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Abstract: The stability properties of the Hill equation are discussed, and especially those of the Mathieu equation

that characterize ion motion in electrodynamic traps. The solutions of the Mathieu equation for a trapped ion are

characterized by using the Floquet theory and Hill’s Method solution, which yields an infinite system of linear

and homogeneous equations whose coefficients are recursively determined. Stability is discussed for parameters

a and q that are real. Characteristic curves are introduced naturally by the Sturm-Liouville problem for the well

known even and odd Mathieu equations cem(z, q) and sem(z, q). We illustrate the stability diagram for a combined

(Paul and Penning) trap and represent the frontiers of the stability domains for axial and radial motion. In case of

a Paul trap the stable solution corresponds to a superposition of harmonic motions. The problem of evaluating the

maximum amplitudes of stable oscillations for the ideal conditions (taken into consideration) is also approached.

Anharmonic corrections are discussed within the frame of the perturbation theory, while the frontiers of the

modified stability domains are determined as a function of the chosen perturbation parameter. The results apply

to 2D and 3D ion traps used for different applications in quantum engineering, among which optical clocks,

quantum logic and quantum metrology, but not restricted only to these.

Keywords: Mathieu-Hill equation; Floquet theory; Sturm-Liouville problem; perturbation method; Paul trap;

stability diagram
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1. Introduction

Linear differential equations (LDEs) with variable (periodic) coefficients are ubiquitous in both
physics and engineering, but their solutions are generally identified by means of numerical simulations.
In an effort to identify a solution for such system, it is essential to infer the so called Floquet or
characteristic exponents that define a fundamental matrix associated to the system [1]. One of the
most prevalent approaches used in case of LDEs with periodic coefficients is based on truncated
Fourier series [2], whose coefficients are derived by means of the Harmonic Balance (HB) approximate
method [3,4] that is employed to investigate non-linear oscillating systems described by ordinary
non-linear differential equations (NLDEs) [5].

Mathieu functions of period π or 2π, also known as elliptic cylinder functions, were introduced in
1868 by Mathieu [6] together with the so-called modified Mathieu functions [7], in order to characterize
the vibrations of an elastic membrane placed in a fixed elliptical hoop [8,9]. As the Mathieu equation
does not possess closed-form analytic solution, its applications are affected with analytical [10] and
numerical approximation schemes [11], along with nonlinear analysis of the associated stability
charts [12,13]. Therefore, analytical solutions of Mathieu (Hill) or Duffing equations are generally
investigated by means of various perturbation techniques [14–16], while other approaches also use
non-perturbative techniques to characterize the parametric damping nonlinear Mathieu–Duffing
oscillator [17].

During the last 150 years, Mathieu-type linear or nonlinear parametric differential equations have
been the subject of large scientific interest, because of their frequent use in applied mathematics [18,19],
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quantum physics [20,21], quantum optics [22], engineering [12], analytical chemistry, mechanics [13,14],
as well as in general relativity [23] and astrophysics [24]. For instance, the Mathieu-Hill equation
is employed to characterize periodic orbits in a classical model of the magnetic hydrogen atom in
Ref. [25]. An infinite Hill determinant may be computed, which enables one to infer the discriminant
of the relevant Whittaker-Hill equation [26] that is used to characterize the stability of the H atom
periodic orbits. Such method is less elaborate in comparison with the numerical integrations of the
associated orbits.

Analytic periodic approximations for differential equations of Hill type are investigated in [3],
where two different methods are employed in the straightforward case of a Mathieu equation. The
first method is triggered by the HB method [4,27], with an aim to identify analytic approximations for
the critical values and focus on periodic solutions of the Mathieu equation. It is demonstrated that
kind of solutions are valid for any values of the parameter q. The second method exploits truncations
of Fourier series [2].

1.1. Applications of Mathieu (Hill) Equation in Case of Electrodynamic Ion Traps. Nonlinear (Anharmonic)
Traps. Kicked Mathieu-Duffing (Parametric) Oscillator

Scientists have always focused on developing new experimental techniques intended for confining
single particles (neutral or electrically charged atoms and molecules, photons, electrons, antimatter,
etc.) in a sharply defined region in space, under conditions of minimal perturbations (by creating
an almost interaction free environment) [28–32]. This pursuit led to the development of radically
new methods aimed at confining atomic and subatomic particles, which resulted in the maturation
of optical tweezers, ion trap or magneto-optical (MOT) trap based techniques (including optical
lattices) [20,33–35]. Prof. W. Paul had the idea of using a rotating or vibrating saddle–like electrostatic
potential to confine ions or electrically charged particles [28,36] within a well defined area, under
conditions of dynamical equilibrium [37,38]. Ion dynamics in a Paul (or RF) trap is characterized by a
Mathieu-Hill type equation [20,39]. The Paul trap apparatus [in case of both 2D linear ion traps (LIT)
and 3D versions] has been developed and refined for high finesse quantum engineering experiments,
high precision spectroscopy [40,41], along with classical mass spectrometry (MS) [42–47] or chemical
analysis [48], including the detection of aerosols and chemical warfare [49–57]. Besides, ion traps also
enable exceptional control in preparing and manipulating atomic quantum states [58–63], which is why
their wide area of applications also includes quantum logic [64–68], quantum sensing [69–72], quantum
metrology [73,74] and even time fractals [75] or time crystals [76]. To these one adds high accuracy
optical frequency standards [77–80], which are amongst the most sensitive quantum sensors [81,82]
used to perform searches for physics beyond the Standard Model (BSM) [83–85] or to disseminate
atomic time scales and redefine the SI unit of time, the second [86–90].

An electrodynamic trap is highly susceptible to geometric imperfections and electrode misalign-
ment [44,91,92], that lead to the occurrence of local minima in the trapping potential and nonlinear
resonances in the ion dynamics [47,93–96]. In case of 2D traps, motional coupling between axial and
radial directions is reported [97,98]. Deviations of the trap potential from an ideal quadrupole lead to
parasitic effects [99] and impose limitations on the number of ions that can be confined, and implicitly
on the signal to noise ratio (SNR) [70,100,101]. The effects produced by the presence of higher order
anharmonic terms [65] of the trapping potential (for linear strings of trapped ions) is investigated
in [102], where two distinct effects are emphasized: a) an alteration of the oscillation frequencies and
amplitudes of the ions’ normal modes of vibration in case of many-ion crystals, because each ion
experiences a different curvature in the trap potential, along with b) significant amplitude-dependent
shifts of the normal-mode frequencies, triggered by increased anharmonicity or higher excitation
amplitude. As the ratio between the anharmonic and harmonic terms typically increases when the
ion-electrode distance is reduced, it is demonstrated that anharmonic effects become more critical
by lessening the ion trap scale. This requires special care, particularly in quantum computing with
trapped ions [70,103] or in case of single ion [104–106] and multi-ion optical clocks [79,107–109]. On
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the other hand, it was demonstrated that an increased dodecapole potential generated in an asymmet-
ric linear ion trap (LIT) [97] opens new pathways for exciting applications in mass spectrometry or
Coulomb crystals. Such a setup also enables dark ion (inappropriate confined species) elimination
from a trapped ion-chain consisting of physical qubits [47], or performing searches for time and parity
violations that could constrain sources of new physics BSM [83,110,111].

Ref. [112] introduces a flow equation to approximate the solution of a weakly nonlinear Math-
ieu equation (NME), employed to characterize ion dynamics in the neighbourhood of the stability
boundary of ideal traps. The HB method [4] is employed in [113] to explore the coupling effects of
hexapole and octopole fields on ion dynamics in a quadrupole ion trap (QIT). Ion motion characteris-
tics, e.g. motion center displacement, secular frequency shift, nonlinear resonance curve and buffer gas
damping effects have been investigated. It turns out that hexapole fields have larger impact on ion
motion center displacement, while octopole fields are mainly responsible for the ion secular frequency
shift. In addition, the nonlinear features induced by hexapole and octopole fields may enhance or
cancel each other. Ion dynamics in nonlinear Paul traps is investigated in [114] using the theoretical
HB method, which allows one to derive the analytical ion trajectory and ion motion frequency in the
superimposed octopole field by solving the NME [99]. The HB method is then validated by means of
the numerical fourth-order Runge-Kutta (4th RK) method. The incremental HB method alongside with
the path-following technique is applied in Ref. [115], where the Mathieu-Duffing nonlinear oscillator
model (a Mathieu equation with cubic nonlinear term [4,116]) is employed to explore the steady-state
response of a nonlinear piezoelectric energy harvester which undergoes external and parametric
excitation. Ref. [115] also establishes that for some specific combination of the system parameters,
vibration amplitudes and harvested power can be amplified up to three or five times in comparison
to the classical broadband nonlinear energy harvester based on the forced (kicked) Duffing oscillator
(DO) [15,116,117]. A method to generate stability plots for the Mathieu equation in case of a toroidal
ion trap mass analyser is presented in [118].

The response of a DO to a harmonic excitation in the presence of (viscous) damping is known to
exhibit, among other features, hysteretic and chaotic behaviors [1,13,98,116,119]. It is demonstrated
that in particular cases the damping force may induce instability in the ion dynamics [120,121]. For
instance, Ref. [122] explores the role of field inhomogeneities in altering the stability boundaries in
nonlinear Paul traps, taking into account higher order terms in the equation of motion. The Poincaré-
Lighthill-Kuo (PLK) method is employed in [123] to derive an analytical expression on the stability
boundary and characterize the ion trajectory within a nonlinear Paul trap. The paper shows that a
multipole superposition model (which essentially involves the octopole component) explains quite
well how the field inhomogeneities shift the stable trapping region.

Particle dynamics in a nonlinear quadrupole Paul trap with octopole anharmonicity (which is a
well-known dissipative system [38,124]), is described by a NME [4,125] which includes all perturbing
contributions such as: damping, multipole terms of the potential and a harmonic excitation force
(periodic kicking). To complicate the picture even more, the ion also undergoes interaction with a
laser field [126], in presence of contributions from the hexapole and octopole fields that superpose
over the harmonic trap potential. Hence, it was demonstrated that a damped parametric oscillator
(PO) levitated in a Paul trap exhibits fractal properties and complex chaotic orbits, along with the
emergence of strange attractors (which are often called fractal sets) [126,127]. Ion motion on the strange
attractor exhibits sensible dependence on the initial conditions. Several recent papers also demonstrate
that ion dynamics within a Paul trap can be assimilated with the equation that describes a damped
driven DO [98,99]. The equation of motion for such system is similar to a perturbed Duffing-type
equation [15], which is a generalization of the linear differential equation that describes damped and
forced harmonic motion [128,129].

Quantum dynamics of general time-dependent three coupled oscillators based on using the
unitary transformation method is explored in Ref. [130], which also applies to particle trapping in ion
traps and electromagnetic fields. Ref. [131] explores classical and quantum integrability for a trapped
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ion Hamiltonian in 3D space, under conditions of a non-quadratic potential with superpositions of
the hexapole and octopole terms in the series expansion of the electric potential [132]. The Painlevé
analysis is employed to determine new integrable cases. It is also demonstrated that the 3D perturbed
Hamiltonian is completely integrable in the sense of Liouville [131]. Late results also show the effective
potential of an ion in 3D multipole fields in the mixed-mode is characterized by multiple isolated local
minima. In addition, the specific number and spatial positions of the stable quasi-equilibrium points
depend on the a/q parameters ratio and the polarity of the electrodes DC voltage component [133].
An iterative method is employed to derive the stability parameters from measured secular frequencies,
which is presented in Ref. [104].

1.2. Mass Spectrometry with Ion Traps. Late Developments

As the Mathieu equation describes the associated ion dynamics, the dependence of an electrody-
namic (Paul) trap on both the ion mass and charge makes confinement of two ion species quite intricate.
This is an outcome of the fact that heavier ion species exhibit a lower specific charge Q/M ratio, which
results in weaker confinement by the RF trapping field [134]. In contrast, confining electrons in a
Paul trap requires drive frequencies around 1 GHz, while confinement of different ion species (Al, Ca,
Ba, Sr, Yb) requires oscillating electric quadrupole fields in the range of tens of MHz. Commercial
Off-The-Shelf (COTS) Quadrupole Mass Spectrometers (QMS) available on the market use oscillating
quadrupole fields that operate at frequencies starting from the MHz range (in case of light ions) down
to tens of kHz, when investigating heavy molecules characterized by low Q/M ratio. Probability
plots illustrate that heavy ions are more probably distributed near the maximum of their oscillation
amplitude, while lighter ions position themselves at the center of their oscillation [135].

What is more, it is estimated that COTS MS and modified COTS hardware represent versatile tools
that are capable of lessening the costs associated with exploration missions [136]. Hence, evaluation
and optimization of COTS systems for space mission requirements is presumed to provide affordable
analytical tools that enable a wider science community to bring a contribution in space science missions.
An example would be the Mass Spectrometer Observing Lunar Operations (MSOLO) [137] that is
intended to help NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) mission science
team to investigate the chemical composition of the lunar soil and search for water on the surface
of the Moon. Another example is the Development and Advancement of Lunar Instrumentation
Program (DALI) implemented by NASA. The DALI program has funded the development of the
Environmental Analysis of the Bounded Lunar Exosphere (ENABLE) project. One of the tasks of
ENABLE- performed at the Southwest Research Institute (sWRI) - lies in adapting a COTS QMS to
operate as a space-qualified prototype instrument that could serve aboard multiple mission platforms
to monitor environmental conditions under multiple lunar mission scenarios [138,139].

1.3. Ultraprecise Optical Atomic Clocks Based on Ultracold Ions. Current Directions of Action

Different ion trap geometries and electrode space arrangements are generally used (especially
hyperbolic and cylindrical traps), in order to achieve a harmonic (electric) trapping potential around
the trap centre. Whilst hyperbolic geometries surround the trap centre almost entirely, cylindrical
ones usually exhibit open-endcap designs that allow better axial access to the centre and enhanced
interaction between levitated particles and laser beams used for cooling or manipulation [140], which
makes them suited for quantum logic, quantum optics and quantum metrology applications. For this
reason, classical (hyperbolic) endcap electrode geometries are frequently employed when building
single ion optical clocks, as they provide certain benefits such as a saddle shaped trapping potential
which is essentially quadrupole, along with an open electrode structure that enables effective fluo-
rescence detection [104,106]. Furthermore, a hyperbolic trap potential exhibits true azimuthal angle
independence due to the electrode symmetry [141]. An open endcap trap design also exhibits a smaller
quadrupole field component in the series expansion of the trap potential, while higher order terms
must be considered when calculating the potential apart from the origin. Consequently, a careful trap
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design must consider and minimize issues such as potential frequency shifts and systematic errors in
the atomic clock operation.

The sensitivity of optical atomic clocks [77,142] as quantum sensors is limited by the Standard
Quantum Limit (SQL), imposed by the inherent projection noise of a quantum measurement [143].
Recent developments in atomic physics have enabled the experimental generation of many-body entan-
gled states to boost the performance of quantum sensors beyond the SQL [60,71,144,145]. Furthermore,
it is anticipated that the use of compound atomic clocks can enhance the stability of single ion clocks
with long clock transition lifetimes to levels comparable to that of optical lattice clocks [80,106]. For
ion species with shorter lifetimes, the stability can be improved directly by increasing the number
of ions, but this approach requires special care in the selection of the atomic transition and offers
the potential for a stability beyond the SQL , which could be a viable method to further improve the
stability of optical clocks [109] and provide quantum-limited optical time transfer [87,146] to achieve
intercontinental clock comparisons through a common-view node in geostationary orbit (GEO). Several
missions such as NASA’s Deep Space Atomic Clock (DSAC) or several European Space Agency (ESA)
missions are based on deploying optical clocks in space.

1.4. Structure of the Paper

All the aspects presented above motivate the interest towards further investigations on the Hill
(Mathieu) class of equations, in order to identify new methods and techniques to mitigate anharmonic
effects in case of custom made Paul traps used in laboratories, including anharmonic terms in the
potential energy [147]. As the technology matures and the trap dimensions continuously scale down,
studies are focused on exploring the anharmonic terms of the RF trapping potential for different
implementations (geometries) of a quadrupole Paul trap [101,102]. Even if ion traps are intensely
investigated both theoretically and experimentally, the effect of small perturbations from ideal condi-
tions due to higher order (multipole) terms of the electric potential, trap asymmetry and geometric
imperfections [92,98], along with patch potentials or other perturbing effects, is an issue of high interest.
The paper brings new contributions towards this direction.

Section 1 is also conceived as a review of the applications of ion traps in quantum technologies,
mass spectrometry and searches for physics BSM, where among the References the reader will discover
some of the most recent advances in the domain. As traps used in experiments across world laboratories
are far from being ideal, parasitic effects alter the dynamics of trapped ions and intense efforts are
performed to mitigate and minimize their influence. Section 2 investigates the properties of the
Mathieu-Hill equations. Based on the Floquet theorem use Floquet’s theorem and Hill’s Method
solution, a recurrence relation is inferred. The Brillouin method is also explained. Section 3 investigates
stability properties of the solutions of the Mathieu-Hill equation for a trapped ion. It is shown that
the solution can be expressed as a Hill series, which introduced into the Mathieu equation yields a
recurrence relationship that helps finding the characteristic (Floquet) exponent by employing Sträng’s
technique, which is explicitly detailed in Appendix A.1. The stable solution of motion corresponds
to a superposition of harmonic motions. The stability diagram for an electrodynamic (Paul) trap is
illustrated as a function of the Mathieu function eigenvalues, along with the stability diagram for a
combined (Paul and Penning) trap, where both axial and radial dynamics is considered. Ion trajectories
in the phase space are discussed and we infer the transfer matrix along with the maximum amplitude
of stable oscillations for trapped ions.

Section 4 approaches an issue of large interest by exploring the competition between the ion mi-
cromotion and the multipole anharmonicities of the trap electric potential, with an aim to characterize
ion dynamics and eventually discriminate between ordered and irregular (chaotic) motion [126]. We
supply the modified frontiers of the stability diagram in case of an electrodynamic trap with nonlinear
octopole term of the electric potential by using the perturbation theory, as a function of the perturbation
parameter we choose.
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2. Mathieu-Hill Equations

The Hill differential equation is similar to Mathieu’s equation, but exhibits a more general nature.
It arises in Hill’s method [148,149] to establish the motion of the Lunar Perigee and it represents a
generalisation of the Mathieu equation [18,26,150]. The Mathieu-Hill equation is a homogeneous,
second-order ordinary differential equation (ODE) with variable (periodic) coefficients [4,13]. It
characterizes dynamical systems that exhibit intrinsic periodicity and parametric behaviour, such
as modulation of radio carrier waves, transverse vibrations of a tense elastic membrane, stability of
periodic motion in a non-linear system, the focus and defocus of beams in particle accelerators [151,152],
or it is employed to explore planet dynamics [24]. The Hill equation takes the canonical or standard
form of a reduced linear equation of the second order [8,10,19,153]:

d2w
dτ2 + J(τ)w = 0 , (1)

where J stands for a continuous and even function, periodic in τ. The period is usually taken equal
to π for historical reasons [153]. The differential equation (1) was discussed by Mathieu in 1868 in
connexion with the problem of vibrations of an elliptic membrane [6]. It is also assumed that the
function J(τ) can be expressed as a Fourier series [26]

J(τ) = θ0 +
∞

∑
s=1

2θs cos 2τ , (2)

which converges within an infinite band in the τ plan that includes the real axis. If θs = 0 for s ≥ 2,
then eq. (1) turns into the Mathieu equation. What is more, eq (1) can also be arranged as:

d2w
dτ2 + [a − 2qψ(τ)]w = 0 , (3)

where ψ(τ) represents a continuous and even function of period π, while a and q denote adimensional
parameters [154]. In the particular case of Mathieu’s general equation or Hill’s equation, a fundamental
system of solutions consists of eµτϕ(τ) and e−µτϕ(−τ), as the equation is invariable to the change
−τ → τ. Consequently, Floquet demonstrated that the complete solution of Mathieu’s general
equation (1) can be expressed as [26,150,153,155,156]:

w = Aeµτϕ(τ) + Be−µτϕ(−τ) , (4)

where µ ∈ C is called Floquet or characteristic exponent and it is a definite function of the a and q
parameters, ϕ is a periodic class C2 function (twice continuously differentiable) [157], while A, B stand
for arbitrary constants. Then, based on the Floquet theorem and according to Hill’s method one may
assume a series solution

w = eµτ
∞

∑
s=−∞

c2se2isτ =
∞

∑
s=−∞

c2se(µ+2is)τ . (5)

By introducing eq. (5) into eq. (1) one infers a recurrence relation:

(µ + 2is)2c2s +
∞

∑
m=−∞

θ2mc2s+m = 0 , s ∈ Z , (6)

where Z is the set of integer numbers, while θ−2m = θ2m. If one tries to eliminate the term c2s in eq.
(6), then a nonconvergent infinite determinant [26] would result. To avoid such an outcome, every
expression in eq. (6) is divided to its central term (µ + 2is)2 + θ0. To determine the characteristic
exponent, one multiplies the system matrix described by eq. (6) with a diagonal matrix. Then, a
matrix results whose diagonal entries are each one equal to unity, assuming that none of the terms
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(µ + 2is)2 + θ0 vanishes. By denoting the determinant of this matrix as △(iµ), the equation that
determines the Floquet exponent µ is [26]

△(iµ) = 0 . (7)

What is more, eq. (7) can be further arranged as:

cosh πµ = 1 − 2△(0) sin2 1
2

π
√

θ0 . (8)

When µ has been determined, the c2s coefficients can be inferred in terms of c0 and co-factors of
△(iµ) = 0. Thus, the solution of the Hill differential equation is complete. In case of a fairly rapid
convergence of the determinant △(iµ), eq. (7) can be used in its algebraic as well as recursive and
explicit form, which represents Hill’s original method [9,26]. Evaluation of the determinant △(0) and
use of eq. (8) represents an alternative method when this determinant converges quite well. A practical
method to solve the Hill equation was suggested by Brillouin [153], based on the expression

sinh2
(

1
2

πµ

)
= w′

1

(π

2

)
w2

(π

2

)
, (9)

where w1 and w2 stand for two fundamental solutions. If a periodic fundamental solution exists
for the Mathieu equation, then the existence of the other fundamental solution is forbidden and
the characteristic exponent of the periodic solution corresponds to the a and q parameters of the
characteristic curves that separate the stability domains. In case of the Hill equation, such property is
not generally satisfied. Eq. (9) is useful to compare with Whittaker’s theory on the Hill equation [26].
The advantage of applying such method lies in the fact that it works with periodic J(τ) functions that
exhibit a finite number of discontinuities.

For example, Ref. [158] investigates the modes which diagonalize the dynamical problem for
linearly coupled Mathieu equations, which leads to the Floquet–Lyapunov transformation where
the motion is associated with decoupled linear oscillators. The method is then used to solve the
Heisenberg equations of the corresponding quantum-mechanical problem, and to determine the
quantum wavefunctions for stable oscillations in the configuration (Hilbert) space. Such transformation
and solution can be applied to more generic linear systems with periodic coefficients, such as coupled
Hill equations and periodically driven parametric oscillators.

3. Stability of the Solutions of the Mathieu-Hill Equation for a Trapped Ion

The equation of motion for an ion confined within a Paul (electrodynamic) trap exhibits the
standard form of the Mathieu equation [18,159–161]

d2w
dτ2 + [a − 2q cos(2τ)]w = 0 , (10)

with τ = Ωt/2 dimensionless, where Ω is the RF of the trapping voltage V0 applied between the
electrodes. To investigate the stability of ion trajectories one uses the stability properties of the Mathieu
equation solutions. As shown in eqs. (4) and (5), the solution of eq. (10) can be expressed as a Hill
series

w(τ) = Aeµτ
∞

∑
s=−∞

c2se2isτ + Be−µτ
∞

∑
s=−∞

c2se−2isτ , (11)

where the A and B constants are determined from the initial conditions. If iµ /∈ Z, then using eq. (11)
one infers a fundamental system of solutions associated to eq. (10) for A = 1, B = 0 and A = 0, B = 1
(the Floquet theorem [18,26]). The characteristic exponent µ and the c2s coefficients are functions of the
parameters a and q [159].

By introducing the solution supplied by eq. (5) in the Mathieu equation (10), the latter is cast into
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∞

∑
s=−∞

c2s

[
(µ + 2is)2 + a − 2q

e2iτ + e−2iτ

2

]
e(µ+2is)τ = 0 , (12)

which after matching the terms according to the powers of s results into a recurrence relation

−qc2s−2 +
[
(µ + 2is)2 + a

]
− qc2s+2 = 0 . (13)

One further multiplies with i2 = −1 and then divides with the middle term in eq. (13), which leads to
an infinite system of linear equations which are homogeneous in the c2s coefficients [155]:

q

(2s − µi)2 − a
c2s−2 + c2s +

q

(2s − µi)2 − a
c2s+2 = 0 , (14)

which can be written as

γ2sc2s−2 + c2s + γ2sc2s+2 = 0 , s = 0,±1,±2, . . . , (15)

with
γ2s = q

[
(2s − iµ)2 − a

]−1
. (16)

The system of equations (15) admits a nontrivial solution if and only if the corresponding infinite
determinant △(iµ) vanishes for s noninfinite [26,162]

△(iµ) =

∣∣∣∣∣∣∣∣∣∣∣

. . .
γ−2 1 γ−2

γ0 1 γ0

γ2 1 γ2

. . .

∣∣∣∣∣∣∣∣∣∣∣
. (17)

Due to the symmetry of △(0), γ−j = γj. Solving this determinant is not a simple issue, which
is why one uses the approach of Whittaker [26]. The method is described in Appendix A, and it was
introduced by Sträng [162,163]. The equation

△(µ) = 0 , (18)

supplies the characteristic exponent µ, while eqs. (15) enable one to recursively determine the coeffi-
cients c2s. The infinite order determinant △(µ) is absolutely convergent and it represents a meromor-
phic function [164,165] of µ, with simple poles for µ = ±i

(√
a + 2s

)
, ; s = 0,±1, . . . . Hence, eq. (17) is

equivalent with [18]

cosh (πµ) = 1 + 2△(0)
[
sin
(
π
√

a/2
)]2 . (19)

Hereinafter we discuss the stability of the solutions of eq. (10) for τ, a, q ∈ R. The solution of
eq. (11) is stable and respectively unstable, if |w(τ)| is bounded, respectively unbounded along the
τ > 0 semi-axis. From eq. (19) one infers cosh(πµ) ∈ R, which renders the solution of eq. (11) as
stable when |cosh(πµ)| < 1, so for iµ real non-integer. If |cosh(πµ)| > 1, then α = ℜeµ ̸= 0, while
|w(τ)| is bounded along the τ axis. In such case |w(τ)| is bounded along the τ > 0 semiaxis only
when A = 0, α > 0 or B = 0, α < 0. As an outcome, the (a, q) plan is divided into stability regions
with |cosh(πµ)| < 1 and instability regions characterized by |cosh(πµ)| > 1, separated by the curves
|cosh(πµ)| = 1 for which a stable and periodic solution of eq. (10) exists, although the general solution
is unbounded. The curves characterized by integer values of iµ are called characteristic curves. They
are naturally introduced by means of the Sturm-Liouville (eigenvalue) problem [26,154,166] for the
Mathieu functions cem(z, q) and sem(z, q) [19,161], which are treated as characteristic functions of eq.
(10) with the limit conditions
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dw(0)
dτ

=
dw(π)

dτ
= 0 , w(0) = w(π) = 0 . (20)

The cem(z, q) and sem(z, q) functions [7,167] are even and odd respectively, known up to a constant
factor, with period π when m is even, and with period 2π for m odd [18,26]. The characteristic curves
am(q) and bm(q), correspond to the Mathieu functions cem(z, q) with m = 0, 1, . . ., respectively sem(z, q),
with m = 1, . . .. In addition, the characteristic curves are analytical in q, while being characterized by
the subsequent properties [26]

a2m(q) = a2m(−q) , b2m+2(q) = b2m+2(−q) , a2m+1(q) = a2m+1(−q), (21)

a2m+1(−q) = b2m+1(q), am(q) < bm+1(q) < am+1(q) , (22)

with m = 0, 1, . . . , and q > 0.
The family of curves characterized by |cosh (πµ)| = 1 coincides with the family made up by the

characteristic curves am(q) with m = 0, 1, . . . , and bm(q) with m = 1, . . . , which divide the (a, q) plan
into stability regions [ranging from am(q) to bm+1(q) for q ≥ 0, and from am(q) to am+1(q) or from
bm(q) to bm+1(q) for q ≤ 0], and instability regions located below a0(q) or ranging from bm(q) to am(q).

Ref. [168] shows that in case of microparticles levitated within a 2D linear Paul trap (LPT)
operating under Standard Temperature and Pressure (STP) Conditions (in air), the Mathieu equations
describing the trapping process are homogeneous along the x and y axes, with the well known solutions
and stability domains. On the other hand, the z-axis motion is described by an inhomogeneous Mathieu
equation. In this case, stability is obtained for (a) iµ ∈ R ; (b) µ ∈ R and µ < Λ (c) µ − i ∈ R and
|µ − i| < Λ, where µ is the Floquet exponent, Λ = K/mΩ, K stands for the coefficient which describes
the drag aerodynamic force and m represents the particle mass. Hence, stability regions for solutions
of the inhomogeneous equations of motion in presence of drag forces include both the stability regions
of the homogeneous equations along with a part of the instability regions, which extends them
considerably.

The Mathieu equation (10) exhibits π− and 2π− periodic solutions on continuous stability curves
a = a(q), starting from points a = n2, n = 1, 2, 3, . . .. What is more, the periodic solutions and the
boundaries between stability and instability regions in the (a, q) parameter plane can be found by
means of the Lindstedt-Poincaré method [16]. A cosine elliptic cen and a sine elliptic sen functions are
associated to any value of n, where each one of these functions has its own characteristic number acen

and asen . The Mathieu functions and their eigenvalues (characteristic numbers) in power series of q,
for a, |q| ≪ 1(q ≃ 0), are expressed as:

a0(q) = ace0(q) = − q2

2
+

7q4

128
− 29q6

2304
+

68687q8

18874368
+

123707q10

104857600
+ . . . . (23)

a1(q) = ase1(q) = 1 + q − q2

8
− q3

64
− q4

1536
+

11q5

36864
+

49q6

589824

+
55q7

9437184
− 83q8

35389440
− 12121q9

15099494400
+ . . . , (24)

b1(q) = ace1(q) = 1 − q − q2

8
+

q3

64
− q4

1536
− 11q5

36864
+

49q6

589824

− 55q7

9437184
− 83q8

35389440
+

12121q9

15099494400
+ . . . , (25)
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a2(q) = ase2(q) = 4 +
5q2

12
− 763q4

13824
+

1002401q6

79626240
− 1669068401q8

458647142400
+ . . . , (26)

b2(q) = ace2(q) = 4 − q2

12
+

5q4

13824
− 289q6

79626240
+

21391q8

458647142400
+ . . . , (27)

The eigenvalue associated with the even solutions of the Mathieu functions, cek(z, q) is labelled
by ak(q), k = 0, 1, 2, . . ., while the one associated with the odd Mathieu function, sek(z, q), is denoted as
bk(q), k = 1, 2, . . . , as illutrated in Figure 1. The higher rank terms that describe the frontiers of the
stability regions are given in Appendix B. To graphically illustrate the stability diagram (associated
to the Mathieu equation) that characterizes the dynamics of an ion confined within a combined
quadrupole trap (a combination between a Penning and a Paul trap), we have used eqs. (23 - 27) and
eqs. (A20 - A28). The result is shown in Figure 1.

The stable solution of the equation of motion (10) (for µ = iβ, β ∈ R) corresponds to a superposi-
tion of harmonic motions [20,31,101]

w(t) = α1

∞

∑
s=−∞

c2s cos
[(

s +
β

2

)
Ωt
]
+ α2

∞

∑
s=−∞

c2s sin
[(

s +
β

2

)
Ωt
]

, (28)

with the frequency spectrum

νs = (2s ± β)
Ω
4π

, s = 0, 1, . . . . (29)

Figure 1. Mathieu function eigenvalues (characteristic values) for even and odd solutions respectively,
of the Mathieu equation
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q
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Mathieu Equation Stability diagram
a0
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b1
a2
b2

Figure 2. The first image presents an extended view of the Mathieu equation stability diagram. The
second image is focused on the first stability region delimited by the eigenvalues a0 and b1, while the
third image illustrates this stability region as shaded. The second stability region is delimited by the
eigenvalues a1 and b2.

In Figure 3 we have illustrated the stability diagram for a combined (Paul and Penning trap). One
notices that a0, b1, a1, b2, a2 represent the frontiers of the stability diagram associated with the canonical
Mathieu equation that describes axial motion. We also introduce

c0(q) = c − a0(−q/2)/2 = c +
1

16
q2 − 7

4096
q4 +

29
2304

q6

64

− 68687
18874368

q8

512
− 123707

104857600
q10

2048
, (30)

c1(q) = c − a1(−q/2)/2 = c − 1
2
+

q
4
+

q2

64
− q3

512
+

1
1536

q4

32
+

11
36864

q5

64

− 49
589824

q6

128
+

55
9437184

q7

256
+

83
35389440

q8

512
− 12121

15099494400
q9

1024
(31)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2024                   doi:10.20944/preprints202405.1870.v1

https://doi.org/10.20944/preprints202405.1870.v1


12 of 36

d1(q) = c − b1(−q/2)/2 = c − 1
2
− q

4
+

q2

64
+

q3

1024
+

1
1536

q4

32
− 11

36864
q5

64

− 49
589824

q6

128
− 55

9437184
q7

256
+

83
35389440

q8

512
+

12121
15099494400

q9

1024
(32)

−4 −2 0 2 4
q

−4

−2

0

2

4

a,
 b

, c
, d

Combined trap Stability diagram

a0
a1
b1
a2
b2
c0
c1
d1

Figure 3. The stability diagram for the combined (Paul and Penning) trap, where a0, b1, a1, b2, a2

illustrate the frontiers of the stability diagram for the canonical Mathieu equation for axial mo-
tion. The frontiers of the stability domains for the radial trap motion are characterized by c0(q) =

c − a0(−q/2)/2, c1(q) = c − a1(−q/2)/2 and d1(q) = c − b1(−q/2)/2. The c parameter is propor-
tional with the cyclotronic frequency ωc [20,28,32,132]. The central stability region is bounded by the
characteristic curves of the eigenvalues a0, d1, b1, c0, a1 and c1.

Further on, we will consider trap operating points of (a, q) that lie within the first stability
region, with 0 < β < 1 and q ≥ 0. By minimizing the parameters a and q(a/q ≪ 1 , q < 0.4),
the coefficients c2s (with s ̸= 0) rapidly converge to zero, in such a way that higher harmonics
are practically insignificant and the fundamental frequency ν0 = βΩ/(4π) prevails [169]. In such
event w(t) = w0(t) + w1(t), where w0(t) stands for the average of the w(t) shift during the interval
[t, t + 2π/Ω] and |w1(t)| ≪ |w0(t)|, |dw1/dt| ≫ |dw0/dt|. Under such circumstances, the solution of
the Mathieu equation can be approxi-
mated as the solution of the equation

d2w
dt2 =

Ω2

4

[
−a + q

( a
2
+ 2
)

cos Ωt − q2 cos2 Ωt
]
w . (33)

By averaging eq. (33) over a period of the RF voltage (which is exactly the case of the pseudopotential
approximation, when the electric forces that are time-averaged over an RF period generate a harmonic
potential [20,31,170,171]), one derives

d2w0

dt2 = −β2w0 , β =

√
a +

q2

2
. (34)
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The shift w0 in eq. (34) corresponds to the harmonic motion of fundamental frequency ν0, while
the correction w1 is determined by the higher harmonics (2 − β)Ω/4π, (2 + β)Ω/4π, . . .. The axial
frequencies are twice the radial frequencies: az = −2ar and qz = −2qr, while the trapped ions
describe approximate Lissajoux trajectories when the ratio between the frequencies along the axes
is 1 : 1 : 2. The initial conditions have no effect whatsoever on the stability of ion trajectories, but
they establish their position with respect to the area located between the trap electrodes for every
operating point (a, q) fixed within a stability domain. In this regard, the problem of evaluating the
maximum amplitude of stable oscillations under given initial conditions is approached. The maximum
admits upper bounds determined by the relative position of the electrodes. For optimum operating
parameters it is mandatory to take into account all axes for whom the equation of motion is of Mathieu
type.

One considers the stable solution of eq. (28) expressed as

w(τ) = α1w1(τ) + α2w2(τ) , (35)

with

w1(τ) =
∞

∑
s=−∞

c2s cos (2s + β)τ , w2(τ) =
∞

∑
s=−∞

c2s sin (2s + β)τ , (36)

where both w1(τ) and w2(τ) are differentiable functions. If w(τ) ̸= 0 (which also implies that the
coefficients α1, α2 ̸= 0), then w1 and w2 are linearly dependent functions. Hence, w1 and w2 form a
fundamental system of solutions of the Mathieu eq. (10) and the Wronskian determinant [7] is

W = w1(τ)ẇ2(τ)− ẇ1(τ)w2(τ) ̸= 0 . (37)

Furthermore, the derivative of the Wronskian determinant is

Ẇ = w1(τ)ẅ2(τ)− ẅ1(τ)w2(τ) ̸= 0 . (38)

The modulo of the solution of eq. (35) admits the following upper limit

Λ =
∞

∑
−∞

|c2s|
√

α2
1 + α2

2 . (39)

One denotes
d(τ) = −W−1[w1(τ)ẇ1(τ) + w2(τ)ẇ2(τ)] , (40)

b(τ) = W−1
[
w2

1(τ) + w2
2(τ)

]
, c(τ) = W−1

[
ẇ2

1(τ) + ẇ2
2(τ)

]
, (41)

ε = WΛ2

[
∞

∑
s=−∞

|c2s|
]−2

. (42)

By eliminating the parameters α1 and α2 in eqs. (35) and (39), it follows that

c(τ)w2(τ) + 2d(τ)w(τ)ẇ(τ) + b(τ)ẇ2(τ) = ε . (43)

Out of eq. (40) - (42) one infers

b(τ)c(τ)− d2(τ) = 1 . (44)

Hence, for an initial given phase τ = τ0, eq. (43) represents the equation of an ellipse of area πε in
the plan (w, ẇ). For initial conditions given such that the point (w(τ0), ẇ(τ0)) is located on the ellipse
described by eq. (43) or within it, one finds |w(τ)| < M at any moment in time. The ions are not
captured at the electrodes if all points w (with |w| < M) belong to the projection along the w axis of
the region located within the electrodes.
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To investigate ion trajectories in the phase space it will suffice to build the family of ellipses
described by eq. (43), for τ ranging between 0 ≤ τ < π. Indeed(

w(τ + π)

ẇ(τ + π)

)
= M(τ)

(
w(τ)

ẇ(τ)

)
, (45)

with the transfer matrix expressed as

M(τ) =

(
cos πθ + d(τ) sin πθ b(τ) sin πθ

−c(τ) sin πθ cos πθ − d(τ) sin πθ

)
. (46)

The maximum amplitude of stable oscillations for trapped ions results from eq. (43)

wmax = max
0≤τ≤π

√
εb(τ) . (47)

3.1. the Kicked Damped Parametric Oscillator

One considers the differential equation (DE) which describes a damped, kicked parametric
oscillator (PO)

ü + f (τ)u̇ + g(τ)u = h(τ) , (48)

where f , g and h are continuous functions of τ, while h(τ) stands for the kicking term, which is usually
a periodic. The homogeneous equation

ü + f (τ)u̇ + g(τ)u = 0 , (49)

exhibits the fundamental solutions which we denote as φ1 and φ2. Then, the general solution of eq.
(48) is expressed as

u(τ) = c1 φ1(τ) + c2 φ2(τ) + φ2(τ)

τ∫
τ0

φ1(τ
′)h(τ′)

W(τ′)
dτ′

− φ1(τ)

τ∫
τ0

φ2(τ
′)h(τ′)

W(τ′)
dτ′ , (50)

with W(τ) = φ1(τ)φ̇2(τ)− φ̇1(τ)φ2(τ) ̸= 0 is the Wronskian determinant. Eq. (49) changes into the
normal form

ẅ + J(τ)w = 0 , (51)

with

w(τ) = u(τ) exp
1
2

τ∫
τ0

f
(
τ′) dτ′ . (52)

In particular, if the J function is periodic and continuous, the normal form described by eq. (51) is a
Hill equation. In case when f is a constant function f (τ) = λ > 0, one derives

u(τ) = w(τ) exp
[
−λ

2
(τ − τ0)

]
, J(τ) = g(τ)− λ2

4
. (53)

It can be noticed that the solution of eq. (48) is stable if 2|ℜeµ| < λ, with the Floquet exponent
µ given by eq. (4). If w is stable, then definitely u is also stable. Nevertheless, there exist unstable
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solutions w for which the corresponding solutions u are stable. The frontiers of the stability domains
are supplied by the equation 2|ℜeµ| = λ.

4. Anharmonic Corrections for Electrodynamic (Paul) Traps. Perturbation Method Analysis

An issue of large interest lies in exploring the competition between the ion micromotion and
the multipole anharmonicities of the trap electric potential, in order to discriminate between stable
and unstable (chaotic) dynamics [172–175]. Ref. [126] reports on the dynamics of an ion confined
in a nonlinear Paul trap [61,122,176], assimilated with a time-periodic differential dynamical system.
As such systems are characterized by low dissipation, exotic phenomena can be observed such as
strange attractors, limit cycles, period doubling bifurcation and fractal basin boundaries [75,127,175].
We investigate the following equation of motion, which describes the axial dynamics for a particle of
mass M and electric charge Q, confined within a quadrupole Paul trap, with anharmonicity derived
from an octopole (quartic) electric potential λz4/4 [126,177]:

d2z
dτ2 + [a − 2q cos(2τ)]z + λz3 = 0 , (54)

where the adimensional parameters a and q are expressed as a = − 16QU0
MΩ2(r2

0+2z2
0)

q = 8QV0
MΩ2(r2

0+2z2
0)

,
(55)

while r0 and z0 stand for the Paul trap radial and axial dimensions. Generally, in case of a typical 3D
Paul trap, a ≤ 0.05 and q ≤ 0.3. The frequency of the applied a.c. voltage (micromotion) is denoted
by Ω, U0 and V0 stand for the static and time-varying trapping voltages, respectively. Analytical
modelling of the dimensionless equation (54) is based on employing techniques characteristic to the
global bifurcation theory [14,128]. Numerical modelling is used to explore the associated dynamics
and discuss chaos in such a nonlinear system [172–175].

Further on we introduce the perturbation parameter ε = 2q and choose λ = εβ, with the
anharmonicity parameter β fixed. Then, one can perform a series expansion of the a parameter and z
coordinate as a function of the ε parameter:

a =
∞

∑
k=0

εkak , z =
∞

∑
k=0

εkzk . (56)

4.1. Solutions of the Mathieu Equation

The frontiers of the stability domains in the plan of the control parameters q − a are determined
by the periodic solutions of eq. (54) [104,126]. There is a requirement that z is a periodic solution, of
period 2π and known parity, Within the limit ε → 0 the z solution is expressed as cos nτ or sin nτ, with
n ∈ Z. One considers the case when ε = 0 (ε = 2q, λ = εβ), with β an anharmonicity parameter. Then,
eq. (54) writes as

d2z
dτ2 + az = 0 , (57)

whose solution can be expressed as z = cos nτ. Then, z̈ = −n2 cos nτ and eq. (57) changes into

−n2 + a = 0 ⇒ a0 = n2 . (58)

From eq. (56) one infers

z̈ =
∞

∑
k=0

εk z̈k , (59)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2024                   doi:10.20944/preprints202405.1870.v1

https://doi.org/10.20944/preprints202405.1870.v1


16 of 36

z3 =
∞

∑
k=0

∞

∑
k′=0

∞

∑
k”=0

εk+k′+k”zkzk′zk” =
∞

∑
p=0

εp ∑
k,k′≥0

k+k′≤p

zkzk′zp−k−k′ , p = k + k′ + k′′ . (60)

We use the expression for z3 derived above and revert to eq. (54)

∞

∑
k=0

εk z̈k + a
∞

∑
k=0

εkzk − cos (2τ)
∞

∑
k=0

εk+1zk + β
∞

∑
p=0

εp+1 ∑
k,k′≥0

k+k′≤p

zkzk′zp−k−k′ = 0 . (61)

Then, eq. (61) can be cast into

∞

∑
p=0

εp z̈p + a
∞

∑
p=0

εpzp − cos (2τ)
∞

∑
p=0

εpzp−1 + β
∞

∑
p=0

εp ∑
k,k′≥0

k+k′≤p−1

zkzk′zp−k−k′−1 = 0 . (62)

Therefore, by employing eqs. (56) and (54), after identifying the rank of the ε parameter, one infers
a system of differential equations that recursively determines the ak parameters and zk coordinates:Eq.
(62) can be expressed as

d2zp

dτ2 + a0zp = zp−1 cos (2τ)− β ∑
k,k′≥0

k+k′≤p−1

zkzk′zp−k−k′−1 −
p−1

∑
k=0

ap−k zk , p ≥ 1 , (63)

where z0 = cos (nτ) or z0 = sin (nτ), with a0 = n2, n = 0, 1, . . .. Therefore, the frontiers of the Mathieu
stability diagram are either even functions a(k)+ or odd functions a(j)

− that depend on the parameter
q, which within the limit q → 0 approaches k2, respectively j2. The k and j indexes are integer, with
cu k ≥ 0 and j > 0. By performing a series expansion of these functions depending on q parameter
(|q| ≪ 1), one derives the first frontiers of the stability diagram [178]

a0(q) = ε + 2qβ − q2

2
(1 + 4β)− q3

8
β(21 + 16β) + . . . , (64)

b1(q) = a(1)− = 1 + ε − q
2
(2 + 3β)− q2

32

(
4 + 20β + 9β2

)
− q3

256

(
12 + 46β + 60β2 + 21β3

)
+ . . . , (65)

a1(q) = a(1)− = 1 + ε +
q
2
(2 − 3β)− q2

32

(
4 + 4β − 3β2

)
− q3

256

(
4 + 20β − 11β2

)
+ . . . , (66)

b2(q) = 4 + ε − 3
2

qβ − q2
(

1
12

+
1
4

β +
9

128
β2
)

− q3

64
β

(
19
6

+
61
20

β +
15
32

β2
)
+ . . . , (67)

where β = (χ − ε/6)/(2q) and χ is a constant.
Hence, the frontiers of the stability diagrams for the Mathieu equation with anharmonic perturba-

tion are characterized by eqs. (64) - (67). It is evident how the frontiers of the stability diagram are
shifted towards negative values along the a axis, in the control parameters plan a − q. Figure 4 and
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Figure 5 illustrate the stability diagram for the dynamics of an ion in the anharmonic trap we have
investigated.
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Figure 4. The stability diagram for the 4th order nonlinear Paul trap. The first stability domains are
characterized by the frontiers a0, b1 (filled in blue), respectively a1, b2 in case of the linear Mathieu
equation (β = 0, ε = 0) in eqs. (64 - 67).
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Figure 5. The stability diagram for the 4th order nonlinear Paul trap. The first stability domains are
characterized by the frontiers a0, b1 (filled in blue), respectively a1, b2, in case of the nonlinear Mathieu
equation (β = 0.3, ε = 0, 2 in eqs. (64 - 67).

It can be noticed that the first stability region is bounded by the curves a0(q) a̧nd b1(q), while
the second stability region is bounded by the curves a1(q) and b2(q), respectively. As opposed to the
pseudopotential approximation when the electric RF potential is described by a polynomial of rank 2 in
z2 [20,30,31,114,156], consideration of the micromotion leads to stability regions that are qualitatively
similar to those of the Mathieu equation for low enough values of c, but generally with frontiers
sensibly altered as a function oi the anharmonicity parameter β. Hence, explicit analitic calculus which
is numerically illustrated, enables one to establish the differences between the stability domains of the
nonlinear dynamical system that is periodic in time (described by eq. (5)) and those of the autonomous
dynamical system that is associated by means of the pseudopotential approximation [171].

4.2. the Frontiers of the Stability Diagram for the Mathieu Equation with Nonlinear Term

This section of the paper presents the technique we have developed to derive a0. The frontiers of
the stability diagrams of the Mathieu equation with nonlinear term (anharmonic perturbation) are
given by eqs. (64 - 67), which correspond to the following limit solutions for q = 0:

a0 = 0 ; a1 = 1 and z0 = cos τ ; a1 = −1 and z0 = sinτ . (68)

The motion of a single charged particle in a nonlinear Paul trap, in presence of the damping
force, is investigated theoretically in [120] and the modified stability diagrams in the parameter space
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are calculated. The results show that the stable regions in the a −−q parameter plane are not only
enlarged but also shifted. Our results also show that the frontiers of the stability diagrams for the
Mathieu equation are shifted towards negative values of the a parameter (within the plan defined by
the control parameters a − q). In disagreement with the pseudopotential approximation for a Paul (RF)
trap [114,171], when the electric potential is described by a polynomial of rank 2 in z2, by taking into
account the micromotion (when not in the pseudopotential approximation) stability regions result that
are qualitatively similar to those of the Mathieu equation, but with frontiers that are shifted depending
on the anharmonicity parameter λ(β). Further on we express eq. (63) in case p = 1 as

d2z1

dτ2 + a0z1 = z0 cos(2τ)− a1z0 − βz3
0 , (69)

and we compute the right term for z0 = cos τ. Then, the right hand of eq. (69) is cast into

cos(2τ) cos τ − a1 cos τ − β cos3 τ , (70)

which can be further expressed as (See Appendix C)(
2 cos2 τ − 1

)
cos τ − a1 cos τ − β cos3 τ . (71)

One writes

cos 3τ = cos 2τ cos τ − sin 2τ sin τ = 2 cos3 τ − cos τ − 2
(

1 − cos2 τ
)

cos τ , (72)

as

cos x =
eix + e−ix

2
. (73)

Then, one derives

(cos x)n =
1
2n

n

∑
k=0

Ck
neix(n−k)e−ixk =

1
2n

n

∑
k=0

Ck
neix(n−2k)

=
1
2n

n

∑
k=0

Ck
n[cos(n − 2k)x + i sin(n − 2k)x] . (74)

Hence, eq. (74) becomes

(cos x)n =
1
2n

n

∑
k=0

Ck
n cos (n − 2k)x , (75)

Using eq. (75) we infer

cos 3τ = 4 cos3 τ − 3 cos τ 7→ cos3τ =
1
4
(cos 3τ + 3 cos τ) (76)

Then, eq. (69) becomes

d2z1

dτ2 + a0z1 = (2 − β) cos3 τ − (a1 + 1) cos τ (77)

By using eq. (76), eq. (77) changes accordingly

d2z1

dτ2 + a0z1 = (2 − β)
1
4

cos 3τ +

(
1
2
− 3

4
β − a1

)
cos τ . (78)
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The general solution of the harmonic oscillator (HO) writes as

z1g = α cos τ + β sin τ . (79)

We choose an even solution, such as z1g = α cos τ. Then, one tries a particular solution such as

z1part = A cos 3τ + B cos τ , (80)

with
z̈1part = −9A cos 3τ − B cos τ . (81)

Then, eq. (78) changes into

−8A cos 3τ =
1
4
(2 − β) cos 3τ +

(
1
2
− 3

4
β − a1

)
cos τ , (82)

which enables us to infer

a1 =
1
4
(2 − 3β) , A =

1
32

(β − 2) ⇒ z1 = cos τ +
1
32

(β − 2) cos 3τ (83)

Hence, the solution of the Mathieu equation can be expressed as

z = z0 + z1 + . . . = 1 + cos τ +
1
32

(β − 2) cos 3τ + . . . . (84)

More explicit details with respect to solving the Mathieu equation by means of the perturbation
theory and determining approximations to all other Mathieu functions and eigenvalues are supplied
in Appendix C.

5. Discussion

We use Floquet’s theorem, where any fundamental solution of Mathieu’s equation is compelled
to satisfy the boundary value equations. In addition, the Wronskian determinant of the system does
not vanish. Mathieu’s equations will admit an even an odd pair solution, which will define any other
solution. We then assume Hill’s Method solution which we introduce into Mathieu’s equation, and
infer a recursive relation as a function of the a and q parameters, as well as the coefficients of the
Hill’s solution cs. We show these coefficients cs exhibit non-trivial solutions if the infinite determinant
satisfies △(iµ) = 0 (vanishes) for noninfinite s. Then, a holomorphic function with a single pole
(similar to the determinant) is introduced, and we use the Liouville theorem for complex calculus and
derive the expression of the Floquet characteristic exponent. It is assumed the Floquet characteristic
exponent µ is chosen to satisfy the prerequisite such that the determinant described by eq. (17)
vanishes. The solution will be unbounded unless the Floquet exponent is imaginary, and we supply
this solution as a function of △(0). To calculate this last determinant, one uses the Sträng recursion
formula (method) [163], which is described in Appendix A.1.

We then discuss the stability of the Mathieu-Hill equation solution for a trapped ion and charac-
terize ion dynamics as stable, respectively unstable, depending if the solution is bounded, respectively
unbounded. We show the (a, q) plan is divided into stability regions and instability regions, separated
by the curves |cosh(πµ)| = 1 for which a stable and periodic solution of eq. (10) exists, although the
general solution is unbounded. The curves characterized by integer values of iµ are called characteristic
curves. They are naturally introduced by means of the Sturm-Liouville (eigenvalue) problem [26,166]
for the Mathieu functions cem(z, q) and sem(z, q) [19], which are treated as characteristic functions of eq.
(10) with limit conditions. We also show the periodic solutions and the boundaries between stability
and instability regions in the (a, q) parameter plane can be found by means of the Lindstedt-Poincaré
method. We illustrate the stability diagram for the Mathieu equation in case of an electrodynamic
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trap, as a function of the associated eigenvalues and show the stable solution to be a superposition of
harmonic motions.

We then represent the stability diagram for the Mathieu equation in case of a combined (Paul
and Penning) trap, illustrating the frontiers for axial and radial motion, taking into account an extra
parameter that is proportional to the cyclotronic frequency in a Penning trap.

Then, we consider trap operating points of that lie within the first stability region. We show that by
minimizing the parameters a and q, the coefficients of the Hill series solution rapidly converge to zero,
in such a way that higher harmonics are practically insignificant and only the fundamental frequency
prevails. We infer the solution of the Hill equation in such case and find the solution by means of
the pseudopotential approximation. We show the initial conditions have no effect whatsoever on the
stability of ion trajectories, but they establish their position with respect to the area located between
the trap electrodes for every operating point located within a stability domain. In this regard, the
problem of evaluating the maximum amplitude of stable oscillations under given initial conditions is
approached. The maximum admits upper bounds determined by the relative position of the electrodes.
To investigate ion trajectories in the phase space we build a family of ellipses, while we supply the
transfer matrix and find the maximum amplitude of stable oscillations. We exemplify our analytical
model for the case of a damped, kicked PO and characterize the solutions and discuss the frontiers of
the stability domains.

Axial stability for ion dynamics in a nonlinear Paul trap is investigated. In case of the octopole
trap (with an anharmonicity of order 4) considered, the frontiers of the stability diagram have been
explicitly determined as a series expansion of the control parameters chosen. We illustrate graphically
that the frontiers of the stability diagrams for the Mathieu equation with anharmonic perturbation are
shifted towards negative values along the a axis, in the control parameters plan a − q.

We consider the results to be of interest for 2D and 3D ion traps used for different applications in
high-resolution spectroscopy, MS, and especially in the domain quantum technologies (QT) based on
ion traps, among which optical clocks (as extremely high precision quantum sensors), quantum logic
and quantum metrology.
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Abbreviations

The following abbreviations are used in this manuscript:

2D 2-Dimensional
3D 3-Dimensional
BSM Beyond the Standard Model
COTS Commercial Off-The-Shelf
DALI Development and Advancement of Lunar Instrumentation Program
DC Direct Current
DE Differential Equation
DO Duffing Oscillator
DSAC Deep Space Atomic Clock
ENABLE Environmental Analysis of the Bounded Lunar Exosphere
GEO Geostationary Orbit
HB Harmonic Balance
HPM Homotopy Perturbation Method
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HO Harmonic Oscillator
LIT Linear Ion Trap
LPT Linear Paul Trap
MOT Magneto-Optical Trap
MS Mass Spectrometry
MSOLO Mass Spectrometer Observing Lunar Operations
NLDE Non-Linear Differential Equations
NME Nonlinear Mathieu Equation
ODE Ordinary Differential Equation
QMS Quadrupole Mass Spectrometer
PKL Poincaré-Lighthill-Kuo
PO Parametric Oscillator
QIT Quadrupole Ion Trap
RF Radiofrequency
RK Runge-Kutta
SI International System of Units
SNR Signal-to-Noise Ratio
SQL Standard Quantum Limit
STP Standard Temperature and Pressure
VIPER Volatiles Investigating Polar Exploration Rover

Appendix A. Hill’S Method to Find the Solution of the Mathieu Equation

Solving eq. (17) is not an easy task, and we present Hill’s method below [162,163]. One considers
the function

ξ(a, µ) =
1

cos πiµ − cos π
√

a
. (A1)

According to eq. (16) the holomorphic function ξ exhibits a single pole at a = (2s − iµ)2, so that the
function

ζ = △(iµ)− κξ (A2)

does not show singularities if κ is adequately chosen and it is restricted to infinity, where △(iµ) = 1,
given that the γ functions vanish and only the diagonal terms are left. In the same time ξ = 0,
considering that cosh(x) → 0 as x → ∞. In such case the second term in eq. (A2) vanishes and ζ → 1.
Liouville’s Theorem states that a bounded holomorphic function on the entire complex plane must be
constant [179], which means that

κ =
△(iµ)− 1

ξ
. (A3)

In case when µ = 0 one infers

κ = (△(0)− 1)
(
1 − cos π

√
a
)
=

△(iµ)− 1
ξ

. (A4)

Further on, we assume the Floquet characteristic exponent µ is chosen to satisfy the prerequisite
such that the determinant (17) vanishes. Then

cos πiµ − cos π
√

a = (1 −△(0))
(
1 − cos π

√
a
)

, (A5)

which gives

iµ =
1
π

cos−1[(1 −△(0))
(
1 − cos π

√
a
)]

. (A6)
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We showed in eq. (4) that the solution of the Hill (Mathieu) equation can be expressed as

w = eµτϕ(τ) , (A7)

which is unbounded except the case when µ ∈ ℑ (imaginary). Hence, one obtains

µ =
1
π

cos−1[(1 −△(0))
(
1 − cosh π

√
a
)]

. (A8)

The next step lies in calculating △(0), which is quite straightforward based on the method of
Sträng [163], who inferred an effective recursion rule presented below.

Appendix A.1. Sträng’s Recursion Formula for △(0)

According to Sträng’s method [163], one defines

Aj =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 γ2j 0
γ2(j−1) 1 γ2(j−1)

0 γ2(j−2) 0
. . . . . .

. . . . . .
1 γ2(j−2) 0

γ2(j−1) 1 γ2(j−1)
0 γ2j 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (A9)

with △j = det
(

Aj
)

and △(0) = limj−→∞ △j. In addition, △(0) ∈ △j. Then Aj can be decomposed in
terms of Aj−1

Aj =

∥∥∥∥∥∥∥∥∥∥∥

1 γ2j
γ2(j−1) . . .

. Aj−1 .

. . . γ2(j−1)
γ2j 1

∥∥∥∥∥∥∥∥∥∥∥
. (A10)

Using the Laplace decomposition method [180], the determinant of the above matrix is expressed as

det
(

Aj
)
=

∥∥∥∥∥∥∥∥∥
. . .
. Aj−1 .
. . . γ2(j−1)

γ2j 1

∥∥∥∥∥∥∥∥∥− γ2j

∥∥∥∥∥∥∥∥∥
γ2(j−1) . . .

. rAj−1 .

. . . γ2(j−1)
γ2j 1

∥∥∥∥∥∥∥∥∥ . (A11)

In the equation above rAj−1 represents Aj−1 with its most right column discarded. According to
Sträng [163], lA stands for the matrix A with its leftmost column removed, uA denotes the matrix
A with its lowest row removed, while dA is the matrix A with its upper most row removed. Finally,
uldr(Aj−1) = Aj−2, and owing to the symmetry involved, det

(
rd(Aj−1)

)
= det

(
ul(Aj−1)

)
. Following

this technique one finds[162,163]

△j = △j−1 − 2γ2jγ2(j−1) det
(

rd
(

A2(j−1)

))
+
[
γ2jγ2(j−1)

]2
△j−2 . (A12)

By using the Laplace decomposition method once more we infer

Ωj = det
(
ul
(

Aj
))

= det
(
rd
(

Aj
))

, (A13)

which allows us to obtain

Ωj = det
(

Aj−1
)
− γ2jγ2(j−1)Ωj−2 , (A14)
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so as to

△j−1 − Ωj

γ2jγ2(j−1)
= Ωj−1 = det

(
rd
(

Aj−1
))

, (A15)

and

△j = △j−1 + 2
(
Ωj −△j−1

)
+
[
γ2jγ2(j−1)

]2
△j−2 . (A16)

Out of eq. (A16) one infers

Ωj =
△j +△j−1 −

[
γ2jγ2(j−1)

]2
△j−2

2
. (A17)

By introducing eq. (A17) into eq. (A13) one derives

△j =
[
1 − γ2jγ2(j−1)

]
△j−1 +

[(
γ2jγ2(j−1)

)2
− γ2jγ2(j−1)

]
△j−2

+ γ2jγ2(j−1)

[
γ2(j−1)γ2(j−2)

]2
△j−3 . (A18)

Further on, one defines α2j = γ2jγ2(j−1) and 1 − α2j = δ2 j, which finally leads to

△j = δ2j △j−1 −α2jδ2j △j−2 +α2jα
2
2(j−1) △j−3 . (A19)

It can be observed that one can recursively solve the equation above for △(0) = limj−→∞ △j to an
accuracy as fine as desired. In addition, computer algebra programs such as Axiom, Maxima, Maple,
Mathematica and SageMath, can be used to identify all stable values of µ, which satisfy eq. (A8) as real
values (i.e. all iso-µ values for which µ is exclusively imaginary).

Appendix B. the Frontiers of the Stability Regions

The eigenvalues an and bn (for n ≥ 3) of the Mathieu equation as functions of q are described by
the following relations [18,19,150,155].

a3(q) = 9 +
q2

16
+

q3

64
+

13q4

20480
− 5q5

16384
− 1961q6

23592960

− 609q7

104857600
+

4957199q8

2113929216000
+ . . . , (A20)

b3(q) = 9 +
q2

16
− q3

64
+

13q4

20480
+

5q5

16384
− 1961q6

23592960

+
609q7

104857600
+

4957199q8

2113929216000
+ . . . , (A21)

a4(q) = 16 +
q2

30
+

433q4

864000
− 5701q6

2721600000
− 112236997q8

2006581248000000
+ . . . , (A22)
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b4(q) = 16 +
q2

30
− 317q4

864000
+

10049q6

2721600000
− 93824197q8

2006581248000000
+ . . . , (A23)

a5(q) = 25 +
q2

48
+

11q4

774144
+

q5

147456
+

37q6

891813888
+ . . . , (A24)

b5(q) = 25 +
q2

48
+

11q4

774144
− q5

147456
+

37q6

891813888
+ . . . , (A25)

a6(q) = 36 +
q2

70
+

187q4

43904000
+

6743617q6

92935987200000
+ . . . . (A26)

b6(q) = 36 +
q2

70
+

187q4

43904000
− 5861633q6

92935987200000
+ . . . , (A27)

When a, |q| ≪ 1 and m ≥ 7 (case when am is approximately equal to bm), the characteristic values
of the frontiers of the stability region are described by the following power series approximation [18,
19,155,181]

am(q)

bm(q)

}
= m2 +

q2

2(m2 − 1)
+

5m2 + 7

32(m2 − 1)3
(m2 − 4)

q4

+
9m4 + 58m2 + 29

64(m2 − 1)5
(m2 − 4)(m2 − 9)

q6 + . . . (A28)

Appendix C. Solving the Mathieu Equation. Perturbation Theory

If |q| is small, the Mathieu equation can be solved by applying the perturbation theory. Hence,
many terms can be derived in the perturbation expansion of both the eigenvalues and Mathieu
functions. What is more, the perturbative approach theory [17] is also fitted to investigate Hill’s
equation. We express the Mathieu equation as

d2y
dz2 + a(q) = 2qy cos(2z) . (A29)

In addition, one assumes that both a(q) and y(z, q) [181] may be defined as power series in q

a(a) = a0 + a1q + a2q2 + . . . ,

y(z, q) = y0(z) + y1(z)q + y2(z)q2 + . . . , (A30)

where all yk(z) functions are 2π periodic and are either all even, in case of the Mathieu cer(z, q)
functions, or all odd, for the ser(z, q) functions. By assigning a0 = n2 and y0(z) = cos nz one obtains
the approximation for cen, n ≥ 0. On the other hand, by setting a0 = n2 and y0(z) = sin nz, one derives
the approximation for sen, n ≥ 1. By using eqs. (A30) and (A29) and then identifying the coefficients of
qk, k = 0, 1, 2 . . ., a set of linear differential equations results as follows:
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d2y0

dz2 + n2y0 = 0 , (A31)

d2y1

dz2 + a0y1 = 2y0(z) cos 2z − a1y0(z) , (A32)

d2y2

dz2 + a0y2 = 2y1(z) cos 2z − a2y0(z)− a1y1(z) , (A33)

By separating the terms in q3, one derives

d2y3

dz2 + a0y3 = 2y2(z) cos 2z − a1y2(z)− a2y1(z)− a3y0(z) . (A34)

As a0 = n2 and y0(z) = 1, eq. (A34) becomes

d2y3

dz2 + n2y3 = 2y2(z) cos 2z − a1y2(z)− a2y1(z)− a3. (A35)

Hence, a recurrence relation is inferred [181]

d2yk
dz2 + n2yk = 2yk−1(z) cos 2z −

k

∑
j=1

ajyk−j(z). (A36)

Eq. (A36) depends on (y0, . . . , yk−1) and a0, . . . , ak. It can be solved for both ak and yk by enforcing
the periodic boundary conditions and the parity requirement. Such method is similar to Lindstedt’s
method [3,149,182]. What is more, the Lindstedt-Poincaré method is particularly applicable to infer
the periodic solutions of the Mathieu equation for small values of the parameter q [16]. Further on
we detail the method used in [181] to find an approximation to the smallest eigenvalue a0(q) and its
eigenfunction ce0(z, q), which represents a special case.

Thus, the Mathieu equation comes down to

u2 + n2u = 0, n2 = a for q = 0 , (A37)

whose solutions are cos nt and sin nt.

Appendix C.1. Perturbation Theory

We revert to eq. (A32). If n = 0, the only non-trivial, periodic solution of the equation, apart from
an arbitrary multiplication constant, is y0(z+) = 1 [181]. Then, eq. (A32) turns into

d2y1

dz2 = 2 cos 2z − a1 . (A38)

By integrating eq. (A38) one obtains

y1(z) = −1
2

a1z2 − 1
2

cos 2z + c1z + c2 (A39)

which exhibits a periodic solution only if a1 = 0 (implicitly the constants c1, c2 = 0). Therefore, the
solution is

y1(z) = −1
2

cos 2z . (A40)

Hence. eq. (A33) can be expressed as
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d2y2

dz2 + a0y2 = 2y1(z) cos 2z − a2y0(z)− a1y1(z) . (A41)

where

2y1 cos 2z = − cos(2z) cos(2z) = −1
2
[cos(4z) + 1] , (A42)

and we have used
cos x cos y =

1
2
[cos(x + y) + cos(x − y)] . (A43)

As a result, eq. (A41) can be finally written as

d2y2

dz2 = −1
2
[cos(4z) + 1]− a2 . (A44)

After integration one infers

y2(z) = −1
4
(1 − 2a2)z2 +

1
32

cos(4z) + c3z + c4 , (A45)

which is periodic only if a2 = − 1
2 (along with the requirement that c3, c4 = 0), and one derives

y2(z) =
1

32
cos(4z) . (A46)

We revert to eq. (A35) and focus on the first term in the right hand part of the equation

2y2(z) cos(2z) =
1

16
cos(4z) cos(2z) , (A47)

and use eq. (A43) to express it as

cos(4z) cos(2z) =
1
2
[cos(6z) + cos(2z)] . (A48)

Hence, eq. (A34) is cast into

d2y3

dz2 =
1

32
cos(6z)− 7

32
cos(2z)− a3 , (A49)

which we integrate into

y3(z) = −1
2

a3z2 +
7

128
cos(2z)− 1

1152
cos(6z) + c5z + c6 . (A50)

The equation above is periodic if and only if a3 = 0 (and of course the coefficients c5, c6 = 0), which
simplifies to

y3(z) =
7

128
cos(2z)− 1

1152
cos(6z) . (A51)

The method can be further applied to any order based on the algorithm presented above, which
leads to [181]

a0(q) = −1
2

q2 +
7

128
q4 − 29

2304
q6 +

68687
18874368

q8 − 123707
104857600

q10 , (A52)

and

ce0(z, q) = 1 − q
2

cos(2z) +
q2

32
cos(4z)− q3

128

(
7 cos 2z − 1

9
cos 6z

)
+ . . . . (A53)

The same technique can be employed to identify approximations to all other Mathieu funcitons
and eigenvalues, but taking into account that things are lightly dissimilar in case when n/neq0. The
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example below illustrates the expansions of se3(z, q) and b3(q), for which a0 = 3 and y0(z) = sin 3z.
The equation for y1(z) appears as

d2y1

dz2 + 9y1 = 2 sin 3z cos 2z − a1 sin 3z (A54)

One uses

sin a cos b =
1
2
[sin(a + b) + sin(a − b)] . (A55)

Then eq. (A54) modifies accordingly

d2y1

dz2 + 9y1 = sin 5z + sin z − a1 sin 3z , (A56)

which exhibits a periodic solution provided that a1 = 0. On the other hand, when a1 ̸= 0 the solution
would contain the non-periodic term proportional to a1z cos 3z. Therefore, one must choose a1 = 0 to
derive

y1(z) =
1
8

sin z − 1
16

sin 5z + c7 cos 3z + c8 sin 3z , (A57)

where c7 and c8 represent two constants. As se3(z, q) is an odd function and cos 3z is an even function,
one infers c7 = 0. What is more, it is redundant to include the sin 3z term, as this harmonic is already
included in y0(z). Incorporation of this term is analogous with multiplying the solution with a constant,
which means that we also choose c8 = 0.

We now turn our attention to the equation that characterizes y2(z)

d2y2

dz2 + 9y2 = 2y1(z) cos 2z − a2 sin 3z (A58)

which can be expressed as

d2y2

dz2 + 9y2 = −1
8

sin z +
(

1
16

− a2

)
sin 3z − 1

16
sin 7z , (A59)

which exhibits a periodic solution when the parenthesis vanishes, namely a2 = 1/16, which allows
one to infer the solution as

y2(z) = − 1
64

sin z +
1

640
sin 7z . (A60)

By further iterating one infers

b3(q) = 9 +
q2

16
− q3

64
+

13
20480

q4 +
5

16384
q5 − 1961

23592960
q6 +

609
104857600

q7 + . . . , (A61)

and

se3(z, q) ≃= sin 3z + q
(

1
8

sin z − 1
16

sin 5z
)
− q2

(
1
64

sin z − 1
640

sin 7z
)
+ . . . . (A62)

The normalised function is
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se3(z, q) ≃= sin 3z + q
(

1
8

sin z − 1
16

sin 5z
)
− q2

(
1
64

sin z +
5

312
sin 3z − 1

640
sin 7z

)
+ . . . . (A63)

This approach can be employed for any specific value of n and to any order. However, for
common n values it yields a series in q2 where the coefficient of q2r contains the factor (n − r) in the
denominator. Accordingly, when using this series for a specific value of n it must be truncated at the
q2(n − 1) term, while the last few terms of this series are erroneous.
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