric materials as polymer
electrolytes for LIB applications.
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Figure 2. Chemical structures of novel ionene materials having polymeric backbones of amide and imide

functionalities used for the ML approach, quantifying the conductivity data in this study.
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Table 1. Summary of AI models used for conductivity prediction.
Ref ML models Inputs Evaluation metrics
[28] NN Chemical composition, Temperature NA
(23] GNN Ch.emical structures, Composition R2=0.16
ratio, Temperatures
1-Unsupervised Molecular structure descriptors,
[24] learning Electronic structural variables, 3D Re=0.82, MAE = 1.8

2-Ensemble of SVM, molecular structure fingerprints,
RF, XGB, and GCNNElectrochemical window
Chemical structure, Temperature, ion

[29] DNN . Rp=0.951, RMSE = 0.014
exchange capacity
CatBoost, XGBoost, Chemical structure,. Teml:?erature, Ton RMSE* = 0.014, MAE* =
[30] RE* forms, Polymer main-chain types, 0.01
anion-conducting moieties.
[19] ChemArr*, Chemical structure, Temperature, Mw, Spearman R* = 0.59,
Chemprop, XGBoost Salt concentration MAE*=1
Standard deviation of Li-X ionic bond,
Standard deviation of the mean
adjacency number of Li atom, Average
[31] RF*, KNN, SVM, straight-line path electronegativity, MAE*=0.237, MSE* =

Adaboost, GBM Average straight-line path width, 0.134
Packing fraction of sublattice, Average
atomic volume, Average value of Li-Li

bond
RF, XGBoost*, LR, = Chemical structure of polymer, Salt R?*=0.93, MAE*=0.21,
[32] KNN, Chemprop  chemical structure, Mw, Molality, RMSE* =0.31, MSE* =
Temperature 0.09

* Model with the best performance.

2. Materials and Methods

2.1. Model Developments

Four ML model of CatBoost, RF, XGBoost and LightGBM were employed in this study. These
models will be briefly discussed in the sections below.

2.1.1. CatBoost

CatBoost as an open-source gradient boosted decision tree (GBDT) method can handle
categorical features properly. The main difference between GBDT model and CatBoost is that, instead
of preprocessing time, CatBoost deals with categorical features during training time. Prokhorenkova
et al[33], introduced target statistics (TS) as an efficient strategy for handling categorical features
while losing minimum information. In particular, CatBoost permutes the dataset for each example
and calculates an average label value based on the category value placed previously in the
permutation. Moreover, CatBoost is different from GBDT in terms of feature combinations. Almost
all categorical features should be combined to make a new one. CatBoost considers combinations
greedily when building a new split for the tree. For the second and following splits, CatBoost
combines all combinations.

preset with all categorical features. Every split in the tree is considered a category with two
values and they are added together in combination. Additionally, compared to GBDT, CatBoost
performs an unbiased boosting with categorical features. To convert categorical features into
numerical values with the TS method, the distribution will vary from the original one. In traditional
GBDT methods, the deviation of this distribution will result in a deviation in the solution, which is
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an inevitable problem for GBDT. A random permutation of the training data is generated in CatBoost.
To improve the robustness of the algorithm, multiple permutations will be used by sampling a
random permutation and obtaining its slope. Calculating statistics based on permutations is similar
to those calculated for classification features. Different permutations are used to train distinct models,
and hence, using multiple permutations will not lead to overfitting[34]. Figure 3 shows a schematic
of CatBoost model.

Bootsrap T samples

Building T
CART trees one

Prediction: The weights

averaoe asoresation of all

Figure 3. Schematic of the CatBoost algorithm.

2.1.2. Random Forest

Breiman first developed RF [35], the initial goal of RF algorithm development was to solve
unsupervised regression and classification problems. This technique involves building multiple
independent decision trees, also referred to as ensemble trees, training them based on the desired
dataset, and then predicting the target parameter. In this algorithm, bootstrap resampling is used to
prevent overfitting, a resampling method that relies on replacement. A bootstrap set is created by
replacing several samples with repeated samples from the initial data. The RF algorithm then builds
each tree using a bootstrap set. Therefore, since the trees were constructed on varied datasets, their
predictions would be different. The next step is to aggregate all the trees, and the final prediction is
obtained by averaging each tree’s predictions. With the RF model, the degree of importance of each
feature and the proximity of samples in pairs can be determined[36,37].

2.1.3. XGBoost

XGBoost is a popular boosting tree algorithm based on a decision tree, also known as a
classification and regression tree (CART)[38]. CART divides the dataset into two subsets at each level
according to the boundary of a variable for regression tasks, until it reaches the maximum tree depth
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specified by users. Searching for the best solutions is done by algorithm for a range of variables to
minimize the cost function. Then the prediction is the average of the target value of all samples in a
subset. CART trees can be prone to overfitting without proper regularization. One strategy for this is
called ensemble packing of a group of estimators, in other words multiple CART models. XGBoost
continues to add and train new trees to accommodate the remaining errors from the last iteration.
Then a predicted value is assigned to each sample by summing all the scores of the corresponding
leaves together. The advantage of XGBoost in performance is its reliable objective function for tree
creation[39,40].

2.1.4. LightGBM

LightGBM is a new GBDT algorithm that was first released by Microsoft by Ke et al [41], in 2017
that has been employed in a variety of data mining tasks such as regression, classification, and
sorting. The LightGBM algorithm incorporates several novel techniques, including gradient-based
one-side sampling (GOSS), exclusive feature bundling (EFB), and a depth-constrained histogram and
leaf-based growth strategy. Light GBM grows the tree vertically, while other algorithms, such as
XGBoost and GBDT, grow trees horizontally. The mechanism of GOSS involves retaining all large
gradient samples while performing random sampling on small gradient samples, based on their
proportion. The main idea of EFB is to divide the features into a smaller number of unique mutual
bundles.

2.1.5. Evaluation Metrics

The performance of the conductivity prediction models was evaluated by the following metrics:
mean absolute error (MAE), root mean square error (RMSE), and determination coefficient (R2).
Commonly, these metrics are used in regression tasks, the higher the R? value and the lower the MAE
and RMSE value, the better would be the accuracy of the models.

RMSE= 131,07 - 52 &)
1 A~
MAE = n =i =) 2
21 _ Z=0i-90)°
Re=1 =S o (©)

2.2. Data Gathering and Model Developments

In this study, SPEs and GPEs mediated with imidazolium-based polymerized ionic liquids were
gathered from the literature. For developing robust ML models, a total of 120 datapoints were
collected from the literature using WebPlot-Digitizer[42,43], [44-49]. The collected dataset contains
SMILES, temperature, and conductivity (Table 2).
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Table 2. Collected data from the literature for conductivity prediction.

Number of Temperature
Author PIL-name Conductivity
data (K)
[42] P(EtVIm-TFSI) (NR) 21 298.2-353.3 6.4E6-4.4E+
[43] VEIm-TFSI 40 303.1-373.2 9.83E2-2.41E+
[44] P-20 7 297.8-352.7 2.9E+4-1.2E?
[45] PIL-QSE 7 285.1-358.2 7.1E+4-3.7E3

MIm-TFSI + Li-
[46] 9 301.5-363.2 1.4E-5-6.8E-
TFSI/EMIm-TESI

PVIMTEFSI-co-

[49] 6 333-357.8 3.8E2-6.6E3
PPEGMA/LiTFSI

[47] HPILSE 23 252.9-353.2 4E5-53E3

[48] PIL-GPE 7 298.1-353.2 1.2E3-5.3E3

Figure 4, displays the distribution of ionic conductivity across three temperature ranges 25-65
°C, 65-85 °C, and >85 °C. According to the density plot in Figure 3 (a), in the temperature range of 25
to 65 °C, variability in ionic conductivity is shown, which is visible in the graph with a wide and
multi-modal distribution in the plot. Also, the curve shows a long tail toward low conductivity
values, with a pronounced peak around 10-5 S/cm. The curve for 65-85 °C group is narrower and
more concentrated than 25-65 °C group. In this curve fewer samples fell into the low-conductivity
regime. The > 85 °C group shows a very sharp and narrow peak.

By using the RDKit library [50], the molecular descriptors were generated from SMILES
representations. Open-source cheminformatics toolkit RDKit, allows the calculation of a wide range
of chemical descriptors. Physicochemical and structural features in RDKit are calculated from
SMILES strings and then used as quantitative descriptors for ML analysis. Molecular properties
including topological polar surface area, number of H> bond, and molecular weight captured by
molecular descriptors, allow for a better understanding of structure-property relationships. Then ML
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models including: CatBoost, RF, XGBoost, and LightGBM were employed in python environment to
predict conductivity.

(a)

0.354 Temp Group
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0.301 mmm 65-85°C
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Figure 4. (a) density plot of ionic conductivity in three temperature ranges (25-65 °C, 65-85 °C, and >85 °C) (b)
box plot of ionic conductivity across three temperature ranges.

Based on SMILES representations, RDKit generated 434 molecular descriptors which captured
electronic, structural, and physicochemical properties of the molecules. In order to eliminate the effect
of highly correlated features, Pearson's correlation coefficient was used to calculate the correlation
between all pairs of descriptors. After the elimination, a total of 43 features remained. It is worth
noting that the PIL prefix has been added to the descriptors. The heatmap plot in Figure 5 shows
pairwise correlations between two descriptors, where each cell represents the strength of the
relationship between the two features (descriptors). In this plot, each row or column depicts a
pairwise linear relationship between features. In each row and column, a different feature is
represented, and the colors differentiate their strength and direction based on Pearson’s correlation
coefficient. When the value is close to +1, it is described in dark red, which shows a strong positive
linear correlation between the two features, which means that by increasing one, the other will
increase too. A value close to -1, represented in dark blue, indicates that when one feature increases,
the other decreases. However, values close to 0 shows little or no linear relationship. In this heatmap
plot as it is evidence, features such as PIL_PEOE_VSA, PIL, SMR_VSA and PIL_EState have strong
correlations, since they belong to similar molecular descriptor families. There are some features that
have relatively medium to high correlations with the target parameter, these features are namely:
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PIL_MaxAbsEStateIndex, PIL_PEOE_VSA1, PIL_PEOE_VSA?2, PIL_SMR_VSAS, and
PIL_fr_methoxy.
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Figure 5. Heatmap of Pearson correlation coefficients between molecular descriptors generated by RDKit.

The data were standardized to make sure the data are transformed into a common scale before
feeding them into ML models. On the training data, GridSearchCV and K-fold cross-validation were
utilized to optimize model hyperparameters, and to ensure that the random state was set for
reproducible cross-validation splits. Tunning of the model hyperparameters was done by using
GridSearchCV to find the best parameters for each model. Following the selection of
hyperparameters, different algorithms were compared using five-fold cross validation. The data was
divided into train and test splits, 80% for train and 20% for test. Each test set included polymers that
were not present in the train set. Four independent models were trained by using different random
initial values, on 80% of the data. The mean R2?, the mean RMSE, and the mean MAE were all
evaluated as scoring criteria. To ensure that each polymer appeared only once in a test set, this process
was repeated five times.

3. Results

R?, RMSE, and MAE for the employed models are presented in Table 3. CatBoost performed
better than other models, followed closely by RE. The performance of XGBoost is slightly worse than
that of RF, while LightGBM had the worst performance. Figure 6, compares the scatter plots of the
actual versus predicted conductivity values for different employed ML models: CatBoost, RF,
XGBoost, and LightGBM. In this plot dashed black line corresponds to the ideal prediction scenario
where predicted values perfectly match the actual values (y =x). Hence, the closer the points are to
the y = x line the better the models are. For CatBoost model Figure 6 (a), training data points are
closely aligned with diagonal line, testing data points also align with the diagonal line, but they are
slightly more spread than training data which indicates some error prediction for testing data.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.2274.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 June 2025 d0i:10.20944/preprints202506.2274.v1

11 of 20

Therefore, CatBoost performs well showing high accuracy for both training and testing datapoints,
however the slight spread of testing datapoint suggest reliable generalization with small overfitting.
Figure 6 (b), the blue (training) points are aligned with the unity (y = x) line, suggesting good fit of
the model over blue datapoints. The performance of the model over test datapoints is more scattered
comparing to CatBoost, which indicates higher prediction errors over unseen data. According to
Figure 6 (c), the training datapoints are no longer. align well with y = x line, the deviation from this
line is further evidence for XGBoost model (comparing to two previous models) which suggests not
very good performance of this model over training data. For testing data this dispersion is even more,
especially for higher values of conductivity, revealing that predictions might be less accurate for
higher values of conductivity. Among all of the models, LightGBM performs the least accurate model,
Figure 6 (d), with higher deviations for training and testing datapoints. This could be a sign for
difficulty of the model in capturing complex relationships for both training and testing data points.
The heatmaps in Figure 6, shows the prediction errors of the test data across the four ML models:
CatBoost, RF, XGBoost, and LightGBM. This plot highlights the area were the models show
systematic errors. As can be seen in Figure 6 (a), the heatmap is mainly concentrated along the
diagonal line, which interprets as predicted values.

Table 3. Models’ performance metrics.

CatBoost RF XGBoost LighGBM
Train Test All Train Test All Train  Test All Train Test All
R? 0994  0.949 0.986 0.976 097 0975 0.962 0.905 0.952 0.878 0.911 0.884
RMSE 1.2E+ 3.35E+ 1.87E* 2.55E+ 257E+ 2.56E+ 3.2E+ 4.5E* 3.55E+ 5.81E-4 4.41E-4 556E-4
MAE 733E5 1.83E+ 9.52E5 9.5E-5 1.26E+ 1E+* 2E4 2.54E* 2.14E+ 3.54E* 3.28E*  3.4E*

are close to actual values. This plot also shows a narrow spread, meaning that the model is
making relatively few incorrect predictions with only few outliers. There are some minor deviations
for higher conductivity values, but in general the overall distribution is narrow. The systematic bias
of CatBoost is minimal across different conductivity ranges. The heatmap of RF, Figure 7 (b), is more
spread especially at medium to high conductivity values comparing to CatBoost model. According
to this plot, the model tends to underpredict high conductivity values. Similar to CatBoost and RF,
the heatmap of XGBoost Figure 7 (c), shows a high density along the diagonal, however a few smaller
clusters appear farther from the diagonal line, this could be due to subsets of data where the model
performs poorly in predicting the values correctly, also the error region is wider than previous
models, which shows deviations for higher conductivity values. The heatmap plot of LightGBM
model Figure 7 (d), shows good predictive performance but it is more spread at higher conductivity
values. Possibly due to underfitting, LightGBM and XGBoost make larger errors in higher
conductivity regions. Comparing to CatBoost and RF, LightGBM and XGBoost seem to struggle more
with high-range values.
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Figure 6. Cross plots of actual vs predicted ionic conductivity with respect to training and testing subsets, (a)
CatBoost, (b) RF, (c) LightGBM, (d) XGBoost.
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Figure 7. Heatmaps of prediction error for test data across four ML models: (a) CatBoost, (b) RF, (c) XGBoost,
(d) LightGBM.
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The residual histograms and violin plots in Figure 8, provide analysis of the errors for each of
the employed ML models. In residual plots the centered and symmetric distribution indicates good
performance of the models with no overprediction or underprediction. A narrower spread, skewness
or long tails show higher accuracy and systematic bias, respectively. The residual histogram plot of
the CatBoost model is narrow and strongly centered around zero, as shown in Figure 8 (a), which
highlights the small errors of this model, also the spread of this model is symmetric with very few
residuals. The violin plot of train residual is highly concentrated and packed around zero, however,
the residual of test data shows higher dispersion. Moreover, train residuals are tight which shows
good fit of the model over training data. Overall, this model exhibits minimal overfitting and good
generalization with slightly higher error in the test data. Figure 8 (b), the residual plot of RF shows
wider spread as well as longer tail on both sides. Additionally, this model shows more residuals far
from zero, which interprets as higher variance in errors. Violin plots of this model shows wider
spread for test residuals than train residuals. In general train residuals are highly packed, and test
datapoints show higher variance. The residual histogram of XGBoost, Figure 8 (c), has an overall
wider spread than previous models, there are some clear deviations in small residuals. Moreover, the
plot is shifted towards small residual (right-skewed). The residual spread of this model as can be seen
in violin plots is wider than CatBoost and RF for both train and test sets. LightGBM residuals, Figure
8 (d), it has a normal distribution and is centered around zero while train data are more dispersed
than test data. Violin plot of train and test is also similar to CatBoost and RF, while it is more dispersed
than those models.
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Figure 8. Residual analysis of ML models (a) CatBoost, (b) RF, (c) XGBoost, (d) LightGBM.

3.1. Feature Importance

In this section, the analysis of the features affecting conductivity prediction was examined. For
this purpose, the CatBoost model was used, which was introduced as the best model. According to
Figure 9, the feature importance plot, temperature is identified as the most important variable in the
prediction of conductivity, this finding is in line with physical expectations, typically increasing
temperature increases ionic mobility, which leads to higher conductivity, especially in electrolytes
and polymer systems. Among the derived molecular descriptors obtained by RDKit library,
PIL_BCUT2D_MRLOW showed the second most influential feature. This parameter demonstrates a
topological descriptor which is mainly based on molecular refractivity and atomic partial charges.
The next important feature is, PIL_SMR_VSA6, which is a descriptor that shows an approximate
value of the Van der Waals surface area of atoms which have specific SMR (molar refractivity) values.
In general, these two high ranked features reflect electron distribution characteristics of molecules,
size, and shape. Another important feature in conductivity prediction is PIL_EState_VSAS8, which
includes electro topological state indices with the contributions of surface area. PIL_qged is the other
influential descriptor, where this feature is based on properties like polarity and molecular weight.
PIL_fr_unbrch_alkane, which is a measure of the unbranched alkane fragments in a molecule,
highlights the importance of branching of molecules in predicting the target variable. Electronic
properties which are derived from the charge distribution are represented by PIL_BCUT2D_CHGHI.
This feature is followed by PIL_PEOE_VSAS, which contains the surface area corresponding to
partial atomic charges, calculated via PEOE (partial equalization of orbital electronegativities). As it
is evident from the graph, there are also some lower rank descriptors such as
PIL_MinAbsEStateIndex, PIL_SlogP_VSA3, and PIL_FractionCSP3. The mentioned features show
small impact on the model’s performance, since they reflect small details about topology of the
molecules and their electronic structure. Descriptors with the least influence are placed at the bottom
of the plot, which show almost zero or no importance.
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Figure 9. Feature importance plot for predicting conductivity employing CatBoost model.

3.2. Predicting Conductivity for Ionenes

Figure 10 shows predicted conductivity values of three ionenes, namely: TC-API(p)-Xy, Troger's
base (Im-TB(p)-PA), and Ionic-polyimide, at random temperatures: 298, 308, 318. This plot shows
how increasing temperature can increase ionic conductivity. As it is evident in this plot, each ionene
linear line is decreasing by increasing 1000/T, this can be interpreted as conductivity rises with
temperature increases, which indicates that the model has learned the underlying thermally activated
transport behavior. The ionic conduction in these materials is governed by Arrhenius kinetics, which
implies that ion mobility increases with thermal energy. It is apparent that all the selected ionenes
exhibited outstanding electrical properties with significant ionic conductivity (approaching 10-3 S
cm-1). Across the entire temperature range, Troger's base (Im-TB(p)-PA) shows the highest
conductivity values. Following this, ionene TC-API(p)-Xy and ionic polyimide exhibit relatively
lower conductivity values. These nearly parallel lines suggest similar activation energies for ion
transport in all three materials. Vertical separation between these three lines indicates that a
difference in their intrinsic conductance exists due to factors such as structural features, ion mobility,
and carrier concentration. According to these results, Troger's base may offer the best performance
for applications such as electrolytes and ion-exchange membranes, which require high ionic
conductivity, thereby paving the way for a new strategy in designing imidazolium ionenes with rigid
backbones. In addition to capturing the overall temperature dependence of these ionenes, the ML
models also captured their relative ranking, likely based on learned structural and electronic
descriptors. In this regard, the model can help predict conductivity trends for new candidates of
ionenes.
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Figure 10. Predicted conductivity values for three ionenes using the best performing model (CatBoost).

4. Conclusions

In this study four ML models were developed for the prediction of ionic conductivity. The
models were trained and tested on the data gathered from the literature. The developed models were
CatBoost, RF, XGBoost, and LightGBM. There was a significant difference in the performance of the
models for predicting conductivity values. Across both training and testing datasets, CatBoost
proved to be the most accurate and reliable model. Scatter plots, heatmaps, and residual plots
demonstrated the superior performance of this model. According to the mentioned plots, the
CatBoost model showed consistent predictions with the actual values. Following closely, RF showed
excellent performance for unseen data, although it exhibited higher prediction errors at medium and
higher conductivity levels. LightGBM and XGBoost performed poorly, with LightGBM having
difficulty in capturing temperature-dependent trends. Ultimately, the best model (CatBoost) was
used to analyze the effect of input parameters on conductivity prediction. Based on the feature
importance diagram, temperature was identified as the feature with the greatest impact on
conductivity. Molecular descriptors extracted from SMILES were ranked in the following order of
importance. Descriptors such as PIL_BCUT2D_MRLOW, PIL_SMR_VSA6, and PIL_EState_VSAS.
Moreover, the best-performing model (CatBoost) was used to predict conductivity for three ionenes.
Interestingly, all the selected ionenes exhibited outstanding electrical properties, with significant
ionic conductivity (approaching 10-3 S cm-1). Notably, ionene with a rigid and contorted structure
of Troger's base (Im-TB(p)-PA) exhibited the highest conductivity. Additionally, the model captured
the overall temperature dependency of the employed ionenes. In general, CatBoost stands out as the
most robust and reliable model for conductivity prediction, making it well-suited for ionic-mediated
polymers with similar applications in the future.
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