Pre prints.org

Article Not peer-reviewed version

Research on a Lightweight Full-Stack
Edge Execution Optimization
Framework Based on Serverless and
WebAssembly

Yu Mao " , Zhishen Chen, Xiangjun Ma
Posted Date: 19 January 2026
doi: 10.20944/preprints202601.1311.v1

Keywords: serverless; WebAssembly; edge computing; lightweight runtime; reinforcement learning
scheduling; energy consumption control

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/5040487
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2026 d0i:10.20944/preprints202601.1311.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from
any ideas, methods, instructions, or products referred to in the content.

Article

Research on a Lightweight Full-Stack Edge Execution
Optimization Framework Based on Serverless
and WebAssembly

Yu Mao ¥#, Zhisen Chen 2 and Xiangjun Ma !

1 Johns Hopkins University, Baltimore, US
2 Harvard University, Cambridge, US
* Correspondence: ymao22@jhu.edu

Abstract

This paper proposes a lightweight full-stack execution framework integrating Serverless architecture
with WebAssembly runtime optimization to enhance performance and energy efficiency in edge
deployments. The system employs modular task decomposition and Light-Container Isolation (LCI)
technology to achieve cross-node function reuse on AWS Lambda and Cloudflare Workers platforms.
An Reinforcement Learning Scheduler (RL-Scheduler) predicts request distribution in real-time,
dynamically allocating CPU cycles and memory limits. Targeted testing demonstrates a 52%
reduction in cold start time, a 33% decrease in average execution latency, and a 21% reduction in
energy consumption under 3,000 concurrent tasks. Results confirm the framework effectively
enhances execution autonomy and cross-platform portability for edge Serverless systems in multi-
tenant environments.

Keywords: serverless; WebAssembly; edge computing; lightweight runtime; reinforcement learning
scheduling; energy consumption control

1. Introduction

Edge computing imposes granular demands on resource responsiveness, deployment
granularity, and scheduling complexity for function-level execution. Traditional Serverless
architectures face structural bottlenecks in cold start control, multi-tenant isolation, and platform
portability. WebAssembly, with its lightweight cross-platform bytecode nature, holds potential for
rapid deployment and execution in heterogeneous edge environments. Building a portable, reusable
edge execution framework with autonomous resource management requires highly coupled
optimization across runtime isolation, intelligent task scheduling, and closed-loop resource
utilization control.

2. System Architecture Design

2.1. Overview of the Framework Architecture

To achieve low-latency scheduling and high-efficiency execution of Serverless functions in high-
concurrency edge environments, the proposed framework adopts a three-tier structure: “WASM
lightweight runtime stack + Serverless function abstraction + distributed resource scheduler.” Built
atop Cloudflare Workers and AWS Lambda heterogeneous platforms, it forms a lightweight, multi-
point collaborative edge full-stack execution system (see Figure 1). The system uniformly receives
HTTP events via an entry proxy. After parsing, events are routed to the task decomposition engine,
which generates Minimum Execution Units (MEUs) based on task granularity and resource
requirements. These MEUs are then distributed to the WebAssembly execution pool [1] through
event-driven mechanisms. The scheduler module incorporates a reinforcement learning prediction

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.1311.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2026 d0i:10.20944/preprints202601.1311.v1

2 of 7

submodule that calculates target actionsa, in real-time based on historical load states, , request
intensityr, , and cold-start penaltyc, . The decision strategy follows these principles:

ar = argmax (Q(spa) —A X c) 4]
whereQ(s;, a) represents the state-action value function,A denotes the cold-start penalty weight,
andc, indicates the average cold-start latency for uncached functions within the current time step.
Modules communicate via a lightweight RPC protocol, forming a decoupled architecture.

A Entry Proxy |
3 LCl E

>

@
B
§ Task
21| Decomposition
wmre £]
API g ‘..
| | St Policy Network :
| < !
— 3 Value Network '
Emryl] i
—>| Metrics Collector | WASM Runtime Pool | |
Metrics v e N —

_____ Metrics Feedback ______.-*

Feedback h
Servereless-WASM collaborative execution artiur

Figure 1. Serverless-WASM Collaborative Execution Architecture Diagram.

2.2. Serverless Integration Mechanism

The framework’s Serverless integration mechanism establishes a cross-runtime function
encapsulation and scheduling federation layer. This enables unified invocation paths for
WebAssembly modules and native Serverless functions across AWS Lambda and Cloudflare
Workers. Its core workflow relies on function wrappers to achieve bidirectional adaptation between
WASM bytecode and platform-specific runtime APIs, executed via a lightweight protocol stack [2].
During deployment, functions are compiled into a multi-platform mapping set via the unified
intermediate format (F,,;). The mapping rules can be expressed as:

M = {(pi, r)Iri = W(Funi, P)} 2
where 'p; " denotes the target platform (e.g., Lambda, Workers), 'r; * represents the corresponding
runtime executable function, and " " is the cross-platform adaptation conversion operator.

Platform-specific runtime differences, cold start constraints, and maximum concurrency
parameters are detailed in Table 2. Workers exhibit lower startup latency (<5ms), while Lambda offers
superior CPU burst performance. This mechanism enables unified lifecycle management and low-
overhead interoperability for functions across heterogeneous Serverless execution environments [3].

Table 1. Serverless Platform Runtime Differences and Adaptation Parameters.

Metric Parameter AWS Lambda Cloudflare Workers
Avg Cold Start Latency 42-85ms 3-6 ms
Runtime Memory Model Isolated process V8 isolate
Max Concurrency per Edge 1,000 per region 10,000 per POP
WASM Execution Sandbox Yes (via Firecrackert WASM shim) Yes (native V8 WASM runtime)
Suitable Workload Profile CPU-intensive burst Latency-sensitive short-lived tasks

2.3. WebAssembly Runtime Structure Optimization

To enhance the execution responsiveness and resource reuse efficiency of WASM functions in
edge Serverless environments, this system introduces module-level caching, multi-instance linear
memory mapping, and lazy loading mechanisms within its runtime architecture. The optimization
hinges on decomposing the WebAssembly bytecode decoding, verification, and JIT compilation

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.1311.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2026 d0i:10.20944/preprints202601.1311.v1

30of7

process into three distinct phases: the preprocessing stage (T,), the first-execution loading stage
(Tioaa), and the multi-instance derivation stage (T;,s:). The total response latency model is expressed
as [4]:
Texee = Tpre + min(Tioaq, Treuse) + Tingt 3)

whereT,,, represents module verification and cache generation time,T},q; denotes the memory
loading delay for the first WASM module execution,T,.,s. indicates reuse latency under module
reuse hits, andTj,s signifies the stack allocation and context binding time required for function
instantiation. This optimization structure significantly reduces module cold start duration through
asynchronous loading and structural reuse strategies.

3. Resource Isolation and Task Scheduling Strategy

3.1. Lightweight Container Isolation (LCI) Mechanism Design

To balance resource isolation and cold start latency control in edge deployment scenarios for
Serverless platforms, this system implements the LCI mechanism. It employs minimal-privilege
container components to coordinate kernel-level namespace isolation with shared page memory
reuse, achieving runtime isolation sandboxes for function-level execution units. The isolation

strength of LCl is represented by resource mutual exclusion (R,), calculated as follows:
_ Zhwix(1-p)
Riso = - . (4)
wherew; denotes the isolation weight for resource classi (e.g., CPU, I/O, VES, NET),p; represents the
resource sharing ratio (e.g., cgroups-shared CPU core percentage), andn is the total number of
resource dimensions. The isolation mechanism runs WebAssembly modules within minimal PID and
UTS namespaces, leveraging the eBPF control plane to achieve precise interception of kernel call

paths and function lifecycle isolation scheduling [5].

@ }Resource Weights

and Shared Ratios

Reduced Privilege
Container

v

| PID & UTS Namespaces|

~ WebAssembly |, eBPF
LCT Module"‘yja. Control Plane]

LCI San- -
L

Sys-*
Scndron
Scheduling

Figure 2. Lightweight Container Isolation Mechanism.

3.2. Reinforcement Learning Scheduler (RL-Scheduler) Construction

RL-Scheduler employs a state-action value iteration strategy to construct a function-level
resource scheduler using a proximity-based policy optimization algorithm. Its core lies in
dynamically sensing task load statess; , integrating execution delaysd, , resource contention ratesy;
, and cold-start penaltiesc; to generate action decisionsa, . The policy optimization objective is
defined as:

JO) = By [min (2850 1 1) x A 5)

TOo1d (als)’

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.1311.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2026 d0i:10.20944/preprints202601.1311.v1

4 of 7

wheremy represents the current policy,6 denotes the policy network parameters,e is the clipping
factor (typically set to 0.2), andA, is the advantage estimate. The system adopts a dual-policy network
architecture to decouple task dispatch from resource quota evaluation. The scheduler receives state
feedback from the Metrics Collector and completes action distribution to the WASM Runtime Pool,
forming a closed-loop scheduling chain [6].

3.3. Resource Autonomy Strategy in Multi-Tenant Environments

To achieve dynamic autonomous resource control in multi-tenant edge execution environments,
the system introduces a resource scheduling framework based on a service-level weighting model. It
maps each tenant’s resource demands to the allocation space via a weight vectorw = [wy,w,,...,wy] .
The autonomous resource quota function is expressed as follows:

RF%’J"}_, with D; = a; X L; + ; X H; (6)

T

whereR; represents the dynamic resource quota (CPU cycles or memory pages) for thei th tenant,w;
denotes the weight, andD; is the scheduling driver factor calculated from the function delay levelL;
and task queue depthH; . The coefficienta;. f; indicates the preference for regulating delay versus
backlog [7]. The system constructs a multidimensional resource control structure through tenant
namespace isolation, SLA priority queues, and RL scheduler feedback loops. This strategy effectively
supports RL-Scheduler’s feedback-driven optimization of multi-tenant behavior, achieving dynamic

coordination between resource fairness and performance objectives.
4. Experimental Design and Performance Validation

4.1. Experimental Environment and Configuration

The experimental setup adopts a cross-platform heterogeneous architecture with AWS Lambda
and Cloudflare Workers as dual edge platforms. Task scheduling runs on a master cloud node
(t4g.medium, ARMvVS), while execution nodes are distributed across four Cloudflare regions and two
Lambda regions (us-east-1, ap-northeast-1) [8]. Task injection uses Locust for distributed load
simulation, with peak concurrency at 3,000. WASM functions are compiled from Rust, optimized
with wasm-opt, and encapsulated. The runtime uses Firecracker micro-VMs with WASM shims,
supporting LCI and RL-Scheduler integration. Platform parameters—memory limits, cold start
latency, and timeouts—are listed in Table 2. This setup ensures consistent resource conditions for
validating LCI and scheduling strategies in multi-tenant environments.

Table 2. Experimental Platform Configuration Parameters.

WASM Function Average
Deployment CPU Memor
Node Type Runtime Execution Cold Start
Platform Specification ~ y Limit
Environment Time Limit Latency
AWS EC2 2 vCPUs Python + PPO
Control N ode 4 GB None N/A
t4g.medium ARMv8 scheduler
Cloudflare Virtual CPU 128 V8 Native
Edge Node A 50 ms 4.2 ms
Workers (Shared) MB WASM
512 Firecracker +
Edge Node B AWS Lambda x86 2 vCPUs 900 ms 63.5 ms
MB WASM shim
Status Collection Prometheus
N/A N/A N/A N/A N/A
Node Exporter

4.2. Experimental Function Details

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.1311.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2026 d0i:10.20944/preprints202601.1311.v1

5 of 7

The WASM experimental functions were implemented in Rust and compiled using the wasm32-
wasi toolchain for high-load edge environments. Each function performs a CPU-intensive workload,
including 512x512 matrix multiplication, JSON parsing, and conditional branching based on input
parameters. The inputis a 1 KB JSON object delivered via HTTP POST, and the output is a structured
JSON response containing computation results and execution metadata (timestamp, task ID, region
tag). Functions remain stateless to support horizontal scaling and caching. Request intervals were
controlled by Locust to emulate burst traffic (500-1000 RPS) and steady load (200 RPS), enabling
consistent evaluation of cold-start behavior, LCI-related memory allocation, and RL-Scheduler
inference stability.

4.3. Performance Evaluation Metrics

To ensure objective validation of runtime optimization and scheduling strategies under multi-
tenant edge environments, this study defines five core performance metrics: average response
latency, throughput capacity, resource utilization, energy efficiency, and function reuse hit rate.
These metrics directly reflect the framework’s optimization objectives—namely low-latency
execution, efficient resource control, and runtime reusability.The average response latency D,,,
evaluates system delay per request and is defined as:

Davg = %Z?Iﬂtgd — Q)
whereN denotes the total number of function requests in the experiment, andt represent
the start and end times of thei th request, respectively. The energy efficiency ratioE, measures the

@ @

end’ tstart

request processing capacity per unit of resource usage, expressed as:
A ®)

where Q denotes the total number of processed requests, P, represents the average power
consumption during the execution phase, andT indicates the total duration of the task window.

Power consumption data is obtained from control nodes and container-level cgroup monitors.
Resource utilization is tracked via CPU # memory quotas against baseline values, while throughput
is measured as average RPS under saturation. Function reuse hit rate reflects the proportion of cache
hits during module instantiation, indicating efficiency from WASM caching and mapping reuse. To
support energy-aware scheduling, the RL-Scheduler applies an implicit reward adjustment based on
power fluctuations. According to Equation (6), the driver factor a dynamically tunes CPU quotas
based on function latency and queue depth, indirectly optimizing E, by minimizing idle cycles and
over-provisioning. These metrics provide a quantitative basis for comparing the baseline and
optimized frameworks, supporting the result analysis in Section 4.4.

4.4. Results Analysis

To validate the performance advantages of the proposed lightweight Serverless-WASM full-
stack framework, experiments with 3,000 concurrent tasks were conducted on AWS Lambda and
Cloudflare Workers using a unified WASM function and load model. Metrics including cold start
latency, average execution latency, energy consumption, and function reuse hit rate were compared
with the baseline system [9]. All requests were triggered via a distributed injector, and results were
recorded using Prometheus and a custom data proxy to ensure accuracy.

Figure 3 shows the scatter plot comparison across four core metrics. In cold start latency, the
baseline clustered around 80 - 90 ms with long-tail delays, while the optimized system concentrated
below 40 ms, confirming a 52% reduction due to LCI-based preheating and cache reuse. For average
execution latency, the optimized system remained around 80 ms, while the baseline ranged between
120 - 140 ms with fluctuations, demonstrating the RL scheduler’s 33% latency reduction and
improved stability. Energy usage in the optimized system was stable and tightly distributed,
reducing consumption per task by 21% through efficient resource allocation. The reuse hit rate
improved from under 30% in the baseline to over 70% in the optimized system, verifying the
effectiveness of WASM module caching and mapping reuse. These results collectively confirm the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.1311.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2026 d0i:10.20944/preprints202601.1311.v1

6 of 7

system’ s enhanced portability, responsiveness, and resource efficiency on heterogeneous edge
platforms.

® Baseline

Optimizd
8
] o®
b 45 L
6| e ‘.. 3
0o ° o
—_ > o
= e® o ar 40| ®ee
o 4 LJ ®oe
g L o: e
[s ® . 35 ® ey
g2 .
=]) s
@ -
20 30
Q
2 25
2 4 6 300 400 35 30 45
Cold Start Time (s) Mean Execution Latency Energy Consumption (J)

(ms)
Figure 3. Performance Metrics Comparison at 3000 Concurrent Users.

4.5. Ablation Studies and Single-Module Validation

To assess each optimization module’ s contribution, ablation experiments were performed by
disabling the RL-Scheduler, LCI isolation, and WASM runtime optimization in turn under 3,000
concurrent tasks. A single-module validation was also conducted, retaining only one component with
others in baseline state to evaluate individual impact [10]. Experimental settings and tools were kept
consistent. Metrics included cold start time, average latency, and energy consumption, collected via
Prometheus and log analysis.As shown in Figure 4, cold start time stayed below 40 ms in the full
system but exceeded 72 ms without LCI, confirming its role in reducing initialization latency. LCI
alone improved performance over the baseline but required coordination with the scheduler for
optimal effect. Disabling the RL-Scheduler led to latency above 120 ms with long tails, underscoring
its importance in optimizing multi-tenant task paths. Enabling it alone reduced median latency, but
without LCI, cold-start delays persisted. Energy consumption was lowest (3.2 - 3.6 Wh) with all
modules active; removing any one caused increases, especially without WASM runtime
optimization, highlighting its impact through caching and instruction path compression. Overall, the
three modules are complementary, and only their joint deployment achieves optimal performance
and efficiency.

® Full System
@ w/o LCI
E L ® w/o RL-Scheduler @) o
g ©® w/o WASM Optimization @
e 10 PY
-1 O ..
G S0 [T
]
S @
8 »nl o %0 o
.. .. [] o
0 09 00
Cold Start Time Average Execution Energy
(ms) Latency (ms) Consumpttion
(Wh)

Figure 4. Performance of Each Optimization Module in the Task Scheduling System.

5. Conclusion

The optimization framework synergistically integrates module decomposition, runtime
isolation, and autonomous scheduling. By combining reinforcement learning policy networks with
lightweight container virtualization technology, it effectively enhances the response efficiency and
energy consumption control of edge function execution. Experimental validation demonstrates
robust performance convergence and cross-platform consistency under high-concurrency conditions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.1311.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2026 d0i:10.20944/preprints202601.1311.v1

7 of 7

Future work may extend to improving resource scheduling precision in multi-core parallel models
and exploring Serverless-WASM primitive fusion mechanisms for event-driven microservice
systems, enabling higher-dimensional edge intelligence control architectures.

References

1. Zheng, X., Dwyer, V. M., Barrett, L. A., Derakhshani, M., & Hu, S. (2023). Rapid vital sign extraction for
real-time opto-physiological monitoring at varying physical activity intensity levels. IEEE Journal of
Biomedical and Health Informatics, 27(7), 3107-3118.

2. Thalhath N. Lightweight technology stacks for assistive linked annotations[J]. Genomics & Informatics,
2024, 22(1): 17.

3. Sturua T, Todua T, Kobiashvili A. Web Technology Innovations and Their Impact on Georgia’s Labor
Market[]J]. Journal of Technical Science and Technologies, 2024, 8(2): 58-67.

4. Jhori A, Pandey R, Shekhawat Y S, et al. Evolution of WDT: Speed Change in Web Development
Technology[]J]. International Journal of Engineering Trends and Applications (IJETA), 2024, 11(3):271-280.

5. Anasuri S. Confidential Computing Using Trusted Execution Environments[]]. International Journal of Al,
BigData, Computational and Management Studies, 2023, 4(2): 97-110.

6. Assun¢ao W K G, Marchezan L, Arkoh L, et al. Contemporary software modernization: Strategies, driving
forces, and research opportunities[J]. ACM Transactions on Software Engineering and Methodology, 2025,
34(5): 1-35.

7. Will N C, Maziero C A. Intel software guard extensions applications: A survey[J]]. ACM Computing
Surveys, 2023, 55(14s): 1-38.

8. Rusum G P. WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge[]].
International Journal of Emerging Trends in Computer Science and Information Technology, 2022, 3(1):
107-115.

9. Garbugli A, Sabbioni A, Corradi A, et al. TEMPOS: QoS management middleware for edge cloud
computing Faa$S in the Internet of Things[J]. IEEE Access, 2022, 10: 49114-49127.

10. Kjorveziroski V, Filiposka S. Webassembly orchestration in the context of serverless computing[J]. Journal
of Network and Systems Management, 2023, 31(3): 62

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.1311.v1
http://creativecommons.org/licenses/by/4.0/

