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Abstract 

This paper proposes a lightweight full-stack execution framework integrating Serverless architecture 
with WebAssembly runtime optimization to enhance performance and energy efficiency in edge 
deployments. The system employs modular task decomposition and Light-Container Isolation (LCI) 
technology to achieve cross-node function reuse on AWS Lambda and Cloudflare Workers platforms. 
An Reinforcement Learning Scheduler (RL-Scheduler) predicts request distribution in real-time, 
dynamically allocating CPU cycles and memory limits. Targeted testing demonstrates a 52% 
reduction in cold start time, a 33% decrease in average execution latency, and a 21% reduction in 
energy consumption under 3,000 concurrent tasks. Results confirm the framework effectively 
enhances execution autonomy and cross-platform portability for edge Serverless systems in multi-
tenant environments. 

Keywords: serverless; WebAssembly; edge computing; lightweight runtime; reinforcement learning 
scheduling; energy consumption control 
 

1. Introduction 

Edge computing imposes granular demands on resource responsiveness, deployment 
granularity, and scheduling complexity for function-level execution. Traditional Serverless 
architectures face structural bottlenecks in cold start control, multi-tenant isolation, and platform 
portability. WebAssembly, with its lightweight cross-platform bytecode nature, holds potential for 
rapid deployment and execution in heterogeneous edge environments. Building a portable, reusable 
edge execution framework with autonomous resource management requires highly coupled 
optimization across runtime isolation, intelligent task scheduling, and closed-loop resource 
utilization control. 

2. System Architecture Design 

2.1. Overview of the Framework Architecture 

To achieve low-latency scheduling and high-efficiency execution of Serverless functions in high-
concurrency edge environments, the proposed framework adopts a three-tier structure: “WASM 
lightweight runtime stack + Serverless function abstraction + distributed resource scheduler.” Built 
atop Cloudflare Workers and AWS Lambda heterogeneous platforms, it forms a lightweight, multi-
point collaborative edge full-stack execution system (see Figure 1). The system uniformly receives 
HTTP events via an entry proxy. After parsing, events are routed to the task decomposition engine, 
which generates Minimum Execution Units (MEUs) based on task granularity and resource 
requirements. These MEUs are then distributed to the WebAssembly execution pool [1] through 
event-driven mechanisms. The scheduler module incorporates a reinforcement learning prediction 
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submodule that calculates target actions𝑎௧  in real-time based on historical load state𝑠௧  , request 
intensity𝑟௧ , and cold-start penalty𝑐௧ . The decision strategy follows these principles: a୲ = arg maxୟ ሺQሺs୲, aሻ − λ × c୲ሻ (1) 
where𝑄ሺ𝑠௧ ,𝑎ሻ represents the state-action value function,𝜆 denotes the cold-start penalty weight, 
and𝑐௧ indicates the average cold-start latency for uncached functions within the current time step. 
Modules communicate via a lightweight RPC protocol, forming a decoupled architecture. 

 
Figure 1. Serverless-WASM Collaborative Execution Architecture Diagram. 

2.2. Serverless Integration Mechanism 

The framework’s Serverless integration mechanism establishes a cross-runtime function 
encapsulation and scheduling federation layer. This enables unified invocation paths for 
WebAssembly modules and native Serverless functions across AWS Lambda and Cloudflare 
Workers. Its core workflow relies on function wrappers to achieve bidirectional adaptation between 
WASM bytecode and platform-specific runtime APIs, executed via a lightweight protocol stack [2]. 
During deployment, functions are compiled into a multi-platform mapping set via the unified 
intermediate format (𝐹௨௡௜ ). The mapping rules can be expressed as: M = ሼሺp୧, r୧ሻ|r୧ = ψሺF୳୬୧, p୧ሻሽ (2) 
where `𝑝௜ ` denotes the target platform (e.g., Lambda, Workers), `𝑟௜ ` represents the corresponding 
runtime executable function, and `𝜓 ` is the cross-platform adaptation conversion operator. 

Platform-specific runtime differences, cold start constraints, and maximum concurrency 
parameters are detailed in Table 2. Workers exhibit lower startup latency (<5ms), while Lambda offers 
superior CPU burst performance. This mechanism enables unified lifecycle management and low-
overhead interoperability for functions across heterogeneous Serverless execution environments [3]. 

Table 1. Serverless Platform Runtime Differences and Adaptation Parameters. 

Metric Parameter AWS Lambda Cloudflare Workers 

Avg Cold Start Latency 42–85ms 3–6 ms 

Runtime Memory Model Isolated process V8 isolate 

Max Concurrency per Edge 1,000 per region 10,000 per POP 

WASM Execution Sandbox Yes (via Firecracker+WASM shim) Yes (native V8 WASM runtime) 

Suitable Workload Profile CPU-intensive burst Latency-sensitive short-lived tasks 

2.3. WebAssembly Runtime Structure Optimization 

To enhance the execution responsiveness and resource reuse efficiency of WASM functions in 
edge Serverless environments, this system introduces module-level caching, multi-instance linear 
memory mapping, and lazy loading mechanisms within its runtime architecture. The optimization 
hinges on decomposing the WebAssembly bytecode decoding, verification, and JIT compilation 
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process into three distinct phases: the preprocessing stage (𝑇௣௥௘ ), the first-execution loading stage 
(𝑇௟௢௔ௗ ), and the multi-instance derivation stage (𝑇௜௡௦௧ ). The total response latency model is expressed 
as [4]: 

Texec = Tpre ൅ minሺTload, Treuseሻ ൅ Tinst (3) 
where𝑇௣௥௘  represents module verification and cache generation time,𝑇௟௢௔ௗ  denotes the memory 
loading delay for the first WASM module execution,𝑇௥௘௨௦௘  indicates reuse latency under module 
reuse hits, and𝑇௜௡௦௧  signifies the stack allocation and context binding time required for function 
instantiation. This optimization structure significantly reduces module cold start duration through 
asynchronous loading and structural reuse strategies. 

3. Resource Isolation and Task Scheduling Strategy 

3.1. Lightweight Container Isolation (LCI) Mechanism Design 

To balance resource isolation and cold start latency control in edge deployment scenarios for 
Serverless platforms, this system implements the LCI mechanism. It employs minimal-privilege 
container components to coordinate kernel-level namespace isolation with shared page memory 
reuse, achieving runtime isolation sandboxes for function-level execution units. The isolation 
strength of LCI is represented by resource mutual exclusion (𝑅௜௦௢ ), calculated as follows: 

Riso = ∑ wi×൫1ିρi൯n
iస1

n
 (4) 

where𝑤௜ denotes the isolation weight for resource class𝑖 (e.g., CPU, I/O, VFS, NET),𝜌௜ represents the 
resource sharing ratio (e.g., cgroups-shared CPU core percentage), and𝑛  is the total number of 
resource dimensions. The isolation mechanism runs WebAssembly modules within minimal PID and 
UTS namespaces, leveraging the eBPF control plane to achieve precise interception of kernel call 
paths and function lifecycle isolation scheduling [5]. 

 
Figure 2. Lightweight Container Isolation Mechanism. 

3.2. Reinforcement Learning Scheduler (RL-Scheduler) Construction 

RL-Scheduler employs a state-action value iteration strategy to construct a function-level 
resource scheduler using a proximity-based policy optimization algorithm. Its core lies in 
dynamically sensing task load statess୲ , integrating execution delaysd୲ , resource contention ratesγ୲ 
, and cold-start penaltiesc୲  to generate action decisionsa୲  . The policy optimization objective is 
defined as: 

Jሺθሻ = Εt ൤min ൬ πθሺat|stሻ
πθoldሺat|stሻ , 1 ൅ ε൰ × At൨ (5) 
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where𝜋ఏ  represents the current policy,𝜃 denotes the policy network parameters,𝜀 is the clipping 
factor (typically set to 0.2), and𝐴௧ is the advantage estimate. The system adopts a dual-policy network 
architecture to decouple task dispatch from resource quota evaluation. The scheduler receives state 
feedback from the Metrics Collector and completes action distribution to the WASM Runtime Pool, 
forming a closed-loop scheduling chain [6]. 

3.3. Resource Autonomy Strategy in Multi-Tenant Environments 

To achieve dynamic autonomous resource control in multi-tenant edge execution environments, 
the system introduces a resource scheduling framework based on a service-level weighting model. It 
maps each tenant’s resource demands to the allocation space via a weight vector𝑤ሬሬ⃗ = ሾ𝑤ଵ,𝑤ଶ, . . . ,𝑤௡ሿ . 
The autonomous resource quota function is expressed as follows: 

 𝑅௜ = ௪೔×஽೔∑ ௪ೕ೙ೕసభ ,  𝑤𝑖𝑡ℎ 𝐷௜ = 𝛼௜ × 𝐿௜ + 𝛽௜ × 𝐻௜ (6) 

where𝑅௜ represents the dynamic resource quota (CPU cycles or memory pages) for the𝑖 th tenant,𝑤௜ 
denotes the weight, and𝐷௜ is the scheduling driver factor calculated from the function delay level𝐿௜ 
and task queue depth𝐻௜ . The coefficient𝛼௜、𝛽௜ indicates the preference for regulating delay versus 
backlog [7]. The system constructs a multidimensional resource control structure through tenant 
namespace isolation, SLA priority queues, and RL scheduler feedback loops. This strategy effectively 
supports RL-Scheduler’s feedback-driven optimization of multi-tenant behavior, achieving dynamic 
coordination between resource fairness and performance objectives. 

4. Experimental Design and Performance Validation 

4.1. Experimental Environment and Configuration 

The experimental setup adopts a cross-platform heterogeneous architecture with AWS Lambda 
and Cloudflare Workers as dual edge platforms. Task scheduling runs on a master cloud node 
(t4g.medium, ARMv8), while execution nodes are distributed across four Cloudflare regions and two 
Lambda regions (us-east-1, ap-northeast-1) [8]. Task injection uses Locust for distributed load 
simulation, with peak concurrency at 3,000. WASM functions are compiled from Rust, optimized 
with wasm-opt, and encapsulated. The runtime uses Firecracker micro-VMs with WASM shims, 
supporting LCI and RL-Scheduler integration. Platform parameters—memory limits, cold start 
latency, and timeouts—are listed in Table 2. This setup ensures consistent resource conditions for 
validating LCI and scheduling strategies in multi-tenant environments. 

Table 2. Experimental Platform Configuration Parameters. 

Node Type 
Deployment 

Platform 

CPU 

Specification 

Memor

y Limit 

WASM 

Runtime 

Environment 

Function 

Execution 

Time Limit 

Average 

Cold Start 

Latency 

Control N ode 
AWS EC2 

t4g.medium 

2 vCPUs 

ARMv8 
4 GB 

Python + PPO 

scheduler 
None N/A 

Edge Node A 
Cloudflare 

Workers 

Virtual CPU 

(Shared) 

128 

MB 

V8 Native 

WASM 
50 ms 4.2 ms 

Edge Node B AWS Lambda x86 2 vCPUs 
512 

MB 

Firecracker + 

WASM shim 
900 ms 63.5 ms 

Status Collection 

Node 

Prometheus 

Exporter 
N/A N/A N/A N/A N/A 

4.2. Experimental Function Details 
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The WASM experimental functions were implemented in Rust and compiled using the wasm32-
wasi toolchain for high-load edge environments. Each function performs a CPU-intensive workload, 
including 512×512 matrix multiplication, JSON parsing, and conditional branching based on input 
parameters. The input is a 1 KB JSON object delivered via HTTP POST, and the output is a structured 
JSON response containing computation results and execution metadata (timestamp, task ID, region 
tag). Functions remain stateless to support horizontal scaling and caching. Request intervals were 
controlled by Locust to emulate burst traffic (500–1000 RPS) and steady load (200 RPS), enabling 
consistent evaluation of cold-start behavior, LCI-related memory allocation, and RL-Scheduler 
inference stability. 

4.3. Performance Evaluation Metrics 

To ensure objective validation of runtime optimization and scheduling strategies under multi-
tenant edge environments, this study defines five core performance metrics: average response 
latency, throughput capacity, resource utilization, energy efficiency, and function reuse hit rate. 
These metrics directly reflect the framework’s optimization objectives—namely low-latency 
execution, efficient resource control, and runtime reusability.The average response latency𝐷௔௩௚ 
evaluates system delay per request and is defined as: Dୟ୴୥ = ଵ୒∑ tୣ୬ୢሺ୧ሻ − tୱ୲ୟ୰୲ሺ୧ሻ୒୧ୀଵ (7) 
where𝑁 denotes the total number of function requests in the experiment, and𝑡௘௡ௗሺ௜ሻ 、𝑡௦௧௔௥௧ሺ௜ሻ  represent 
the start and end times of the𝑖 th request, respectively. The energy efficiency ratio𝐸௥ measures the 
request processing capacity per unit of resource usage, expressed as: 

 E୰ = ୕୔౗౬ౝ×୘ (8) 

where 𝑄  denotes the total number of processed requests, 𝑃௔௩௚  represents the average power 
consumption during the execution phase, and𝑇 indicates the total duration of the task window. 

Power consumption data is obtained from control nodes and container-level cgroup monitors. 
Resource utilization is tracked via CPU 和 memory quotas against baseline values, while throughput 
is measured as average RPS under saturation. Function reuse hit rate reflects the proportion of cache 
hits during module instantiation, indicating efficiency from WASM caching and mapping reuse. To 
support energy-aware scheduling, the RL-Scheduler applies an implicit reward adjustment based on 
power fluctuations. According to Equation (6), the driver factor α dynamically tunes CPU quotas 
based on function latency and queue depth, indirectly optimizing 𝐸௥ by minimizing idle cycles and 
over-provisioning. These metrics provide a quantitative basis for comparing the baseline and 
optimized frameworks, supporting the result analysis in Section 4.4. 

4.4. Results Analysis 

To validate the performance advantages of the proposed lightweight Serverless-WASM full-
stack framework, experiments with 3,000 concurrent tasks were conducted on AWS Lambda and 
Cloudflare Workers using a unified WASM function and load model. Metrics including cold start 
latency, average execution latency, energy consumption, and function reuse hit rate were compared 
with the baseline system [9]. All requests were triggered via a distributed injector, and results were 
recorded using Prometheus and a custom data proxy to ensure accuracy. 

Figure 3 shows the scatter plot comparison across four core metrics. In cold start latency, the 
baseline clustered around 80–90 ms with long-tail delays, while the optimized system concentrated 
below 40 ms, confirming a 52% reduction due to LCI-based preheating and cache reuse. For average 
execution latency, the optimized system remained around 80 ms, while the baseline ranged between 
120– 140 ms with fluctuations, demonstrating the RL scheduler’s 33% latency reduction and 
improved stability. Energy usage in the optimized system was stable and tightly distributed, 
reducing consumption per task by 21% through efficient resource allocation. The reuse hit rate 
improved from under 30% in the baseline to over 70% in the optimized system, verifying the 
effectiveness of WASM module caching and mapping reuse. These results collectively confirm the 
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system’s enhanced portability, responsiveness, and resource efficiency on heterogeneous edge 
platforms. 

 
Figure 3. Performance Metrics Comparison at 3000 Concurrent Users. 

4.5. Ablation Studies and Single-Module Validation 

To assess each optimization module’s contribution, ablation experiments were performed by 
disabling the RL-Scheduler, LCI isolation, and WASM runtime optimization in turn under 3,000 
concurrent tasks. A single-module validation was also conducted, retaining only one component with 
others in baseline state to evaluate individual impact [10]. Experimental settings and tools were kept 
consistent. Metrics included cold start time, average latency, and energy consumption, collected via 
Prometheus and log analysis.As shown in Figure 4, cold start time stayed below 40 ms in the full 
system but exceeded 72 ms without LCI, confirming its role in reducing initialization latency. LCI 
alone improved performance over the baseline but required coordination with the scheduler for 
optimal effect. Disabling the RL-Scheduler led to latency above 120 ms with long tails, underscoring 
its importance in optimizing multi-tenant task paths. Enabling it alone reduced median latency, but 
without LCI, cold-start delays persisted. Energy consumption was lowest (3.2–3.6 Wh) with all 
modules active; removing any one caused increases, especially without WASM runtime 
optimization, highlighting its impact through caching and instruction path compression. Overall, the 
three modules are complementary, and only their joint deployment achieves optimal performance 
and efficiency. 

 
Figure 4. Performance of Each Optimization Module in the Task Scheduling System. 

5. Conclusion 

The optimization framework synergistically integrates module decomposition, runtime 
isolation, and autonomous scheduling. By combining reinforcement learning policy networks with 
lightweight container virtualization technology, it effectively enhances the response efficiency and 
energy consumption control of edge function execution. Experimental validation demonstrates 
robust performance convergence and cross-platform consistency under high-concurrency conditions. 
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Future work may extend to improving resource scheduling precision in multi-core parallel models 
and exploring Serverless-WASM primitive fusion mechanisms for event-driven microservice 
systems, enabling higher-dimensional edge intelligence control architectures. 

References 

1. Zheng, X., Dwyer, V. M., Barrett, L. A., Derakhshani, M., & Hu, S. (2023). Rapid vital sign extraction for 
real-time opto-physiological monitoring at varying physical activity intensity levels. IEEE Journal of 
Biomedical and Health Informatics, 27(7), 3107-3118. 

2. Thalhath N. Lightweight technology stacks for assistive linked annotations[J]. Genomics & Informatics, 
2024, 22(1): 17. 

3. Sturua T, Todua T, Kobiashvili A. Web Technology Innovations and Their Impact on Georgia’s Labor 
Market[J]. Journal of Technical Science and Technologies, 2024, 8(2): 58-67. 

4. Jhori A, Pandey R, Shekhawat Y S, et al. Evolution of WDT: Speed Change in Web Development 
Technology[J]. International Journal of Engineering Trends and Applications (IJETA), 2024, 11(3):271-280. 

5. Anasuri S. Confidential Computing Using Trusted Execution Environments[J]. International Journal of AI, 
BigData, Computational and Management Studies, 2023, 4(2): 97-110. 

6. Assunção W K G, Marchezan L, Arkoh L, et al. Contemporary software modernization: Strategies, driving 
forces, and research opportunities[J]. ACM Transactions on Software Engineering and Methodology, 2025, 
34(5): 1-35. 

7. Will N C, Maziero C A. Intel software guard extensions applications: A survey[J]. ACM Computing 
Surveys, 2023, 55(14s): 1-38. 

8. Rusum G P. WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge[J]. 
International Journal of Emerging Trends in Computer Science and Information Technology, 2022, 3(1): 
107-115. 

9. Garbugli A, Sabbioni A, Corradi A, et al. TEMPOS: QoS management middleware for edge cloud 
computing FaaS in the Internet of Things[J]. IEEE Access, 2022, 10: 49114-49127. 

10. Kjorveziroski V, Filiposka S. Webassembly orchestration in the context of serverless computing[J]. Journal 
of Network and Systems Management, 2023, 31(3): 62 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 January 2026 doi:10.20944/preprints202601.1311.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202601.1311.v1
http://creativecommons.org/licenses/by/4.0/

