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Abstract: The rising demand for long-range, low-power wireless communication in applications such
as monitoring, smart metering, and wide-area sensor networks have emphasized the critical need for
efficient spectrum utilization in LoRaWAN (Long Range Wide Area Network). In response to this
challenge, this paper proposes a novel channel selection framework based on Hierarchical Discrete
Pursuit Learning Automata (HDPA), aimed at enhancing the adaptability and reliability of
LoRaWAN operations in dynamic and interference-prone environments. The HDPA framework
capitalizes on the adaptive decision-making capabilities of Learning Automata (LA) to monitor and
predict channel conditions in real time, enabling intelligent and sequential channel selection that
maximizes transmission performance while reducing packet loss and co-channel interference. By
integrating a hierarchical structure and discrete pursuit learning strategy, the proposed model
achieves improved learning speed and accuracy in identifying optimal transmission channels from
diverse frequency options. The methodology includes a detailed theoretical formulation of the HDPA
algorithm and extensive simulations to evaluate its performance. Results demonstrate that HDPA
outperforms Hierarchical Continuous Pursuit Automata (HCPA), particularly in convergence speed
and selection accuracy.

Keywords: channel selection; pursuit; learning automata; estimator based — LA; LoRaWAN; HCPA;
HDPA

I. Introduction

The proliferation of the Internet of Things (IoT) and the associated demand for ubiquitous, low-
power, and long-range wireless communication has propelled the development and adoption of
Long Range Wide Area Network (LoORaWAN) systems [1]. LoRaWAN offers a compelling framework
for IoT applications due to its ability to provide wide-area coverage with minimal energy
consumption [2]. However, as deployments expand, especially in urban and industrial environments
with increasing device densities, maintaining high network performance becomes a significant
challenge [3]. The core difficulty lies in effective radio channel selection amid dynamic, congested,
and interference-prone environments.

Traditional channel access methods in LoRaWAN, such as pseudo-random channel hopping,
distribute transmissions uniformly across available channels to minimize interference. While
effective in static or low-density scenarios, these methods fail to adapt dynamically to real-time
channel conditions and noise variations, leading to packet collisions, transmission failures, and
decreased throughput [4]. This necessitates the exploration of intelligent, adaptive strategies for
channel selection that can learn and evolve with changing network conditions.

To address this, our research introduces a Learning Automata (LA)-based solution, specifically
the Hierarchical Discrete Pursuit Learning Automata (HDPA), as an optimal channel selection
mechanism for LoORaWAN. Learning Automata, a class of reinforcement learning algorithms, operate
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by interacting with a stochastic environment to identify the best actions through trial-and-error
processes based on rewards and penalties [5]. The HDPA model extends traditional LA by employing
a hierarchical structure that allows for faster and more accurate convergence to the optimal channel,
especially in multi-step, dynamic environments like LoRaWAN.

This study proposes the integration of HDPA into LoRaWAN as a predictive, self-adapting
algorithm capable of identifying the most reliable communication channels based on ongoing
transmission success rates. Unlike static models, HDPA continually updates its selection probabilities
using environmental feedback, optimizing network performance through a structured decision-
making framework. The learning mechanism evaluates multiple channels in parallel, dynamically
adapting to network behavior and reducing the impact of interference, collisions, and congestion [6].

The objectives of this research are multifaceted: to critically review existing channel selection
techniques in LoRaWAN and their limitations; to design and implement the HDPA model for
LoRaWAN environments; and to evaluate the model’s performance against existing solutions such
as Hierarchical Continuous Pursuit Automata (HCPA) through rigorous simulations [7]. We
hypothesize that HDPA will demonstrate superior performance in terms of throughput, convergence
speed, and decision-making accuracy.

The proposed methodology combines theoretical modeling, algorithmic design, and simulation-
based validation using MATLAB. The simulations are configured with realistic network scenarios,
channel characteristics, and iterative experiments to assess metrics like accuracy, standard deviation,
and convergence time.

Preliminary results affirm that HDPA significantly outperforms HCPA, especially under high-
density and variable channel conditions. With a mean convergence iteration of approximately 6279.64
and an accuracy of 98.78%, HDPA proves to be a highly effective algorithm for channel classification
and selection in LoRaWAN.

The remainder of this paper is organized as follows. Section 2 provides a detailed summary of
the related work. Section 3 describes and analyzes the system model along with the channel selection
problems. In Section 4, we introduce the Learning automata-based LoRaWAN channel access
scheme. Section 5 presents extensive simulation results that demonstrate the advantages of using
HDPA for channel selection. Finally, Section 6 concludes the paper.

I1. Related Work

Several studies have investigated the optimization of LoRaWAN-based IoT networks using
machine learning and analytical approaches. In [8], the authors investigated SF prediction using
supervised ML algorithms in a mobile LoRaWAN environment. They evaluated various classifiers,
including k-Nearest Neighbors, Decision Trees, Random Forests, and Multinomial Logistic
Regression using manually selected features such as RSSI and SNR, antenna height, distance to the
gateway, and frequency. The study identified RSSI and SNR as the most significant predictors,
achieving around 65% accuracy. However, the model was limited by manual feature selection and a
constrained urban dataset. In the context of large-scale smart city deployments [9] employed ML
models to predict Estimated Signal Power (ESP) using data collected from over 30,000 smart water
meters across Cyprus. Decision Trees and XGBoost classifiers were used to forecast ESP based on
environmental and topographical features, to improve network planning and deployment efficiency.
Although the models showed high predictive performance, the focus on ESP alone limits broader
insights into other critical metrics like packet delivery ratio and throughput.

Addressing coexistence challenges in Low-power wide-area networks (LPWANSs), [10]
proposed an analytical interference model between LoRaWAN and Sigfox networks. The model
accounted for parameters such as duty cycle and node density and was validated using SEAMCAT
simulations. The concept of “protection distance” was introduced to minimize mutual interference.
Despite its theoretical contributions, the model assumed uniform node distribution and ignored
dynamic network characteristics such as adaptive SF.
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To improve transmission efficiency and data rates [11] developed a resource allocation
algorithm (LRA) for LoRa devices equipped with dual transceivers. The algorithm leveraged the
quasi-orthogonality of different SFs to concurrently transmit data, effectively increasing the channel
capacity. Evaluations showed significant improvements in transmission time and bit rate,
particularly for large data transfers like image transmissions.

Reinforcement Learning has also been explored for decentralized channel selection in dense
LoRaWAN environments [12] implemented a lightweight multi-armed bandit (MAB) algorithm
based on Tug-of-War (ToW) dynamics on actual LoRa hardware. Their approach demonstrated
superior convergence and channel allocation performance compared to traditional RL strategies like
UBC1+Tuned and e-greedy. However, the evaluation was limited to a small-scale indoor setup with
restricted channel diversity. A subsequent study by the same authors [13] tested the MAB-based
strategy in urban outdoors environments using Lazurite 920] devices. This follow—up algorithm’s
compatibility with coexisting LPWANSs like Sigfox. In more complex cognitive radio-based IloT
applications, [14] introduced a dual Q- learning framework for proactive spectrum handoff. By jointly
estimating channel availability and RSSI trends, the algorithm minimized latency and improved
throughput in dynamic wireless environments. At the MAC layer, slotted Aloha has been proposed
as a potential enhancement over pure Aloha in LoRaWAN. [15] used simulations to evaluate the
performance of slotted Aloha under different traffic conditions, reporting up to 67% improvement in
reducing collisions. Another work presented a Markov-based model to determine the optimal
retransmission probability, balancing throughput and delay.

In [16]. The authors develop a comprehensive mathematical model to evaluate the throughput
capacity of a LoORaWAN communication channel. The model accounts for key parameters such as
Spreading Factor (SF), duty cycle, payload size, and message structure, offering quantitative insights
into how these variables affect performance. The study further explores throughput under different
regional duty cycle regulations (0.1%, 1%, and 10%), providing valuable guidance for regulatory
compliance and deployment planning. It analyzes the trade-offs between message repetitions and
range, showing that a reduction in repetitions with higher SF can lead to a 28% increase in
throughput.

To address collision management in dense networks, [17] introduces CANL, an open-loop
collision avoidance protocol that leverages neighbor listening instead of relying on the unreliable
Channel Activity Detection (CAD) mechanism. CANL significantly enhances the packet delivery
ratio (PDR) and energy efficiency in dense deployments. The authors also propose CANL RTS, a
variant that overcomes hardware limitations by employing a short request-to-send (RTS) frame.
Extensive simulation results using an enhanced LoRaSim tool demonstrate CANL’s superiority over
traditional ALOHA and CAD+Backoff schemes.

II1. Methods

This section outlines the research methodology adopted for the study. A scientific approach
forms the foundation of the work, with a strong emphasis on quantitative methods to support
experimental analysis. The chosen methods ensure a systematic and objective investigation of the
research objectives.

A. System model
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Figure 1. Proposed LoRa Network Model This model consists of several key components that work together to

optimize data transmission through learning and feedback mechanisms.

The node is an end device equipped with a radio transmitter that sends data packets. The
decision maker represented by the robot implements the Hierarchical Discrete Pursuit Learning
Automata (HDPA) algorithms. Its role is to select the optimal radio channel for data transmission
based on past transmission success rate feedback from the gateway. The decision maker updates the
probability distribution of channel selection using the number of times it received a reward over the
number of times it was selected.

The feedback loop represents the action taken by the decision maker regarding which channel
to use for the next data transmission. Beta represents the feedback received from the gateway. If the
transmission is successful, the decision maker receives positive feedback reinforcing the chosen
channel. If unsuccessful, the decision maker receives negative feedback, decreasing the likelihood of
selecting that channel again.

B. Proposed algorithm flowchart
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Initial transmission
set uniformly

Select channel following
the rules of
the algfrithm

Time |_|
t+1

Send data to the
gateway
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Figure 2. Simulation flow chart.

In terms of process flow, the node transmits data to the gateway using a channel selected by the
decision-maker. The gateway provides feedback on the transmission’s success. Positive feedback
increases the probability of selecting a successful channel in the future, while negative feedback
decreases the probability of encouraging the decision maker to explore other channels. The decision
maker then continuously updates its channel selection probabilities based on the feedback, adapting
to the dynamic network environment to optimize data transmission reliability.

C. Mathematical development

Algorithm t=0

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Loop

1. Depths from 0 to K-1:

A1 selects a channel by randomly sampling as per its channel probability vector

[pau(t), pua(t)]. We denote ji(t) as the chosen channel at depth 0 with ji(t)e{1,2}.

A, ji(n), chooses a channel and activates the next LA at depth «2».

The process continues until K-1, which is the level that chooses the channel.

2. Depth K:

< The index of the channel chosen at depth K is denoted
jr(t) e {1, ... 2K}

< Update the estimated chance of reward based on the response received from the environment
at leaf depth K:

wlK JR(O)(E +1) = wlK JKONO) + (1 - B(E)

VK, Jk(0)}(t + 1) = v{K,Jk(D)}(t) + 1

Uik ey (¢ +1)

Gucpeen(t +1) = Vi e (¢ + 1),

For the other channel at the leaf, where je{l,...,2K} and
Jj# jk(@®):
V{K,]}(t + 1) = U{K'/}(t)

u{K'”(t+1)
VK] (t+1)

3. Define the reward estimate recursively for all subsequent channels along the path to the root,
k €10, .. K -1}, where A at any one level inherits the feedback from the A at the level below:

a{k,j}(t) = max (a{k+1,2j—1}(t)' Cz{k+1,2j}(t))

4.  Update the channel probability vectors along the path to the leaf with the current maximum
reward estimate:

EachA je{l,..., 2% atdepthk where ke{0,..., K -1} hastwochannels «a{k+1,2j-1}and «

{k+1,2j}. .

We denote the larger element between Aier1,2j-13() and

diies1 23 35 Jir1 (12 = 1.2/} and the lower reward estimate as Jt+1(®) = {2 = 1,273\ jfa (©),

< Update P{k+1 ,jkh+1(t)} and P{k+1']’rcl+1(t)} using the estimate Aiger1,2j-13(8) ang dgrer1,2j3 ()
for all
ke{0,...,K-1}as: If B(t) =0 Then
P{k+1 jkh+1(t)}(t + 1) = min (P{k+1 ,jkh+1()}(t) + A, 1),

Plk+1 JR(®Nt +1) =1 - P{k+1 jkh+1()}(t + 1),

k+1
Else
P[k+1‘lg+1(f)}(t t1)= P{k+1'1£‘+1(t)}(t),
Ples o)t D =Phy i),
End if

5. For each Learning Automata, if either of its channel selection probabilities surpasses a threshold
T, with T being a positive number close to unity, the channel probability will stop updating,
meaning the convergence is achieved.

6. t=t+1

End Loop
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D. Software environment

MATLARB is chosen for its robust capabilities and extensive support for simulations involving
complex algorithms and network models.

E. System simulation

This process combines theoretical modeling with practical experiments to validate the
hypothesis that HDPA can enhance the efficiency and reliability of channel selection in LoRaWAN
networks.

The simulation setup begins with the configuration of the node to transmit data packets. This
node represents an end device in the LoORaWAN network, equipped with a radio transmitter. The
node interacts with the gateway, responsible for receiving the transmitted data. The gateway acts as
an intermediary, forwarding the data to a server network for processing and storage.

At the heart of the simulation is the decision maker, which implements the HDPA algorithm.
The decision maker selects the optimal radio channel for data transmission based on the feedback
from the previous transmissions. This feedback involves the gateway providing success or failure
notifications for each transmission, which the decision maker uses to update its channel selection
probabilities.

The simulation is conducted in a MATLAB software environment, chosen for its robust
capabilities in handling complex algorithms, providing a platform for running extensive simulations
to assess performance under various conditions. The simulation parameters include the node, the
channel available the successful data transmission.

Throughout the simulation, key performance metrics are monitored. Including accuracy, the
overall network throughput, Std, and speed. By analyzing these metrics, the effectiveness of the
HDPA can be evaluated.

F. Simulation Variable

Variable Symbol Description

Numb f
umber © N Total number of available channels in the network.
channels
Initial channel P(0) Initial probability vector for channel selection, P(0) =[p1, p2,
probability .., pN]
Reward R Reward metric for successful transmission on a channel, such
wa as PDR, SNR.
Learning Rate ) Step size for probability updates.
Hierarchical levels L Number of levels in the HDPA hierarchy.
Convergence B The threshold for convergence, indicating when the algorithm
threshold has likely found the optimal channel.
Maximum . . . . .
) . T Maximum number of iterations for the simulation.
iteration
Acti lecti
ction > ection Pi Probability of selecting channels at iteration.
probability
Reward estimate di Estimate of the reward for channel i.
Channel State S The state of each channel is either idle or busy.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0829.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2025 d0i:10.20944/preprints202506.0829.v1

7 of 11

This section has detailed the methodological framework used to assess the HDPA algorithm for
channel selection in LoRaWAN. By combining theatrical modeling with simulation-based validation
and by outlining the system model and algorithmic structure, the study establishes a solid foundation
for evaluating HDPA'’s performance. The next section presents and analyzes the results obtained
through this methodology.

IV. Results and Discussion

This section presents the outcomes of employing Learning Automata into LoRaWAN,
highlighting the critical importance of efficient channel selection for network performance, aiming to
test the effectiveness of HDPA. We present a comprehensive result from the simulation that was
conducted and discuss the implications of these findings. This analysis not only highlights the
strengths of HDPA but also compares it with HCPA.

i=1 X
1)
Where Xi is the number of iterations in the i-th trial. n: the total number of iterations.
™, (X, — Mean)®
n (2)

Mean =

Variance =

Standard deviation = VVariance (3)

The performance of HDPA is demonstrated here using the formula above and carrying out the
simulation results to ensure the effectiveness of our simulations; we set our number of iterations to
be 9000 and 10,000, using 200 experiments, expecting that the HDPA with the highest successful
transmission probability would converge faster and select the best channel.

Table 1. List of successful data transmission probabilities for 8 channels.

A1 Az As Aq As As A7 As
0.199 | 0.282 | 0.394 | 0.499 | 0.681 | 0.698 | 0.971 | 0.999

The simulation was done for the environment with 8 channels on a benchmark successful
transmission probabilities list in Figure 3, showing the probability of the actions with successful
transmission, meaning the action with § = 0 which is a reward from the environment.

HE
= 3
=

=~
b

o

o3
=5
Lk

Figure 3. Reward probabilities for 8 channels.

Our simulation shows that the HDPA with a small Learning parameter can converge to the
optimal channel with highly successful data transmission, and a higher learning parameter leads to
fast convergence to the optimal channel, however, when we set the Learning parameter higher than
0.00087 the algorithm did not converge to the best channel with successful transmission probability.
Therefore, to find the optimal channel with a higher speed of convergence, we decreased the Learning
parameter step by step until we achieved 98.78% accuracy. From this value, the algorithm converged
to the optimal channel, but took all the iterations that were set. The Mean value to converge to the
optimal channel for the 200 experiments with the convergence criterion of 0.99 was 6,279.64,
confirming that the HDPA has achieved a 0.99 probability of choosing one of the channels with a std
of 131.36% on the benchmark probabilities.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 2. Result of our simulations for 8 channels.

Parameter HDPA ‘
Mean 6,279.64
Std 131.36
Accuracy 98.78%
Learning parameter 8.7e

The throughput curve presented in Figure 4 demonstrates the learning behavior of the HDPA
algorithm over successive iterations. Initially, the throughput increases sharply, indicating that the
algorithm is rapidly acquiring knowledge about the environment and selecting efficient channels.
The early phase reflects the exploratory strength of HDPA in adapting to dynamic conditions. As
iterations progress, the throughput gradually levels off and stabilizes around 450 bps, signifying
convergence to a set of optimal channels. This steady-state performance suggests that HDPA has
effectively learned the optimal channel strategy, resulting in sustained high throughput. The graph
validates the effectiveness of the proposed approach in optimizing network performance through
fast adaptation and robust learning in a fluctuating communication environment.

Thi hi
" ot e
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‘mm"’"”‘“/’/ .
400 r
3s0 |l
|

2 300 |f
a
H
2250
=]
g
£ 200

150

100

S0

5 ) i ; '
0 1000 2000 3000 4000 5000 6000 7000 B00O 9000 10000

Iteration
Figure 4. Throughput.

Figure 5 illustrates the process of selecting the most optimal channel from a set of eight available
channels. Initially, all channels are explored for communication, with one channel demonstrating a
consistently higher probability of successful message transmission, while others perform with
comparatively lower success rates. At the beginning of the simulation, there is no prior knowledge
regarding which channel is optimal. The Learning Automata mechanism enables the system to
gradually converge toward the most effective channel, thereby maximizing throughput. Over time,
channels 2 and 7 are identified by the HDPA as the best and second best channels, respectively.
Around iteration 3000, channel 7 temporarily outperforms channel 2. However, due to the stochastic
nature of the learning and decision-making process, channel 2 is ultimately selected as the optimal
channel, highlighting the HDPA’s capability to balance exploration and exploitation, ensuring
adaptability while optimizing long-term performance.
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Table 3. Comparison between HDPA and HCPA.

Mean 6,279.64 6,778.34

STD 131.36 117.12

Accuracy 98.78% 93.89%
Learning parameter 8.7e-4 6.9e—4

The comparative analysis between HDPA and HCPA, as illustrated in the graph and table,
reveals key performance differences. When the convergence criterion was set to 0.9, HCPA
outperformed HDPA by converging in approximately 3,500 iterations, compared to over 4,500 for
HDPA across 200 experiments. However, as the convergence threshold increased toward 0.99, our
target for successful data transmission, HDPA, began to outperform HCPA. For instance, at a
convergence level of 0.97, HDPA converged in around 8,000 iterations, while HCPA required about
9,000.

The optimal learning rates identified were 0.00087 for HDPA and 0.00069 for HCPA. In terms of
mean iterations to converge, HDPA averaged 6,279.64 with a higher standard deviation, indicating
greater variability, whereas HCPA averaged 6,778.34 with a lower standard deviation of 117.12.
Importantly, HDPA achieved higher accuracy, close to 99%, making it more effective for precise
channel selection in LoRaWAN compared to HCPA.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0829.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2025 d0i:10.20944/preprints202506.0829.v1

10 of 11

V. Conclusion, and Future Work

A.  Conclusion

This study has evaluated the performance of the Hierarchical Discrete Pursuit Learning
Automata (HDPA) for channel selection in LoRaWAN networks. By addressing the challenges posed
by dynamic and unpredictable radio environments, HDPA demonstrated superior performance
compared to the Hierarchical Continuous Pursuit Learning Automata (HCPA), particularly in terms
of convergence speed and selection accuracy.

Simulation results confirm that HDPA effectively adapts to changing conditions, ensuring high
throughput and reliable communication. Its ability to dynamically optimize channel selection makes
it a promising approach for minimizing transmission failures and interference in large-scale IoT
deployments. These findings underscore the potential of integrating learning automata-based
strategies into LoRaWAN to enhance network efficiency and scalability.

B.  Future works

The successful integration of HDPA in this study opens an avenue for future research. One
potential area is expanding the scope of Learning Automata to manage interference in densely
populated IoT networks represents a critical research frontier. Future studies could also focus on real-
world trials to better understand the practical challenges and opportunities of implementing these
algorithms in diverse environments.
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