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Abstract: Improving the energy efficiency of buildings is a critical pathway for mitigating greenhouse 

gas emissions and fostering sustainable urban development. This study introduces a simulation-

based multi-objective optimization framework designed to enhance both the thermal and economic 

performance of residential buildings. A representative single-family dwelling located in Patras, 

Greece, served as a case study to demonstrate the application and scalability of the proposed 

methodology. The optimization simultaneously minimized two conflicting objectives: the building’s 

annual thermal energy demand and the cost of construction materials. The computational process 

was implemented using MATLAB’s Multi-Objective Genetic Algorithm, supported by a modular 

Excel interface that enables dynamic customization of design parameters and climatic inputs. A 

parametric analysis across four optimization scenarios was conducted by systematically varying the 

key algorithmic hyperparameters—population size, mutation rate, and number of generations—to 

assess their impact on convergence behavior, Pareto front resolution, and solution diversity. The 

results confirmed the algorithm’s robustness in producing technically feasible and non-dominated 

solutions, while also highlighting the sensitivity of optimization outcomes to hyperparameter tuning. 

The proposed framework is a flexible, reproducible, and computationally tractable approach for 

supporting early-stage, performance-driven building design under realistic constraints. 

Keywords: energy efficient buildings; multi-objective optimization; simulation-based optimization; 

pareto front; energy consumption in buildings 

 

1. Introduction 

The building and construction sector accounts for approximately 40% of global primary energy 

consumption and over 30% of total greenhouse gas (GHG) emissions, positioning it as a key 

contributor to climate change and the urban heat island effect [1,2]. In response, considerable effort 

has been directed toward developing strategies that reduce operational energy demand while 

addressing the broader environmental and thermal challenges of urbanization. These strategies range 

from passive design interventions—such as thermal insulation, natural ventilation, and solar 

shading—to advanced solutions incorporating renewable energy systems, phase-change materials, 

and hybrid control mechanisms [3–10]. 

A central driver of these advancements is the integration of computational tools for simulating 

and optimizing building energy performance. Physics-based simulation models enable detailed 

thermal analysis by incorporating envelope characteristics, occupancy schedules, and site-specific 
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climatic conditions [11–15]. When combined with optimization algorithms, these models support the 

systematic evaluation of design alternatives across multiple, often conflicting objectives. 

Concurrently, Machine Learning (ML) techniques have emerged as powerful data-driven tools for 

pattern recognition, energy forecasting, and system control. Supervised, unsupervised, and 

reinforcement learning methods offer capabilities for adaptive control, anomaly detection, and 

demand prediction with increasing accuracy and autonomy [16–22]. Together, simulation and ML-

based frameworks facilitate robust, dynamic, and intelligent building energy management, 

accounting for environmental, behavioral, and operational complexities [23–26]. 

Optimization frameworks in this domain commonly target objectives such as minimizing energy 

consumption, reducing costs, and mitigating environmental impacts, while satisfying thermal 

comfort requirements and regulatory constraints. Design variables often span envelope 

configuration, insulation levels, glazing ratios, HVAC operational parameters, and material choices 

[27,28]. These frameworks serve as essential tools for navigating tradeoffs among energy efficiency, 

economic viability, and occupant comfort, supporting data-informed, performance-driven design 

decisions [29]. 

This study aims to evaluate the effectiveness of a simulation-based multi-objective optimization 

framework for improving both the energy and economic performance of residential buildings, using 

a single-family dwelling in Patras, Greece, as a case study. Building on the review presented in section 

2, the study focuses on minimizing two conflicting objective functions—annual thermal energy 

demand and construction material cost—under realistic climatic and architectural constraints. The 

proposed approach integrates MATLAB’s [30] multi-objective genetic algorithm with a modular 

Excel interface, enabling dynamic scenario generation and scalability for diverse use cases. A key 

aspect of the investigation is the sensitivity analysis of optimization hyperparameters, specifically 

population size, number of generations, and mutation rate, with respect to their influence on 

convergence quality and Pareto front resolution. The overarching objective is to provide a 

reproducible, adaptable framework that supports informed design decision-making in the early 

stages of residential project development. 

The novelty of this work lies in its structured application of a flexible simulation–optimization 

platform, capable of accommodating diverse design inputs and boundary conditions through a 

modular Excel–MATLAB interface. Unlike many conventional studies limited by static 

configurations or narrow performance criteria, this study explores the influence of varying 

hyperparameter settings on the quality of optimization results. This enables a deeper understanding 

of how algorithmic configurations shape solution space coverage and Pareto front quality. The 

methodological flexibility ensures the approach can be readily adapted to different building 

typologies, climates, and performance objectives. By bridging algorithmic precision with practical 

design workflows, this study advances the integration of optimization techniques into real-world 

building design processes. 

This paper is structured as follows: Section 2 presents a comprehensive review of simulation-

based optimization techniques in energy-efficient building design. Section 3 details the 

methodological framework, including the case study context, model setup, definition of objectives 

and design parameters, and optimization implementation. Section 4 reports and discusses the 

optimization results, with particular attention to the influence of hyperparameter settings on solution 

quality and decision-support potential. Finally, Section 5 concludes the paper with a summary of key 

findings and recommendations for further research. 

2. Simulation-Based Approaches for Multi-Objective Energy Optimization in 

Buildings 

The ongoing effort to lower energy consumption in buildings has been significantly aided by 

advancements in Building Performance Simulation (BPS) tools. These tools simulate the complex, 

time-dependent behavior of building systems and have played a key role in enabling energy-
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conscious design, enhancing indoor comfort conditions, and supporting the adoption of sustainable 

construction strategies. With improvements in computational capabilities and the emergence of 

sophisticated optimization algorithms, the field has transitioned from simple parametric studies to 

fully integrated simulation–optimization environments. Such environments combine simulation 

platforms with advanced search techniques, promoting a more structured and data-informed 

approach to designing high-performance buildings. 

Traditional approaches to evaluating building performance often utilize parametric analyses, 

which involve varying a single input parameter at a time to observe its individual effect. While these 

studies have provided initial guidance, they are limited by assumptions of linearity, an inability to 

reflect interactions between multiple parameters, and a lack of computational efficiency. Critically, 

they rarely identify truly optimal configurations. In response to these shortcomings, Simulation-

Based Optimization (SBO) techniques have emerged as a more robust alternative. SBO methods 

combine simulation tools—such as EnergyPlus [31] or TRNSYS [32]—with optimization algorithms 

that iteratively search for superior design solutions. This integration supports the resolution of 

complex, multi-objective design problems, where tradeoffs must be made between energy use, 

occupant comfort, environmental performance, and cost considerations [33–35]. 

2.1. Classification of Simulation-Based Optimization Methods 

SBO methods comprise a wide array of algorithmic methods, which can be classified according 

to their approach to navigating the search space and managing problem constraints. The choice of a 

suitable optimization technique is largely dictated by the specific features of the problem at hand—

such as the number of decision variables, the type of variables involved (e.g., continuous, discrete, or 

hybrid), and the mathematical properties of the objective functions, including whether they are linear 

or nonlinear, convex or non-convex [11,36–39]. 

Deterministic optimization techniques—such as Linear Programming (LP), Non-Linear 

Programming (NLP), and Integer Programming (IP)—use formal mathematical models to derive 

optimal solutions [40–43]. These methods are typically efficient and well-suited for problems with 

convex structures and clearly defined constraints. However, their applicability in practical building 

design is limited, as real-world scenarios often involve nonlinear behavior, intricate constraints, and 

a mix of continuous and discrete variables. 

Metaheuristic and evolutionary algorithms —including Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), Simulated Annealing (SA), and ant Colony Optimization (ACO)—have 

demonstrated strong performance in the context of building design optimization [44–49]. Drawing 

inspiration from natural and biological systems, these approaches are particularly effective in 

exploring large, complex search spaces with multiple local optima. Unlike gradient-based methods, 

they do not require derivative information, which makes them well-suited for nonlinear problems. 

Their ability to escape local minima is especially beneficial in optimizing various building parameters 

such as thermal insulation, HVAC configurations, lighting strategies, and occupancy-related 

controls. 

Gradient-based methods, such as gradient descent and conjugate gradient methods, utilize 

derivative information to guide the search toward optimal solutions [16,17,50]. While these 

algorithms are generally efficient when applied to smooth and continuously differentiable problems, 

their effectiveness is often limited in building optimization contexts [36,40]. This is due to challenges 

like entrapment in local optima and high sensitivity to initial parameter values, which are common 

in the highly nonlinear nature of building energy models. 

Stochastic and direct-search techniques—including dynamic programming, tabu search, and 

pattern search—investigate the solution space using probabilistic strategies or predefined heuristic 

rules [18–21]. These approaches are known for their robustness and simplicity in implementation 

[51]. However, they often demand significant computational resources, particularly when applied to 

large-scale optimization problems involving multiple, interrelated objectives. 
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Among the various optimization approaches, multi-objective evolutionary algorithms—

especially the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)—have gained widespread 

adoption in building performance studies [36,52]. Their strength lies in generating Pareto-optimal 

solution sets, which enable designers to assess tradeoffs between conflicting objectives, such as 

minimizing energy consumption while maintaining thermal comfort, without committing to a single 

optimal outcome [36,44,48]. 

2.2. Integration of Simulation and Optimization: Methods and Applications 

SBO methods of building performance typically rely on two fundamental components: (a) a 

dynamic simulation tool capable of accurately modeling building behavior across various design 

alternatives, and (b) an optimization algorithm that systematically explores possible configurations 

to identify those that satisfy predefined performance criteria. 

The combined use of simulation and optimization facilitates informed decision-making during 

both the early design phase and building retrofit processes. It enables a thorough investigation of the 

design space across a wide range of applications, including optimization of the building envelope, 

HVAC systems, daylight utilization, spatial layout, and construction material choices [25,26,53]. 

Common design variables targeted in optimization studies include building geometry, insulation 

levels, glazing characteristics, window-to-wall ratios, HVAC operating parameters, and passive 

design elements like shading devices or thermal mass [29,54,55]. The performance criteria, or 

objective functions, often focus on indicators such as annual energy use, thermal comfort (e.g., PMV, 

hours of discomfort), Life-Cycle Cost (LCC), and carbon dioxide (CO2) emissions—or a weighted 

combination of these. In multi-objective settings, Pareto-based methods such as NSGA-II are widely 

used to explore tradeoffs among competing goals and provide a range of balanced solutions 

[12,44,48,56]. 

SBO has seen extensive application in both newly constructed and existing buildings, 

consistently contributing to enhanced energy efficiency, occupant comfort, and reduced 

environmental impact. Empirical research emphasizes the critical role of the building envelope—

especially insulation and glazing—in determining thermal performance [22,24,25]. Additionally, SBO 

approaches provide valuable guidance in selecting design solutions that align with budgetary limits, 

regulatory requirements, and broader sustainability objectives. 

Although SBO methods have demonstrated considerable effectiveness, they are not without 

limitations. One of the primary challenges is the high computational cost associated with coupling 

dynamic simulations with sophisticated optimization algorithms. Additional difficulties arise from 

modeling uncertainties, the variability of occupant behavior, and the need to simplify real-world 

complexities for practical implementation [54,57,58]. As a result, achieving a balance between model 

accuracy and usability often requires careful selection and limitation of the design parameters 

included in the analysis. Despite these challenges, a broad body of literature affirms that SBO serves 

as a powerful tool for performance-oriented building design. When applied appropriately, it allows 

architects, engineers, and decision-makers to uncover optimal or near-optimal solutions that 

successfully balance energy efficiency, occupant comfort, cost considerations, and environmental 

impact [56,58–60]. 

3. Methodology 

This section describes the methodological approach adopted to evaluate how simulation-based 

multi-objective optimization can improve both energy efficiency and construction cost in residential 

buildings. A real-world case study involving a detached single-family house located in Patras, 

Greece, is used to demonstrate the combined use of climatic data, detailed building parameters, 

optimization modeling, and computational tools. 

3.1. Climatic Context and Building Description 
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The residential building examined in this study is located in the city of Patras, western Greece 

(38.25°N latitude, 21.73°E longitude), with elevations ranging from 0 to 100 meters above sea level. 

According to the Köppen–Geiger classification, Patras falls within the �sa  climatic zone, 

characterized by hot, dry summers and mild, wet winters. 

To support accurate energy modeling, particularly heating demand estimation, the study uses 

long-term climatic data in the form of Heating Degree Days (HDD), provided by the National 

Observatory of Athens (NOA). The dataset includes monthly values for the period 2010 to 2021, 

calculated with a base indoor temperature of 18°C. Table 3.1 summarizes the monthly HDD values 

for Patras, totaling 766 HDD annually [61]. 

Table 1. Monthly Heating Degree Days (HDD) for Patras (2010–2021). 

Month HDD value 

January 199 

February 156 

March 131 

April 58 

May 10 

June 0 

July 0 

August 0 

September 2 

October 11 

November 50 

December 149 

Total (annual) 766 

The building under analysis is a single-story, detached residential unit representative of low-

rise housing in Greece. It includes five functional spaces: kitchen, living room, dining area, bedroom, 

and bathroom. Each space is naturally ventilated and illuminated, and the structure has two external 

doors. The internal ceiling height is uniformly 2.75 meters. Geometric modeling was carried out using 

simplified envelope data. Table 3.2 provides the surface areas of the building’s elements. 

Table 2. Surface areas of building elements. 

Building element Area (m2) 

Floor, Roof 92.36 

Walls 85.06 

Windows 18.89 

Doors 4.62 

Internal walls 65.75 

3.2. Optimization Framework 

An SBO framework was employed to simultaneously reduce energy consumption and material 

costs. The optimization was conducted in MATLAB using the Global Optimization Toolbox, 

specifically through the gamultiobj function. This function implements a Multi-Objective Genetic 

Algorithm (MOGA), which is well-suited for addressing continuous, nonlinear, and multi-modal 

optimization problems. The algorithm progresses by evolving a population of candidate solutions 

using genetic operators such as selection, crossover, mutation, and elitism. Critical parameters—

including the number of individuals per generation, total generations, and mutation probability—

are specified by the user. 
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In this study, typical settings involved 100 to 150 individuals per generation across 50 to 75 

generations, with mutation rates ranging from 0.03 to 0.05. The result is a Pareto front that illustrates 

the tradeoffs among competing design objectives. For greater flexibility and ease of use, the 

optimization algorithm was integrated with a modular Microsoft Excel interface. This linkage enables 

users to modify input parameters—such as design variables, material specifications, and building 

features—without directly editing the MATLAB source code. 

3.2.1. Objective Functions 

The optimization targets two competing objectives: (1) minimizing the building’s annual 

thermal energy demand, and (2) reducing the cost of construction materials. 

The first objective function, denoted as �th and expressed in kWh/year, represents the heating 

energy required to maintain indoor thermal comfort. It is influenced by the thermal properties of the 

building envelope and the prevailing climatic conditions at the building location. The thermal 

demand (�th) values are estimated using HDD data and the overall thermal transmittance of the 

building, represented by a weighted-average U-value ( �house ) along and adjustment factors 

accounting for orientation, building height, and heating duration. The calculation is based on a 

simplified steady-state heat transfer model based that employes the HDD concept to approximate 

the cumulative temperature difference between indoor and outdoor environmental conditions over 

the heating season [62]. The thermal demand (�th) is thus calculated as a function of geometrical and 

operational factors affecting heat losses [62,63]: 

 �th = �house ∙ �total ∙ ��� ∙
1

1000
∙ 24 ∙ �1 +

��������

100%
� + �� (��ℎ) (1) 

where HDD is the annual heating degree days, �house is the weighted-average U value of the entire 

building envelope, �total is the total surface area of the building, �L accounts for heat losses due to 

infiltration and ventilation, and �H, �D, and �O are adjustment multipliers for orientation, heating 

duration, and height. 

The second objective function is the material cost of construction (in €), which represents the 

total cost of key building components such as insulation, glazing, and wall assemblies. The 

construction material cost, denoted as �mater (in €), can be expressed as follows [63]: 

 �mater = �found + �roof ∙ �roof + �floor ∙ �floor + ��walls + �wall, in� ∙ �walls 

 +�ins ∙ �ins + �win ∙ �win + �doors (2) 

�found represents the cost of the building’s foundations, as well as the beams and columns of the 

structure, assuming they are made of reinforced concrete. For simplification, this cost is assumed to 

be fifteen thousand euros (€15,000), which is considered reasonable for a residential building with a 

living area of around 80 m2. Among the other symbols, �roof is the specific cost of the roof (in €/m²), 

�floor is the specific cost of the floor (in €/m²), �walls is the specific cost of the walls (in €/m²), �wall,in 

is the area of the internal walls (included to account total material cost), �ins is the specific cost of the 

insulation applied to the building (in €/m²), �doors is the cost of the doors, and �win is the specific 

cost of the windows (in €/m²). Finally, �ins is the total insulated area (in m²), including exterior walls, 

the roof and the floor: 

 �ins = �walls + �roof + �floor (3) 

Equation 2 is based on a bottom-up construction cost estimation approach, widely used in early-

stage building design and life cycle cost analyses [29,63]. 

Additional construction expenses—such as labor, permits, and administrative costs—were 

excluded from the analysis due to their significant regional variability and lack of standardization. 

The selected objectives reflect key priorities in the early design phase of residential buildings, where 
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tradeoffs between energy performance and financial feasibility must be carefully balanced. Reducing 

thermal energy demand supports environmentally sustainable design and enhances indoor comfort, 

while limiting material costs is essential for ensuring that energy-efficient solutions remain both 

economically viable and broadly implementable. 

3.2.2. Design Variables 

The optimization process considers 12 design variables that characterize both the thermal 

performance and material costs of the building envelope. These variables are grouped into two main 

categories: (a) U-values, representing the thermal transmittance of the roof, floor, external walls, 

windows, doors, and insulation layers; and (b) unit costs of materials for building surfaces (in €/m²) 

and doors (in €/unit). 

Each material complies with standardized thermal performance values defined by the Technical 

Chamber of Greece, ensuring alignment with national building energy regulations. Cost data were 

collected from regional suppliers in Patras, with the flexibility to adapt the dataset for alternative 

scenarios. To maintain consistency, each thermal transmittance value is directly linked to a 

corresponding material cost. Combinations deemed unrealistic or non-compliant are penalized 

during the optimization run. The material palette includes various types of insulation—such as EPS, 

XPS, GEPS, mineral wool, and polyurethane—as well as variations in wall assemblies, glazing 

systems, and structural components for floors, roofs, and doors. 

4. Results and Discussion 

This section presents a critical evaluation of the results obtained from the simulation-based 

multi-objective optimization framework, aiming to assess the effectiveness of the MATLAB-based 

algorithm in navigating the design space and identifying robust Pareto-optimal solutions. Emphasis 

is placed on the influence of key algorithmic hyperparameters—namely, population size, maximum 

number of generations, and mutation rate—on convergence dynamics, diversity of solutions, and the 

resolution of the Pareto front. 

To enable a systematic analysis, four optimization scenarios were executed, each defined by a 

distinct configuration of the hyperparameters. In each scenario, only one parameter was varied at a 

time, thereby isolating and enabling the evaluation of its specific impact on the behavior and 

efficiency of the optimization process. The specific values assigned in each scenario are summarized 

in Table 3. 

Table 3. Hyperparameter values for each scenario. 

Scenario Population size Max Genarations Mutation Rate 

1 100 50 0.1 

2 100 50 0.04 

3 200 50 0.04 

4 200 100 0.04 

The performance of the optimization process is assessed by analyzing the structure of the Pareto 

front and the density of solution points across the objective space. In multi-objective optimization, a 

well-formed Pareto front is typically smooth and continuous, allowing for the identification of high-

quality, non-dominated solutions. Discontinuities, jagged edges, or sparsely populated regions may 

indicate inadequate convergence or limited search space exploration. 

The optimization outcomes are illustrated through a series of comparative diagrams, each 

representing the tradeoff landscape between the two conflicting objectives: annual thermal energy 

demand and construction material cost. The shape, density, and continuity of the Pareto front are 

employed as qualitative indicators of the algorithm’s exploratory capacity and optimization 

performance. 
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In Scenario 1 (Figure 1), which corresponds to the lowest-resolution configuration—comprising 

a population size of 100, a maximum of 50 generations, and a relatively high mutation rate of 0.10—

the algorithm successfully generates a broad set of feasible solutions. Nonetheless, the resulting 

Pareto front displays discernible discontinuities along both objective axes (i.e., material cost and 

annual thermal energy demand), indicating incomplete exploration of the design space. Despite these 

irregularities, the Pareto front generally preserves the expected concave (hyperbolic) profile 

characteristic of bi-objective optimization problems. The distribution of objective function values 

remains within technically acceptable bounds, affirming the basic validity of the optimization process 

under this minimal configuration. However, the observed gaps and uneven density of solutions 

emphasize the sensitivity of the algorithm’s performance to hyperparameter selection—particularly 

the role of mutation rate and computational budget in achieving adequate search space coverage. 

 

Figure 1. Solution space and Pareto front for Scenario 1 (50 max generations, 100 population size and 0.1 

mutation rate). 

Scenario 2 investigates the effect of reducing the mutation rate from 0.10 to 0.04, while keeping 

the population size and number of generations constant at 100 and 50, respectively. This lower 

mutation rate constrains the magnitude of variation introduced between generations, resulting in 

smaller incremental changes within the design variable space. While such fine-tuning is generally 

conducive to improved accuracy, it also slows the algorithm’s capacity to explore the solution space 

effectively. The resulting diagram (Figure 2) bears superficial resemblance to that of Scenario 1; 

however, a more detailed examination reveals a more jagged and fragmented Pareto front, along with 

a sparser distribution of solutions across the objective space. These patterns point to diminished 

search space coverage and reduced convergence performance under the current computational 

constraints. Importantly, the observed limitations are not solely attributable to the lower mutation 

rate. Rather, the effectiveness of a reduced mutation rate typically relies on extended search efforts—

namely, an increased number of generations and/or larger population sizes—to counterbalance the 

slower evolutionary dynamics. In this configuration, the restricted number of generations impeded 

the algorithm’s ability to fully leverage the benefits of a more conservative mutation strategy. 

Consequently, Scenario 2 illustrates the inherent tradeoff between search precision and convergence 

rate when calibrating mutation-related hyperparameters. 
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Figure 2. Solution space and Pareto front for Scenario 2 (50 Max Generations, 100 population size and 0.04 

mutation rate). 

Scenario 3 isolates the influence of population size by increasing it from 100 to 200, while holding 

both the number of generations (50) and the mutation rate (0.04) constant—identical to the 

configuration used in Scenario 2. This modification aims to assess how a larger population affects 

solution diversity, convergence behavior, and the overall quality of the Pareto front. As illustrated in 

Figure 3, expanding the population size markedly improves the resolution and uniformity of the 

search space. The resulting Pareto front is smoother, more densely populated, and exhibits fewer 

discontinuities compared to Scenario 2. The tradeoff surface between thermal energy demand and 

construction material cost appears more continuous, reflecting improved exploration and 

convergence characteristics. These enhancements align with theoretical expectations: a larger 

population enables broader sampling of the design space within each generation, increasing the 

likelihood of identifying non-dominated solutions and reducing the risk of premature convergence. 

The comparative findings underscore that population size plays a critical role in enhancing both the 

diversity and robustness of the optimization outcomes—particularly under conditions of low 

mutation rate and limited generational depth. 
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Figure 3. Solution space and Pareto front for Scenario 3 (50 max generations, 200 population size and 0.04 

mutation rate). 

Scenario 4 represents the highest-resolution configuration explored in this study, combining an 

expanded population size (200) with an increased number of generations (100) and a low mutation 

rate (0.04). This setup was designed to maximize both the breadth and depth of the evolutionary 

search, thereby improving the algorithm’s ability to identify high-quality Pareto-optimal solutions. 

While this configuration entails a higher computational cost, it provides greater opportunities for 

both exploration of the design space and refinement of convergence behavior. As shown in Figure 4, 

the resulting Pareto front exhibits the highest level of continuity and density among all tested 

scenarios. The solution space is thoroughly covered, with minimal discontinuities and a well-

distributed set of non-dominated solutions. The tradeoff curve maintains a generally concave 

(hyperbolic) shape, although minor irregularities persist, consistent with those observed in previous 

scenarios. These deviations may be attributed to two factors. First, the discretization of design 

variables—stemming from the use of a finite set of material options—can inherently limit the 

smoothness of the Pareto front. Second, even with extended evolutionary cycles, low mutation rates 

may constrain the algorithm’s ability to traverse sparsely populated regions of the solution space, 

particularly when separated by large performance gaps. Nevertheless, the consistency of these 

anomalies across all scenarios suggests they are not artifacts of algorithmic failure but rather intrinsic 

features of the optimization landscape defined by the problem’s structure and variable granularity. 
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Figure 4. Solution space and Pareto front for Scenario 4 (100 max generations, 200 population size and 0.04 

mutation rate). 

A defining feature of multi-objective optimization is the existence of tradeoffs between 

conflicting objectives. In this study, the dual goals of minimizing annual thermal energy demand and 

construction material cost illustrate this tension. These objectives are inherently at odds—reducing 

energy demand often requires higher-performance (and therefore costlier) materials, while 

minimizing cost may compromise thermal efficiency. The optimization process yields a Pareto front, 

which represents the set of non-dominated solutions. Each point on this front offers a unique 

compromise between the two objectives, and any solution not on the front is suboptimal, being 

outperformed in at least one criterion by a Pareto-optimal alternative. 

Navigating the Pareto front empowers decision-makers—whether architects, engineers, or 

investors—to select solutions that align with project-specific priorities, such as budget constraints or 

sustainability goals. Moving along the front quantifies the tradeoffs: for instance, a shift toward lower 

thermal demand typically incurs increased material cost, and vice versa. While no single solution on 

the Pareto front is universally optimal, the concept of a utopia point—a theoretical minimum for both 

objectives—can serve as a reference. Selecting the Pareto solution nearest to this point (e.g., using 

Euclidean distance) provides a structured approach for identifying balanced tradeoffs when 

simultaneous minimization of both objectives is unattainable. Overall, the Pareto front acts as a robust 

decision-support mechanism, facilitating transparent, data-driven evaluation of alternatives. The 

algorithmic framework presented—reinforced by sensitivity analysis across multiple 

hyperparameter configurations—demonstrates both its effectiveness and adaptability for 

performance-based building design under competing objectives. 

5. Concluding Remarks and Future Directions 

The present study investigated the implementation of a simulation-based multi-objective 

optimization framework aimed at enhancing the energy and economic performance of residential 

buildings, using a single-family dwelling in Patras, Greece, as a case study. The methodology 

integrated a physics-based simulation model with a MOGA executed in MATLAB and coupled with 

a modular Excel interface to enable flexible scenario definition and input management. The 
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optimization targeted two inherently conflicting objectives: minimizing annual thermal energy 

demand and reducing construction material costs. 

A parametric evaluation of key algorithmic hyperparameters—population size, mutation rate, 

and maximum number of generations—was conducted across four distinct optimization scenarios. 

The findings revealed that the algorithm’s performance and the quality of the resulting Pareto fronts 

are highly dependent on the hyperparameter configurations. Larger population sizes and more 

generations contributed to a more continuous and densely populated Pareto front, enhancing the 

exploration of the solution space. Conversely, lower mutation rates yielded finer local search 

resolution but required sufficient iterations to prevent premature convergence or limited search 

coverage. In contrast, configurations with reduced computational effort or higher mutation rates 

resulted in irregular and less comprehensive solution sets, underscoring the critical tradeoffs between 

computational efficiency and optimization fidelity. 

The proposed framework demonstrated robustness in generating technically viable and diverse 

non-dominated solutions, facilitating informed, performance-driven decision-making during early-

stage building design. Furthermore, the integration of a modular Excel-MATLAB interface provides 

a scalable and user-adaptable platform that accommodates variations in climatic conditions, design 

parameters, and material databases, thereby broadening its applicability across different residential 

contexts and geographical regions. 

The present research contributes to the advancement of simulation-based optimization 

methodologies by providing a reproducible, adaptable, and practical tool for multi-objective building 

performance assessment. Future extensions may include incorporating additional objectives, such as 

life cycle environmental impacts or occupant thermal comfort indices, integrating real-time 

operational data, or coupling with machine learning algorithms to further improve prediction 

accuracy and adaptive control capabilities. 
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BPS: Building Performance Simulation 
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ML: Machine Learning 

MOGA: Multi Objective Genetic Algorithm 
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