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Abstract 

Over the past few decades, lithium‐ion batteries (LIBs) have gained significant attention due to their 

inherent potential for environmental sustainability and unparalleled energy storage efficiency.    To 

enhance the performance of lithium‐ion batteries, electrolytes have garnered considerable attention 

as a key component of these batteries.   Meanwhile, polymer electrolytes have gained popularity in 

several fields due to their ability to adapt to various battery geometries, enhanced safety features, 

greater thermal stability, and effectiveness in reducing dendrite growth on the anode.    In general, 

polymer electrolytes are composed of polymer matrices and lithium salts, mainly categorized as solid 

polymer  electrolytes  (SPEs)  and  gel  polymer  electrolytes  (GPEs), which  provide  higher  energy 

densities  while maintaining  structural  integrity  and  safety.  Despite many  advantages,  offering 

relatively  lower  ionic  conductivity  as  compared  to  liquid  electrolytes,  polymer  electrolytes  are 

limited  to advanced applications.    This  limitation has  led  to  recent  studies  revolving around  the 

development of poly (ionic liquids) (PILs), particularly imidazolium‐mediated polymer backbones 

as  novel  electrolyte  materials,  which  can  increase  the  conductivity  with  fine‐tuning  structural 

benefits, while maintaining the advantages of both solid and gel electrolytes. There have been various 

structural conformations explored in the design of multiple PILs, and the accurate measurement of 

conductivity is typically performed in laboratories, which can be both costly and time‐consuming. 

Therefore, in this study, we aimed to develop intelligent models for the accurate estimation of ionic 

conductivity  in exclusive  imidazolium polymeric  ionic  liquids (PILs).    For this purpose, a dataset 

consisting  of  120 datapoints,  including  8 different polymers,  encompassing  all  the  imidazolium‐

based PILs reported to date, was compiled from the literature. Most importantly, this study foresees 

the benefits of newly integrated PIL substructures, so‐called ionenes, toward the performance of LIB 

applications. Four machine  learning  (ML) models of CatBoost, RF, XGBoost, and LightGBM were 

developed in this study by incorporating chemical structure and temperature as the models’ inputs. 

The results indicated the superior performance of the CatBoost model compared to other models with 

R2, RMSE, and MAE of 0.986, 0.000187, and 0.0000952, respectively. The  importance of features  in 

predicting  conductivity  was  investigated  using  the  CatBoost model.  The  results  indicated  that 

temperature  plays  the  leading  role,  followed  by  chemical  descriptors  such  as, 

PIL_BCUT2D_MRLOW,  PIL_SMR_VSA6,  and  PIL_EState_VSA8. Moreover,  the  best‐performing 

model (CatBoost) was used to predict conductivity for three novel ionenes, paving the way for a new 

approach to utilizing innovative polymer architecture toward LIB applications. 

Keywords: poly  (ionic  liquids); polymer  electrolytes;  lithium‐ion batteries; machine LEARNING; 

CatBoost model 
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1. Introduction 

As the world moves towards green energy, storage systems, including hydrogen storage [1,2], 

pumped  hydrogen  storage  [3],  flow  batteries[4],  and  especially  lithium‐ion  batteries[5]  are 

increasingly  in  demand.  A  revolution  in  electronic  devices  began  30  years  ago  when  Sony 

successfully  commercialized  the world’s  first  lithium‐ion battery  (LIB)  [5]. Since  then, LIBs have 

gained  significant  attention  due  to  their  inherent  potential  for  environmental  sustainability  and 

unparalleled energy storage efficiency. LIBs application is not limited to portable electronics; they are 

also used in various energy sectors and devices, including but not limited to hybrid and big electric 

vehicles, remote‐controlled devices, solar energy equipment, medical tools, and more. Their use is 

also  increasing  in  the aerospace and military  industries[5–7]. LIBs  are  a part of  the  rechargeable 

family  of  batteries,  similar  to  other  batteries,  and  consist  of  four main  components:  the  anode, 

cathode, electrolyte, and separator (Figure 1). 

 

Figure 1. Schematic of a lithium‐ion battery illustrating the cathode, anode, electrolyte, and common types of 

poly(ionic liquid) electrolytes. 

To enhance lithium‐ion battery performance, electrolytes have garnered significant attention as 

a key component of batteries.       Organic electrolytes consisting of  linear and alkyl carbonates are 
well‐known and utilized for their wide operating voltage [1]. Meanwhile, polymer electrolytes have 

gained popularity in the fields of electrical, aerospace, automotive, and electronics due to their ability 

to adapt to various battery geometries, improved safety features, low manufacturing costs, higher 

thermal stability, and effectiveness in reducing dendrite growth on the anode. Polymer electrolytes 

are  composed  of  polymer matrices  and  lithium  salts  that were  initially  introduced  during  the 

1970s[2–5].    Despite  these  advantages,  polymer  electrolytes  are  highly  volatile  and  flammable, 

posing significant safety  risks. Consequently,  research on non‐flammable electrolytes with a high 

lithium‐ion transfer number is ongoing to enhance the safety and efficiency of lithium batteries [6]. 

Solutions being investigated include solid ceramic electrolytes, polymer electrolytes (solid, gel, and 

composite), aqueous lithium‐ion batteries, fluorinated structures, and ionic liquids [3,7,8].   

Lithium  batteries  rely  on  liquid  electrolytes,  which  have  the  advantages  of  high  ionic 

conductivity and superior wetting performance at  the electrode surface  [9].  Ionic  liquids  (ILs) are 

considered emerging potential candidates for replacing carbonate‐based electrolytes in the market. 

ILs are salts with a melting point below 100 °C that have high chemical and thermal stability, as well 

as very  low or zero vapor pressure. Such characteristics enable room‐temperature  ILs  to be  ideal 

options for a broad range of uses, particularly in electrochemical devices like LIBs [9,10]. In general, 

ILs are a class of molten salts consisting of an array of asymmetric organic cations and organic or 

inorganic  anions.  The most widely  studied  ILs  are  ammonium‐based  ILs  such  as  imidazolium, 

pyrrolidinium,  and  quaternary  ammonium‐based  ILs  [11]. At  the  same  time,  polymerized  ionic 
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liquids (PILs) are a subset of polyelectrolytes that share many features of ‘free’ ILs, including high 

conductivity, while offering inherent safety and performance issues as full assembled LIBs. Although 

many PILs have various ammonium‐based cations tethered to the polymeric backbones, imidazolium 

cations are reported to dominate due to their structural integrity and ease of synthesis.   Overall, by 

combining the benefits of polymer electrolytes and  ILs, many research studies still have potential 

chances to discuss and investigate toward high‐performance LIBs [12].   

On the other hand, the emergence of machine learning (ML) has entered the material science 

field into a new era. ML has accelerated the process of material discovery, design, and optimization 

by employing large datasets and advanced algorithms [13]. Most interestingly, ML models can make 

precise predictions by identifying patterns within the existing datasets while avoiding the pressing 

challenges  of  experimentation,  including  related  timeframe  and  costs. Although ML models  are 

simple mathematical calculations, the complex nature of materials, particularly polymers, presents 

intricate challenges in developing ML models. Therefore, recent advances in ML models have been 

widely  examined, with more  contemporary  applications  in macromolecular  studies,  discussing 

group  contributions and chemical  structures via SMILES  representation. Furthermore,  recent ML 

advancements  in  the  polymer  field  include  accelerated  polymer  simulations  [14],  prediction  of 

polymer properties  [15,16],  adhesion  strength prediction[17],  and polymer discovery  and design 

[18,19]. 

Technically, large datasets are necessary to train machine learning (ML) models. Nevertheless, 

a recent study employed a self‐supervised strategy using a graph neural network (GNN) to predict 

polymer properties solely based on polymer structure data, as  reported by Gao et al.  [20]. Those 

results paved the way for tuning to be possible on smaller datasets for specific property prediction 

tasks, thanks to the pre‐trained GNN. In data‐scarce scenarios, the results further indicated that the 

ensemble pre‐training approach outperforms other approaches, for electron affinity and ionization 

potential root mean square error (RMSE) was reduced by 28.39% and 19.09%, respectively. Kazemi‐

Khasragh et al. [28] employed a transfer strategy approach to focus on the prediction of mechanical 

and thermal properties of linear polymers. Firstly, the artificial neural network (ANN) algorithm was 

pre‐trained  to predict heat capacity at constant pressure  (Cp) using 124 data points, then  the pre‐

trained model was fine‐tuned to predict specific capacity, shear modulus flexural stress strength, and 

dynamic viscosity. In addition to transfer learning, researchers in this field have also employed other 

machine learning models. Babbar et al [21], developed three ML models, namely ANN, convolutional 

neural network (CNN), and ridge regression (RR), to predict the glass transition temperature (Tg) of 

polymers.  In  this  study,  two  types  of  molecular  fingerprints  were  used  as  input  features: 

physicochemical and  topological  fingerprints. The  former was extracted  from RDKit and used as 

input for RR and ANN models, while the latter was derived from the SMILES representation using 

one‐hot  encoding and used  as  input  for  the CNN model. The  results highlighted  the  reasonable 

performance of RR compared to powerful non‐linear models of ANN and CNN. Ascencio‐Medina et 

al [22], by analyzing a dataset of 86 polymers, investigated the dielectric permittivity in polymers. 

They  employed  a  genetic  algorithm  to  select  the most  relevant  descriptors  from  a  set  of  1273 

descriptors.  Then,  by  using  a  gradient  boosting  regressor  (GBR),  the  dielectric  constant  was 

predicted. This model achieved high accuracy with a correlation coefficient (R2) of 0.938 and 0.822 

for the training and test sets, respectively.   

Electrical conductivity is another essential property of polymers, which plays a vital role in their 

ability to transport charge. However, limited research has been conducted in this field for predicting 

the conductivity of polymers, as summarized in Table 1. Hatakeyama‐Sato et al[23], constructed a 

104‐entry  database  of  lithium‐conducting  solid  polymers,  the  largest  of  its  kind.  The  authors 

employed  a  transfer‐learned  graph  neural  network  (GNN)  for  predicting  the  conductivity  of 

electrolytes, resulting in a mean absolute error (MAE) of less than 1. The unbiased predictions of the 

model led to the discovery of superionic conductors with ionic conductivities of about 10‐3 at room 

temperature. Li et al [24], incorporated GNNs with quantum calculations to develop an automatic 

system for identifying potential ionic liquids (ILs) for ionic liquid polymer electrolytes (IPEs). Firstly, 
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based on the ensemble learning of support vector machine (SVM), random forest (RF), XGBoost, and 

graph convolutional neural networks (GCNN) the phase of ILs was predicted. After identifying the 

IL candidates, the datapoints were classified based on conductivity type (σ ≥ 5 and σ < 5). XGBoost 

and SVM performed better than other models. According to the results, the median values reported 

for the groups with σ < 5 and σ ≥ 5 are 1.8 and 9.1 mS cm‐1, respectively. Most recently, Bradford et 

al  [19]  constructed  a  chemistry‐informed ML workflow  that  predicted  the  conductivity  of  solid 

polymers by using chemical structure, temperature, molecular weight (Mw), and salt concentration. 

The  results  were  primarily  developed  using  the  novel  approach  of  ChemArr,  which  was 

benchmarked  against  two  other machine  learning models, Chemprop  and XGBoost. Among  the 

developed models,  XGBoost  exhibited  weak  performance,  while  ChemArr  outperformed  other 

models by showing low MAE and a high Spearman rank correlation coefficient.   

Taking  into  account  the  importance  of  designing  polymerized  ionic  liquids  (PILs)  as 

polyelectrolytes in LIB applications, in this study, we have exclusively considered the structural and 

electrical performance of imidazolium‐based poly (IL)s via machine learning (ML) approaches. As 

such,  four  impressive ML models,  namely:  CatBoost,  RF,  XGBoost,  and  LightGBM,  have  been 

meticulously selected to predict  ionic conductivity of  imidazolium‐based PILs both  in the form of 

solid polymer electrolytes (SPE) as well as gel polymer electrolytes (GPE). Regarding this purpose, 

input features, including chemical structure and temperature, were gathered from the literature. The 

models were trained and tested on the dataset that was collected. Afterwards, the importance of the 

input  features  on  conductivity  prediction was  investigated  by  the  best‐performing model. After 

training and testing the models, the best‐performing model was used to predict conductivity for a 

new set of data points. Most  importantly, we have aimed  to anticipate  the potential candidacy of 

ionene materials  having  conventional  polymeric  functional  groups  such  as  amides  and  imides. 

Specifically,  we  have  focused  on  investigating  the  electrochemical  performance  in  terms  of 

conductivity data of our recently developed new type of ionic polymer, in which imidazolium cations 

are tethered within the rigid polyimide (PI) and polyamide (PA) substructures, as depicted in Figure 

2 [25–27]. Overall, this study is organized into four sections. First, an introduction to lithium batteries, 

polymer electrolytes, and ML studies is provided. Then, in the methodology section, a description of 

each of the developed models is given. Moreover, this section describes the data gathering process. 

In the Results and Discussion section, the performance of the models will be assessed using various 

graphical  and  statistical methods. Additionally, a  section  is dedicated  to  the  employment of ML 

models  in  predicting  conductivity  for  ionenes  with  robust  polymeric  backbones.  Ultimately, 

conclusions are drawn  toward  the  insight of  the usage of  ionene polymeric materials as polymer 

electrolytes for LIB applications. 

 

Figure  2.  Chemical  structures  of  novel  ionene materials  having  polymeric  backbones  of  amide  and  imide 

functionalities used for the ML approach, quantifying the conductivity data in this study. 
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Table 1. Summary of AI models used for conductivity prediction. 

Ref  ML models  Inputs  Evaluation metrics   

[28]  NN  Chemical composition, Temperature  NA 

[23]  GNN 
Chemical structures, Composition 

ratio, Temperatures 
R2 = 0.16   

[24] 

1‐Unsupervised 

learning 

2‐Ensemble of SVM, 

RF, XGB, and GCNN 

Molecular structure descriptors, 

Electronic structural variables, 3D 

molecular structure fingerprints, 

Electrochemical window 

R2= 0.82, MAE = 1.8 

  [29]  DNN 
Chemical structure, Temperature, ion 

exchange capacity 
Rp = 0.951, RMSE = 0.014 

[30] 
CatBoost, XGBoost, 

RF* 

Chemical structure, Temperature, Ion 

forms, Polymer main‐chain types, 

anion‐conducting moieties. 

RMSE* = 0.014, MAE* = 

0.01 

[19] 

 

ChemArr*, 

Chemprop, XGBoost 

Chemical structure, Temperature, Mw, 

Salt concentration 

Spearman R* = 0.59, 

MAE* = 1 

[31] 
RF*, KNN, SVM, 

Adaboost, GBM 

Standard deviation of Li‐X ionic bond, 

Standard deviation of the mean 

adjacency number of Li atom, Average 

straight‐line path electronegativity, 

Average straight‐line path width, 

Packing fraction of sublattice, Average 

atomic volume, Average value of Li‐Li 

bond 

MAE* = 0.237, MSE* = 

0.134   

[32] 

RF, XGBoost*, LR, 

KNN, Chemprop 

 

Chemical structure of polymer, Salt 

chemical structure, Mw, Molality, 

Temperature 

R2* = 0.93, MAE* = 0.21, 

RMSE* = 0.31, MSE* = 

0.09     

* Model with the best performance. 

2. Materials and Methods 

2.1. Model Developments 

Four ML model of CatBoost, RF, XGBoost and LightGBM were employed in this study. These 

models will be briefly discussed in the sections below. 

2.1.1. CatBoost 

CatBoost  as  an  open‐source  gradient  boosted  decision  tree  (GBDT)  method  can  handle 

categorical features properly. The main difference between GBDT model and CatBoost is that, instead 

of preprocessing time, CatBoost deals with categorical features during training time. Prokhorenkova 

et al[33],  introduced  target statistics  (TS) as an efficient  strategy  for handling categorical  features 

while losing minimum information. In particular, CatBoost permutes the dataset for each example 

and  calculates  an  average  label  value  based  on  the  category  value  placed  previously  in  the 

permutation. Moreover, CatBoost is different from GBDT in terms of feature combinations. Almost 

all categorical  features should be combined  to make a new one. CatBoost considers combinations 

greedily when  building  a  new  split  for  the  tree.  For  the  second  and  following  splits, CatBoost 

combines all combinations. 

preset with all categorical  features. Every split  in  the  tree  is considered a category with  two 

values  and  they  are  added  together  in  combination. Additionally,  compared  to GBDT, CatBoost 

performs  an  unbiased  boosting  with  categorical  features.  To  convert  categorical  features  into 

numerical values with the TS method, the distribution will vary from the original one. In traditional 

GBDT methods, the deviation of this distribution will result in a deviation in the solution, which is 
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an inevitable problem for GBDT. A random permutation of the training data is generated in CatBoost. 

To  improve  the  robustness  of  the  algorithm, multiple permutations will  be used  by  sampling  a 

random permutation and obtaining its slope. Calculating statistics based on permutations is similar 

to those calculated for classification features. Different permutations are used to train distinct models, 

and hence, using multiple permutations will not lead to overfitting[34]. Figure 3 shows a schematic 

of CatBoost model. 

Figure 3. Schematic of the CatBoost algorithm. 

2.1.2. Random Forest 

Breiman  first developed RF  [35],  the  initial goal of RF  algorithm development was  to  solve 

unsupervised  regression  and  classification  problems.  This  technique  involves  building multiple 

independent decision trees, also referred to as ensemble trees, training them based on the desired 

dataset, and then predicting the target parameter. In this algorithm, bootstrap resampling is used to 

prevent overfitting, a resampling method that relies on replacement. A bootstrap set is created by 

replacing several samples with repeated samples from the initial data. The RF algorithm then builds 

each tree using a bootstrap set. Therefore, since the trees were constructed on varied datasets, their 

predictions would be different. The next step is to aggregate all the trees, and the final prediction is 

obtained by averaging each tree’s predictions. With the RF model, the degree of importance of each 

feature and the proximity of samples in pairs can be determined[36,37].   

2.1.3. XGBoost 

XGBoost  is  a  popular  boosting  tree  algorithm  based  on  a  decision  tree,  also  known  as  a 

classification and regression tree (CART)[38]. CART divides the dataset into two subsets at each level 

according to the boundary of a variable for regression tasks, until it reaches the maximum tree depth 
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specified by users. Searching for the best solutions is done by algorithm for a range of variables to 

minimize the cost function. Then the prediction is the average of the target value of all samples in a 

subset. CART trees can be prone to overfitting without proper regularization. One strategy for this is 

called ensemble packing of a group of estimators, in other words multiple CART models. XGBoost 

continues to add and train new trees to accommodate the remaining errors from the last iteration. 

Then a predicted value is assigned to each sample by summing all the scores of the corresponding 

leaves together. The advantage of XGBoost in performance is its reliable objective function for tree 

creation[39,40]. 

2.1.4. LightGBM 

LightGBM is a new GBDT algorithm that was first released by Microsoft by Ke et al [41], in 2017 

that has  been  employed  in  a variety of data mining  tasks  such  as  regression,  classification,  and 

sorting. The LightGBM algorithm  incorporates several novel techniques,  including gradient‐based 

one‐side sampling (GOSS), exclusive feature bundling (EFB), and a depth‐constrained histogram and 

leaf‐based growth strategy. Light GBM grows  the  tree vertically, while other algorithms,  such as 

XGBoost and GBDT, grow trees horizontally. The mechanism of GOSS involves retaining all large 

gradient  samples while performing  random  sampling on  small gradient  samples, based on  their 

proportion. The main idea of EFB is to divide the features into a smaller number of unique mutual 

bundles. 

2.1.5. Evaluation Metrics 

The performance of the conductivity prediction models was evaluated by the following metrics: 

mean  absolute  error  (MAE),  root mean  square  error  (RMSE),  and determination  coefficient  (R2). 

Commonly, these metrics are used in regression tasks, the higher the R2 value and the lower the MAE 

and RMSE value, the better would be the accuracy of the models. 

RMSE = ට
ଵ

ଶ௡
∑ ሺ𝑦௜ െ 𝑦ො௜ሻଶ௡
௜ୀଵ   (1) 

MAE = 
ଵ

௡
∑ ሺ𝑦௜ െ 𝑦ො௜ሻ
௡
௜ୀଵ   (2) 

R2 = 1 െ
∑ ሺ௬೔ି௬ො೔ሻ

మ೙
಺సభ

∑ ሺ௬೔ି௬ഢതതതሻమ
೙
಺సభ

  (3) 

2.2. Data Gathering and Model Developments   

In this study, SPEs and GPEs mediated with imidazolium‐based polymerized ionic liquids were 

gathered  from  the  literature.  For  developing  robust ML models,  a  total  of  120  datapoints were 

collected from the literature using WebPlot‐Digitizer[42,43], [44–49]. The collected dataset contains 

SMILES, temperature, and conductivity (Table 2). 
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Table 2. Collected data from the literature for conductivity prediction. 

Author  PIL‐name 
Number of 

data 

Temperature 

(K) 
Conductivity 

[42]  P(EtVIm‐TFSI) (NR)  21  298.2‐353.3  6.4E‐6‐4.4E‐4 

[43]  VEIm‐TFSI  40  303.1‐373.2  9.83E‐9‐2.41E‐4 

[44]  P‐20  7  297.8‐352.7  2.9E‐4‐1.2E‐3 

[45]  PIL‐QSE  7  285.1‐358.2  7.1E‐4‐3.7E‐3 

[46] 
MIm‐TFSI + Li‐

TFSI/EMIm‐TFSI 
9  301.5‐363.2  1.4E‐5‐6.8E‐3 

[49] 
PVIMTFSI‐co‐

PPEGMA/LiTFSI 
6  333‐357.8  3.8E‐3‐6.6E‐3 

[47]  HPILSE  23  252.9‐353.2  4E‐5‐5.3E‐3 

[48]  PIL‐GPE  7  298.1‐353.2  1.2E‐3‐5.3E‐3 

Figure 4, displays the distribution of ionic conductivity across three temperature ranges 25‐65 

°C, 65‐85 °C, and >85 °C. According to the density plot in Figure 3 (a), in the temperature range of 25 

to 65 °C, variability  in  ionic conductivity  is shown, which  is visible  in the graph with a wide and 

multi‐modal distribution  in  the plot. Also,  the  curve  shows  a  long  tail  toward  low  conductivity 

values, with a pronounced peak around 10‐5 S/cm. The curve for 65‐85 °C group  is narrower and 

more concentrated than 25‐65 °C group. In this curve fewer samples fell into the low‐conductivity 

regime. The > 85 °C group shows a very sharp and narrow peak.   

By  using  the  RDKit  library  [50],  the  molecular  descriptors  were  generated  from  SMILES 

representations. Open‐source cheminformatics toolkit RDKit, allows the calculation of a wide range 

of  chemical  descriptors.  Physicochemical  and  structural  features  in  RDKit  are  calculated  from 

SMILES  strings  and  then used  as quantitative descriptors  for ML  analysis. Molecular properties 

including  topological polar  surface area, number of H2 bond, and molecular weight  captured by 

molecular descriptors, allow for a better understanding of structure‐property relationships. Then ML 
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models including: CatBoost, RF, XGBoost, and LightGBM were employed in python environment to 

predict conductivity.   

(a) 

 
(b) 

 

Figure 4. (a) density plot of ionic conductivity in three temperature ranges (25‐65 °C, 65‐85 °C, and >85 °C) (b) 

box plot of ionic conductivity across three temperature ranges. 

Based on SMILES representations, RDKit generated 434 molecular descriptors which captured 

electronic, structural, and physicochemical properties of the molecules. In order to eliminate the effect 

of highly correlated features, Pearsonʹs correlation coefficient was used to calculate the correlation 

between all pairs of descriptors. After  the elimination, a  total of 43  features remained.  It  is worth 

noting that the PIL prefix has been added to the descriptors. The heatmap plot  in Figure 5 shows 

pairwise  correlations  between  two  descriptors,  where  each  cell  represents  the  strength  of  the 

relationship  between  the  two  features  (descriptors).  In  this  plot,  each  row  or  column  depicts  a 

pairwise  linear  relationship  between  features.  In  each  row  and  column,  a  different  feature  is 

represented, and the colors differentiate their strength and direction based on Pearson’s correlation 

coefficient. When the value is close to +1, it is described in dark red, which shows a strong positive 

linear  correlation  between  the  two  features, which means  that  by  increasing  one,  the  other will 

increase too. A value close to ‐1, represented in dark blue, indicates that when one feature increases, 

the other decreases. However, values close to 0 shows little or no linear relationship. In this heatmap 

plot as it is evidence, features such as PIL_PEOE_VSA, PIL, SMR_VSA and PIL_EState have strong 

correlations, since they belong to similar molecular descriptor families. There are some features that 

have relatively medium to high correlations with the target parameter, these features are namely: 
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PIL_MaxAbsEStateIndex,  PIL_PEOE_VSA1,  PIL_PEOE_VSA2,  PIL_SMR_VSA6,  and 

PIL_fr_methoxy. 

 

Figure 5. Heatmap of Pearson correlation coefficients between molecular descriptors generated by RDKit. 

The data were standardized to make sure the data are transformed into a common scale before 

feeding them into ML models. On the training data, GridSearchCV and K‐fold cross‐validation were 

utilized  to  optimize model  hyperparameters,  and  to  ensure  that  the  random  state was  set  for 

reproducible  cross‐validation  splits.  Tunning  of  the model  hyperparameters was  done  by  using 

GridSearchCV  to  find  the  best  parameters  for  each  model.  Following  the  selection  of 

hyperparameters, different algorithms were compared using five‐fold cross validation. The data was 

divided into train and test splits, 80% for train and 20% for test. Each test set included polymers that 

were not present in the train set. Four independent models were trained by using different random 

initial  values,  on  80%  of  the  data.  The mean R2,  the mean RMSE,  and  the mean MAE were  all 

evaluated as scoring criteria. To ensure that each polymer appeared only once in a test set, this process 

was repeated five times.   

3. Results 

R2, RMSE, and MAE  for  the employed models are presented  in Table 3. CatBoost performed 

better than other models, followed closely by RF. The performance of XGBoost is slightly worse than 

that of RF, while LightGBM had the worst performance. Figure 6, compares the scatter plots of the 

actual  versus  predicted  conductivity  values  for  different  employed ML  models:  CatBoost,  RF, 

XGBoost, and LightGBM. In this plot dashed black line corresponds to the ideal prediction scenario 

where predicted values perfectly match the actual values (y = x).   Hence, the closer the points are to 

the y = x  line  the better the models are. For CatBoost model Figure 6  (a), training data points are 

closely aligned with diagonal line, testing data points also align with the diagonal line, but they are 

slightly more  spread  than  training  data which  indicates  some  error  prediction  for  testing  data. 
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Therefore, CatBoost performs well showing high accuracy for both training and testing datapoints, 

however the slight spread of testing datapoint suggest reliable generalization with small overfitting. 

Figure 6 (b), the blue (training) points are aligned with the unity (y = x) line, suggesting good fit of 

the model over blue datapoints. The performance of the model over test datapoints is more scattered 

comparing  to CatBoost, which  indicates higher prediction  errors over unseen data. According  to 

Figure 6 (c), the training datapoints are no longer. align well with y = x line, the deviation from this 

line is further evidence for XGBoost model (comparing to two previous models) which suggests not 

very good performance of this model over training data. For testing data this dispersion is even more, 

especially  for higher values of  conductivity,  revealing  that predictions might be  less accurate  for 

higher values of conductivity. Among all of the models, LightGBM performs the least accurate model, 

Figure 6  (d), with higher deviations  for  training and  testing datapoints. This  could be a  sign  for 

difficulty of the model in capturing complex relationships for both training and testing data points. 

The heatmaps in Figure 6, shows the prediction errors of the test data across the four ML models: 

CatBoost,  RF,  XGBoost,  and  LightGBM.  This  plot  highlights  the  area  were  the  models  show 

systematic  errors. As  can be  seen  in Figure  6  (a),  the heatmap  is mainly  concentrated  along  the 

diagonal line, which interprets as predicted values. 

Table 3. Models’ performance metrics. 

 

CatBoost  RF  XGBoost  LighGBM 

Train  Test  All  Train  Test  All  Train  Test  All  Train  Test  All 

R2    0.994        0.949          0.986  0.976            0.97      0.975    0.962      0.905          0.952    0.878          0.911          0.884 

RMSE  1.2E‐4         3.35E‐4      1.87E‐4  2.55E‐4       2.57E‐4    2.56E‐4      3.2E‐4      4.5E‐4          3.55E‐4    5.81E‐4      4.41E‐4      5.56E‐4     

MAE    7.33E‐5          1.83E‐4      9.52E‐5  9.5E‐5      1.26E‐4         1E‐4      2E‐4      2.54E‐4               2.14E‐4      3.54E‐4      3.28E‐4        3.4E‐4       

are close  to actual values. This plot also  shows a narrow  spread, meaning  that  the model  is 

making relatively few incorrect predictions with only few outliers. There are some minor deviations 

for higher conductivity values, but in general the overall distribution is narrow. The systematic bias 

of CatBoost is minimal across different conductivity ranges. The heatmap of RF, Figure 7 (b), is more 

spread especially at medium to high conductivity values comparing to CatBoost model. According 

to this plot, the model tends to underpredict high conductivity values. Similar to CatBoost and RF, 

the heatmap of XGBoost Figure 7 (c), shows a high density along the diagonal, however a few smaller 

clusters appear farther from the diagonal line, this could be due to subsets of data where the model 

performs poorly  in predicting  the  values  correctly,  also  the  error  region  is wider  than previous 

models, which  shows deviations  for higher  conductivity values. The heatmap plot of LightGBM 

model Figure 7 (d), shows good predictive performance but it is more spread at higher conductivity 

values.  Possibly  due  to  underfitting,  LightGBM  and  XGBoost  make  larger  errors  in  higher 

conductivity regions. Comparing to CatBoost and RF, LightGBM and XGBoost seem to struggle more 

with high‐range values. 
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(a) CatBoost  (b) RF 

   
(c) XGBoost  (d) LightGBM 

   

Figure 6. Cross plots of actual vs predicted ionic conductivity with respect to training and testing subsets, (a) 

CatBoost, (b) RF, (c) LightGBM, (d) XGBoost. 

(a) CatBoost  (b) RF 

   
(c) XGBoost  (d) LightGBM 

   

Figure 7. Heatmaps of prediction error for test data across four ML models: (a) CatBoost, (b) RF, (c) XGBoost, 

(d) LightGBM. 
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The residual histograms and violin plots in Figure 8, provide analysis of the errors for each of 

the employed ML models. In residual plots the centered and symmetric distribution indicates good 

performance of the models with no overprediction or underprediction. A narrower spread, skewness 

or long tails show higher accuracy and systematic bias, respectively. The residual histogram plot of 

the CatBoost model is narrow and strongly centered around zero, as shown in Figure 8 (a), which 

highlights the small errors of this model, also the spread of this model is symmetric with very few 

residuals. The violin plot of train residual is highly concentrated and packed around zero, however, 

the residual of test data shows higher dispersion. Moreover, train residuals are tight which shows 

good fit of the model over training data. Overall, this model exhibits minimal overfitting and good 

generalization with slightly higher error in the test data. Figure 8 (b), the residual plot of RF shows 

wider spread as well as longer tail on both sides. Additionally, this model shows more residuals far 

from zero, which  interprets as higher variance  in errors. Violin plots of  this model  shows wider 

spread for test residuals than train residuals. In general train residuals are highly packed, and test 

datapoints show higher variance. The residual histogram of XGBoost, Figure 8  (c), has an overall 

wider spread than previous models, there are some clear deviations in small residuals. Moreover, the 

plot is shifted towards small residual (right‐skewed). The residual spread of this model as can be seen 

in violin plots is wider than CatBoost and RF for both train and test sets. LightGBM residuals, Figure 

8 (d), it has a normal distribution and is centered around zero while train data are more dispersed 

than test data. Violin plot of train and test is also similar to CatBoost and RF, while it is more dispersed 

than those models. 

                          (a) CatBoost 

                                (b) RF 

 
                          (c) XGBoost 
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                    (d) LightGBM 

 

Figure 8. Residual analysis of ML models (a) CatBoost, (b) RF, (c) XGBoost, (d) LightGBM. 

3.1. Feature Importance 

In this section, the analysis of the features affecting conductivity prediction was examined. For 

this purpose, the CatBoost model was used, which was introduced as the best model. According to 

Figure 9, the feature importance plot, temperature is identified as the most important variable in the 

prediction of  conductivity,  this  finding  is  in  line with physical  expectations,  typically  increasing 

temperature increases ionic mobility, which leads to higher conductivity, especially in electrolytes 

and  polymer  systems.  Among  the  derived  molecular  descriptors  obtained  by  RDKit  library, 

PIL_BCUT2D_MRLOW showed the second most influential feature. This parameter demonstrates a 

topological descriptor which is mainly based on molecular refractivity and atomic partial charges. 

The next  important  feature  is, PIL_SMR_VSA6, which  is a descriptor  that shows an approximate 

value of the Van der Waals surface area of atoms which have specific SMR (molar refractivity) values. 

In general, these two high ranked features reflect electron distribution characteristics of molecules, 

size, and shape. Another  important  feature  in conductivity prediction  is PIL_EState_VSA8, which 

includes electro topological state indices with the contributions of surface area. PIL_qed is the other 

influential descriptor, where this feature is based on properties like polarity and molecular weight. 

PIL_fr_unbrch_alkane, which  is  a measure  of  the  unbranched  alkane  fragments  in  a molecule, 

highlights  the  importance of branching of molecules  in predicting  the  target variable. Electronic 

properties which are derived from the charge distribution are represented by PIL_BCUT2D_CHGHI. 

This  feature  is  followed  by  PIL_PEOE_VSA8, which  contains  the  surface  area  corresponding  to 

partial atomic charges, calculated via PEOE (partial equalization of orbital electronegativities). As it 

is  evident  from  the  graph,  there  are  also  some  lower  rank  descriptors  such  as 

PIL_MinAbsEStateIndex, PIL_SlogP_VSA3,  and PIL_FractionCSP3. The mentioned  features  show 

small  impact  on  the model’s performance,  since  they  reflect  small details  about  topology  of  the 

molecules and their electronic structure. Descriptors with the least influence are placed at the bottom 

of the plot, which show almost zero or no importance.   
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Figure 9. Feature importance plot for predicting conductivity employing CatBoost model. 

3.2. Predicting Conductivity for Ionenes 

Figure 10 shows predicted conductivity values of three ionenes, namely: TC‐API(p)‐Xy, Trogerʹs 

base  (Im‐TB(p)‐PA), and  Ionic‐polyimide, at random  temperatures: 298, 308, 318. This plot shows 

how increasing temperature can increase ionic conductivity. As it is evident in this plot, each ionene 

linear  line  is decreasing  by  increasing  1000/T,  this  can  be  interpreted  as  conductivity  rises with 

temperature increases, which indicates that the model has learned the underlying thermally activated 

transport behavior. The ionic conduction in these materials is governed by Arrhenius kinetics, which 

implies that ion mobility increases with thermal energy. It is apparent that all the selected ionenes 

exhibited outstanding electrical properties with significant ionic conductivity (approaching 10−3 S 

cm−1).  Across  the  entire  temperature  range,  Trogerʹs  base  (Im‐TB(p)‐PA)  shows  the  highest 

conductivity  values.  Following  this,  ionene  TC‐API(p)‐Xy  and  ionic  polyimide  exhibit  relatively 

lower  conductivity values. These nearly parallel  lines  suggest  similar  activation  energies  for  ion 

transport  in  all  three  materials.  Vertical  separation  between  these  three  lines  indicates  that  a 

difference in their intrinsic conductance exists due to factors such as structural features, ion mobility, 

and carrier concentration. According to these results, Trogerʹs base may offer the best performance 

for  applications  such  as  electrolytes  and  ion‐exchange  membranes,  which  require  high  ionic 

conductivity, thereby paving the way for a new strategy in designing imidazolium ionenes with rigid 

backbones. In addition to capturing the overall temperature dependence of these  ionenes, the ML 

models  also  captured  their  relative  ranking,  likely  based  on  learned  structural  and  electronic 

descriptors.  In  this  regard,  the model can help predict conductivity  trends  for new candidates of 

ionenes. 
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Figure 10. Predicted conductivity values for three ionenes using the best performing model (CatBoost). 

4. Conclusions 

In  this  study  four ML models were developed  for  the prediction of  ionic  conductivity. The 

models were trained and tested on the data gathered from the literature. The developed models were 

CatBoost, RF, XGBoost, and LightGBM. There was a significant difference in the performance of the 

models  for  predicting  conductivity  values.  Across  both  training  and  testing  datasets,  CatBoost 

proved  to  be  the most  accurate  and  reliable model.  Scatter  plots,  heatmaps,  and  residual  plots 

demonstrated  the  superior  performance  of  this  model.  According  to  the  mentioned  plots,  the 

CatBoost model showed consistent predictions with the actual values. Following closely, RF showed 

excellent performance for unseen data, although it exhibited higher prediction errors at medium and 

higher  conductivity  levels.  LightGBM  and  XGBoost  performed  poorly,  with  LightGBM  having 

difficulty  in  capturing  temperature‐dependent  trends. Ultimately,  the best model  (CatBoost) was 

used  to  analyze  the  effect  of  input  parameters  on  conductivity prediction. Based  on  the  feature 

importance  diagram,  temperature  was  identified  as  the  feature  with  the  greatest  impact  on 

conductivity. Molecular descriptors extracted from SMILES were ranked in the following order of 

importance. Descriptors  such as PIL_BCUT2D_MRLOW, PIL_SMR_VSA6, and PIL_EState_VSA8. 

Moreover, the best‐performing model (CatBoost) was used to predict conductivity for three ionenes. 

Interestingly,  all  the  selected  ionenes  exhibited outstanding  electrical properties, with  significant 

ionic conductivity (approaching 10−3 S cm−1). Notably, ionene with a rigid and contorted structure 

of Trogerʹs base (Im‐TB(p)‐PA) exhibited the highest conductivity. Additionally, the model captured 

the overall temperature dependency of the employed ionenes. In general, CatBoost stands out as the 

most robust and reliable model for conductivity prediction, making it well‐suited for ionic‐mediated 

polymers with similar applications in the future.   

Author Contributions: Conceptualization, G.P. and I.K.; Methodology, Software,    and Visualization, G.P. and 

I.K.; Writing – Original Draft Preparation, G.P. and I.K.; Writing – review & editing, I.K.; Funding Acquisition, 

I.K. 

0.0006

0.0007

0.0008

0.0009

0.001

0.0011

0.0012

0.0013

0.0014

0.0015

0.0016

3.12 3.17 3.22 3.27 3.32 3.37

Io
n
ic
 c
o
n
d
u
ct
iv
it
y
 (
𝜎/
S
.c
m
‐1
)

1000/ T (K‐1)

TC‐API(p)‐Xy

Trogerʹs base (Im‐TB(p)‐

PA)

Ionic‐polyimide

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2274.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2274.v1
http://creativecommons.org/licenses/by/4.0/


  17  of  20 

 

Acknowledgment: Support for this work provided by Nazarbayev University under the Collaborative Research 

Project Grant (Grant No: 111024CRP2017) is gratefully acknowledged. 

References 

1. K. Kohzadvand, M. M. Kouhi, A. Barati, S. Omrani, and M. Ghasemi, “Prediction of  interfacial wetting 

behavior of H2/mineral/brine; implications for H2 geo‐storage,” J Energy Storage, vol. 72, Nov. 2023, doi: 

10.1016/j.est.2023.108567. 

2. G. Piroozi, M. Kouhi, A. S.‐J. of E. Storage, and undefined 2025, “Novel intelligent models for prediction of 

hydrogen  diffusion  coefficient  in  brine  using  experimental  and molecular  dynamics  simulation  data: 

Implications for,” ElsevierG Piroozi, MM Kouhi, A ShafieiJournal of Energy Storage, 2025•Elsevier, Accessed: 

May 13, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352152X25010102 

3. M. R. N. Vilanova, A. T. Flores, and J. A. P. Balestieri, “Pumped hydro storage plants: a review,” Journal of 

the  Brazilian  Society  of  Mechanical  Sciences  and  Engineering,  vol.  42,  no.  8,  pp.  1–14,  Aug.  2020,  doi: 

10.1007/S40430‐020‐02505‐0/TABLES/2. 

4. G. L. Soloveichik, “Flow Batteries: Current Status and Trends,” Chem Rev, vol. 115, no. 20, pp. 11533–11558, 

Oct. 2015, doi: 10.1021/CR500720T/ASSET/IMAGES/LARGE/CR‐2014‐00720T_0013.JPEG. 

5. M. Li, J. Lu, Z. Chen, and K. Amine, “REVIEW 1800561 (1 of 24) 30 Years of Lithium‐Ion Batteries,” 2018, 

doi: 10.1002/adma.201800561. 

6. T. Kim, W. Song, D. Y. Son, L. K. Ono, and Y. Qi, “Lithium‐ion batteries: outlook on present, future, and 

hybridized  technologies,”  J  Mater  Chem  A  Mater,  vol.  7,  no.  7,  pp.  2942–2964,  Feb.  2019,  doi: 

10.1039/C8TA10513H. 

7. A. Manthiram, “An Outlook on Lithium‐Ion Battery Technology,” ACS Cent Sci, vol. 3, no. 10, pp. 1063–

1069, Oct. 2017, doi: 10.1021/ACSCENTSCI.7B00288/ASSET/IMAGES/LARGE/OC‐2017‐002885_0004.JPEG. 

8. J. Xia, R. Petibon, D. Xiong, L. Ma, and J. R. Dahn, “Enabling linear alkyl carbonate electrolytes for high 

voltage  Li‐ion  cells,”  J  Power  Sources,  vol.  328,  pp.  124–135,  Oct.  2016,  doi: 

10.1016/J.JPOWSOUR.2016.08.015. 

9. L. Long, S. Wang, M. Xiao, and Y. Meng, “Polymer electrolytes for lithium polymer batteries,” J Mater Chem 

A Mater, vol. 4, no. 26, pp. 10038–10069, Jun. 2016, doi: 10.1039/C6TA02621D. 

10. M. Zhu et al., “Recent advances in gel polymer electrolyte for high‐performance lithium batteries,” Journal 

of Energy Chemistry, vol. 37, pp. 126–142, Oct. 2019, doi: 10.1016/J.JECHEM.2018.12.013. 

11. T. P. Barrera et al., “Next‐Generation Aviation Li‐Ion Battery Technologies‐Enabling Electrified Aircraft,” 

Electrochemical Society Interface, vol. 31, no. 3, pp. 69–74, Sep. 2022, doi: 10.1149/2.F10223IF/XML. 

12. K. Vishweswariah, A. K. Madikere Raghunatha Reddy, and K. Zaghib, “Beyond Organic Electrolytes: An 

Analysis of Ionic Liquids for Advanced Lithium Rechargeable Batteries,” Batteries 2024, Vol. 10, Page 436, 

vol. 10, no. 12, p. 436, Dec. 2024, doi: 10.3390/BATTERIES10120436. 

13. N. Chawla, N. Bharti, and S. Singh, “Recent Advances in Non‐Flammable Electrolytes for Safer Lithium‐

Ion Batteries,” Batteries 2019, Vol. 5, Page 19, vol. 5, no. 1, p. 19, Feb. 2019, doi: 10.3390/BATTERIES5010019. 

14. J. W. Fergus, “Ceramic and polymeric solid electrolytes for lithium‐ion batteries,” J Power Sources, vol. 195, 

no. 15, pp. 4554–4569, Aug. 2010, doi: 10.1016/J.JPOWSOUR.2010.01.076. 

15. E. Peled, D. Golodnitsky, G. Ardel, C. Menachem, D. Bar Tow, and V. Eshkenazy, “The Role of Sei  in 

Lithium  and Lithium‐Ion Batteries,” MRS Online Proceedings  Library  (OPL),  vol.  393, p.  209,  1995, doi: 

10.1557/PROC‐393‐209. 

16. K. Vishweswariah, A. M. R. R.‐ Batteries, and undefined 2024, “Beyond Organic Electrolytes: An Analysis 

of  Ionic Liquids  for Advanced Lithium Rechargeable Batteries,” mdpi.comK Vishweswariah, AK Madikere 

Raghunatha  Reddy,  K  ZaghibBatteries,  2024•mdpi.com,  Accessed:  Feb.  26,  2025.  [Online].  Available: 

https://www.mdpi.com/2313‐0105/10/12/436 

17. F. Gebert, M. Longhini, F. Conti, and A. J. Naylor, “An electrochemical evaluation of state‐of‐the‐art non‐

flammable liquid electrolytes for high‐voltage lithium‐ion batteries,” J Power Sources, vol. 556, p. 232412, 

Feb. 2023, doi: 10.1016/J.JPOWSOUR.2022.232412. 

18. T.  Stettner, F. C. Walter,  and A. Balducci,  “Imidazolium‐Based Protic  Ionic Liquids  as Electrolytes  for 

Lithium‐Ion Batteries,” Batter Supercaps, vol. 2, no. 1, pp. 55–59, Jan. 2019, doi: 10.1002/BATT.201800096. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2274.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2274.v1
http://creativecommons.org/licenses/by/4.0/


  18  of  20 

 

19. J. Lu, F. Yan, and J. Texter, “Advanced applications of ionic liquids in polymer science,” Prog Polym Sci, 

vol. 34, no. 5, pp. 431–448, May 2009, doi: 10.1016/J.PROGPOLYMSCI.2008.12.001. 

20. Y. Liu, T. Zhao, W.  Ju, and S. Shi, “Materials discovery and design using machine  learning,”  Journal of 

Materiomics, vol. 3, no. 3, pp. 159–177, Sep. 2017, doi: 10.1016/J.JMAT.2017.08.002. 

21. D.  Yong  and  J.  U.  Kim,  “Accelerating  Langevin  Field‐Theoretic  Simulation  of  Polymers  with  Deep 

Learning,”  Macromolecules,  vol.  55,  no.  15,  pp.  6505–6515,  Aug.  2022,  doi: 

10.1021/ACS.MACROMOL.2C00705/SUPPL_FILE/MA2C00705_SI_002.ZIP. 

22. H. Doan Tran et al., “Machine‐learning predictions of polymer properties with Polymer Genome,” J Appl 

Phys, vol. 128, no. 17, p. 171104, Nov. 2020, doi: 10.1063/5.0023759/1062836. 

23. N. Andraju, G. W. Curtzwiler, Y. Ji, E. Kozliak, and P. Ranganathan, “Machine‐Learning‐Based Predictions 

of Polymer and Postconsumer Recycled Polymer Properties: A Comprehensive Review,” ACS Appl Mater 

Interfaces,  vol.  14,  no.  38,  pp.  42771–42790,  Sep.  2022,  doi: 

10.1021/ACSAMI.2C08301/ASSET/IMAGES/LARGE/AM2C08301_0008.JPEG. 

24. J. Shi, F. Albreiki, N. Yamil J. Colón, S. Srivastava, and J. K. Whitmer, “Transfer Learning Facilitates the 

Prediction of Polymer‐Surface Adhesion Strength,” J Chem Theory Comput, vol. 19, no. 14, pp. 4631–4640, 

Jul. 2023, doi: 10.1021/ACS.JCTC.2C01314/SUPPL_FILE/CT2C01314_SI_001.PDF. 

25. B. K. Wheatle, E. F. Fuentes, N. A. Lynd, and V. Ganesan, “Design of Polymer Blend Electrolytes through 

a  Machine  Learning  Approach,”  Macromolecules,  vol.  53,  no.  21,  pp.  9449–9459,  Nov.  2020,  doi: 

10.1021/ACS.MACROMOL.0C01547/ASSET/IMAGES/MEDIUM/MA0C01547_M038.GIF. 

26. G. Bradford et al., “Chemistry‐Informed Machine Learning for Polymer Electrolyte Discovery,” ACS Cent 

Sci,  vol.  9,  no.  2,  pp.  206–216,  Feb.  2023,  doi: 

10.1021/ACSCENTSCI.2C01123/SUPPL_FILE/OC2C01123_SI_001.PDF. 

27. Q. Gao, T. Dukker, A. M. Schweidtmann, and  J. M. Weber, “Self‐supervised graph neural networks  for 

polymer property prediction †,” Cite this: Mol. Syst. Des. Eng, vol. 9, p. 1130, 2024, doi: 10.1039/d4me00088a. 

28. E. Kazemi‐Khasragh, C. González, and M. Haranczyk, “Toward diverse polymer property prediction using 

transfer  learning,”  Comput  Mater  Sci,  vol.  244,  p.  113206,  Sep.  2024,  doi: 

10.1016/J.COMMATSCI.2024.113206. 

29. A. Babbar, S. Ragunathan, D. Mitra, A. Dutta, and T. K. Patra, “Explainability and extrapolation of machine 

learning models for predicting the glass transition temperature of polymers,” Journal of Polymer Science, 

vol. 62, no. 6, pp. 1175–1186, Mar. 2024, doi: 10.1002/POL.20230714. 

30. E.  Ascencio‐Medina  et  al.,  “Prediction  of  Dielectric  Constant  in  Series  of  Polymers  by  Quantitative 

Structure‐Property  Relationship  (QSPR),”  Polymers  (Basel),  vol.  16,  no.  19,  p.  2731,  Oct.  2024,  doi: 

10.3390/POLYM16192731/S1. 

31. K. Hatakeyama‐Sato, T. Tezuka, M. Umeki, and K. Oyaizu, “AI‐Assisted Exploration of Superionic Glass‐

Type Li+ Conductors with Aromatic Structures,” J Am Chem Soc, vol. 142, no. 7, pp. 3301–3305, Feb. 2020, 

doi: 10.1021/JACS.9B11442/SUPPL_FILE/JA9B11442_SI_001.PDF. 

32. K. Li, J. Wang, Y. Song, and Y. Wang, “Machine learning‐guided discovery of ionic polymer electrolytes 

for lithium metal batteries,” Nat Commun, vol. 14, no. 1, Dec. 2023, doi: 10.1038/s41467‐023‐38493‐7. 

33. S.  Ibrahim and M. R.  Johan, “Conductivity, Thermal and Neural Network Model Nanocomposite Solid 

Polymer  Electrolyte  S  LiPF6),”  Int  J  Electrochem  Sci,  vol.  6,  no.  11,  pp.  5565–5587,  Nov.  2011,  doi: 

10.1016/S1452‐3981(23)18428‐8. 

34. F. H. Zhai  et  al.,  “A deep  learning  protocol  for  analyzing  and  predicting  ionic  conductivity  of  anion 

exchange membranes,” J Memb Sci, vol. 642, p. 119983, Feb. 2022, doi: 10.1016/J.MEMSCI.2021.119983. 

35. Y. K. Phua, T. Fujigaya, and K. Kato, “Predicting the anion conductivities and alkaline stabilities of anion 

conducting membrane polymeric materials: development of explainable machine  learning models,” Sci 

Technol Adv Mater, vol. 24, no. 1, p. 2261833, 2023, doi: 10.1080/14686996.2023.2261833/ASSET/DD76E15A‐

EC30‐460E‐829B‐86B9C6F41D97/ASSETS/GRAPHIC/TSTA_A_2261833_F0003_OC.JPG. 

36. J. Wang  and  P.  Rajendran,  “Conductivity  Prediction Method  of  Solid  Electrolyte Materials  Based  on 

Pearson Coefficient Method and Ensemble Learning,”  Journal of Artificial  Intelligence and Technology, 

Nov. 2024, doi: 10.37965/JAIT.2024.0551. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2274.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2274.v1
http://creativecommons.org/licenses/by/4.0/


  19  of  20 

 

37. U. Arora, M. Singh, S. Dabade, and A. Karim, “Analyzing the efficacy of different machine learning models 

for property prediction of solid polymer electrolytes,” Jul. 2024, doi: 10.26434/CHEMRXIV‐2024‐0T7MW. 

38. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “CatBoost: unbiased boosting 

with categorical features,” proceedings.neurips.ccL Prokhorenkova, G Gusev, A Vorobev, AV Dorogush, 

A GulinAdvances in neural information processing systems, 2018•proceedings.neurips.cc, Accessed: Mar. 

11,  2025.  [Online].  Available: 

https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549‐Abstract.html 

39. J. T. Hancock and T. M. Khoshgoftaar, “CatBoost for big data: an interdisciplinary review,” J Big Data, vol. 

7, no. 1, pp. 1–45, Dec. 2020, doi: 10.1186/S40537‐020‐00369‐8/FIGURES/9. 

40. L. Breiman, “Random forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324. 

41. A. Parmar, R. Katariya, and V. Patel, “A Review on Random Forest: An Ensemble Classifier,” Lecture Notes 

on Data Engineering and Communications Technologies, vol. 26, pp. 758–763, 2019, doi: 10.1007/978‐3‐030‐

03146‐6_86. 

42. M. Belgiu and L. Drăgu, “Random forest in remote sensing: A review of applications and future directions,” 

ISPRS  Journal  of  Photogrammetry  and  Remote  Sensing,  vol.  114,  pp.  24–31,  Apr.  2016,  doi: 

10.1016/J.ISPRSJPRS.2016.01.011. 

43. T.  Chen,  T. He, M.  Benesty,  V. K.‐…  version  0.4‐2,  and  undefined  2015,  “Xgboost:  extreme  gradient 

boosting,” cran.ms.unimelb.edu.auT Chen, T He, M Benesty, V Khotilovich, Y Tang, H Cho, K Chen, R 

Mitchell, I Cano, T ZhouR package version 0.4‐2, 2015•cran.ms.unimelb.edu.au, 2024, Accessed: Mar. 11, 

2025. [Online]. Available: https://cran.ms.unimelb.edu.au/web/packages/xgboost/vignettes/xgboost.pdf 

44. L. Mackey, J. Bryan, M. M.‐N. 2014 W. on High, and undefined 2015, “Weighted classification cascades for 

optimizing discovery significance in the higgsml challenge,” proceedings.mlr.pressL Mackey, J Bryan, MY 

MoNIPS 2014 Workshop on High‐energy Physics and Machine Learning, 2015•proceedings.mlr.press, vol. 

42,  pp.  129–134,  2015,  Accessed:  Mar.  11,  2025.  [Online].  Available: 

http://proceedings.mlr.press/v42/mack14.html 

45. T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proceedings of the ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, vol. 13‐17‐August‐2016, pp. 785–794, 

Aug. 2016, doi: 10.1145/2939672.2939785. 

46. G. Ke, Q. Meng, T. Finley, … T. W.‐A. in neural, and undefined 2017, “Lightgbm: A highly efficient gradient 

boosting decision tree,” proceedings.neurips.ccG Ke, Q Meng, T Finley, T Wang, W Chen, W Ma, Q Ye, TY 

LiuAdvances in neural information processing systems, 2017•proceedings.neurips.cc, Accessed: Mar. 11, 

2025.  [Online].  Available: 

https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa‐Abstract.html 

47. K. Yin, Z. Zhang, L. Yang, and S. I. Hirano, “An  imidazolium‐based polymerized  ionic  liquid via novel 

synthetic strategy as polymer electrolytes for lithium‐ion batteries,” J Power Sources, vol. 258, pp. 150–154, 

Jul. 2014, doi: 10.1016/J.JPOWSOUR.2014.02.057. 

48. F. Ma et al., “Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All‐Solid‐

State  Lithium‐Ion  Batteries,”  ACS  Sustain  Chem  Eng,  vol.  7,  no.  5,  pp.  4675–4683, Mar.  2019,  doi: 

10.1021/ACSSUSCHEMENG.8B04076/ASSET/IMAGES/LARGE/SC‐2018‐04076A_0008.JPEG. 

49. Y. C. Tseng, S. H. Hsiang, C. H. Tsao, H. Teng, S. S. Hou, and  J. S.  Jan, “In situ  formation of polymer 

electrolytes  using  a  dicationic  imidazolium  cross‐linker  for  high‐performance  lithium‐ion  batteries,”  J 

Mater Chem A Mater, vol. 9, no. 9, pp. 5796–5806, Mar. 2021, doi: 10.1039/D0TA09249E. 

50. T. Huang, M. C. Long, X. L. Wang, G. Wu, and Y. Z. Wang, “One‐step preparation of poly (ionic liquid)‐

based  flexible  electrolytes  by  in‐situ  polymerization  for  dendrite‐free  lithium‐ion  batteries,” Chemical 

Engineering Journal, vol. 375, p. 122062, Nov. 2019, doi: 10.1016/J.CEJ.2019.122062. 

51. T.  L.  Chen,  R.  Sun,  C. Willis,  B.  F. Morgan,  F.  L.  Beyer,  and  Y. A.  Elabd,  “Lithium  ion  conducting 

polymerized ionic liquid pentablock terpolymers as solid‐state electrolytes,” Polymer (Guildf), vol. 161, pp. 

128–138, Jan. 2019, doi: 10.1016/J.POLYMER.2018.12.013. 

52. D. Zhou et al., “In situ synthesis of hierarchical poly (ionic liquid)‐based solid electrolytes for high‐safety 

lithium‐ion  and  sodium‐ion  batteries,”  Nano  Energy,  vol.  33,  pp.  45–54,  Mar.  2017,  doi: 

10.1016/J.NANOEN.2017.01.027. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2274.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2274.v1
http://creativecommons.org/licenses/by/4.0/


  20  of  20 

 

53. H. Niu et al., “Preparation of  imidazolium based polymerized  ionic  liquids gel polymer electrolytes for 

high‐performance  lithium  batteries,”  Mater  Chem  Phys,  vol.  293,  p.  126971,  Jan.  2023,  doi: 

10.1016/J.MATCHEMPHYS.2022.126971. 

54. S.  S. More  et  al.,  “Imidazolium  Functionalized Copolymer  Supported  Solvate  Ionic Liquid  Based Gel 

Polymer Electrolyte  for Lithium  Ion Batteries,” ACS Appl Polym Mater, vol.  27, p.  45, Oct.  2024, doi: 

10.1021/ACSAPM.4C02103/ASSET/IMAGES/LARGE/AP4C02103_0005.JPEG. 

55. A. B. Georgescu et al., “Database, Features, and Machine Learning Model to Identify Thermally Driven 

Metal‐Insulator Transition Compounds,” Chemistry of Materials, vol. 33, no. 14, pp. 5591–5605, Jul. 2021, 

doi: 10.1021/ACS.CHEMMATER.1C00905/ASSET/IMAGES/LARGE/CM1C00905_0017.JPEG. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2274.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2274.v1
http://creativecommons.org/licenses/by/4.0/

