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Bin Li

Research Department, Silicon Minds Inc., Clarksville, MD, USA; binli.siliconminds@gmail.com

Abstract

We present Chronon Field Theory (CFT), a covariant framework in which large–scale spacetime geome-
try—including temporal order and causal structure—emerges from the coarse–grained dynamics of a
single future–directed timelike field Φµ(x). Within this approach, both the unit–norm property of Φµ

and the Lorentzian signature of gµν are not postulated but arise uniquely from random microscopic
chronon dynamics under broad symmetry and locality assumptions. Quantum phenomena are rein-
terpreted in this geometric setting: double–slit interference results from phase–coherent Φ–threads
rather than superposed particle paths, and measurement appears as a boundary–induced alignment of
microscopic orientations with the apparatus’s macroscopic field, yielding definite outcomes without
collapse or branching. Schrödinger’s cat is then a straightforward macro–micro coupling with no
persistent macroscopic superposition, while EPR–type entanglement reflects shared Φ–thread ances-
try across spacelike separations. The Born rule follows from the unbiased martingale structure of
alignment dynamics and from coarse–graining symmetries, making it an emergent statistical law; the
uncertainty principle appears as a statistical bound on chronon fluctuations, with h̄ arising as the vari-
ance of coarse–grained action. CFT thus provides a covariant and ontologically economical framework
linking spacetime symmetries to quantum measurement, and predicts scale–dependent effects—such
as nonlinear decoherence and curvature–sensitive timing shifts—that are open to experimental test.

Keywords: quantum measurement; decoherence and classicality; causal structure; chronon field theory;
quantum gravity foundations; problem of time; relational quantum mechanics; general boundary
formulation; scale-dependent geometry; path integrals over causal structures; boundary-induced
alignment; foundations of quantum mechanics; Born rule; double-slit experiment; entanglement;
Schrödinger’s cat; quantum paradoxes; uncertainty principle

1. Introduction
Quantum theory remains unmatched in predictive success, yet its conceptual foundations continue

to raise long–standing tensions [13,72]. Puzzles and paradoxes persist—the measurement problem
[103,112], wave–particle duality [18,36], Schrödinger’s cat [93], and the nonlocal correlations revealed
by Bell’s theorem [12]. Each of these signals a mismatch between the quantum formalism and the
background spacetime structure inherited from classical physics.

The measurement problem remains the most prominent example. In standard quantum mechanics,
states evolve unitarily under the Schrödinger equation, yet measurements yield single, definite out-
comes. Copenhagen–type accounts [18,57] introduce a collapse tied to a classical observer, but without
a well-defined quantum–classical boundary. The Many–Worlds Interpretation [34,106] preserves uni-
tarity at the price of postulating a vast multiplicity of parallel worlds, but still can’t recover the Born
rule without circularity [91]. Decoherence–based accounts [92,115] explain interference suppression in
practice, but can’t explain why a single result is experienced.

Wave–particle duality presents a familiar difficulty. In the double–slit experiment, an undisturbed
particle yields an interference pattern, while path detection eliminates the fringes and leaves localized
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impacts [36]. Conventional accounts explain this by invoking either nonlocal collapse or the prolifera-
tion of branches, but neither option integrates well with a relativistic and ontologically economical
framework.

This paper develops Chronon Field Theory (CFT), a covariant geometric framework designed to
reframe these foundational problems. CFT begins with a microscopic timelike field Xµ(x), whose
coarse–graining across many fine–grained regions produces a smooth, future–directed macroscopic
field Φµ(x), the chronon field. Recent results show that both the Lorentzian signature of gµν and the
unit–norm property ΦµΦµ = −1 arise dynamically and uniquely from a broad class of microscopic
chronon models (Appendix A, Ref. [69]). In the same spirit, the Born rule is no longer an assumed
axiom but follows from CFT’s intrinsic locality, symmetry, and coarse–graining structure (Appendix L,
Ref. [70]).

Alignment Structure in CFT

A central organising principle of CFT is the distinction between microscopic and macroscopic
alignment:

1. Fine–grained quantum regions: Each small spacetime region in the quantum regime has a
well–defined local timelike Xµ, but orientations are generally uncorrelated between regions.

2. Potential average alignment: Within a given region, microscopic fluctuations exhibit a statistical
bias toward some local direction.

3. Macroscopic correlation: In a stable apparatus, many regions share a robust global alignment Φµ

that defines the apparatus’s causal geometry.
4. Measurement as alignment locking: During measurement, the potential average directions of

a microscopic system become aligned with the apparatus’s Φµ, producing a definite outcome
without nonlocal collapse or many–world branching.

5. Uncertainty from statistical geometry: The quantum uncertainty principle arises as a statistical
constraint on chronon fluctuation coherence, with the Planck constant h̄ emerging dynamically
as the variance of action across coarse-grained chronon ensembles.

Within this framework, Schrödinger’s cat is a straightforward macro–micro coupling: the cat’s
macroscopic Φµ is already aligned long before the trigger event, so no long–lived macroscopic su-
perposition exists. Entanglement is reinterpreted as two subsystems sharing a Φ–thread ancestry,
so that measurement in one domain constrains correlations in the other without superluminal in-
fluence. The double–slit experiment is explained similarly: multiple Φ–thread configurations can
coexist within a small coherence domain, sustaining interference; path detection couples one thread to
a macro–coherent domain, breaking cross–thread phase coherence.

Scope and Status of the Present Work

With Appendices A and T addressing the emergence of spacetime structure and the Born rule,
CFT now offers a covariant, ontologically economical framework in which both features are derived
from underlying dynamics. In the main text, we present qualitative, conceptual accounts of three
central quantum phenomena: the measurement problem (Section 4), the double–slit experiment
(Section 5), and entanglement (Section 6.2). For each, the corresponding mathematical formulation
and rigorous derivations are deferred to dedicated appendices: Appendix E (measurement problem),
Appendix J (double slit), and Appendix K (entanglement). This separation allows the main text to
remain accessible while providing full technical detail for specialists.

Open directions include the formulation of a fully general action principle and a complete quanti-
sation of Xµ and Φµ. The theory yields scale–dependent predictions such as nonlinear decoherence
and curvature–sensitive timing shifts, offering concrete opportunities for experimental test.

The paper is organised as follows. Section 2 situates CFT within the wider interpretative landscape.
Section 4 develops the account of measurement as geometric embedding. Section 5 treats the double–
slit experiment. Sections 6.1 and 6.2 discuss Schrödinger’s cat and entanglement. Section 10 presents

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.1969.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1969.v1
http://creativecommons.org/licenses/by/4.0/


3 of 40

potential empirical probes. Section 12 summarises and compares CFT with Copenhagen, Many–Worlds,
and QBist/Relational approaches.

2. Theoretical Context
Chronon Field Theory (CFT) grows out of a long–standing tension between the roles of time and

geometry in quantum theory and in relativity. In textbook quantum mechanics, time is an external
parameter—a background clock carried over from classical mechanics. In general relativity, it is one
coordinate in a dynamical spacetime. Bridging this gap has driven decades of work on quantum
gravity and related formalisms [60,65].

CFT, as developed here, is not yet a full theory from first principles. It is a covariant geometric
framework that replaces both the background notion of time and the assumption of a fixed space-
time geometry with a single dynamical causal field. Within this picture, quantum phenomena such
as interference and measurement arise from interactions between regions whose fine–grained align-
ment properties differ—particularly between domains in which local chronon orientations are only
statistically biased toward a direction, and those in which such biases are strongly correlated over
macroscopic scales.

2.1. Time, Geometry, and Causality as Scale–Dependent

In the standard formulation, time lies outside the Hilbert space and remains fixed, while space
and time are treated asymmetrically. That description falters in regimes without a global time coordi-
nate—early–universe cosmology, black hole interiors, and other strongly curved settings.

Relational–time approaches [86] and internal–clock models [80] recover time from correlations
between variables, but still assume a fixed Lorentzian background. CFT goes further: both causal order
and smooth geometry emerge from a dynamical timelike field Xµ(x) whose microscopic behaviour
is disordered. At Planck scales Xµ fluctuates strongly and no stable causal structure exists. At
quantum scales, any fine–grained region—whether in empty space or inside a detector—is never perfectly
aligned; instead, it exhibits a potential average alignment direction obtained via coarse–graining. In stable
macroscopic systems, these local potential averages are highly correlated, producing a globally aligned,
future–directed, unit–norm field Φµ(x) that defines a local arrow of time and the emergent Lorentzian
metric. Between these extremes lie regimes with partial causal–geometric coherence, in which multiple
alignment domains can coexist.

2.2. Measurement Without Collapse or Branching

The standard measurement problem—how definite outcomes arise—remains unresolved. Col-
lapse models [10,46] introduce stochastic terms at the cost of Lorentz covariance. Many–Worlds
[34,106] keeps unitarity but multiplies ontology. Relational and epistemic views [40,87] economise on
ontology but risk reducing the quantum state to bookkeeping.

CFT stays single–world and observer–independent [42,63]. A measurement is the align-
ment–locking of a microscopic domain’s potential average chronon orientation to the global alignment
of a macroscopic apparatus. Before interaction, each fine–grained region of the microscopic system
has only a statistical bias toward a direction; after interaction, those biases become correlated with
the apparatus’s already coherent Φµ. The apparatus does not impose a perfect microscopic order, but
rather synchronises the existing statistical tendencies so that subsequent evolution is referenced to
its stable geometry. What appears as “collapse” is, in this view, a boundary–induced stabilisation of
alignment and local geometry (Appendix E).

2.3. Relation to Geometric Approaches

Quantum theory has long been framed in geometric terms—the projective Hilbert space with
its Fubini–Study metric [6,64], Berry’s phase [14], symplectic and contact structures [21]. Quan-
tum–gravity programs—causal sets [17], loop quantum gravity [88], spin foams [81]—build spacetime
from discrete or algebraic data and give causal order a primary role.
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CFT shares the focus on causal geometry but takes the generator to be a smooth, dynamical
timelike vector field producing both intrinsic time and the macroscopic metric. When Φµ is globally
uniform, standard quantum mechanics in a fixed background is recovered. When it varies, domains
can exist in which causal and geometric structure are only partially formed and the fine–grained
chronon orientations remain statistically disordered.

2.4. Place in the Landscape

The chronon field unifies three strands of foundational work:

1. Relational, dynamical time–geometry: absolute time and fixed metric are replaced by a
field–driven, scale–dependent causal structure that can fluctuate or fail at small scales.

2. Covariant geometric formulation: the framework is background–independent, Lorentz–compatible,
and naturally extendable toward quantum–gravity regimes.

3. Minimal ontology with dynamical outcome selection: definite results emerge from bias–lock
stabilization without branching worlds or ad hoc collapse rules.

With spacetime causal structure and the Born rule derivable from chronon dynamics, CFT has
moved beyond a purely heuristic template toward a coherent, testable framework. Open directions
include deriving Xµ’s dynamics from a fully general action principle, quantising Xµ and Φµ, and
characterising departures from perfect causal–geometric coherence. Such deviations could yield
observable signatures in high–precision interferometry, relativistic quantum information protocols,
and potentially in quantum–gravity–scale experiments.

3. Chronon Field Theory: Core Framework
Chronon Field Theory (CFT) is a covariant, background–independent reformulation of quan-

tum mechanics in which the effective spacetime geometry—both its temporal structure and causal
order—emerges, at sufficiently coarse–grained scales, from a smooth, future–directed, unit–norm
timelike vector field Φµ(x) [73,104]. This chronon field replaces the role of external time in conventional
formulations, while also generating the Lorentzian metric structure in which events are embedded. In
this view, the familiar large–scale geometry of spacetime is not presupposed at the microscopic level,
but appears as an ordered phase of the chronon field.

Recent rigorous results (Appendix A, Ref. [69]) show that both the Lorentzian signature (−+++)

of gµν and the unit–norm property ΦµΦµ = −1 arise dynamically and uniquely from a broad class of
microscopic chronon dynamics, replacing earlier postulates. At sub–Planckian or quantum scales, the
underlying causal field Xµ(x) can fluctuate strongly, with norms and directions varying significantly
between regions. In such fine–grained domains, no perfect alignment exists; instead, each exhibits
only a statistical bias or potential average toward a local time direction. The smooth Φµ(x) of CFT is thus
an emergent, coarse–grained descriptor encoding the correlated average alignment of many microscopic
regions. In a macroscopic apparatus, these local biases are strongly correlated, yielding a robust global
Φµ; in a microscopic quantum system, correlations are weaker and the average alignment less stable.

3.1. The Effective Chronon Field Φµ(x)

We consider a smooth, future–directed vector field Φµ(x) satisfying

Φµ(x)Φµ(x) = −1, Φ0(x) > 0, (1)

throughout the coarse–grained domain of validity. The integral curves of Φµ—chronon threads—define
the intrinsic time direction and generate proper–time evolution. The metric gµν appearing here is
the large–scale geometry compatible with Φµ and, in CFT, emerges alongside it from microscopic
dynamics (Appendix A).

For a rigorous statement of the conditions under which such a Φµ yields a global time function,
spacelike foliation, and proper time, see Appendix A.
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3.2. Emergent Temporal and Geometric Foliation

Given a sufficiently smooth Φµ(x), one can define a family of spacelike hypersurfaces {Στ}
orthogonal to Φµ, labelled by a scalar function τ(x) interpreted as intrinsic proper time. In CFT, these
hypersurfaces are part of the emergent geometry generated by the large–scale ordering of Φµ itself,
not embedded in a pre–existing background.

When Φµ is hypersurface–orthogonal, the twist tensor vanishes [38]:

ωµν := hα
µhβ

ν∇[αΦβ] = 0, (2)

where hµν = gµν + ΦµΦν projects orthogonally to Φµ.
In that case, τ(x) satisfies:

Φµ(x) = −N(x)gµν∂ντ(x), (3)

with lapse function:
N(x) =

[
−gµν∂µτ ∂ντ

]−1/2. (4)

The Στ then act as intrinsic time–slices for quantum evolution. A proof that such a foliation and
proper–time structure emerge under the stated regularity and integrability conditions is given in
Appendix A. In regions where Φµ loses coherence—because the microscopic Xµ fluctuations fail to
yield a stable average—the foliation and effective metric may break down.

3.3. Action Principle and Dynamical Foundations

While the preceding discussion treats Φµ and its induced geometry at the effective, coarse–grained
level, a natural next step is to formulate CFT within a fully covariant variational framework. Ap-
pendix B presents a candidate general action principle in which the chronon field couples to curvature
and gauge sectors via geometric invariants built from gµν, Φµ, and their derivatives. In this construc-
tion, the unit–norm property of Φµ is enforced dynamically through a Lagrange multiplier, while the
gravitational and gauge dynamics arise from curvature terms and covariant field strengths projected
along and orthogonal to Φµ.

The purpose of this appendix is not to claim a definitive microscopic completion, but to provide a
coherent starting point from which both classical and quantum equations of motion can be derived,
and to clarify how known field theories may emerge as special limits of the chronon–field dynamics.

3.4. Quantum Dynamics Along Causal Threads

In CFT, quantum evolution proceeds in intrinsic proper time τ along Φ’s integral curves, rather
than in an external coordinate time. Each Στ carries a Hilbert space H[Στ ], and we postulate an
evolution law:

ih̄
d

dτ
Ψ[τ] = ĤΦ[τ]Ψ[τ], (5)

where ĤΦ depends on the matter content and the Φµ–induced geometry.
In the ADM (3+1) decomposition [3], Φµ is expressed via the unit normal nµ to Στ and a shift Ni:

Φµ = Nnµ + Nieµ
i . (6)

In synchronous gauge (Ni = 0), the Hamiltonian takes the form:

ĤΦ[τ] =
∫

Στ

d3x N(x)
(
Ĥ(x) + λa(x)Ĉa(x)

)
. (7)

A full derivation from a CFT–specific microscopic action remains for future work.
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3.5. Relational Status of the Hilbert Space

As shown in Appendix C, H[Στ ] is defined relationally—with respect to the foliation and metric
structure induced by Φµ(x)—and may fail to exist in regions where Φµ loses coherence. This is a
departure from the global, time–independent Hilbert space of standard QM. Features include:

• Local definition tied to the domain of coherent Φµ and its induced geometry.
• Adaptation to dynamically evolving causal and metric structure.
• Interpretation as a correlation space, not a primitive, background object.

3.6. Gauge and Constraint Structure

As a covariant theory, CFT enforces first–class constraints:

Ĉa[τ]Ψ[τ] = 0, ∀a, (8)

including Gauss, diffeomorphism, and Hamiltonian constraints [59]. Compatibility of a dynamical
Φµ and its emergent gµν with this algebra is assumed at present; proof of closure is an open technical
question.

3.7. Recovery of Standard QM in Smooth Limits

When Φµ is constant and spacetime is flat,

Φµ ≈ (1, 0, 0, 0), gµν ≈ ηµν, (9)

τ coincides with coordinate time t, and the standard Schrödinger equation is recovered:

ih̄
d
dt

ψ(t) = Ĥψ(t). (10)

Thus CFT reduces to conventional QM in the fully coherent, smooth limit—while offering a framework
to handle regimes where causal and geometric order are incomplete or scale–dependent.

4. Measurement as Local Geometric Stabilization
In standard quantum theory, a measurement is described either as a sudden “collapse” of the

wavefunction [103], or—more recently—as the result of environmental decoherence in a larger Hilbert
space [92,115]. CFT takes a different starting point: a measurement is neither an epistemic update nor
an external “intervention,” but a local and scale–dependent reconfiguration of causal geometry. It
occurs when the average potential alignment direction of a microscopic domain—initially fluctuating and
only statistically biased—locks into the global alignment of a macro–coherent apparatus.

At the fine–grained level, no region is perfectly aligned: the microscopic Xµ(x) field exhibits
fluctuations in both norm and direction. What distinguishes a macro–coherent apparatus from an
isolated quantum system is not the absence of fluctuations, but the strong correlation of local potential
averages. In a macroscopic device, many small subregions have potential alignment directions that
are themselves closely aligned, producing a robust global Φµ. In a microscopic quantum system,
these correlations are weak; neighbouring subregions can have differing biases, so the coarse–grained
average is unstable.

Measurement, in this framework, is the process by which the microscopic domain’s coarse–grained
average chronon orientation becomes correlated with—and stabilized by—the apparatus’s global Φµ.
This is not merely a choice of a time direction, but the embedding of the system’s causal microstructure
into the apparatus’s stable spacetime patch. Once this embedding is complete, subsequent evolution
proceeds relative to the apparatus’s emergent geometry.

A central result of this account is that, under general locality, symmetry, and coarse–graining
conditions natural to CFT, the statistical distribution of possible stabilized outcomes obeys the Born
rule. Appendix L (Ref. [70]) summarises the derivation, showing that the rule emerges from the
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geometric alignment mechanism itself, without being imposed as an independent axiom. Thus, in CFT,
both the occurrence of definite outcomes and the quantitative probabilities governing them follow
from the same underlying chronon dynamics.

Weakly correlated Xµ biases Strongly correlated Φµ

Interaction zone

Figure 1. Measurement as bias correlation: a microdomain with locally fluctuating chronon orientations (left) enters
the coarse–graining scale of a macro–coherent apparatus (right). Within the interaction zone, the microdomain’s
potential alignment directions become correlated with the apparatus’s global Φµ, stabilizing its average time
direction and embedding it in the apparatus’s causal geometry.

4.1. Pre-measurement: Locally Biased, Globally Incoherent

Before interaction, the microscopic domain is described by a fluctuating timelike field Xµ(x) that
does not satisfy the unit–norm constraint and whose preferred directions vary from one fine–grained
subregion to another:

Xµ(x)Xµ(x) ̸= −1. (11)

The norm and direction vary across the region, producing only short–range correlations and no stable
global Φµ. The geometry in this regime is statistical and short–lived, resembling a “pre–causal foam”
[109]. Quantum indeterminacy here reflects the multiplicity of compatible coarse–grainings of these
local biases into different potential alignment directions.

4.2. Scale–Dependent Coupling to the Apparatus

When the microdomain interacts with a macro–coherent apparatus, the effective coarse–graining
scale increases. Local biases in Xµ first align with their immediate neighbours, then with larger
correlated regions, until they are locked to the apparatus’s global Φµ. This multi–scale locking process
is gradual:

{local biases of Xµ} multi–scale correlation−−−−−−−−−−−−−→ Φµ
apparatus.

In this picture, what standard QM calls “wavefunction collapse” corresponds to the point at which
the correlation extends across the entire microdomain, leaving no room for incompatible alignment
histories.

4.3. Hierarchy of Stabilization Scales

The stabilization process can be viewed as a hierarchy of scales:

1. Microscopic: fine–grained subregions with fluctuating Xµ, weakly biased.
2. Mesoscopic: intermediate domains where local averages are partially correlated.
3. Macroscopic: global apparatus Φµ with strong long–range correlation.

Measurement is complete when correlations have percolated from the microscopic to the macroscopic
scale, embedding the system’s causal structure into that of the apparatus.

CFT models the emergence of classicality as a hierarchy:

• Planck scale: maximal disorder; no persistent bias or geometry.
• Quantum scale: weakly correlated local biases; interference possible between regions of different

potential alignment.
• Mesoscopic scale: intermediate correlation; some directions stabilized, others fluctuating.
• Macroscopic scale: strongly correlated biases; global Φµ stable under perturbations, defining a

persistent causal geometry.
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Measurement is the embedding of a weakly correlated bias structure into a strongly correlated
one, forcing the smaller system into the latter’s global alignment and thereby producing a definite
outcome without requiring nonlocal collapse or branching worlds.

5. The Double-Slit Experiment in Chronon Field Theory
The double-slit experiment remains one of the clearest demonstrations of quantum coherence

[36]. In conventional accounts, a particle is said to display “wave–particle duality,” with collapse or
branching invoked when a which–path detector is present. CFT reframes this entirely in terms of
the causal–geometric properties of Φµ: interference occurs when the local potential average alignment
directions of the chronon field remain sufficiently correlated across both paths at the experiment’s scale,
and disappears when those correlations are broken by embedding one path into the macro–coherent
domain of a detector. See Figure 2.

Barrier Detector

ϕ-threads Through the Slits

Figure 2. Schematic: Φ-threads propagate causally through both slits, guiding the quantum system toward
interference regions. This is an interpretive model; a derivation from the CFT action remains to be worked out.

5.1. Two Levels of Chronon Correlation

We distinguish between:

1. Microscopic (local) correlation: Within a small spacetime region, the fine–grained Xµ field
fluctuates, but the distribution of its orientations can be biased in such a way that phase relations
are maintained across multiple paths. This bias correlation—though far from perfect alignment—
is sufficient to sustain interference if preserved over the relevant path separation.

2. Macroscopic (global) correlation: Across a large domain, the local potential averages themselves
are strongly correlated in direction, yielding a stable, coarse–grained Φµ

eff that defines a single
time orientation and supports persistent, classical records.

In a detector–free double–slit setup, the “microsystem”—the quantum excitation plus the narrow
regions of Xµ bias along each path—remains in the first regime. The bias orientations along the two
paths remain correlated enough to sustain a shared phase reference, since no macroscopic causal
boundary forces them into different alignments.

5.2. Interference as Correlated Bias Histories

The apparent “superposition” is reinterpreted as the joint evolution of bias–correlated Φ–threads—
integral curves of the coarse–grained Φµ—through both slits inside a single, locally correlated mi-
crostructure. Let Γ1 and Γ2 be two such bias–carrying threads from the source ps to a point pd on the
screen. The detection amplitude is modeled heuristically as:

Ψ(pd) = ∑
Γ∈{Γ1,Γ2}

A[Γ] eiS[Γ]/h̄, (12)

where A[Γ] encodes the stability of the bias correlation along that thread. Interference occurs when
both threads retain a mutual phase reference defined by their shared bias correlation.
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5.3. Detector Interaction: Bias Lock–in to Macro Alignment

Placing a which–path detector at one slit changes the bias–correlation structure at the exper-
iment’s scale. The detector belongs to a macroscopic apparatus whose Φµ

device is already in the
strong–correlation phase. When a microscopic bias–carrying thread encounters this domain, the
boundary interaction locks its local potential average orientation to the apparatus’s global Φµ.

This locking process destroys the original bias correlation between the two paths: the aligned path
now shares the apparatus’s global orientation, while the unmeasured path retains its original local bias.
From the coarse–grained viewpoint, the allowed histories {Γ1, Γ2} reduce to a single bias–compatible
thread. Interference disappears—not through nonlocal collapse, but because causal–geometric bias
correlations have been severed at the relevant scale, as illustrated in Figure 3.

Source

Barrier
Detector (macro causal order)

Detector boundary

Screen

Lower slit path: local coherence preserved

Upper slit path: aligned to macro geometry

lower slit

upper slit
alignment pull

Figure 3. Which–path detection as boundary–induced alignment in CFT. The Φ–thread through the upper slit
enters the detector’s ordered Φ–domain (green) and is dynamically aligned to its causal geometry (solid green
trajectory). Its original phase orientation (blue ticks) is replaced by the detector’s aligned phase (green ticks),
breaking phase correlation with the lower slit path (blue). The lower path retains local Φ–coherence but no longer
shares a common phase reference with the upper path, eliminating interference. No nonlocal collapse is invoked;
the loss of interference is a causal–geometric consequence of embedding a locally coherent micro–domain into a
macro–coherent causal structure.

Remark.

For a mathematical treatment of the double–slit experiment within Chronon Field Theory, includ-
ing formal definitions of bias–phase coherence, ancestry overlap, and fringe visibility, see Appendix J.

5.4. Summary

In CFT, interference requires only the persistence of correlated local potential averages across both
paths—not global unit–norm alignment of Φµ. A measurement corresponds to the irreversible coupling
of one path’s bias orientation to a macro–coherent domain, fixing its large–scale time orientation and
eliminating the shared phase reference needed for interference. This explains how a microsystem can
exhibit interference in one configuration yet yield a definite outcome when one path is monitored.

6. Other Foundational Puzzles in CFT
The double–slit experiment shows how CFT replaces the usual “wave–particle” story with a

scale–dependent causal–geometric one. Two other famous puzzles—Schrödinger’s cat and quantum
entanglement—pose the same conceptual challenge in different limits: (1) the junction between
microscopic and macroscopic domains, and (2) correlations maintained across spacelike separation. In
CFT, both can be reframed in terms of local bias correlations in the fine–grained chronon field and the
persistence of shared causal ancestry.

6.1. Schrödinger’s Cat: Macro–Micro Bias Coupling

In the usual account [93], a microscopic quantum event (e.g. a decay) triggers a macroscopic
consequence (a cat’s life or death). Linear quantum evolution then seems to extend the superposition
to the cat—something never seen in actual macroscopic systems.
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In CFT, the setup contains two domains with very different correlation scales:

• Macroscopic domain (cat, detector, box): strongly correlated local biases; at the coarse–graining
scale of the apparatus, the emergent Φµ

macro is smooth, future–directed, and stable under pertur-
bations.

• Microscopic trigger (nucleus, emitted particle): small–scale domain where Xµ fluctuates and only
exhibits short–range bias correlations; no single alignment direction spans the macro region.

Before interaction, the microdomain’s Xµ
micro evolves with bias orientations uncorrelated with

Φµ
macro. When coupled through the detector, the coarse–graining scale grows to include the mi-

crodomain: its local bias distribution is locked to the apparatus’s global bias orientation, i.e. to Φµ
macro.

As shown in Figure 4, this bias lock–in fixes one stable causal geometry inside the cat’s domain, and
with it, one definite physiological outcome.

Microscopic trigger
(Xµ

micro)
Macroscopic domain (cat)

(Φµ
macro)

interaction / embedding

Before: micro incoherent, macro coherent After: micro shares macro’s Φµ

Figure 4. CFT view of Schrödinger’s cat. The microdomain Xµ
micro has several short–range causal threads (red,

dashed). After interaction, it aligns with the macro–coherent Φµ
macro (blue, solid), inheriting its time direction.

Inside the cat’s domain, one outcome exists throughout; for an external observer, that outcome is only identified
once causal contact is made.

Two viewpoints:

1. Inside the box: The cat’s body is already a macro–coherent domain. As soon as the trigger
interacts, the microdomain’s bias orientation locks to the cat’s Φµ

macro, and the cat’s physiology
follows one definite trajectory (alive or dead) in its own causal frame. There is no stage where the
cat is “both” from its own perspective.

2. Outside the box: An external observer’s Φµ
obs is uncorrelated with Φµ

macro until the box is opened.
From outside, the description may be an “entangled superposition,” but in CFT this represents
ignorance of which bias–locked macro geometry already exists inside. Opening the box couples
the observer’s Φµ

obs to Φµ
macro, revealing the outcome without invoking a real collapse.

Thus, the “paradox” becomes a simple matter of when and where bias correlations stabilize across
scales.

6.2. Entanglement: Correlated Bias Ancestry Across Separation (Rigorous Formulation)

In the standard story [12,33], entanglement seems to require nonlocal influences or many–world
branching. In CFT, as illustrated in Figure 5, the correlations arise from the shared bias ancestry of
the subsystems’ chronon fields: two subsystems are correlated because their local bias orientations
originated in the same connected microstructure of Xµ.
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Στ1

Στ2

Στ3

Φ causal spine

A B

LCA LCB

shared Φ ancestry

Figure 5. CFT view of entanglement. The curved layers Στi are intrinsic foliation surfaces of constant proper time
defined by the coarse–grained Φµ. Events A and B are spacelike–separated detections, each with its own local
light cone (LCA, LCB). They remain correlated because both originate from a shared Φ ancestry region in which
their Φ–threads formed a single topologically coherent structure. The correlations violating Bell inequalities are a
feature of this pre–existing geometry, not the result of superluminal influence or branching worlds.

Preparation.

When A and B are produced, their microscopic chronon fields form a connected bias-correlated
network within R. Relative phase information is defined within this common structure.

Separation.

As A and B move apart, their bias distributions remain statistically linked via the shared ancestry,
even though Xµ continues to fluctuate locally.

Measurement.

Lock-in of A’s local bias to the apparatus Φdevice
µ constrains B’s bias through the pre-existing

correlations. This fixes the joint statistics without superluminal signalling.

Bell violations.

Let M be the variational distance

M := sup
a,b

∥P(Λ|a, b)− P(Λ)∥1.

Then for local, deterministic outcome maps α(a, Λ), β(b, Λ) one finds the bound

CHSH ≤ 2 + 2M. (13)

A quantum-maximal value CHSH = 2
√

2 requires M⋆ =
√

2 − 1 ≈ 0.414. An explicit toy model
realising this bound is given in Appendix K.

Remark.

A mathematical formulation of Φ-ancestry, including formal definitions and a solvable model
that reproduces Bell-type correlations and violations without superluminal signalling, is given in
Appendix K.

7. No Need for Many Worlds or Wave–Particle Duality
Chronon Field Theory (CFT) aims to describe all quantum phenomena within a single, scale–

dependent geometric framework in which every region—no matter how small—retains microscopic
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Xµ fluctuations and is never perfectly classically aligned. What changes with scale is the statistical bias
of those fluctuations: in large, stable domains, local bias directions correlate strongly enough to form
an emergent, unit–norm Φµ at the coarse–graining scale. With the emergence of Lorentzian signature
and unit–norm Φµ now derived from chronon dynamics (Appendix A), and the Born rule shown to
follow from CFT’s locality, symmetry, and coarse–graining assumptions (Appendix L), neither the
Many–Worlds Interpretation (MWI) nor the standard wave–particle duality is required [18,34,111].
Instead of parallel realities or disjoint regimes, CFT treats quantum behaviour as arising from the
bias–correlation structure of a single spacetime.

7.1. Many–Worlds: Points of Departure

MWI preserves unitarity by letting all possible outcomes occur in separate branches of a universal
wavefunction [34,106], at the cost of postulating an empirically inaccessible branching multiverse.

CFT departs from MWI on several points:

(i) Ontological economy: MWI multiplies entire universes [99]; CFT posits one spacetime with
one fluctuating Xµ field whose bias correlations vary by scale.

(ii) Basis choice: MWI branches depend on decoherence to define a preferred basis; CFT outcomes
are tied to the foliation fixed when local bias correlations lock into a macro–coherent Φµ.

(iii) Probabilities: Born–rule derivations in MWI [27,106] risk circularity. In CFT, outcome fre-
quencies follow from the relative measure of stabilized bias configurations in the chronon
path integral, as shown in Appendix L, with no independent probability postulate.

(iv) Branch dynamics: MWI has no local mechanism for when/where branches split. CFT replaces
this with boundary–driven Xµ →Φµ bias–lock transitions in one causal geometry.

7.2. Minimal Ontology

The ontology is a Lorentzian manifold plus a chronon field Xµ(x) whose fine–grained fluctuations
are ever–present, and whose coarse–grained bias orientation Φµ becomes well–defined only above
certain scales. In a complete theory, Φµ would follow from a covariant action [73]. Measurement is a
dynamical bias–correlation process: a micro–domain’s local bias locks to a macro–coherent Φµ through
interaction, producing outcome statistics in accordance with the Born rule (Appendix L).

7.3. Replacing Wave–Particle Duality

In the double–slit story, one alternates between wave and particle models. CFT uses a single
model:

• Without macro–scale bias lock–in, local Φµ coherence can extend across multiple paths, preserving
phase correlations (“wave–like” behaviour).

• Coupling one path to a macro–coherent domain locks its bias to that domain, breaking phase
correlation and producing a discrete hit (“particle–like” behaviour).

Both limits emerge from one chronon field with scale–dependent bias correlations, with the Born-rule
probabilities arising from the measure over compatible chronon configurations.

7.4. Path Integrals and Relational Links

In a path–integral view [36], only histories whose Xµ fluctuations are compatible with the Φµ–
defined causal structure at the relevant scale contribute. This incorporates the bias–geometry directly
into amplitude calculations. Unlike relational [87] or QBist [40] interpretations, Φµ is an observer–
independent physical field; the wavefunction is defined relative to its foliation, not to an agent’s beliefs.
See Appendix G for details.

7.5. Outlook

If successful, CFT would unify time, measurement, and the quantum–classical transition: time as
a local dynamical property, measurement as bias lock–in to a macro–coherent Φµ, and “wave” versus
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“particle” as two regimes of one causal–bias structure. Its geometric foundation makes it naturally
compatible with covariant quantum–gravity frameworks [52,75].

8. The Ontological Status of the Wavefunction
Since the beginnings of quantum theory [7,28,56], there has been debate over whether the wave-

function Ψ is ontic or epistemic. In CFT, Ψ is neither a universal field on configuration space nor mere
knowledge—it is a foliation–dependent functional that appears only after local bias correlations have
stabilized into a coarse–grained, unit–norm Φµ.

8.1. Wavefunctions as Foliation–Dependent Functionals

Let {Στ} be hypersurfaces orthogonal to Φµ in a stabilized domain. The wavefunction Ψ[τ] ∈
H[Στ ] encodes correlations across Στ :

ih̄
d

dτ
Ψ[τ] = ĤΦ[τ]Ψ[τ], (14)

where ĤΦ[τ] depends on the matter content and the induced geometry. Ψ is undefined in pre–
stabilization regions where no coherent foliation exists.

8.2. Between Ontic and Epistemic

CFT’s Ψ:

• has physical content—its domain and correlations are fixed by the stabilized Φµ and the local bias
distribution;

• but is derived—it emerges only after the geometric/bias structure is fixed, and is not a fundamental
object in its own right.

8.3. Collapse as Bias–Lock Transition

Because Ψ exists only after Xµ bias–lock to Φµ, there is no need to postulate collapse [102]. What
appears as collapse is a geometric stabilization (Section 4) in which fine–grained bias fluctuations
become highly correlated to a macro–scale orientation. After stabilization, Appendix A and Appendix C
show how H[Στ ] is well–defined.

8.4. Born Rule from Statistical Geometry

In CFT, the Born rule is not assumed but derived (Appendix L, Ref. [70]) from the statistical
measure over stabilized bias configurations, subject to CFT’s locality, symmetry, and coarse–graining
conditions. If O is the set of Φµ fields yielding a given outcome, then:

P[O] ∝
∫

Φµ∈O
DXµ exp

[
−1

h̄
Sξ [Xµ]

]
, (15)

with the path integral restricted to admissible pre–lock Xµ fields. In the smooth–foliation limit, this
reduces exactly to |ψ|2, while allowing for small, testable deviations in cases of incomplete stabilization.

8.5. Summary

In CFT:

• Ψ is emergent—appearing only after coarse–grained bias correlations stabilize;
• it is relational—defined relative to the foliation from Φµ;
• it is causally grounded—reflecting structures in spacetime;
• and derived—a secondary description, not a primary element of ontology.
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9. Emergent Uncertainty Relations in Chronon Field Theory
In conventional quantum mechanics, the uncertainty principle arises from the non-commutativity

of operators associated with canonically conjugate observables (e.g., position and momentum) [56,85].
In Chronon Field Theory (CFT), however, neither operators nor observables are fundamental. Instead,
physical quantities and their statistical correlations emerge from the coarse-graining of a fine-grained,
dynamically fluctuating timelike vector field Xµ(x). In this section, we develop a formulation of the
uncertainty principle in CFT as a geometric-statistical constraint on the fluctuations and correlations of
pre-stabilized chronon configurations.

9.1. Pre-Stabilization Fluctuations and Bias Variance

Prior to macroscopic stabilization, the chronon field Xµ(x) exhibits local fluctuations in both
magnitude and direction. Let ⟨·⟩ξ denote a coarse-grained average over a region of scale ξ, and define
the local potential alignment direction (bias vector) as:

X̄µ(x; ξ) := ⟨Xµ(x)⟩ξ . (16)

The emergent macroscopic chronon field Φµ(x) arises in the limit where bias correlations become
stable and long-ranged [69]:

Φµ(x) := lim
ξ→∞

X̄µ(x; ξ)

|X̄µ(x; ξ)| , with ΦµΦµ = −1. (17)

Fluctuations in Xµ across a spacetime domain Ω can be characterized by the variance tensor:

Σµν
Ω := ⟨XµXν⟩Ω − ⟨Xµ⟩Ω⟨Xν⟩Ω. (18)

The nonzero components of Σµν
Ω quantify the statistical spread in directionality of the chronon field. In

particular, in regions where Σ0i or Σij are large, no stable foliation (and hence no classical evolution)
exists.

9.2. Conjugate Observables and Emergent Uncertainty Bounds

Once coarse–graining yields a smooth foliation {Στ} orthogonal to Φµ(x) [104], we can define
effective relational observables such as position xi on Στ and the associated momentum pi := −ih̄eff∇i

with respect to the induced metric hij. Their statistical uncertainties are defined by

(∆xi)2 = ⟨(xi − ⟨xi⟩)2⟩, (19)

(∆pi)
2 = ⟨(pi − ⟨pi⟩)2⟩. (20)

Theorem. In any stabilized domain, the Peierls bracket induced by the Φ–adapted effective action
satisfies

{xi, pj}P = δi
j +O(|∇Φ|).

Quantization with respect to the emergent Planck scale h̄eff (Appendix I) then yields the uncertainty
relation

∆xi ∆pi ≥ 1
2 h̄eff(x) + O(|∇µΦν|), (21)

where ∇µΦν quantifies curvature–induced deviations from flat foliation [5,52].
Proof sketch. The Robertson–Schrödinger inequality gives (∆xi)(∆pi)≥ 1

2 |⟨[xi, pi]⟩|. From the path–
integral weight e−Sξ [X]/h̄eff one obtains [xi, pj] = ih̄effδ

i
j +O(|∇Φ|), which establishes (21).

A complete proof, including the Peierls–to–commutator correspondence, is provided in Ap-
pendix I.4.

Physical intuition. Measuring xi uses data on a single leaf Στ , yielding a coarse–grained position
average. By contrast, pi is the generator of translations along xi and operationally requires comparing

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.1969.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1969.v1
http://creativecommons.org/licenses/by/4.0/


15 of 40

positions across two nearby leaves Στ and Στ+∆τ . At the fine–grained level, causal alignment between
these leaves is not exact, so the fluctuations that enter the position estimator and those that enter the
momentum estimator cannot be perfectly correlated. Their product therefore has a nonzero lower
floor, set by the action–variance density of chronon ensembles—that is, by h̄eff. In the limit of globally
coherent Φµ and vanishing curvature this reduces to the standard Heisenberg relation, while in general
the bound receives corrections from decoherence gradients and causal inhomogeneities [32].

Importantly, if two observables are not canonically conjugate in the Φ–induced symplectic struc-
ture, then the commutator term vanishes at leading order and no universal h̄eff–scaled bound exists:
only model–dependent covariance terms remain.

9.3. Statistical Interpretation

The uncertainty bound above should be interpreted not as a fundamental kinematic limit, but
as a statistical constraint on the coarse-grainability of local chronon configurations. It quantifies the
trade-off between positional localization (requiring tight alignment of Xµ vectors across space) and
momentum definition (requiring coherence of phase correlations across proper time evolution) [19,45].

In this sense, uncertainty is a manifestation of incomplete causal-geometric coherence in a domain.
It reflects the finite capacity of chronon ensembles to support simultaneous sharp structure in both
spatial foliation and directional flow. For a schematic illustration, see Figure 6.

(a) Microscopic: incoherent Xµ biases

Large variance Σµν , no foliation

(b) Mesoscopic: partial alignment

Reduced Σµν , emerging foliation {Στ}

(c) Macroscopic: coherent Φµ (unit–norm)

Stable foliation, classical records, ΦµΦµ = −1

(d) Emergent uncertainty and h̄eff

∆x

∆p

∆x ∆p = h̄eff/2

(a)

(b)

(c)

Covariance ellipse

Σij
Ω

Figure 6. Emergent uncertainty in CFT. (a) Microscopic domain with incoherent chronon biases Xµ: large variance
Σµν, no stable foliation. (b) Mesoscopic domain: partial alignment reduces variance and begins to define {Στ}. (c)
Macroscopic domain: coherent, unit–norm Φµ yields classical records. (d) As coherence increases, the uncertainty
product approaches a lower bound governed by the locally emergent h̄eff; the inset covariance ellipse depicts
spatial variance.

9.4. Outlook

Future work will develop a more precise derivation of the uncertainty bound by integrating the
chronon fluctuation statistics into the full path integral formulation of CFT [75]. In particular, we aim
to compute higher-order corrections and quantify deviations from standard quantum mechanics in
partially stabilized domains.

In Appendix I, we establish a geometric-statistical definition of h̄eff and discuss its possible
computation from chronon ensemble dynamics.
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10. Experimental Outlook
Because CFT links quantum phenomena to the scale–dependent bias correlations of Xµ(x) and

the emergent Φµ(x), each predicted deviation from standard QM has a concrete causal–geometric
interpretation. In every case, no region is perfectly aligned at the fine–grained level; observable effects
arise when residual microscopic bias fluctuations or incomplete macro–scale correlation leave small
but systematic signatures.

Potential probes include:

• Weak–measurement bias asymmetry: Test for small, systematic shifts in pointer statistics arising
from incomplete Xµ → Φµ bias–lock in weak–coupling regimes [1]. In CFT, a persistent offset
would reflect a pre–measurement bias–correlation skew due to chronon fluctuations.

• Interferometry in gravitational gradients: Use long–baseline atom or photon interferometers to
detect curvature–induced phase drifts linked to perturbations in the coarse–grained Φµ orienta-
tion, quantified by ∇µΦν [83,114]. Here, spacetime curvature modulates bias correlations in a
way that slightly distorts coherence.

• Causal–order tests under engineered Φµ bias shifts: Implement quantum–switch protocols [78]
while varying local EM or gravitational potentials to induce controlled bias–correlation changes
in Φµ. Any alteration in indefinite–order statistics would suggest that bias orientation participates
directly in process–order constraints.

• Vacuum–noise anisotropy: Search for small, direction–dependent variations in zero–point noise
spectra [22] inside well–stabilized laboratory regions. In CFT, a macro–scale Φµ bias orientation
can subtly break local isotropy, leading to detectable spectral anisotropies.

These proposals are exploratory, but each ties a measurable effect directly to the degree and
stability of bias–correlation in the chronon field, offering a concrete route to falsification or confirmation
of the CFT framework.

11. Future Work and Open Questions
CFT is a framework proposal rather than a complete theory. Key steps ahead include:

1. Quantizing the chronon field: Incorporate quantum fluctuations of Φµ and its couplings to matter
and gravity, and clarify how these fluctuations interact with the causal–geometric constraints.

2. Deriving the full stabilization dynamics: Obtain conditions, timescales, and uniqueness from a
first–principles dynamics of Xµ → Φµ bias–correlation alignment, including the role of bound-
aries, interactions, and noise.

3. Proving the coarse–graining property: Demonstrate from explicit models that the unit–norm
feature of Φµ emerges only as a coarse–grained property, even when all fine–grained regions remain
imperfectly aligned. This entails defining a suitable averaging procedure over local bias vectors
Xµ and showing analytically and/or numerically that the effective field approaches |Φµ|2 = −1
in the large–scale limit.

4. Numerical studies: Simulate interference loss, decoherence rates, and boundary–induced align-
ment in lattice or semiclassical models, explicitly tracking the evolution of bias–correlation
statistics across scales.

5. Coupling to curvature and gauge fields: Test consistency with GR and QFT in curved back-
grounds, and quantify how ∇µΦν perturbations alter coherence, bias alignment, and emergent
foliation.

6. Experimental tests: Develop the proposals in Section 10—weak–measurement bias asymmetry,
curvature–induced phase drift, causal–order perturbations, and vacuum–noise anisotropy—into
precise, falsifiable experiments.

Several aspects of CFT are already on firm ground—for example, the dynamical emergence of
Lorentzian signature and unit–norm Φµ (Appendix A), and the derivation of the Born rule from locality,
symmetry, and coarse–graining (Appendix L). Other ingredients, including a full quantisation scheme
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and a complete dynamics from an action principle, are still missing. These gaps are to be expected at
this early stage. Even so, the present results suggest that a covariant and economical account of time,
causality, and measurement is possible within this framework. Given CFT’s potential, we encourage
further work by the research community to strengthen the mathematics, extend the physical scope,
and test the predictions experimentally.

Table 1. Conceptual Comparison of Chronon Field Theory with Major Interpretations

Aspect Chronon Field
Theory (CFT)

Many-Worlds
(MWI)

Relational QM /
QBism Copenhagen

Time

Emergent from
chronon field
Φµ(x); locally
foliated

Background global
time for unitary
evolution

External or
relational time
between
agents/systems

Classical
background time
as external
parameter

Measurement
Local geometric
phase transition;
stabilization of Φµ

Branching into
decohered
world-histories

Belief update or
relational event
correlation

Causes
discontinuous
collapse; observer-
dependent

Causality

Dynamically
generated by Φµ;
defines intrinsic
arrow of time

Emergent from
unitary branching

Observer-relative
or undefined

Undefined;
collapse
introduces
acausality

Decoherence

Foliation
breakdown as
geometric
decoherence

Environment-
induced
decoherence
between branches

Agent’s loss of
predictive
coherence

Collapse is
postulated;
decoherence
added
heuristically

Unitarity

Preserved locally
on leaves Στ ;
generalized
conservation

Globally
preserved for the
universal
wavefunction

Internal to agent’s
system; belief
evolution

Broken by
measurement
collapse

Wavefunction
Relational
functional over
foliation; not ontic

Ontic and
complete
universal state

Epistemic or
agent-relative tool

Epistemic state of
knowledge;
collapses on
observation

Uncertainty &
Planck Constant

Statistical bound
from chronon
fluctuations; h̄
emerges as
coarse–grained
action variance
(h̄eff)

Fixed axiom of
Hilbert space
structure

Epistemic
information limit;
h̄ taken as
background
constant

Postulated
universal scale in
measurement
theory

Born Rule

Statistical law of
stabilized chronon
ensembles;
derived from
locality and
coarse–graining

Postulated
branch–weight
rule for the
universal
wavefunction

Agent’s subjective
probability update
rule

Fundamental
axiom without
derivation

Ontology

Field realism: Φµ

and matter fields
fundamental;
wavefunction
foliation–relative

Ontic universal
wavefunction; all
branches real

Epistemic/agent–
relative; no
objective state

Dualistic split:
quantum system +
classical apparatus

Philosophy

Covariant realism:
time and causality
as physical
structures

Multiverse realism
with maximal
ontology

Pragmatic
anti–realism;
subjective
epistemology

Instrumentalist
positivism;
predictive rules
over realism

12. Conclusion
We have presented Chronon Field Theory (CFT) as a covariant, geometric framework in which the

role of fixed background time is replaced by a dynamical, future–directed vector field Φµ(x). In this
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picture, quantum evolution, measurement, and the emergence of classicality all follow from the local
behaviour of this field—specifically, from the scale–dependent transition between incoherent chronon
configurations Xµ(x) and stabilized, unit–norm causal order Φµ(x).

The chronon field has a dual role: it fixes the local direction of proper time and generates a
foliation of spacetime into intrinsic hypersurfaces Στ along which quantum states evolve. We have
proposed that measurement is a local geometric phase transition, where a microscopic, partly coherent
domain is irreversibly embedded into a macro–coherent causal structure. If correct, this yields definite
outcomes without the machinery of observer–triggered collapse, proliferating worlds, or other extra
ontological layers [34,41,106].

Within this framework, the double–slit experiment is read as interference between phase–coherent
Φ–threads along multiple causal routes; a detector breaks this coherence by aligning one path with a
macroscopic Φ domain. The usual “wave–particle duality” is replaced by a single causal geometry
whose behaviour depends on the scale and stability of Φµ(x).

Other standard paradoxes take on a similar form. Schrödinger’s cat becomes a case of micro–macro
causal embedding, with macroscopic stability ruling out extended superposition. Entanglement reflects
a shared Φ–thread ancestry between distant systems, where correlations follow from the coherence of
a single causal network rather than superluminal influence.

A major conceptual advancement of this framework is that both the uncertainty principle and
Planck’s constant are emergent phenomena. The uncertainty principle arises as a statistical constraint
on the coarse–grainability of chronon fluctuations, with bounds controlled by the effective action
variance of chronon ensembles. Planck’s constant h̄ is not an ontological universal scale, but as an
emergent asymptote h̄eff defined by the large–scale limit of chronon action fluctuations (Appendix I).
This dual emergence links the structure of quantum indeterminacy directly to the statistical geometry
of spacetime itself.

We have shown that CFT departs from standard quantum mechanical interpretations by framing
spacetime geometry and causal order as emergent properties of coarse–grained chronon fluctuations;
grounding measurement in the scale–dependent stabilization of Φµ(x) rather than in observers or
many–world branching; replacing background Hilbert–space evolution with evolution on hyper-
surfaces determined dynamically by Φµ; deriving the Born rule as a theorem of stabilized chronon
ensembles rather than postulating it; and identifying both the uncertainty principle and Planck’s
constant as emergent features of chronon ensemble statistics rather than as fundamental axioms.
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Appendix A. Emergence and Exclusivity of Lorentzian Unit–Norm Structure in
CFT

A foundational feature of Chronon Field Theory (CFT) is the large–scale causal and metric
structure of spacetime—Lorentzian signature (−,+,+,+) and a future–directed, unit–norm timelike
field Φµ. In this appendix we summarise recent rigorous results [69] showing that these properties
arise naturally from a class of random microscopic chronon dynamics, and that they are the only
structures compatible with physically realizable observers under broad axioms.

Physical intuition. Random chronon fluctuations have no preferred scale or signature, but
when coarse–grained they tend to align, much like spins in a ferromagnet. This alignment naturally
stabilizes a future–directed, unit–norm timelike field, and only the Lorentzian signature allows finite
propagation speeds and consistent observer records. Other signatures are dynamically unstable or
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observationally incoherent, so the theorems below show why the Lorentzian, unit–norm structure is
the unique large–scale outcome.

Appendix A.1. Framework

Microscopic chronon variables Xµ
p ∈ Rd+1 are placed on a lattice or locally finite point set, with

nearest–neighbour couplings Jpq ≥ 0 and a local potential

V(s) =
λ

4
(s + 1)2 + U(s), s = Xµ

p Xp,µ,

where λ > 0 pins the norm toward −1 in the emergent metric gµν. Configurations are sampled from
the Gibbs measure

dµβ[X] ∝ exp(−βH[X])∏
p

dd+1Xp,

with H[X] the interaction energy and β the inverse temperature.
Coarse–graining at scale ξ ≫ Rint yields an effective macroscopic field

Φµ(xa) =
1

|Ba| ∑
p∈Ba

Xµ
p ,

with an O(1, d)–invariant effective action of the form

Seff[Φ] =
∫ √

|g|
[

κ

2
∇αΦµ∇αΦµ +

m2
eff
2

ΦµΦµ +
λeff

4
(ΦµΦµ + 1)2 + · · ·

]
.

Appendix A.2. Theorem A (Existence)

For sufficiently low temperature (β ≥ β0), there exists a positive–measure phase in which:

(i) ΦµΦµ = −1 and Φ0 > 0 uniformly on a percolating domain D ⊂ M,
(ii) gµν has Lorentzian signature (1, d) on D,
(iii) the twist tensor ωµν ≡ 0 on D, allowing a global foliation and proper–time function.

The proof combines renormalization–group arguments for O(1, d)–invariant ferromagnets, Ising–type
percolation for time–orientation, and suppression of twist in the ordered phase. Foliation follows from
standard orthogonality theorems.

Appendix A.3. Theorem B (Exclusivity)

Under the following general axioms:

(i) well–posed local dynamics for second–order PDEs (Hadamard sense),
(ii) finite–speed signal propagation,
(iii) acyclic causal order,
(iv) existence of stable records in finite subsystems,

the only compatible metric–vector field pairs (gµν, Φµ) are those with Lorentzian signature (1, d) and
a globally defined, future–directed, unit–norm timelike Φµ. Euclidean signatures violate (ii) and (iii),
ultrahyperbolic signatures violate (i), and non–unit–norm timelike fields violate (iv).

Appendix A.4. Theorem C (Boundary-Induced Selection, Uniqueness, Exponential Convergence, and Front
Propagation)

Let Ω ⊂ M have boundary Γ, and suppose the exterior contains an ordered domain DA with ΦA

satisfying Φµ
AΦAµ = −1, Φ0

A > 0, and ωµν[ΦA] = 0. For the effective action Seff of Appendix A with
κ > 0, m2

eff < 0, λeff > 0, impose Dirichlet data Φ|Γ = ΦA|Γ. Then:
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(i) There exists a unique minimizer Φ⋆ ∈ H1(Ω) of Seff with Φ⋆|Γ = ΦA|Γ. Moreover, Φ⋆
µΦ⋆µ =

−1 a.e. in Ω and ωµν[Φ⋆] = 0, hence Φ⋆ defines a proper–time foliation in Ω compatible with that of
DA.

(ii) The L2–gradient flow ∂tΦ = −δSeff/δΦ + Λ(Φ)Φ with Φ|Γ = ΦA|Γ converges exponentially
to Φ⋆ in H1(Ω).

(iii) For the underlying Gibbs ensemble at inverse temperature β, the probability that the
coarse–grained field differs from Φ⋆ by more than ε on any ball BL ⊂ Ω is ≤ C(ε) exp{−c(ε, ξ)βLd+1}.

(iv) In slab geometries with a moving interface Γt, there is v⋆ > 0 such that the aligned phase
invades any finite subregion at speed at least v⋆ (up to logarithmic transients).

Appendix A.5. Implications for CFT

These results elevate the Lorentzian/unit–norm structure from a postulate to a theorem within
CFT for a broad class of microscopic models. Measurement, in this framework, is reinterpreted as a
boundary–induced embedding of a disordered chronon domain into the unique observer–compatible
Lorentzian/unit–norm phase.

Full details: For full proofs of the above theorems A–C and extended discussion, see Ref. [69].

Appendix B. General Chronon Action Principle
A fully general formulation of Chronon Field Theory (CFT) requires a covariant action from

which the large–scale Φµ field, its couplings to matter and gauge fields, and the emergent spacetime
geometry all follow. In this appendix, we provide a preliminary proposal.

Appendix B.1. Action Structure

Let (M, gµν) be a four–dimensional Lorentzian manifold with metric signature (−,+,+,+),
equipped with a fundamental chronon vector field Xµ(x). The coarse–grained, unit–norm Φµ emerges
in the large–scale limit via the bias–correlation mechanism described in the main text. At the funda-
mental level, the action takes the form:

Stotal = SΦ + Sgrav + Sgauge + Smatter, (A1)

where each term is described below.

Chronon sector.

The pure chronon field contribution is

SΦ =
α

2

∫
M

d4x
√
−g

[
∇µXν∇µXν − λ(x)

(
XµXµ + σ2

)]
, (A2)

where σ2 sets the preferred norm in the low–energy limit, λ(x) is a Lagrange multiplier enforcing the
norm constraint at the coarse–grained level, and α is a coupling constant with dimensions of [mass]2.
The first term governs the stiffness of Xµ and penalises rapid variation; the constraint term ensures
that in the emergent limit |Φµ|2 → −1.

Gravitational sector.

Spacetime curvature is dynamical, with

Sgrav =
1

16πG

∫
M

d4x
√
−g (R − 2Λ), (A3)

where R is the Ricci scalar and Λ the cosmological constant. This term itself can arise from integrating
out microscopic chronon degrees of freedom.
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Gauge sector.

Gauge interactions are included via

Sgauge = −1
4

∫
M

d4x
√
−g ∑

a
F(a)

µν Fµν

(a), (A4)

where F(a)
µν are the field strengths of the gauge fields A(a)

µ . In a unified formulation of CFT, a local
U(1) gauge field can be interpreted as Goldstone modes of broken symmetries associated with Xµ

alignment, demonstrating the emergence of the like of a photon and electromagnetism.

Matter sector.

The matter Lagrangian couples minimally to the emergent metric gµν and can also couple directly
to Φµ:

Smatter =
∫
M

d4x
√
−g Lmatter

(
ψ,∇ψ, gµν, Φµ

)
. (A5)

Direct Φµ couplings allow for curvature–sensitive decoherence rates and alignment effects, as discussed
in Section 10.

Appendix B.2. Field Equations

Varying Stotal with respect to gµν, Xµ, λ(x), the gauge fields, and the matter fields yields:

Gµν + Λgµν = 8πG
(

TΦ
µν + Tgauge

µν + Tmatter
µν

)
, (A6)

∇2Xµ = λXµ + (matter/gauge source terms), (A7)

XµXµ = −σ2, (A8)

∇µFµν

(a) = Jν
(a), (A9)

together with the usual matter field equations. Here TΦ
µν is the stress–energy tensor of Xµ derived from

Eq. (A2).

Appendix B.3. Status and Open Issues

The action above is the most general low–energy form consistent with:

• Lorentz covariance at the coarse–grained scale,
• a dynamical chronon field whose norm is fixed only emergently,
• minimal coupling to curvature and gauge fields.

Open problems include:

1. Deriving Eq. (A2) uniquely from a microscopic chronon model;
2. Showing how the Lorentzian signature and norm constraint emerge dynamically without fine–

tuning;
3. Quantizing the theory in a background–independent manner.

In the meantime, Eq. (A2)–(A.5) provide a concrete starting point for analysing CFT’s predictions,
connecting its conceptual framework to a Lagrangian field theory suitable for both analytical and
numerical investigation.

Appendix C. Hilbert Space Construction and Generalized Unitarity
Appendix C.1. Hilbert Space Tied to a Dynamical Foliation

In Chronon Field Theory (CFT), the Hilbert space is not simply taken for granted. It is defined
relative to a foliation of spacetime that emerges from the dynamics of a future-directed, unit-norm
timelike vector field Φµ(x) [6,60]. When Φµ is in a stable configuration—something we take here as
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a postulate—it slices spacetime into a one-parameter family of spacelike hypersurfaces {Στ}, each
orthogonal to Φµ. These slices act as “moments of simultaneity” for the causal geometry set by Φµ.

Given a slice Στ , the associated Hilbert space is

H[Στ ] :=
{

Ψ[φτ ]

∣∣∣∣ φτ : Στ → Rn, ∥Ψ∥2 < ∞
}

, (A10)

with inner product

⟨Ψ1, Ψ2⟩Στ =
∫

Dτ φτ µτ [φτ ] Ψ∗
1 [φτ ]Ψ2[φτ ], (A11)

where Dτ φτ is the functional integration measure over field configurations on Στ [65]. The idea is
similar to canonical quantization on a fixed time slice [29], except that here the slice itself is picked out
dynamically by Φµ.

Appendix C.2. Generalized Schrödinger Evolution

Once a foliation {Στ} is fixed, quantum states evolve according to

ih̄
d

dτ
Ψ[φτ ] = ĤΦ[τ]Ψ[φτ ], (A12)

where ĤΦ[τ] comes from projecting the field Lagrangian density L[φ,∇µ φ; gµν] onto Στ , with all
dependence on the foliation carried through Φµ(x) [105]. This makes sense as long as Φµ remains
smooth and timelike in the region being considered.

Appendix C.3. Path Integral Viewpoint

The same evolution can be written in terms of a path integral over histories compatible with the
chronon field:

Ψ[φτ2 ] =
∫

φτ1→φτ2

Dφ exp
(

i
h̄

S[φ; Φµ]

)
, (A13)

with the action S[φ; Φµ] evaluated along the Φµ-induced foliation. Only histories consistent with the
causal structure of the classical chronon field are included [36,98].

Appendix C.4. Unitarity Without Global Time

In ordinary quantum mechanics, unitarity is framed in terms of a global time evolution operator
U(t) obeying U†(t)U(t) = I. CFT replaces this with a statement about conservation of the inner
product along the foliation:

⟨Ψ[Στ1 ], Ψ[Στ1 ]⟩ = ⟨Ψ[Στ2 ], Ψ[Στ2 ]⟩, (A14)

valid whenever Φµ changes smoothly between τ1 and τ2 and no measurement-induced stabilization
occurs. If a stabilization event happens, the foliation changes and so does the Hilbert space; in that
case, the relevant object is a transition probability obtained from a path integral over possible Φµ

configurations (see Section 6).

Appendix C.5. Summary

In this formulation:

• The Hilbert space is defined relative to the foliation set by Φµ, not as a universal background.
• Unitarity becomes a local-in-foliation conservation law.
• The familiar global picture of quantum mechanics is recovered when Φµ is constant and defines a

global simultaneity surface.

Whether this construction remains consistent under a full quantization of Φµ is an open question,
and one of the natural next steps for the theory.
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Appendix D. Toward Field Quantization of Φµ(x)
In the main discussion, the chronon field Φµ(x) has been treated as a classical object: a future-

directed, unit-norm timelike vector field acting as an order parameter for local temporal geometry.
If CFT is to become part of a fully dynamical, background-independent quantum theory, we will
eventually need to face the question of how to quantize Φµ(x) itself. What follows is not a completed
construction, but a sketch of possible approaches, their associated constraints, and how they might fit
into the larger quantum-gravity landscape [59,88].

Appendix D.1. Constraint Surface and Configuration Space

The field obeys a non-linear, pointwise constraint

ΦµΦµ = −1, Φ0 > 0, (A15)

so its allowed configurations form a section of the future unit-hyperboloid bundle over the spacetime
manifold M:

C := {Φµ ∈ Γ(TM) | ΦµΦµ = −1, Φ0 > 0}.

Any quantization scheme must work either directly on this constraint surface or via a consistent
extension from it. This is reminiscent of non-linear sigma models [24] and Nambu–Goldstone modes
[108], where the target space geometry is fixed by symmetry breaking.

Appendix D.2. Canonical (Dirac) Quantization

One direct route is to pick a candidate Lagrangian LΦ for Φµ, define the canonical momentum
πµ, and note the primary constraint

C1 := ΦµΦµ + 1 ≈ 0, (A16)

together with any secondary constraints required to preserve C1 in time. Dirac’s procedure [30] then
leads to operator relations

[Φ̂µ(x), π̂ν(x′)] = ih̄ δ
µ
ν δ(3)(x − x′) (A17)

on the unconstrained phase space, with the Ĉi enforced either on states (“weakly”) or by solving them
outright. Residual gauge freedoms—such as reparametrizations along Φµ—must be fixed or factored
out to keep the algebra consistent.

Appendix D.3. Covariant Path Integrals and BRST Methods

A more covariant option is to build the constraint into the functional measure from the outset:∫
DΦµ δ[ΦµΦµ + 1] ∆FP[Φ] e

i
h̄ SΦ [Φ], (A18)

with ∆FP the Faddeev–Popov determinant for the chosen gauge [35]. If reparametrization or other
local symmetries are present, BRST quantization [11,101] becomes natural: one introduces ghost fields
and a nilpotent QBRST satisfying

Q2
BRST = 0, Hphys = ker QBRST/Im QBRST.

In a semiclassical regime, stabilized Φµ configurations could then appear as BRST-cohomology classes.

Appendix D.4. Connections to Quantum-Gravity Programs

Because Φµ directly determines a causal foliation, it sits naturally alongside several existing
approaches:
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• Relational clocks in LQG: acting as a physical time variable in loop quantum gravity or spin-foam
models, analogous to scalar reference fields [31,89].

• Causal set theory: serving as a coarse-grained “arrow of time” map on the causal poset [17].
• Order parameters in group field theory: potentially signalling spontaneous breaking of time-

reversal or boost symmetry [77].

On the cosmology side, a quantum Φµ could in principle help set the arrow of time in the early
universe or contribute to effective stress–energy in inflationary and dark-energy phases [9].

Appendix D.5. Where This Leaves Us

Quantizing Φµ is an open technical problem. Among the issues that would need to be settled are:

• writing down a compelling SΦ consistent with Lorentz covariance and the norm constraint,
• ensuring that the constraint algebra closes once quantized,
• understanding how a quantum Φµ couples to matter and gravity without violating causality.

A resolution would bring CFT closer to a fully quantum, background-independent theory—one in
which causal structure itself is a dynamical, quantized field.

Appendix E. Measurement as Boundary–Induced Alignment: A Toy–Model
Derivation

In the main text (Section 4), we described measurement in CFT as the irreversible embedding
of a partially coherent chronon configuration Xµ into a macro–coherent domain’s Φµ [27,115]. Here
we present a simple mean–field derivation of this alignment effect from a phenomenological effective
action [23,67], with the important caveat that in CFT any fine–grained “quantum” region is never
perfectly aligned and does not satisfy the unit–norm condition pointwise. Instead, the Φµ field of the
macro–domain represents a coarse–grained average over many such regions, and the emergence of
||Φ||2 = −1 is itself a conjectured large–scale property to be proved from the microscopic dynamics.

Appendix E.1. Setup

Consider two adjacent spacetime domains:

1. Dmicro: a small, incoherent or partially coherent region described by a timelike field Xµ(x) with
XµXµ ̸= −1 and only short–range causal order; the local orientation fluctuates over sub–coarse–
graining scales.

2. Dmacro: a large, stable, future–directed, coarse–grained unit–norm field Φµ
macro with smooth spatial

variation and well–defined foliation [39].

We model the interface ∂D between them as a narrow transition zone of thickness ℓint, across
which the chronon field interpolates between the fluctuating Xµ and the coarse–grained Φµ

macro.

Appendix E.2. Effective Action with Interface Term

Let the scale–dependent effective action be

Sξ [Xµ] =
∫
M

d4x
√
−g

[
λ(ξ)

(
XµXµ + 1

)2
+ α(ξ)∇µXν∇µXν

]
, (A19)

where λ(ξ) > 0 penalizes deviations from coarse–grained unit norm and α(ξ) > 0 penalizes spa-
tial/temporal gradients in Xµ [50]. Here ξ denotes the coarse–graining scale: for small ξ the “unit–
norm” term acts only weakly, reflecting that fine–scale configurations are not strictly aligned and that
||X||2 fluctuates around −1.

At the interface, we add a coupling term favouring alignment with the macro–domain average:

Sint[Xµ] = −γ
∫

∂D
d3y

√
h
(

XµΦmacro
µ

)
, (A20)
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where h is the induced metric on the interface, and γ > 0 measures the strength of the coupling to the
macro–coherent field.

Appendix E.3. Euler–Lagrange Equations and Alignment

Varying Sξ + Sint with respect to Xµ gives

−4λ(ξ)(XνXν + 1)Xµ − 2α(ξ)∇ν∇νXµ = −γ Φmacro
µ δ∂D , (A21)

where δ∂D is a Dirac delta supported on the interface.
In the static limit near the interface and neglecting curvature of gµν, the dominant terms balance

as

α(ξ)
d2Xµ

dn2 = γ Φmacro
µ δ(n) + 2λ(ξ)(XνXν + 1)Xµ, (A22)

with n the proper distance orthogonal to ∂D.
Integrating Eq. (A22) across n = 0 yields the jump condition

dXµ

dn

∣∣∣∣
0+

−
dXµ

dn

∣∣∣∣
0−

=
γ

α(ξ)
Φmacro

µ . (A23)

Appendix E.4. Energy Minimization and Stability

In the bulk of Dmacro, λ(ξ) is large at the coarse–graining scale of the apparatus, forcing Xµ →
Φmacro

µ and XµXµ → −1 on average. The interface term lowers the total action whenever Xµ has a
positive projection onto Φmacro

µ , and the gradient penalty α(ξ) ensures that this alignment penetrates
into Dmicro over a length scale

ℓalign ∼

√
α(ξ)

λ(ξ)
. (A24)

For ℓalign exceeding the micro–domain size, the average Xµ over that domain is drawn into
alignment, yielding Xµ ≈ Φmacro

µ in the coarse–grained sense. Pointwise fine–scale fluctuations remain,
but their net effect is suppressed, producing the stable causal order associated with “measurement” in
CFT.

Appendix E.5. Interpretation

This toy calculation shows that, given a simple gradient–plus–norm–penalty effective action and
a local interface coupling, the energetically preferred configuration is one where the coarse–grained
Xµ aligns with Φµ

macro across the micro–domain. The alignment length ℓalign sets the scale over which
“measurement”—in the CFT sense of boundary–induced geometric stabilization—occurs.

The large–scale Lorentzian signature and timelike nature of Φµ are ontological starting points,
but unit–norm and full foliation are emergent. Here the interface model illustrates how the emergent
part—the stable norm and long–range coherence—can be enforced dynamically by coupling to an
already coherent macro–domain, without assuming perfect microscopic order at any scale. A complete
theory must still derive the large–scale limit ΦµΦµ = −1 from the underlying disordered Xµ dynamics.

Appendix F. Scale–Dependent Decoherence from Chronon–Field Fluctuations
In Section 4 and Section 5 of the main text, we described the emergence of classicality in CFT as a

scale–dependent stabilization of the effective chronon field Φµ as the coarse–graining length ξ increases
[62,115]. Here we provide a simple quantitative estimate of the coherence length ℓc(ξ) and its impact on
interference visibility, using standard methods from effective field theory and statistical mechanics
[23,67].

As in Appendix E, we emphasise that in CFT the unit–norm condition ||Φ||2 = −1 is not imposed
microscopically. It is instead conjectured to emerge dynamically after coarse–graining from the
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underlying fluctuating field Xµ. Proving this emergence from the Xµ dynamics remains an open
problem (see Section 11).

Appendix F.1. Linearized Fluctuation Spectrum

Let Φµ
coh be a perfectly stabilized, coarse–grained, unit–norm configuration in a macro–coherent

domain. In a micro–coherent or partially coherent region, we write

Xµ = Φµ
coh + δϕµ, (A25)

where δϕµ are small fluctuations satisfying Φµ
coh δϕµ = 0 to preserve the norm constraint to first order

at the coarse–graining scale.
Expanding the effective action (Eq. (12) in the main text) to quadratic order in δϕµ yields

S(2)
ξ [δϕ] =

1
2

∫
d4x

√
−g

[
m2

ξ δϕµδϕµ + α(ξ)∇νδϕµ∇νδϕµ

]
, (A26)

where
m2

ξ ≡ 4λ(ξ) (A27)

acts as a scale–dependent mass term for coarse–grained chronon–field fluctuations [50].

Appendix F.2. Coherence Length

In flat spacetime, the fluctuation equation reads(
−α(ξ)∇2 + m2

ξ

)
δϕµ(x) = 0. (A28)

The equal–time spatial correlator then decays as [15]

⟨δϕµ(x) δϕµ(0)⟩ ∝
e−|x|/ℓc(ξ)

|x|(d−1)/2
, (A29)

with the coherence length

ℓc(ξ) =

√
α(ξ)

m2
ξ

=
1
2

√
α(ξ)

λ(ξ)
. (A30)

As ξ increases, λ(ξ) grows—suppressing coarse–grained norm deviations—and α(ξ) changes
more slowly. Thus ℓc(ξ) decreases with scale: large coarse–graining produces stronger macro–
coherence but shorter spatial reach of compatible chronon orientations.

Appendix F.3. Impact on Interference Visibility

In a two–path interferometer with path separation d, the interference visibility V is proportional
to the chronon–orientation correlator between the two paths:

V(d, ξ) = V0 e−d/ℓc(ξ), (A31)

where V0 is the ideal (perfect–coherence) visibility.
Thus:

• Quantum regime: ℓc(ξ) ≫ d ⇒ V ≈ V0 (stable phase relations across both paths).
• Classical regime: ℓc(ξ) ≪ d ⇒ V → 0 (phase correlation lost) [62].
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Appendix F.4. Interpretation

This result formalizes the “gradual stabilization” picture: as the coarse–graining scale ξ increases,
mξ grows, ℓc(ξ) shrinks, and the system transitions from long–range bias correlation (quantum–like)
to short–range bias correlation (classical–like).

In CFT terms:

• The alignment length ℓalign from Appendix E governs how far macro–coherent order penetrates
into a micro–domain from a boundary.

• The coherence length ℓc(ξ) here governs how far bias correlation extends within a domain of given
ξ.

Both lengths collapse to the same scale in the large–ξ limit where Φµ approaches a smooth, unit–norm
field.

A full derivation of ℓc(ξ) from microscopic Xµ dynamics, together with a proof that ΦµΦµ → −1
at large ξ, would close the gap between this phenomenological EFT treatment and the foundational
postulate of Section 2.

Appendix G. Path–Integral Restriction to Φµ–Compatible Histories
In Section 5 and Section 7.4 of the main text, we described interference as arising only from

histories compatible with the causal–geometric structure set by Φµ [62,115]. Here we define this
restriction explicitly and illustrate its effect on a simple propagator, using the Feynman path–integral
formalism [37] and ideas from restricted/coarse–grained histories [43].

Appendix G.1. Admissible Histories

Let Φµ(x) be a smooth, future–directed, unit–norm timelike field in a stabilized domain. For a
timelike worldline xµ(τ) parametrized by τ, define its tangent misalignment angle θ(τ) via

cos θ(τ) = −
gµν ẋµ(τ)Φν(x(τ))√

−gαβ ẋα ẋβ
, (A32)

where ẋµ ≡ dxµ/dτ and the minus sign ensures θ = 0 for perfect alignment.
We define the admissible set Hδ of Φ–compatible histories as

Hδ :=
{

xµ(τ)
∣∣∣ |θ(τ)| ≤ δ ∀τ ∈ [τi, τf ]

}
, (A33)

with δ ≪ 1 a tolerance parameter reflecting the residual fluctuation scale of the stabilized chronon
field.

Appendix G.2. Restricted Propagator

For a scalar particle of mass m in flat spacetime with constant Φµ = (1, 0, 0, 0), the unrestricted
Feynman propagator is

K(x f , t f ; xi, ti) =
∫ x(t f )=x f

x(ti)=xi

Dx(t) exp
[

i
h̄

S[x]
]

, (A34)

with S[x] = −m
∫

ds the standard action.
In the Φ–restricted case, we insert a projector Pδ[x] into the path integral:

Kδ(x f , t f ; xi, ti) =
∫ x(t f )=x f

x(ti)=xi

Dx(t)Pδ[x] exp
[

i
h̄

S[x]
]

, (A35)
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where

Pδ[x] =

1, if xµ(τ) ∈ Hδ,

0, otherwise.
(A36)

Appendix G.3. Gaussian Tolerance

A smoother implementation replaces Pδ by a Gaussian weight:

Pσ[x] = exp
[
− 1

2σ2

∫ τf

τi

dτ θ2(τ)

]
, (A37)

with σ ∼ δ controlling the allowed spread of misalignment [51].
In this case, the restricted propagator can be evaluated perturbatively. For small σ, paths with

large θ are exponentially suppressed, reducing the interference between geometrically incompatible
histories.

Appendix G.4. Effect on Interference

In a double–slit setup with both slits in a micro–coherent domain, Φµ is approximately constant
and both path families lie in Hδ, so Kδ ≈ K and full interference is recovered.

If a which–path detector aligns one slit path to a macro–coherent domain with a different Φµ, the
cross–term between the two path families involves ⟨P (1)

δ P (2)
δ ⟩ ≈ 0 when their tangent fields differ by

≫ δ, eliminating interference. This suppression is purely geometric in origin, as per the CFT account.

Appendix G.5. Interpretation

The formal restriction (A33)–(A37) makes precise the statement that “only Φ–compatible histories
contribute”. It provides a calculable mechanism by which macroscopic causal alignment reduces the
contributing history set, breaking phase links and reproducing the phenomenology of measurement
without invoking nonlocal collapse [43,115].

Appendix H. Stability of the Emergent Chronon Field from Microscopic Dynamics
In Section 2 and Section 6, we treated the chronon field Φµ as an emergent, coarse–grained

order parameter built from microscopic “chronon” degrees of freedom, each carrying a local timelike
orientation. Here we outline a simple block–spin style derivation showing how such a field can remain
macroscopically coherent over long times, and how the unit–norm property naturally appears as the
minimum of the coarse–grained potential. This derivation should be viewed as heuristic: it motivates
the postulate that ||Φ||2 → −1 under coarse–graining, but does not constitute a general proof from the
full Xµ dynamics (see Section 11).

Appendix H.1. Microscopic Chronon Model

We model the microscopic spacetime as discretized into cells of volume a4, each containing a
chronon with a timelike orientation vector uµ

n , where n labels the cell. A minimal interaction Lagrangian
is

Smicro = − ∑
⟨n,m⟩

Jnm uµ
nuµm + ∑

n
V(uµ

nuµn), (A38)

where:

• Jnm > 0 encodes ferromagnetic–like alignment between neighboring chronons [15].
• V(·) is a local potential that favours but does not enforce uµuµ ≈ −1 at the microscopic scale.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.1969.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1969.v1
http://creativecommons.org/licenses/by/4.0/


29 of 40

Appendix H.2. Coarse–Graining to a Field Theory

For a block of side ξ ≫ a containing Nξ chronons, define the coarse–grained field

Φµ(x) =
1

Nξ
∑

n∈Bξ (x)
uµ

n . (A39)

Using standard spin–wave and gradient expansions [23], the long–wavelength limit of Eq. (A38) yields

Seff[Φ] =
∫

d4x
√
−g

[
κ

2
∇µΦν∇µΦν −

m2
eff
2

(
ΦµΦµ + 1

)2
]

, (A40)

with κ ∝ Ja2 and m2
eff ∝ V′′(−1).

The quartic term has a unique minimum at ΦµΦµ = −1 provided m2
eff > 0, so the unit–norm

property emerges as the low–energy equilibrium condition of the coarse–grained theory. Whether this
holds for all plausible microscopic Xµ dynamics remains to be established.

Appendix H.3. Linear Stability Analysis

Perturb around a uniform timelike background Φ̄µ with Φ̄µΦ̄µ = −1 and Φ̄µδϕµ = 0. To quadratic
order in δϕµ, Eq. (A40) becomes

S(2)
eff =

1
2

∫
d4x

√
−g

[
κ ∂αδϕµ∂αδϕµ + m2

eff δϕµδϕµ

]
. (A41)

In flat space, the mode equation is (
−κ ∂2

t + κ ∇2 − m2
eff

)
δϕµ = 0, (A42)

with dispersion relation

ω2(k) = |k|2 +
m2

eff
κ

≥ 0. (A43)

The stability conditions are therefore
m2

eff > 0, κ > 0. (A44)

Appendix H.4. Physical Interpretation

The microscopic coupling Jnm sets κ, the stiffness against spatial distortions of Φµ. The curvature
V′′(−1) of the local potential sets m2

eff, the restoring force toward unit norm. When both are positive,
the emergent Φµ is linearly stable, persistent, and timelike at scales ξ ≫ a. The decay time for small
perturbations is

τdecay ∼ κ1/2

meff
, (A45)

which can be macroscopic if J is large and V′′(−1) is modest.
Thus, under reasonable microscopic couplings, the coarse–grained Φµ behaves as a robust macro–

coherent order parameter. However, the derivation here still assumes a specific form of the microscopic
alignment potential; removing that assumption remains a key target for a general proof of emergent
unit norm in CFT.

Appendix I. Emergent Planck Constant from Chronon Ensemble Statistics
In standard quantum theory, Planck’s constant h̄ appears as a universal scale relating action and

probability amplitudes [37]. In Chronon Field Theory (CFT), where observables and evolution emerge
from the statistical geometry of a fluctuating vector field Xµ(x), h̄ must itself be derived from more
fundamental quantities. This appendix defines and motivates an emergent Planck scale h̄eff in CFT.
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Appendix I.1. Chronon Ensemble and Gibbs Measure

Recall that chronon configurations are sampled from a Gibbs distribution of the form:

dµβ[X] ∝ exp(−βH[X])∏
p

dd+1Xp, (A46)

where H[X] is an interaction energy functional and β controls the strength of fluctuations [48,95]. The
variance of Xµ within a domain Ω defines an effective action dispersion:

∆S2
Ω := ⟨S2⟩Ω − ⟨S⟩2

Ω. (A47)

We define the emergent Planck constant as the action variance per chronon volume:

h̄eff := lim
ξ→∞

∆S2
ξ

Nξ
, (A48)

where Nξ is the number of chronon degrees of freedom in the coarse-grained region of scale ξ.

Appendix I.2. Dimensional Estimate and Interpretation

Let J be the typical coupling strength between chronons (dimension: energy) and τ0 the micro-
scopic time scale. Then a natural emergent action scale is:

h̄eff ∼ J · τ0. (A49)

If one identifies J ∼ MPlc2 and τ0 ∼ tPl, then:

h̄eff ∼ MPlc2tPl = h̄, (A50)

consistent with known quantum dynamics [74,79]. This provides a physical interpretation of h̄ as the
coarse-grained action variance of a high-temperature, statistically fluctuating chronon system.

Appendix I.3. Role in Path Integrals and Uncertainty

In the CFT path integral over admissible chronon histories,

Z ∼
∫

DXµ exp
(
−

Sξ [X]

h̄eff

)
, (A51)

h̄eff governs the suppression of non-classical configurations and appears in the emergent uncertainty
bounds derived in Section 9. In this formulation, h̄ is not an imposed constant, but a statistical emergent
quantity linked to chronon dynamics [44,77], as illustrated by Figure A1.
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(a) Chronon ensemble (microscopic)

dµβ[X] ∝ e−βH[X]∏
p

dd+1Xp

(b) Coarse–graining at scale ξ

Sξ [X], Nξ , ∆S2
ξ = ⟨S2⟩ξ − ⟨S⟩2

ξ

(c) Action–variance density vs. scale

ξ

∆S2
ξ /Nξ

h̄eff = lim
ξ→∞

∆S2
ξ

Nξ

h̄eff ∼ J τ0
⇒ MPlc2 tPl = h̄ in Planck units

(d) Hinge role of h̄eff

Z ∼
∫

DXµ exp
(
− Sξ [X]/h̄eff

)
∆x ∆p ≥ h̄eff/2

Scale sets weight of non-classical histories
and the local lower bound on conjugate precisions.

Figure A1. Emergent Planck constant in CFT. (a) Microscopic chronon ensemble defines a Gibbs measure. (b)
Coarse–graining a region (blue rectangle) of size ξ yields Sξ , Nξ and the action variance ∆S2

ξ . (c) The variance
density ∆S2

ξ /Nξ approaches an asymptote that defines the locally emergent constant h̄eff; dimensional analysis
gives h̄eff ∼ J τ0 and recovers h̄ in the Planck limit. (d) h̄eff then sets the path–integral weight and the local
uncertainty bound.

Appendix I.4. Rigorous Derivation of the CFT Uncertainty Bound

In Section 9 we stated Theorem 21, asserting that the uncertainties of canonically conjugate
observables (xi, pj) in Chronon Field Theory admit a universal lower bound set by the emergent
Planck scale h̄eff. Here we provide the rigorous derivation.

Theorem I.1 (CFT uncertainty for conjugate pairs on a stabilized leaf). Let {Στ} be a smooth foliation
orthogonal to Φµ in a stabilized domain, and let Sξ [X] be a twice Fréchet–differentiable effective action at

coarse–graining scale ξ with strictly hyperbolic linearization. Denote by Gαβ
ret/adv the retarded/advanced Green’s

operators for the linearized Euler–Lagrange operator and by

{A, B}P =
∫

dV
δA
δXα

(Gαβ
ret − Gαβ

adv)
δB

δXβ

the Peierls bracket on sufficiently regular functionals A[X], B[X]. Define quasi–local relational observables on a
leaf Στ by

xi =
∫

Στ

Kξ(y)πi(y) dΣ, pj =
∫

Στ

Kξ(y) Tj0(y) dΣ,

where πi is the leaf coordinate functional, Tµν the Noether stress tensor of Sξ , and Kξ a positive mollifier of
width ξ. Assume further that leaf translations along xj are symmetries up to O(|∇Φ|+ ξ−1) errors. Then:

(i) {xi, pj}P = δi
j +O(|∇Φ|+ ξ−1).

(ii) With h̄eff as in Appendix I, the emergent commutator satisfies [xi, pj] = i h̄eff δi
j +O(|∇Φ|+ ξ−1).

(iii) Hence the Robertson–Schrödinger inequality yields

∆xi ∆pi ≥
h̄eff
2

+O(|∇Φ|+ ξ−1).

If A, B are not canonically conjugate in the above sense (i.e., {A, B}P = 0 at leading order), no universal
h̄eff-scaled lower bound exists; only model-dependent covariance terms remain.
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Proof. (i) By Noether’s theorem for leaf translations, δϵ A = ϵ {A, Pj}P + O(|∇Φ| + ξ−1), where
Pj =

∫
Στ

Tj0 is the generator of xj-translations. Since xi shifts as δϵxi = ϵ δi
j, one obtains {xi, Pj}P =

δi
j +O(|∇Φ|+ ξ−1). Replacing Pj by its mollified pj changes the bracket only by O(ξ−1), giving (i).

(ii) Consider the coarse–grained path measure Pξ [dX] ∝ exp
(
− Sξ [X]/h̄eff

)
dX. Schwinger–Dyson

identities imply

⟨{A, B}P⟩ =
1

i h̄eff
⟨[A, B]⟩+O(|∇Φ|+ ξ−1)

for quasi–local observables A, B. Applying this to A = xi, B = pj and using (i) yields (ii).
(iii) The Robertson–Schrödinger inequality applied to A = xi − ⟨xi⟩ and B = pi − ⟨pi⟩ gives

(∆xi)2(∆pi)
2 ≥ 1

4
|⟨[xi, pi]⟩|2 +

1
4
|⟨{A, B}⟩|2.

Discarding the nonnegative anticommutator term and inserting (ii) establishes the claim.

Appendix I.5. Future Directions

A full computation of h̄eff requires specifying the chronon interaction Hamiltonian H[X], the
correlation structure of Xµ, and the boundary-induced alignment conditions. Numerical studies
on discrete chronon lattices may enable extraction of h̄eff as a scaling limit [17,96], allowing direct
comparison with the physical value of Planck’s constant.

This approach offers a pathway to deriving quantum action scales from spacetime-level statistics
without postulating quantization a priori.

Appendix J. Double–Slit Experiment in Chronon Field Theory: Rigorous
Formulation
Appendix J.1. Set-Up and Objects of the Model

Let Xµ(x) be the microscopic chronon field, and Φµ(x) its coarse-grained, unit-norm alignment
field where stabilized. Two narrow path world-tubes W1,W2 connect source ps to screen points pd ∈ S .
Define the fine-grained two-point correlator

Cµν(x, y) := ⟨Xµ(x)Xν(y)⟩ − ⟨Xµ(x)⟩⟨Xν(y)⟩. (A52)

We say the two paths are bias-phase coherent at scale ℓ if the cross-path kernel

K12 :=
1

|W1||W2|

∫
W1

dx
∫
W2

dy Παβ(x, y)Cαβ(x, y) (A53)

exceeds a threshold set by instrument noise; Παβ projects the phase-relevant components (defined by
the local Φµ frame). Intuitively, K12 measures whether the local potential average alignments along the
two paths preserve a mutual phase reference across the slit separation.

Appendix J.2. Amplitude Composition and Fringe Visibility

Let Γi denote bias-compatible thread families through slit i; define the CFT amplitude at pd as a
restricted path integral over histories compatible with the Φµ-induced causal structure:

Ψi(pd) = ∑
Γ∈Γi

A[Γ] e
i
h̄ S[Γ], Ψ(pd) = Ψ1(pd) + Ψ2(pd). (A54)

Here A[Γ] encodes stability of bias correlation along Γ. The screen intensity

I(pd) = |Ψ1|2 + |Ψ2|2 + 2ℜ{Ψ∗
1Ψ2} (A55)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.1969.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1969.v1
http://creativecommons.org/licenses/by/4.0/


33 of 40

is conveniently written as

I(pd) = I0(pd)
[
1 + V cos ∆ϕ(pd)

]
, (A56)

with phase difference ∆ϕ determined by geometric/optical path data and

V = |γ|, γ :=
⟨Ψ1, Ψ2⟩CFT√

⟨Ψ1, Ψ1⟩CFT ⟨Ψ2, Ψ2⟩CFT
, (A57)

where the sesquilinear pairing ⟨·, ·⟩CFT is induced by the Φµ foliation (Appendix N). In our framework,

γ = exp
[
− 1

2 σ2
φ

]
· O12, O12 :=

∫
W1×W2

ΠαβCαβ√∫
W2

1
ΠC

∫
W2

2
ΠC

, (A58)

separating generic phase diffusion σ2
φ from the ancestry overlap O12 induced by Cµν.

Interference requires O12 to remain near unity, i.e., persistent cross-path bias correlation at the
experiment’s scale. This is the rigorous version of the narrative in Section 5 that “interference occurs
when local potential average alignments remain sufficiently correlated across both paths.”

Appendix K. Entanglement from Φ-Ancestry: Rigorous Formulation and Solvable
Model
Appendix K.1. Formal Definition of Φ-Ancestry

Let Cµν(x, y) be the fine-grained chronon two-point correlation function

Cµν(x, y) := ⟨Xµ(x)Xν(y)⟩ − ⟨Xµ(x)⟩⟨Xν(y)⟩. (A59)

Two coarse-grained world-tubes WA, WB are said to share a Φ-ancestry if there exists a connected
spacetime region R in their common past such that

inf
x∈WA , y∈R

∥C(x, y)∥ > ϵ, inf
x∈WB , y∈R

∥C(x, y)∥ > ϵ,

for some fixed ϵ > 0.
In CFT, two subsystems prepared in the same ancestry region R are correlated because their local

bias orientations ΛA, ΛB are statistically dependent:

P(ΛA, ΛB) ̸= P(ΛA) P(ΛB).

We retain local parameter independence:

P(α|a, b, ΛA) = P(α|a, ΛA), (A60)

P(β|a, b, ΛB) = P(β|b, ΛB), (A61)

and no-signalling:
P(α|a, b) = P(α|a), P(β|a, b) = P(β|b),

but relax measurement independence:

P(ΛA, ΛB|a, b) ̸= P(ΛA, ΛB).
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Appendix K.2. Solvable Toy Model

Setup.

Consider a microscopic chronon field Xµ(x) on Minkowski space. Let R be a preparation region
in the common past of detectors A and B. Define the hidden variable Λ = n ∈ S2 as the coarse statistic
of Xµ over R. Apparatus settings a, b ∈ S2 may be statistically dependent on n via the shared ancestry.

Outcomes are
α = sgn(a · n + ξA), β = − sgn(b · n + ξB), (A62)

with ξA, ξB zero-mean, independent noises, symmetric about zero, and independent across sites given
n.

Measurement-Dependence Channel.

Let
P(n|a, b) ∝ exp{κ a · n} exp{κ b · n}, (A63)

a product of von Mises–Fisher factors, with concentration κ ≥ 0 tuning the ancestry strength. κ = 0
recovers measurement independence; κ → ∞ yields perfect correlation with settings.

Appendix K.3. No-Signalling

Because ξA,B are symmetric and independent of the remote setting given n,

E[α|a, b] = 0, E[β|a, b] = 0, (A64)

P(α|a, b) = 1
2 = P(β|a, b), (A65)

and the model respects operational no-signalling.

Appendix K.4. Correlator and Clauser–Horne–Shimony–Holt Inequality (CHSH)

In the noiseless limit,

E(a, b) = −
∫

S2
dn P(n|a, b) sgn(a · n) sgn(b · n). (A66)

As κ → ∞, this integral yields the quantum singlet form E(a, b) = − a · b, giving

CHSH = 2
√

2 (A67)

for the standard quadruple of settings. The minimal κ⋆ to achieve CHSH ≥ 2.7 can be determined
numerically.

Appendix K.5. Theorem Statements

Theorem K.1 (Bell violation with ancestry). For any ϵ > 0 there exists κ > 0 such that CHSH > 2 + ϵ in
the above model.

Proposition A1 (No-signalling). Under symmetric, independent noise ξA,B, the marginals obey P(α|a, b) =
P(α|a) and P(β|a, b) = P(β|b) for all a, b.

Corollary A2 (Quantum limit). In the limit κ → ∞ and vanishing noise, E(a, b) = − a · b and CHSH =

2
√

2.

Appendix K.6. Continuum Anchor

The same structure can be realised by taking Xµ to be a stationary random field with spectral
weight |k| ≤ kc and defining n(x) as a low-pass filter Π[X](x). Finite correlation length ℓc and common
past volume VR determine the effective κ.
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Appendix K.7. Numerical Recipe

Sample n ∼ P(n|a, b), draw ξA, ξB, compute α, β, and average to estimate E and CHSH as a
function of κ.

Appendix L. Derivation of the Born Rule in CFT
In CFT, measurement can be viewed as an unbiased competition among several possible align-

ments of a microscopic system with the stable field of an apparatus. The system begins with statistical
tendencies toward different outcomes; during interaction one tendency eventually locks in while the
others fade. Because the process has no built-in bias, the chance of each outcome is fixed by its initial
weight, and repeated trials make the observed frequencies concentrate around these values. What
appears as “collapse” is thus the stabilization of one alignment, with the Born rule emerging as the
unique statistical law of this competition.

We summarize here the main rigorous results of Ref. [70], restated in a compact theorem–proof
format.

Assumptions X.1–X.4. (Apparatus domains, interface coupling, detailed balance, observer ax-
ioms.)

Theorem L.1 (Simplex diffusion limit). Under Assumptions X.1–X.4, the overlap vector p(t) =

(p1(t), ..., pm(t)) converges in law to a diffusion on ∆m−1 with generator

L f (p) = 1
2 ∑

i,j
aij(p)∂ij f (p), aij(p) = α(δij pi − pi pj).

The vertices {ei} are absorbing.

Theorem L.2 (Born rule via martingale absorption). Each coordinate pi(t) is a bounded martingale up to
the absorption time τ, hence

P(p(τ) = ei) = E[pi(τ)] = pi(0).

Thus the probability of outcome i equals the initial overlap pi(0) = |ci|2.

Theorem L.3 (Frequency large deviations). For N repeated trials, the empirical frequency vector f̂ satisfies a
large deviation principle with rate function

I( f̂ ) = ∑
i

f̂i log
f̂i

pi(0)
,

minimized uniquely at f̂i = pi(0).

Full details: For complete derivations and mathematical proofs, see Ref. [70].

Appendix M. Philosophical Implications of Chronon Field Theory
Chronon Field Theory (CFT) is not intended as a mere re–packaging of quantum mechanics.

Its central postulate—now supported by rigorous results in Appendices A and B—is that a single
dynamical, future–directed timelike field Φµ(x) generates temporal order and builds the effective
spacetime geometry. Appendix A (Ref. [69]) shows that the unit–norm property and Lorentzian signature
can emerge dynamically from a broad class of chronon models, while Appendix L (Ref. [70]) derives the
Born rule from CFT’s statistical–geometric structure. These results place CFT outside the conceptual
starting points of most current interpretations. Here we outline five broad implications.
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Appendix M.1. Time and Geometry as Built, Not Given

In standard approaches, time is an external parameter and geometry a fixed background. CFT
inverts this: both temporal flow and causal structure arise from the integral curves and local orientation
of Φµ. This resonates with temporal relationalism [8,88], but here the mechanism is explicitly field–
theoretic. Within an otherwise Lorentzian manifold, neither time direction nor foliation is fixed a
priori; both emerge dynamically from chronon–field stabilization and can fluctuate or fail at sufficiently
small scales. At the microscopic level, the unit–norm property is no longer a postulate but a derived
coarse–grained feature (Appendix H), making the existence of a stable time direction a contingent
dynamical fact.

Appendix M.2. Causality Without Collapse or Branching

In CFT, causal order and metric structure are outcomes of a stabilized Φµ, not abstract bookkeeping
devices. A measurement is the local, scale–dependent transition from a fluctuating micro–domain
Xµ to the macro–coherent Φµ of an apparatus. This transition is physical: it embeds a “fuzzy” causal
patch into a larger ordered geometry.

On this account, quantum “nonlocality” requires neither superluminal signalling nor the ontology
of Many–Worlds. Correlations propagate within the causal network defined by Φµ [84]; measurement
is the joining of two causal patches, not an instantaneous update of a global wavefunction.

Appendix M.3. Objectivity After the Quantum

Where QBism [41] and Relational QM [87] tie the quantum state to agents, CFT retains an agent–
independent ontology. Φµ and the geometry it defines exist whether or not they are observed. The
wavefunction is tied to the foliation induced by Φµ, but that foliation is a physical feature, not a
belief–state. Measurement is a geometric reconfiguration of spacetime’s causal fabric, not an observer’s
information update, preserving objective realism [33,72] in a Lorentz–covariant setting.

Appendix M.4. Probability as Large–Scale Pattern

In CFT, probabilities reflect the ensemble of chronon–field configurations—and hence local
geometries—compatible with given boundaries. Randomness is not fundamental; it emerges from
coarse–graining over admissible causal–geometric configurations. Appendix L shows that, in the
semiclassical limit, this reproduces the Born rule exactly; in partially stabilized regimes, it predicts
calculable deviations, offering potential empirical tests. This fits with Humean approaches [71] where
probabilistic laws summarise stable patterns in the actual world.

Appendix M.5. Ontological Economy

CFT avoids the proliferation of worlds of Everett [34], the dual ontology of Bohmian mechanics
[16], and the subjectivism of QBism [41]. Its single fundamental entity is the chronon field; time, causal
order, and effective geometry are all emergent features of its dynamics. This fits naturally with a
field–realist stance [66], in which the ontology consists solely of fields and their interactions.

Appendix M.6. In Summary

CFT’s conceptual commitments can be summarised as:

• Time: local, dynamical, scale–dependent, generated by Φµ;
• Causality & geometry: intrinsic to the field’s structure;
• Measurement: physical stabilization of geometry, not epistemic act;
• Probability: derived geometric–statistical law (Born rule in the stabilized limit);
• Reality: field–theoretic, covariant, observer–independent.

In this light, CFT offers a realist re–framing of quantum theory, treating spacetime structure as
something the quantum world constructs from within, rather than something imposed from without.
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