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Abstract

Accurate household electricity load forecasting is becoming increasingly vital with the continued
growth of smart grids, household renewable energy systems, and smart meter deployment. Unlike
regional or grid load forecasting, household-level forecasting presents unique challenges due to
highly irregular consumption patterns, data scarcity, privacy concerns, and behavioral variability. In
recent years, artificial intelligence (AI) methods have demonstrated strong potential to address these
complexities, enabling more accurate, robust, and adaptive forecasting systems. This survey presents
a comprehensive and up-to-date review, with a focus on Al-based techniques specifically tailored
to household-level forecasting. A key contribution of this work is the development of a challenge-
centered taxonomy that categorizes methods based on four critical problem domains: methodological
limitations, data-related constraints, behavioral complexity, and privacy and security concerns. By
aligning representative Al approaches with these core challenges, the survey offers a structured and
insightful understanding of the current research landscape. It also provides a comparative analysis
with prior surveys, identifies gaps in the literature, and highlights promising research directions,
including multimodal learning, adaptive modeling, integration of large language models, and privacy-
preserving forecasting. This work could serve as a valuable resource for researchers and practitioners
aiming to advance intelligent and trustworthy forecasting solutions in household energy systems.

Keywords: household load forecasting; load forecasting; artificial intelligence; deep learning

1. Introduction
1.1. Background and Motivation

The transition toward smart grids, the integration of distributed renewable energy sources, and the
widespread adoption of smart meters have significantly increased the demand for accurate household
electricity load forecasting [1]. Although research has been conducted on regional or system-level load
prediction, forecasting at the individual household level presents distinct and persistent challenges.
Household electricity consumption is primarily influenced by human behavior, which introduces a
high degree of irregularity and unpredictability into usage patterns [2]. Unlike system-level forecasts,
where consumption trends often align with macro-level factors such as temperature or time-of-day;,
household profiles are shaped by individual routines, lifestyle choices, and appliance-level activity [3].
These behavioral complexities are further exacerbated by practical limitations in data availability [4].
In many regions, smart meter deployment remains incomplete, and even where such infrastructure
exists, access to high-resolution data is constrained by privacy regulations. Legal frameworks such
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as the General Data Protection Requlation' in the European Union and the Consumer Data Right’ in
Australia impose strict controls on the collection, use, and sharing of energy consumption data.
Consequently, household-level forecasting models generally suffer from conditions of data sparsity,
noise, and limited contextual information [5]. Traditional statistical forecasting methods, which
typically rely on assumptions of linearity and stationarity, struggle to capture the dynamic, nonlinear,
and context-dependent nature of household electricity consumption.

Despite these challenges, accurate household load forecasting is increasingly critical for a range of
applications in modern energy systems [6]. In household settings with solar photovoltaic systems and
battery storage, reliable forecasts support the optimization of storage operations and the maximization
of self-consumption. Load forecasting also enables households to reduce demand charges through
strategic peak shaving, helping to minimize costs without compromising occupant comfort [7]. Addi-
tionally, precise load predictions play a key role in the implementation of dynamic pricing schemes
and demand response programs, providing financial incentives for consumers while enhancing the
operational efficiency of the grid [8].

In response to these growing demands, Artificial Intelligence (AI) methods have gained significant
traction in household load forecasting [5,9]. Deep learning architectures such as Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs), and Transformers have demonstrated
strong capabilities in capturing long- and short-term temporal dependencies, extracting latent features,
and accommodating diverse and multimodal inputs [10,11]. Graph Neural Networks (GNNs) have ex-
panded the modeling capabilities by incorporating spatial and relational information across households
and devices [12,13]. Reinforcement Learning frameworks offer dynamic, feedback-driven adaptation
to evolving energy behaviors [14], while Transfer Learning and few-shot learning approaches facilitate
model generalization in data-scarce environments [15,16]. Collectively, these methods represent a shift
toward Al-native solutions that aim to provide robust, scalable, and personalized forecasting for the
household sector.

As the field of household load forecasting continues to evolve rapidly, there is a growing need to
synthesize the expanding body of research, clarify the contributions of recent studies, and critically
examine methodological advances within a structured analytical framework. Although several surveys
on load forecasting have emerged in recent years, few offer a systematic and focused analysis of Al-
driven techniques tailored specifically to the household level [2,17]. This survey addresses that gap
by presenting a comprehensive, challenge-oriented review of recent developments in household load
forecasting. The literature is organized around the key challenges facing the field, with an emphasis
on how various Al methods are employed to address specific forecasting limitations. By adopting this
structure, the survey aims to provide critical insights into current trends, highlight unresolved issues,
and identify future research directions in this increasingly vital area of smart energy systems.

1.2. Comparison with Related Surveys

Table 1 presents a comparative analysis of related surveys [1,2,5,9,17] alongside this work. The
comparison highlights the scope, limitations, and thematic coverage of each study in relation to the core
challenges addressed in this review. Most existing surveys focus primarily on studies involving RNNs
and CNNs, often neglecting recent advances in cutting-edge Al techniques and lacking a structured,
challenge-oriented synthesis. As summarized in Table 1, few surveys provide a comprehensive cover-
age of the four key challenge categories in household load forecasting: (1) methodological limitations
of traditional models, (2) data-related issues, (3) complexity of consumption patterns, and (4) privacy
and security concerns. Moreover, many of these surveys fail to study emerging model architectures and
novel learning paradigms that are increasingly relevant to addressing these challenges. In contrast, this
survey explicitly structures the discussion around these four interconnected challenges and systemati-
cally maps state-of-the-art Al techniques, such as GNN, Transformer, Transfer Learning, Reinforcement
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Learning, generative models, and Federated Learning, onto their corresponding problem domains.
Notably, recent developments in Large Language Models (LLMs), intelligent agents, few-shot learning,
and privacy-preserving Al are covered in this work but absent from prior reviews.

Table 1. Comparison between this work and existing surveys on household load forecasting, including RA [9], RB
[5], RC [17], RD [1], and RE [2].

Related Surveys
RB RC RD RE

Comparison Dimensions Ours

—+
-t
—+

Limitations of Traditional Forecasting Methods

RNN
CNN
GNN
Transformer

Al Model Architectures

Transfer Learning
E le L i
Al Learning Paradigms n.semb e Learning .
Reinforcement Learning
LLM & Agent

Data-Related Limitations: Scarcity, Quality, Granularity

RNN
Al Model Architectures  Generative Al
Autoencoder

Transfer L i
Al Learning Paradigms ranster earnlr‘lg
Few-Shot Learning

Consumption Pattern Complexity

RNN
GNN
Transformer

Al Model Architectures

Ensemble Learning
Al Learning Paradigms ~ Uncertainty-Aware Forecasting
Behavior Pattern Recognition

Privacy & Security Concerns and Regulations

Federated Learning
DP-Enhanced Al

Al Learning Paradigms
Cryptography-Enhanced Al
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Note: v = studied, + = partially studied, X = not studied.

Personalized AI

To the best of our knowledge, there is no comprehensive survey that organizes Al-based house-
hold load forecasting techniques around the core methodological, data-related, behavioral, and pri-
vacy/security challenges that define this emerging research frontier. Overall, this survey features
itself by providing a comprehensive, challenge-centered taxonomy (shown in Figure 1) of Al-driven
household load forecasting methods. It not only bridges the thematic gaps in prior literature but also
offers a forward-looking perspective to guide future research and practical deployment of intelligent
household forecasting systems.
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Figure 1. A taxonomy of Al-driven household load forecasting methods structured by four major challenges
(shown in red). For each challenge, representative Al techniques (shown in green) are presented to their corre-
sponding problem contexts, illustrating the landscape of current solutions and their alignment with forecasting
needs.

1.3. Taxonomy and Main Contributions

This work aims to fill these gaps by presenting a comprehensive, challenge-oriented survey of
recent advances in Al-driven household load forecasting. As shown in Figure 1, a key contribution
of this work is the development of a structured taxonomy that organizes Al-driven household load
forecasting methods based on four major challenges: methodological limitations of traditional models,
data-related constraints, behavioral complexity in consumption patterns, and privacy and security
concerns. In contrast to previous surveys that typically categorize methods based on architectures such
as RNNs or CNNs, this taxonomy adopts a problem-centered perspective, aligning representative Al
techniques with the specific challenges they are designed to address. This approach enhances the clarity
of how advanced Al architectures and learning paradigms, including GNN, Transformer, Transfer
Learning, generative models, Few-shot Learning, LLM, intelligent agent, and privacy-preserving Al,
are applied in real-world forecasting contexts. By mapping techniques to challenges, the taxonomy
supports more systematic comparison, helps identify research gaps, and provides a foundation for
advancing the development of effective and practical forecasting solutions for individual households.

The main contributions of this work are summarized as follows:

* Itintroduces a well-designed, challenge-centered taxonomy that organizes Al-based forecasting
methods according to four major challenges in household load forecasting: methodological
limitations, data-related constraints, behavioral complexity, and privacy and security concerns.
This taxonomy offers a problem-driven perspective that enhances the interpretability and practical
relevance of existing methods.

* It provides a comprehensive and up-to-date review of Al-based household load forecasting
methods, covering a wide range of Al architectures and learning paradigms, including GNN,
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Transformer, generative Al, Transfer Learning, Reinforcement Learning, Few-shot Learning,
Federated Learning, privacy-preserving Al, LLM and intelligent agent.

e [t presents critical insights into current approaches within each challenge domain, thereby offering
practical guidance for researchers and practitioners in selecting suitable methods.

e It outlines several forward-looking research directions, including multimodal data integration,
behavior-aware and uncertainty-aware modeling, adaptive and continual learning, integration
of LLM, explainable Al, and real-time edge deployment. These directions may advance the
development of intelligent, secure, and user-centered forecasting systems for household energy
applications.

1.4. Outline

This survey is organized around four major challenges in household load forecasting. Section 2
discusses the methodological limitations of traditional forecasting approaches and presents related
Al-based solutions. Section 3 addresses data-related issues, including scarcity, noise, and low temporal
granularity, and reviews techniques like Transfer Learning, Few-Shot Learning, and generative models.
Section 4 explores the complexity of consumption patterns driven by human behavior, highlighting
methods that incorporate behavioral modeling, attention mechanisms, and hybrid architectures.
Section 5 focuses on privacy and security concerns and examines Federated Learning, differential
privacy, and cryptographic Al Section 6 outlines potential research opportunities and emerging
directions for advancing the field. Finally, Section 7 concludes the review with a synthesis of insights
and reflections on the path forward.

2. Challenge-I: Methodological Limitations

This section introduces the first major challenge in household load forecasting and reviews
corresponding Al-driven solutions. Specifically, Section 2.1 examines the methodological limitations of
traditional forecasting approaches. Section 2.2 reviews a diverse set of Al-based forecasting techniques,
with an emphasis on recent advances in model architectures and learning paradigms that improve
adaptability and predictive accuracy in complex household energy environments.

2.1. Limitations of Traditional Forecasting Methods

Household load forecasting refers to the task of predicting future electricity consumption for
individual residential users over a specified time horizon, using historical load data and potentially aux-
iliary information. Formally, given a sequence of past power consumption observations {x1,x2,...,x¢},
the goal is to estimate future consumption values {x;;1, X¢12, ..., X; 1k}, where k denotes the forecast-
ing horizon. Forecasts can be generated at varying temporal resolutions (e.g., hourly, daily) and for
different lead times (e.g., day-ahead, real-time). Unlike aggregated or regional forecasting, household-
level load forecasting presents unique challenges due to high volatility, low predictability, and strong
dependence on individual behaviors, occupancy patterns, appliance usage, and contextual factors
such as weather or holidays.

Traditional statistical methods have long served as foundational tools for load forecasting due
to their interpretability and low computational requirements. The most commonly adopted models
include Autoregressive Integrated Moving Average (ARIMA) [18], Seasonal ARIMA (SARIMA), and
their exogenous variants such as ARIMAX [19] and SARIMAX [20]. These models assume stationarity
and rely on linear correlations within the time series data, which make them suitable for capturing
periodic patterns and short-term trends under relatively stable conditions.

However, their effectiveness diminishes in the face of modern challenges in household energy
consumption, such as non-stationary behavior, irregular appliance usage, integration of rooftop solar
PV, and prosumers’ stochastic behaviors. Such variability, compounded by prosumer behaviors and
dynamic appliance usage, fundamentally violates the stationarity assumptions upon which tradi-
tional models are built [21]. In this context, ARIMA-based models exhibit poor adaptability and
limited generalizability. Empirical evidence further highlights these limitations. For instance, Chatu-
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anramtharnghaka et al. [22] demonstrate that SARIMAX performs well in controlled environments
for day-ahead forecasting. However, its performance deteriorates significantly during periods of
peak demand, which is problematic for applications requiring high-resolution accuracy. Manual
tuning of model parameters through grid search becomes computationally expensive and infeasible
at the household level. Furthermore, SARIMAX’s reliance on linear differencing and rigid seasonal
cycles prevents it from capturing irregular consumption patterns, such as ad hoc appliance activity or
bidirectional energy flows in prosumer scenarios. Comparative studies consistently show that ARIMA
and SARIMA underperform neural networks in sub-hourly household forecasting tasks, underscoring
their limited capacity to model nonlinear temporal dependencies [23].

Regression-based approaches, although computationally efficient and theoretically capable of
probabilistic output, also exhibit major drawbacks. For example, Gaussian Process Regression intro-
duces uncertainty quantification via kernel methods but suffers from high computational complexity,
rendering it impractical for real-time deployment on large-scale household datasets [24]. Moreover,
the linearity embedded in conventional regression models restricts their ability to capture hierarchical
or synergistic interactions. A typical example is the combined influence of ambient temperature
and humidity on cooling load, which linear models often misrepresent [22]. A further limitation
lies in the absence of inherent feature selection in traditional regression models [25]. Unlike modern
techniques such as minimum redundancy maximum relevance, which automatically identify salient
input variables, classical approaches rely on manual selection. This often leads to the inclusion of
irrelevant or redundant features, thereby degrading model performance in the presence of noise or
irregular behavior.

2.2. Al Solutions Addressing Methodological Limitations

Recent evidence suggests that Al-based approaches have demonstrated advantages over tradi-
tional methods in household load forecasting scenarios. This section presents a systematic review of
Al-based forecasting techniques developed to address the methodological limitations of traditional
models. It highlights recent advances in various Al model architectures and learning paradiagms, as
summarized in Table 2.

2.2.1. Recurrent Neural Networks (RNNs)

RNNS, particularly Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) variants,
have emerged as promising solutions for household load forecasting. Unlike ARIMA-based and
regression models, which rely on stationarity assumptions and linear relationships, RNNs are explicitly
designed to capture nonlinear and long-range temporal dependencies within sequential data [26].
RNNSs incorporate memory cells that capture both short- and long-range temporal relationships,
making them well-suited to handle the non-stationarity and dynamic variability inherent in household
electricity usage, as shown in Figure 2.

Y1 Y2 Yt
Hidden | || Hidden | | N Hidden
layers 1 layers 2 layers T
X1 X2 Xt
(a) RNN structure (b) LSTM model

Figure 2. (a) A general RNN structure for sequential modeling of household electricity consumption, where each
input x; represents the time-series data at time ¢, and y; is the corresponding forecast. The hidden layers may be
instantiated with LSTM units to capture temporal dependencies more effectively. (b) The architecture of a LSTM
unit, which can enhance the RNN by introducing memory cells C; and gating mechanisms (forget gate F;, input
gate I;, and output gate Oy) to effectively capture long-term temporal dependencies.
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Several studies have demonstrated the superior performance of RNN-based models in this
domain. [27] developed an LSTM-based model to improve short-term household load forecasting
accuracy. Their results highlight the advantage of RNNs in integrating exogenous variables and
modeling context-sensitive patterns, which traditional models struggle to represent. [28] also demon-
strated that LSTM networks significantly outperform ARIMA models in terms of forecasting accuracy,
particularly in households with high consumption variability. Several studies have proposed archi-
tectural enhancements to further improve RNN performance. [29] fused LSTM with a self-attention
mechanism and pooling layers, enabling the model to better identify salient temporal features and
adapt to fluctuations in load profiles. Similarly, [30] introduced an interpretable LSTM model based on
a mixture attention mechanism, which enhances forecasting transparency while maintaining strong
predictive performance.

To address multi-step forecasting and sequence dependencies, [31] applied a Seq2Seq LSTM
model combined with time-series clustering, effectively modeling long-term dependencies in single-
household scenarios. [32] compared BiLSTM and CNN-BiLSTM architectures, demonstrating that
bidirectional information flow and convolutional feature extraction improve short-term load prediction
under variable temporal conditions. [33] extended the utility of BILSTM networks by incorporating
time-based embeddings, capturing periodic patterns and enhancing the model’s ability to learn
temporal hierarchies from sparse and irregular consumption data.

Summary. RNN-based models offer significant advantages over traditional forecasting methods
by addressing key limitations in temporal modeling, predictive flexibility, and context-awareness.
Their effectiveness stems from the following capabilities:

¢  Nonlinear sequence modeling: Enabling the learning of complex temporal dependencies.

*  Multi-step forecasting: Supporting long-range and rolling predictions with improved accuracy.

¢  Context integration: Incorporating exogenous variables such as weather and occupancy in a
flexible manner.

These capabilities make RNN-based architectures a robust choice for accurate and scalable household
load forecasting in dynamic energy environments.

2.2.2. Graph Neural Networks (GNNs)

Traditional forecasting methods, including ARIMA and regression models, operate under the
assumption of temporal independence across households and often neglect the spatial or relational
dependencies that exist in real-world residential environments. In practice, however, the electricity
consumption of individual households is not isolated. It is influenced by spatially correlated factors
such as neighborhood demographics, urban density, and shared infrastructure. These interdepen-
dencies can propagate across the residential network, affecting consumption patterns and forecasting
accuracy. To address this limitation, GNN-based methods have been studied as an effective solution
that explicitly models spatial-temporal relationships. GNNs represent household load forecasting
problems as graphs, where nodes correspond to individual households and edges encode spatial,
temporal, or functional similarities. By performing message passing over the graph structure, GNNs
enable localized feature aggregation, allowing the model to capture mutual influences among neigh-
boring households. This mechanism helps reveal relational information that traditional time series
and regression models are unable to model.

[12] pioneered a spatial-temporal GNN for short-term household load forecasting by constructing
a spatial graph based on distance and correlation among households. Their model outperformed
both ARIMA-type baselines and deep sequence models, particularly in capturing cross-household
influence. Extending this, [34] introduced a multiple correlation-temporal GNN to dynamically learn
graph structures based on multiple similarity measures, which improved adaptability and forecasting
accuracy in heterogeneous settings. A similar approach was taken by [35] who developed a framework
combining transfer learning with GNNs to enable knowledge reuse from data-rich areas to data-sparse
regions, addressing scalability limitations. GNNs can combine with recurrent units to better capture
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sequential patterns. [13] proposed a graph convolutional recurrent neural network, which integrates
GNN layers with gated recurrent units to jointly learn spatial-temporal patterns. These hybrid designs
show superior performance in dynamically changing environments compared to isolated GNN or
RNN models.

Summary. GNN-based forecasting frameworks overcome the key limitations of traditional
methods by:

*  Explicit spatial encoding: Capturing structured spatial relationships among households or
regions.

*  Spatiotemporal joint learning: Simultaneously modeling both spatial correlations and temporal
dependencies.

e Adaptive modeling capability: Dynamically handling nonlinear and non-stationary load behav-
iors.

These advancements position GNNs as a robust foundation for next-generation household load
forecasting systems in the face of increasing complexity and decentralization.

2.2.3. Convolutional Neural Networks (CNNs)

CNN:s, though originally developed for image processing, have proven highly effective in time-
series forecasting due to their ability to extract multi-scale features and localized patterns through
convolutional filters. CNNs are particularly useful in identifying periodicity, sudden load transitions,
and localized temporal dependencies in high-resolution household energy data.

[36] introduced a CNN-based framework for modeling the joint influence of temperature and
past consumption on future residential loads. The model effectively captured nonlinear interactions
between temperature fluctuations and consumption spikes, outperforming linear regression and
ARIMA models in both accuracy and robustness. [37] further advanced this approach by implementing
a CNN-based sequence-to-sequence model with attention mechanisms, enhancing the model’s ability
to identify salient time windows and improve multi-step forecasting performance.

Hybrid CNN architectures have also emerged to enhance the temporal modeling capabilities
of pure CNNSs. For instance, [38] developed a hybrid model combining CNNs and Gated Recurrent
Units (GRUs) for probabilistic load forecasting across various building types. The convolutional
layers extract spatial and temporal features, while GRUs capture sequential dependencies, resulting in
superior accuracy and uncertainty estimation. Similar hybrid designs are explored by [39] and [40],
demonstrating the flexibility of CNNs when integrated with recurrent structures.

Incorporation of attention mechanisms and optimization techniques further boosts CNN perfor-
mance. [41] proposed a CNN-ICPSO-LSTM model, in which CNNs perform initial feature extraction,
while attention-enhanced LSTMs handle long-term temporal patterns, and an improved particle
swarm optimizer fine-tunes hyperparameters. Likewise, [42] combined CNNs with LSTMs, mode
decomposition, and autoencoders to extract hierarchical features and denoise input data, effectively
enhancing forecasting stability and robustness.

Summary. CNN-based models overcome traditional limitations through:

* Localized pattern recognition: Convolutional filters efficiently detect short-term spikes and
recurring patterns.

*  Hybrid flexibility: CNNs can be seamlessly integrated with other model architectures and
learning paradigms.

*  Multivariate input modeling: Effective in processing multi-dimensional inputs like temperature,
time-of-use, and occupancy.

These advantages make CNNs a compelling building block for modern household load forecasting
systems, especially in scenarios requiring high temporal granularity and model adaptability.
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2.2.4. Transformer-Based Models

Traditional forecasting methods, including ARIMA and regression-based approaches, struggle
to capture long-term temporal dependencies and adapt to the highly dynamic, irregular patterns of
household electricity consumption. Transformer-based models offer a more powerful and scalable
alternative by leveraging attention mechanisms that enable the model to learn temporal relationships
without relying on recurrence [43]. Transformers, originally developed for natural language processing
tasks, operate through self-attention mechanisms that assign dynamic weights to input elements
across the entire sequence. This allows them to directly model interactions between any pair of time
steps, regardless of their distance. In the context of household load forecasting, this capacity enables
Transformers to effectively learn from complex and irregular consumption patterns, periodicities, and
contextual features without being constrained by fixed memory windows or sequential bottlenecks.

Recent studies have demonstrated the efficacy of Transformers in household load forecasting
tasks. [44] applied a deep-autoformer architecture to very short-term household load forecasting,
demonstrating that self-attention and auto-correlation mechanisms significantly improve the model’s
ability to capture both global trends and periodic behaviors. Similarly, [45] introduced a Temporal
Fusion Transformer combined with Variational Mode Decomposition to handle nonstationary and
high-frequency load components, achieving superior accuracy over traditional models in multivariate
scenarios.

Transformer models have also been enhanced with spatial capabilities to address cross-household
interactions. For instance, [46] proposed a spatial and temporal attention-enabled transformer that
dynamically adjusts attention weights across both dimensions. This dual-attention mechanism al-
lowed the model to better capture consumption co-dependencies among neighboring households.
Extending this work, [11] incorporated a graph attention module into the transformer to explicitly
represent topological relationships, yielding improved performance in highly interconnected smart
grid environments.

In addition to deterministic forecasts, Transformer-based models have also been adapted for
probabilistic forecasting. [47] introduced an interpretable Transformer architecture that outputs
probabilistic residential net load forecasts, thus providing uncertainty estimates that are critical for
operational decision-making and demand-side management.

Summary. Transformer-based approaches overcome the key limitations of traditional methods
by:

e  Modeling long-range dependencies: Self-attention mechanisms enable effective learning over
extended temporal horizons.

®  Multi-context integration: Flexible architectures allow the seamless inclusion of spatial, exoge-
nous, and hierarchical inputs.

¢ Nonlinearity and nonstationarity: Advanced modules such as Variational Mode Decomposition
and auto-correlation enhance robustness under real-world variability.

*  Probabilistic forecasting: Transformer variants provide well-calibrated uncertainty estimates,
aiding risk-aware grid operations.

These advancements position Transformer-based models as a leading paradigm for accurate, inter-

pretable, and scalable residential load forecasting in next-generation energy systems.

2.2.5. Transfer Learning

Traditional forecasting models often require large volumes of high-quality data and extensive
manual feature engineering to generalize effectively across residential settings. However, in real-world
scenarios, many households have limited historical records, missing values, or variable sampling rates,
which poses significant challenges for classical models such as ARIMA or linear regression. These
limitations hinder model scalability and reduce forecasting accuracy, especially for households with
insufficient training data. Transfer Learning has emerged as a promising strategy to overcome these
limitations by leveraging knowledge from previously learned tasks or domains and applying it to
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target domains with limited data. In household load forecasting, Transfer Learning allows models
trained on data-rich households or regions to generalize effectively to data-scarce or newly deployed
smart meters, thereby reducing the need for extensive retraining and data collection.

[35] proposed a Transfer Learning framework that transfers learned representations between
residential communities. Their results demonstrated improved forecasting accuracy in data-sparse
scenarios, highlighting the utility of graph-based priors in cross-domain transfer. Similarly, [48] intro-
duced a similarity-centred architecture evolution approach that aligns source and target tasks based
on structural similarities, achieving high adaptability across households with varying consumption
behaviors. [49] developed a hybrid deep Transfer Learning method combining convolutional feature
extractors with fully connected adaptation layers. This framework enabled energy consumption
knowledge transfer across commercial and residential buildings, showing robustness to domain shifts
such as seasonal variation and occupant diversity. [15] further extended this concept into a federated
setting, where Transfer Learning was used to enhance forecasting across decentralized households
without data sharing, thus addressing privacy concerns.

Transfer Learning is also effective in handling anomalous events and distributional shifts. [50]
incorporated Gaussian Process uncertainty modeling into a Transfer Learning architecture, enabling
the model to adapt to rare consumption events and maintain reliable probabilistic forecasts under
anomalies.

Summary. Transfer Learning addresses key shortcomings of traditional models through:

¢ Cross-domain generalization: Enabling forecasting in data-scarce households via knowledge
reuse;

e Adaptability: Supporting fast adaptation to new households or consumption patterns;

*  Efficiency: Reducing training costs by avoiding full model retraining;

*  Robustness: Handling distributional shifts, seasonal variation, and anomalous events.

These advantages position Transfer Learning as a critical enabler for scalable and resilient residential
load forecasting systems.

2.2.6. Reinforcement Learning

Traditional statistical methods and supervised learning models typically rely on fixed datasets and
static optimization objectives. These approaches assume that historical patterns are sufficient to predict
future consumption, and they often disregard the interactive and dynamic nature of energy systems. In
contrast, Reinforcement Learning and its deep variants introduce a fundamentally different approach
by framing the forecasting task within a decision-making paradigm. In Reinforcement Learning,
agents learn to make predictions or scheduling decisions by interacting with an environment, receiving
feedback through reward signals. This active learning framework enables continuous adaptation to
evolve household behaviors, supports goal-oriented optimization, and aligns forecasting with energy
management objectives.

Recent studies have shown that Reinforcement Learning can improve forecasting performance
and operational flexibility. [51] proposed an online short-term load forecasting strategy based on
Reinforcement Learning, wherein the model continuously updates its policy to improve real-time fore-
casting accuracy. The system demonstrated superior adaptability under non-stationary conditions and
frequent load profile changes. Similarly, [52] utilized deep Reinforcement Learning to jointly optimize
load forecasting and household multi-energy system scheduling. Their approach allowed the system
to learn cost-efficient and accurate prediction strategies, outperforming traditional models in dynamic
environments. [53] combined sequence-to-sequence forecasting with Q-learning, demonstrating that
reinforcement-based strategies can improve predictive stability while enabling interaction-aware fore-
casting. Moreover, [54] applied deep Reinforcement Learning for real-time energy management in
smart homes, where the learned forecasting and scheduling policy was capable of balancing accuracy,
comfort, and cost in real-time operations.
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In hybrid contexts, [55] and [56] developed multi-objective Reinforcement Learning frameworks
that incorporate user preferences and appliance-level constraints. These models enable personalized
and goal-aware forecasting, which traditional methods cannot support due to their fixed and agnostic
modeling structure. [57] further extended Reinforcement Learning to a privacy-preserving setting
using federated Reinforcement Learning, demonstrating that accurate and adaptive forecasting can be
achieved without centralized data access.

Summary. Reinforcement Learning addresses key limitations of traditional forecasting methods
through:

*  Continuous adaptation: Updating forecasting policies in response to evolving demand profiles;
*  Goal-directed learning: Aligning predictions with cost, comfort, or energy efficiency objectives;

e Interaction modeling: Incorporating appliance-level dynamics, user preferences, and control
feedback;

These characteristics make Reinforcement Learning a compelling approach for intelligent, real-time,
and adaptive household load forecasting in future energy systems.

2.2.7. Ensemble Learning

The foundational principle of ensemble learning is that combining the outputs of diverse models,
each with unique strengths, can outperform any single model. This paradigm is particularly effective
for household load forecasting, where high variance and unstructured consumption behavior often
degrade the performance of individual learners. Ensemble techniques can be broadly categorized into
four main types: bagging, boosting, stacking, and hybrid models.

Bagging methods reduce variance by training base learners on different subsets of the data and
aggregating their predictions. Random Forests and other tree-based bagging techniques are widely
applied in load forecasting to improve stability. [58] developed a weighted ensemble of multilayer
perceptrons, decision trees, and gradient boosting models that achieved superior accuracy compared
to standalone recurrent models. Similarly, the Multicolumn Radial Basis Function Neural Network
by [59] applies ensemble-like strategies by training subnetworks on k-d tree—partitioned data and
correcting errors through a dedicated mechanism.

Boosting strategies build models sequentially, allowing each learner to focus on the residual errors
of its predecessors. This approach improves accuracy on difficult-to-predict cases. [58] emphasized
gradient boosting as a key component of their ensemble. [60] proposed a boosting-like deep ensemble
that uses variable-length particle swarm optimization for dynamic feature generation. Despite its deep
learning foundation, this approach shares conceptual similarities with boosting by iteratively refining
hard-to-learn patterns.

Stacking ensembles combine multiple heterogeneous base learners through a meta-model that
learns how to best aggregate predictions. [61] developed a diversity-regularized stacking framework
that uses mutual information and hierarchical clustering to ensure complementary base learners,
improving generalization and reducing redundancy. [62] introduced the Ensemble Neural Network
Forecaster, which merges various neural network types in parallel, effectively capturing diverse
consumption features during irregular load periods.

Hybrid ensemble models dynamically integrate structurally distinct models to enhance adapt-
ability in non-stationary environments. [63] presented the Holographic Ensemble Forecasting Method,
which incorporates sampling diversity, data selection, and online adaptation. [64] proposed the Het-
erogeneous Ensemble Selection, which selects high-confidence learners in real time based on entropy,
improving robustness under variable demand. [65] further refined this strategy with entropy-based
thresholds to manage uncertainty. [50] integrated neural networks, ResNet modules, and Gaussian
processes in a deep hybrid architecture, achieving reliable forecasts during abnormal conditions such
as pandemic-induced disruptions.

Summary. Ensemble Learning addresses key weaknesses of traditional forecasting methods by:

®  Variance reduction: Mitigating sensitivity to noise through aggregation of multiple predictions.
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e  Enhanced generalization: Providing reliable forecasts across diverse households, temporal
horizons, and load regimes.

*  Robustness: Maintaining accuracy despite behavioral irregularities and dynamic changes.

* Flexible architectures: Allowing adaptive integration of various modeling techniques and
paradigms.

These characteristics make ensemble learning a powerful and versatile framework for accurate, resilient,
and scalable household load forecasting.

2.2.8. Large Language Model (LLMs) and Agent

Emerging Al technologies, including LLMs and autonomous agents, offer novel pathways for
addressing these limitations. Unlike other Al models, these approaches can perform reasoning over
heterogeneous data sources, adapt to dynamic and user-specific contexts, and operate in zero-shot or
few-shot settings without retraining.

LLMs are being explored for their ability to process natural language input, learn latent patterns
from large-scale heterogeneous datasets, and generate contextualized forecasts. [66] demonstrated
that privately hosted LLM agents can synthesize household energy data from sparse or irregular logs,
enabling richer demand profiling while preserving user privacy. Similarly, [67] showed that prompting
LLMs enables training-free non-intrusive load monitoring, providing appliance-level insights using
only textual queries and structured metadata. Knowledge distillation techniques are also being
employed to transfer the generalization capabilities of LLMs into lightweight forecasting models.
[68] proposed a framework where LLMs serve as teacher models for downstream forecasting agents,
significantly improving robustness and sample efficiency in household energy modeling tasks.

Recent studies have also explored agent-based frameworks that introduce decentralized decision-
making and interactive learning capabilities into household load forecasting. [69] proposed a multi-
agent approach that enables home energy management by modeling autonomous agents to learn and
coordinate energy usage policies under varying grid conditions. Similarly, [70] integrated multi-agent
systems with demand response and voltage control mechanisms, enhancing both forecasting accuracy
and operational responsiveness. [71] further advanced this direction by introducing a dual-agent deep
Reinforcement Learning model that separates the decision-making process for demand-side flexibility
and cost minimization, resulting in more stable and efficient load patterns. Additionally, [72] presented
a generalizable agent-based modeling framework that explicitly incorporates consumer behavior and
appliance-level dynamics into load forecasting. These agent-oriented approaches provide a scalable
and adaptive alternative to conventional methods, capable of addressing the non-linear, stochastic,
and behavior-driven characteristics of household electricity demand.

Summary. These developments highlight the potential of LLMs and agents to overcome tradi-
tional forecasting limitations through:

¢  Contextual reasoning: Understanding personalized energy patterns using linguistic, behavioral,
or textual data;

*  Zero/Few-Shot adaptation: Reducing dependence on large labeled datasets through prompt-
based or distillation-based learning;

*  Autonomous behavior modeling: Simulating user-device interactions and demand response
with high fidelity;

These capabilities position emerging LLMs and Al agents as transformative tools for next-generation

residential load forecasting systems that demand high flexibility, personalization, and interpretability.

2.2.9. Summary

This section systematically reviews recent advancements in Al techniques developed to over-
come the methodological constraints of traditional household load forecasting models. It highlights
how state-of-the-art models such as GNNs, Transformer-based models, and Reinforcement Learning
frameworks address key challenges like nonlinearity, nonstationarity, and limited adaptability. These
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models introduce enhanced capabilities for modeling long-range temporal dependencies, integrating

multimodal context, and capturing spatiotemporal dynamics. In addition, emerging approaches

including Transfer Learning and LLMs offer improved generalizability, robustness to domain shifts,

and the ability to reason over heterogeneous data with minimal supervision. Together, these methods

represent a significant shift from rigid statistical modeling toward flexible, data-driven architectures

capable of real-time adaptation and scalable deployment in increasingly complex and decentralized

household energy environments. Table 2 summarizes the model architectures and learning paradigms

discussed above.

Table 2. Summary of Al-Based approaches mitigating traditional forecasting limitations in household load

forecasting.
Category Strength References
Nonlinear sequence modeling, (33]
RNN multi-step forecasting, [31]
and context integration [30]
Explicit spatial encoding, [34]
GNN spatiotemporal joint learning, [13]
Model and adaptive modeling capability [73]
Architectures Localized pattern recognition, [42]
CNN hybrid flexibility, [41]
and multivariate input modeling [38]
Modeling long-range dependencies, [47]
multi-context integration, [11]
Transformer . . . .
nonlinearity & nonstationarity, [45]
and probabilistic forecasting [44]
Cross-domain generalization, [15]
Transfer 1 .
: adaptability, efficiency, [50]
Learning
and robustness [35]
) _ [55]
Reinforcement Contm'uous adapta.tlon, [54]
Learning goal-directed learning, [51]
and interaction modeling
Learning [57]
Paradigms [58]
Variance reduction, robustness,
Ensemble L [58]
Learnin enhanced generalization,
© & and flexible architectures [61]
(50]
) [68]
LLM& Contextual reasoning, . [67]
Acent zero/few-shot adaptation, and [66]
& autonomous behavior modeling
[72]

3. Challenge-II: Data Limitations

This section introduces the second major challenge in household load forecasting and reviews

corresponding Al-driven solutions. Specifically, Section 3.1 examines key data-related constraints,

including data scarcity, poor quality, and low temporal granularity. Section 3.2 reviews recent advance-

ments in Al-based methods, which aim to enhance forecasting resilience and efficiency under noisy,

sparse, or incomplete data conditions, as summarized in Table 3.
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3.1. Data Limitations: Scarcity, Quality, and Low Granularity

One of the most critical and persistent challenges in household load forecasting lies in the
multitude of data-related limitations, which collectively undermine the reliability, adaptability, and
generalizability of predictive models. Among these, data scarcity, poor data quality, and low temporal
granularity are particularly detrimental. These issues often originate from infrastructural constraints,
non-uniform smart meter deployment, and the inherently stochastic nature of household energy
consumption. Importantly, they are interdependent, and their combined effects introduce significant
obstacles for model training, evaluation, and deployment in practical settings.

Data Scarcity remains a bottleneck in both academic research and practical implementation. In
many regions, especially in rural or underdeveloped areas, the deployment of smart metering infras-
tructure is limited or delayed, resulting in incomplete and fragmented datasets. Even in technologically
advanced regions, data sharing is often restricted due to legal and ethical concerns, particularly those
involving consumer privacy. Consequently, most publicly available datasets are narrow in scope,
covering only a limited number of households, short time spans, and constrained conditions. These
datasets frequently lack diversity in terms of household types, behavioral patterns, climate zones, and
appliance configurations. As a result, data-driven models trained on such datasets may struggle to
generalize to new users, increasing the risk of overfitting and performance degradation in unseen
scenarios.

Data Quality presents another significant concern, often manifesting through issues such as
sensor malfunctions, communication dropouts, and timestamp misalignments. Smart meter data may
contain noise introduced by hardware failures, unstable network connections, or manual installation
errors. In addition, household-level anomalies, such as unexpected absences, abnormal energy events,
or localized renewable generation, can lead to missing entries, extreme outliers, and inconsistent
temporal records. These imperfections reduce the effectiveness of machine learning algorithms by
distorting the true underlying patterns in energy consumption. Although preprocessing methods such
as smoothing, imputation, and anomaly detection are commonly applied, they may introduce their
own assumptions and obscure important temporal or behavioral nuances in the data.

Low Temporal Granularity further restricts model accuracy and responsiveness, especially in
applications requiring fine-grained decision-making. Many residential load datasets are recorded at
hourly or daily intervals in order to minimize data storage and transmission costs. However, such
coarse sampling intervals are insufficient for capturing short-duration events like appliance switching,
transient occupancy changes, or load spikes. This limitation is particularly problematic for real-time
applications such as demand-side management, home energy automation, or load disaggregation,
which require high-resolution signals to function effectively. Without sufficient temporal detail, models
may fail to identify peak demand periods, dynamic usage patterns, or sudden behavioral shifts,
ultimately reducing their practical value.

3.2. Al Methods Addressing the Data-Related Challenge

To address these limitations, various Al-based methods have been developed, demonstrating
improved robustness and adaptability in real-world forecasting scenarios.

3.2.1. Few-Shot Learning

Data scarcity poses a fundamental limitation in household load forecasting, particularly for newly
instrumented homes or underrepresented demographic and climatic conditions. Few-Shot Learning
emerges as a compelling solution by enabling models to generalize from a very limited number of
labeled instances. Rather than relying on extensive historical consumption records, Few-Shot Learning
approaches aim to learn transferable representations that can quickly adapt to unseen households
using only a few examples. In the context of household load forecasting, Few-Shot Learning typically
leverages meta-learning frameworks to train a base learner across a distribution of tasks constructed
from available households [16]. During meta-training, the model learns to rapidly adapt to new
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forecasting tasks using only a small support set. This paradigm is particularly suitable for settings
where access to new household data is limited, intermittent, or delayed.

Recent work has explored Few-Shot Learning in related time series domains, showing its potential
in transferability across heterogeneous environments. [16] proposed a novel ensemble-boosted Few-
Shot Learning framework tailored for residential load forecasting, which incorporates meta-learning
and ensemble strategies to improve generalization in low-data regimes. By learning how to ensemble
predictions across base learners trained on diverse household patterns, their method achieves superior
performance compared to baseline forecasting models under severe data limitations. Complementary
to this, [74] presented a meta-learning approach designed for smart grid environments, emphasizing
model adaptability across multiple low-sample scenarios. Their model leverages prior knowledge
across tasks to rapidly converge on accurate predictions, thereby addressing the cold-start problem
commonly encountered in real-world deployments. [75] explored the potential of leveraging pre-
trained LLMs to enhance building-level load forecasting. Although not strictly an Few-Shot Learning
method, their work demonstrates that LLMs, when fine-tuned with limited data, can effectively adapt
to downstream forecasting tasks due to their broad generalization capabilities and prior training
on diverse time-series contexts. [76] further investigated the application of few-shot learning in
classifying electricity consumption patterns. Their pattern recognition approach highlights the utility
of metric-based Few-Shot Learning techniques in identifying behavioral similarities among households,
which can be leveraged to cluster users with analogous profiles for improved forecasting. Finally,
[77] proposed a hybrid model to forecast short-term residential loads with small sample sets. By
transferring learned representations from large-scale datasets to new households, the model effectively
overcomes the limitations posed by sparse target data, making it highly suitable for edge environments
and early-stage deployments.

Summary. Few-shot learning presents a promising solution to the data sparsity challenge in
household load forecasting by:

¢ Learning from limited samples: Enabling accurate forecasting with minimal training data by
extracting transferable patterns from related tasks or households;

* Rapid model adaptation: Supporting fast generalization to new households and cold-start
scenarios through meta-learning and ensemble strategies;

¢  Leveraging pretrained models: Utilizing knowledge embedded in large-scale models or related
domains to enhance performance in low-data regimes.

These strengths position few-shot learning as an effective and practical paradigm for improving forecast
accuracy in resource-constrained residential environments, particularly during early deployment or
for sparsely monitored households.

3.2.2. Transfer Learning

While Transfer Learning has been adopted to enhance the performance and generalization of
modern forecasting models beyond the assumptions of traditional statistical methods, its role in
alleviating data scarcity represents a distinct and increasingly impactful research direction. In this
context, Transfer Learning focuses not merely on model optimization but on reusing knowledge from
data-rich source domains to support learning in data-constrained target environments. In household
load forecasting, the scarcity of labeled and diverse datasets remains a primary obstacle to training
effective models. Transfer Learning provides a mechanism to overcome this limitation by enabling
the transfer of learned representations or model parameters from households, regions, or tasks with
abundant data to those with insufficient samples.

A common strategy involves pretraining deep models on large-scale datasets from urban or
commercial settings, then fine-tuning them on small residential datasets. For example, [78] proposed
a framework in which an LSTM model is initially trained on a source domain comprising rich load
data from multiple households. This pre-trained model is then fine-tuned on a target domain that
contains significantly fewer data points. The Transfer Learning process enables the target model to
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inherit temporal patterns, consumption dynamics, and general load characteristics from the source,
thus mitigating the effects of data sparsity. Notably, the study demonstrates that Transfer Learning not
only accelerates convergence but also significantly improves forecasting accuracy compared to models
trained from scratch on the target domain.

Another effective approach is domain adaptation, which seeks to reduce the distributional
mismatch between source and target domains. Techniques such as adversarial learning are employed
to align feature spaces, enabling more effective knowledge transfer despite differences in consumption
patterns or user demographics. This is especially relevant in household forecasting, where individual
energy profiles vary significantly across regions and seasons. [79] proposed a sequence-to-sequence
adversarial domain adaptation network that jointly learns a forecasting task and an adversarial domain
classification task. Experiments on real-world smart meter datasets showed that the proposed model
outperformed baseline methods in both accuracy and generalization, particularly when only limited
target data were available. Similarly, [80] introduced a domain adversarial transfer network combined
with K-shape clustering for short-term residential load forecasting. By grouping households with
similar load patterns, the method first enhances intra-cluster homogeneity, then applies adversarial
adaptation to align distributions across clusters. Empirical results demonstrated that the approach
significantly improved forecasting performance under sparse data conditions and effectively preserved
personalized load dynamics.

Unlike its role in overcoming the linear assumptions and rigidity of traditional models, Transfer
Learning for data scarcity emphasizes sample efficiency, cross-domain generalization, and rapid
adaptation. It enables the development of forecasting solutions even in settings with sparse, incomplete,
or heterogeneous data, extending the applicability of Al-driven models to low-resource residential
environments.

Summary. Transfer Learning effectively addresses data sparsity in household load forecasting by:

¢  Cross-domain knowledge reuse: Leveraging historical data from well-instrumented households,
regions, or periods to inform predictions in data-scarce or newly deployed household settings;

¢ Adaptation to behavioral heterogeneity: Aligning transferred representations with target house-
hold consumption patterns, thereby improving generalization and mitigating the risk of negative
transfer;

*  Privacy-preserving learning: Enabling decentralized forecasting via federated transfer ap-
proaches that maintain predictive accuracy without compromising local data confidentiality.

These capabilities establish Transfer Learning as a foundational strategy for scalable, robust, and
privacy-conscious load forecasting across heterogeneous and resource-constrained household environ-
ments.

3.2.3. Denoising Autoencoders (DAEs)

Household load forecasting relies on the availability of high-quality time series data collected
through smart meters. However, in practice, this data is often corrupted by noise, gaps, and missing
values due to sensor failures, communication disruptions, or user tampering. DAEs, a class of
unsupervised deep learning models, have emerged as a solution for recovering corrupted input signals
and enhancing data robustness in household load forecasting.

[81] proposed a DAE-based imputation framework tailored for smart meter data. Their approach
leverages temporal regularities and latent features to reconstruct missing or noisy load segments
more accurately than traditional statistical methods. This method preserves temporal dynamics
and outperforms linear and matrix-completion techniques, especially in datasets with extensive
missingness. Building upon this, [82] introduced a hybrid architecture that integrates DAEs with LSTM
networks for short-term load forecasting. The DAE module first reconstructs incomplete inputs, while
the LSTM performs sequential prediction. This design demonstrated improved accuracy and resilience
in scenarios with randomly missing values, highlighting the complementary strengths of noise-robust
feature extraction and sequence modeling. [83] explored the application of DAEs to non-intrusive
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load monitoring, where disaggregated device-level consumption needs to be inferred from aggregated
signals. Their model, trained to suppress irrelevant background noise, improved the discrimination
between overlapping appliance signatures, thereby indirectly enhancing forecasting precision at
the individual device level. In a related effort, [84] enhanced a Variational Autoencoder with a
Siamese network to improve residential load disaggregation at low-frequency sampling rates. Their
architecture learns both reconstruction and similarity-based representations, making it particularly
robust to input degradation and useful for applications where high-resolution data is unavailable or
unreliable. [85] proposed a global forecasting pipeline that incorporates a pre-trained autoencoder
to extract denoised and compressed representations of heterogeneous household loads. These latent
features are subsequently passed to a deep LSTM forecaster, which achieves superior accuracy in
diverse household scenarios by mitigating the negative impacts of noise, variability, and outliers in the
original data.

Summary. Denoising Autoencoders significantly enhance household load forecasting pipelines
by:
*  Recovering missing and corrupted data: Learning latent representations for effective imputation;
* Noise suppression: Removing irrelevant fluctuations while preserving informative temporal

patterns;
e Improving downstream model performance: Enabling more robust and accurate forecasting

through cleaner input signals.

These advantages establish DAEs as a crucial pre-processing and enhancement module in modern
household load forecasting architectures, particularly in data-constrained or noise-prone environments.

3.2.4. RNNs

While RNNs are well known for their ability to mitigate the limitations of traditional forecasting
models, they also offer distinct advantages in addressing the challenge of low temporal granularity
in residential load data. In many household load forecasting tasks, smart meters record electricity
consumption at relatively coarse intervals, such as hourly or daily. These sparse measurements hinder
the model’s ability to detect fine-grained behaviors, such as appliance switching events or short-
term load fluctuations. RNNs provide a mechanism for modeling such sub-patterns and recovering
fine-scale information from low-resolution data.

RNN-based models can be trained to interpolate or infer missing high-frequency details by
learning the underlying dynamics from coarsely sampled sequences. [86] introduced a long- and
short-term time-series network that combines convolutional and recurrent structures to extract both
local and long-range temporal dependencies in household electricity consumption. Their model
achieved high forecasting accuracy on coarse-grained data by capturing temporal correlations that
span both intraday and inter-day patterns. [6] proposed a hybrid CNN-LSTM model for short-term
load forecasting, where convolutional layers extract spatial and local features from the input sequences
and LSTM layers model sequential dependencies. This hybrid design is particularly useful when
working with low-resolution input data, as it enhances feature extraction and temporal reasoning
simultaneously. [87] extended this idea by integrating an RNN with Gradient Boosted Regression Trees
(GBRT), forming a hybrid RNN-GBRT model. Their architecture was capable of modeling nonlinear
trends in low-resolution electricity demand, while also incorporating an energy theft detection module,
demonstrating the versatility of RNNs in low-granularity scenarios with security constraints. [88]
further refined the use of LSTM networks by introducing a novel temporal feature selection mechanism.
Their model emphasizes the importance of selecting informative temporal features before feeding
sequences into the LSTM architecture, which improves performance under limited temporal resolution.
In a related effort, [89] employed an RNN-based generative model for short-term forecasting enhanced
by non-intrusive load monitoring. Their model effectively reconstructs high-resolution household
consumption patterns from aggregated low-frequency data, demonstrating the generative capacity of
RNNSs in recovering fine-scale load profiles.
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Summary. RNN-based models effectively address the limitations imposed by low temporal
granularity in household load forecasting by:

¢  Temporal resolution enhancement: Learning fine-grained consumption dynamics from coarse-
grained data via sequential pattern extraction;

e  Hybrid feature modeling: Combining convolutional or boosting techniques with RNNs to
enhance local feature detection and nonlinear trend learning;

¢  Generative reconstruction: Inferring high-frequency consumption patterns from low-resolution
input through sequence-aware generation;

e  Feature-aware learning: Leveraging selective temporal features to maximize forecasting accuracy
when input resolution is limited.

These capabilities make RNNs a compelling choice for low-frequency metering environments, where
capturing latent temporal structure is essential for accurate and responsive forecasting.

3.2.5. Generative Al

To address the lack of clean and complete data, generative approaches such as Generative
Adversarial Networks (GANSs) produce synthetic household load profiles that preserve statistical and
temporal properties.

Claeys et al. [3] propose a GAN framework that captures multiscale temporal dynamics to gener-
ate realistic synthetic load profiles. Their method addresses the challenge of replicating both short-
and long-term consumption patterns by incorporating hierarchical temporal structures into the GAN
architecture. This improves the realism and utility of generated profiles for downstream forecasting
tasks. Expanding on this direction, Liang et al. [90] integrate recurrent GANs with ensemble learn-
ing to produce synthetic residential load patterns. Their approach enhances temporal consistency
and diversity in generated data while stabilizing GAN training. The ensemble framework improves
generalizability across households, making the synthetic data more effective for supporting models
in data-scarce settings. Su et al. [91] introduce a multi-attribute adversarial learning method that
incorporates multi-source uncertainties into the generation process. By jointly modeling variability
from behavioral, environmental, and sensor-derived data, the model produces more robust synthetic
samples. This not only benefits data augmentation but also improves the resilience of forecasting
models to uncertainty. From an application-driven perspective, Razghandi [92] design a synthetic data
generation framework tailored to smart home energy management systems. Their work demonstrates
how realistic synthetic loads can facilitate demand forecasting and control without relying on exten-
sive real-world measurements, offering practical implications for deployment in privacy-sensitive
environments. Similarly, Tiwari et al. [93] evaluate the effectiveness of training deep neural networks
with a combination of real and synthetic datasets. Their findings show that synthetic augmentation
improves forecast accuracy, especially for households with limited consumption history, supporting
the potential of hybrid training strategies.

Summary. Generative Al offers a promising pathway to mitigate data limitations in household
load forecasting by:

*  Synthetic data augmentation: Generating realistic and diverse household load profiles that
replicate multiscale consumption patterns;

¢ Enhanced robustness: Modeling multi-source uncertainty to produce resilient inputs for down-
stream forecasting models;

¢  Privacy-friendly modeling: Enabling data-driven development in privacy-constrained settings
through the use of synthetic proxies.

These contributions demonstrate that generative methods, especially GAN-based frameworks, are
valuable tools for augmenting and diversifying training data, thereby improving forecasting perfor-
mance and adaptability. Nonetheless, future work must address rigorous evaluation of synthetic data
quality, its effect on model generalizability, and the preservation of household privacy.
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3.2.6. Supplementary Data-Enhanced Al

Data limitations, such as missing readings or limited household instrumentation, present a
persistent challenge in household load forecasting. To address this, recent studies have explored the
integration of supplementary data, including weather conditions, behavioral patterns, and mobility-
related indicators, into forecasting models. These auxiliary signals act as proxies for latent variables
such as occupancy, appliance usage, or building thermal response, thereby enriching the data and
enabling the development of more accurate and generalizable models [94].

[27] incorporated weather features including temperature and humidity into an LSTM-based
model for short-term household load forecasting. Their results demonstrated that environmental
factors significantly improve prediction accuracy, particularly for households equipped with heating,
ventilation, and air conditioning systems that are sensitive to ambient conditions. Beyond single-
modality weather data, [95] proposed a hybrid multi-task learning model that fuses multi-source
information such as time-of-day, temperature, and calendar features. Their framework improves both
forecasting accuracy and robustness by enabling parallel optimization of different feature streams,
highlighting the advantages of cross-domain data integration. Similarly, [4] developed a deep learning
model that captures multi-scale consumption behavior through time-aware modeling of user habits.
Supplementary behavioral patterns, when aligned across short and long time windows, offer improved
model adaptability under sparse or irregular data conditions. [96] emphasized the use of contextual
temporal information in online probabilistic models, accounting for serial correlation in household
demand. Their probabilistic framework incorporates past and present consumption states alongside
exogenous features to deliver uncertainty-aware forecasts. Notably, [97] introduced a multi-task
learning approach that jointly learns load forecasting and human mobility dynamics using aggregated
mobile phone movement data. During the COVID-19 pandemic, their model effectively captured load
variations caused by population behavior shifts, reinforcing the role of mobility data as a high-impact
supplementary feature.

Although these proxy indicators can be valuable, they also introduce additional uncertainty and
contribute to increased model complexity. The relationship between such variables and household
electricity consumption is often non-linear and highly context-dependent. For instance, temperature
exerts a substantial influence on energy usage, yet its effect can vary considerably across different
households and seasons. While proxy-based approaches may enhance data coverage, they often do so
at the expense of reliability and fine-grained accuracy. Consequently, the effective use of these indirect
signals requires forecasting models that are robust enough to manage the uncertainty and variability
inherent in supplementary data sources.

Summary. Supplementary data-enhanced Al approaches improve household load forecasting by:

e Leveraging proxy signals: Utilizing external indicators such as weather, mobility, and sensor
data to compensate for missing or incomplete load measurements;

e  Behavioral context modeling: Inferring occupancy, activity, and lifestyle shifts through auxiliary
sources like traffic flow and mobile movement;

*  Cross-domain data integration: Enhancing predictive capacity via multimodal learning frame-
works that combine heterogeneous signals.

While these methods broaden data availability and contextual depth, they demand robust modeling
strategies to manage the non-linearity and uncertainty associated with indirect indicators. Their
success hinges on the model’s ability to adapt to dynamic, household-specific relationships between
proxy variables and energy consumption.

3.2.7. Summary

To overcome the diverse data-related limitations in household load forecasting, including data
sparsity, noise, missing values, low granularity, and limited sensor coverage, various Al methods
have been proposed. Transfer Learning enables knowledge reuse across domains and supports
privacy-aware adaptation. Few-shot learning allows models to generalize effectively with minimal
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data. Denoising autoencoders improve data quality by reconstructing corrupted or incomplete inputs.
Recurrent neural networks capture temporal dependencies from low-resolution input sequences,
enhancing forecasting performance. Generative Al produces synthetic load profiles that reflect realistic
consumption patterns, supporting data augmentation and privacy preservation. Supplementary
data-enhanced approaches integrate external signals such as weather, mobility, and behavioral features
to improve model robustness and context awareness. These Al strategies offer promising frameworks
for improving accuracy, adaptability, and scalability in household load forecasting under various
data constraints. Table 3 outlines the main categories of Al-based approaches, highlighting their
corresponding strengths, representative studies, and core model architectures used in recent studies.

Table 3. Summary of Al-based approaches addressing data-related limitations in household load forecasting. The
table categorizes key Al methods according to the specific data challenge they target, including data scarcity, data
quality, low temporal granularity, and overall data enhancement. For each category, the strengths, representative
studies, and core model architectures are listed.

Limitations AI Methods Strengths References Models
[75] LLM
Few-Shot Data-efficient learning, [74] LSTM
Learning adaptive learm'ng, [16] RNN. LSIM
Data model adaptation ’
Scarci [77] CNN
carcity
Transfer Cross-domain reuse, [78] LSTM
Learnin behavioral alignment, [79] LSTM, GAN
& protected inference [80] LSTM, GAN
[85] LSTM
Data Denoising r]?oaitsaerselj;;izzlsion [84] LSTM, CNN
Quality Autoencoder forecast boosting [83] CNN
[82] LSTM
Low Granularity refinement, [89] CNN
Temporal RNN feature fusion, [88] LSTM
Grar?ularit load regeneration, [87] RNN
y feature-aware learning [86] LSTM
. [3] CNN, GAN
Generative Data synthesis, [90] LSTM, GAN
Al enhanced robustness, 01 LSTM. CNN
privacy-friendly modeling [o1] ¢
Overall [93] CNN, RNN
[97] LSTM
Supplementary Auxiliary signals, [4] LSTM
Data context-aware modeling,
Enhanced Al multimodal fusion [95] LSTM, CNN
[27] LSTM

4. Challenge-III: Consumption Pattern Complexity

This section introduces the third major challenge in household load forecasting and reviews
corresponding Al-driven solutions. Specifically, Section 4.1 discusses the complexity of consumption
patterns, which are characterized by high volatility, non-linearity, and intricate temporal dependencies.
Section 4.2 reviews state-of-the-art Al-based methods developed to address these challenges, as
summarized in Table 4

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0799.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2025 d0i:10.20944/preprints202508.0799.v1

21 of 37

4.1. Key Aspects of Consumption Pattern Complexity

The intrinsic nature of household electricity consumption patterns presents a fundamental and
multifaceted challenge in the domain of load forecasting. Unlike aggregate system loads, where
individual variations tend to average out, household demand is characterized by high volatility, non-
linearity, and a deeply embedded connection to unpredictable human behavior and diverse appliance
usage. Effectively modeling this complexity is paramount for accurate forecasting.

Behavioral Volatility: At its core, household electricity consumption is closely linked to human
routines, decisions, and lifestyle dynamics. Variability in work schedules, social activities, travel
patterns, and personal preferences can lead to abrupt and unpredictable changes in load profiles.
For example, a consistent evening peak observed on weekdays may disappear during holidays or
shift unexpectedly due to family visits or changes in daily routines. In addition, the diversity of
appliances within a household, each used at irregular intervals and for different purposes, further
increases variability. The presence or absence of occupants and the nature of their activities are strong
determinants of electricity usage, yet this information is typically unavailable or difficult to infer. These
behavioral factors introduce a high degree of randomness and highlight the limitations of static or
purely historical models. As a result, forecasting frameworks increasingly rely on behavior-aware and
adaptive methods to improve prediction accuracy.

Non-Linearity: The relationship between electricity consumption and its influencing factors is
often complex and disproportionate. Many household appliances operate in binary or multi-state
modes, producing sudden shifts in power usage rather than gradual changes. For instance, heating
and cooling systems frequently respond to ambient temperature only after specific thresholds are
exceeded, resulting in sharp increases in energy demand. Time-of-day effects can also be non-uniform,
as even small variations in occupant behavior may lead to significant differences in load intensity and
peak timing. Moreover, multiple factors often interact in non-linear ways. For example, the combined
influence of weather conditions and occupancy can amplify or dampen appliance usage depending
on contextual factors. Capturing such relationships requires models capable of learning conditional
dependencies and hierarchical patterns, motivating the use of advanced deep learning techniques that
can accommodate the non-linear characteristics of household energy data.

Complex Temporal Dependencies: Household load also functions as a dynamic time series
with multiple interacting temporal layers. This includes short-term autocorrelation, where current
consumption is highly dependent on recent past consumption. Additionally, multiple periodicities
are evident, such as daily (e.g., morning and evening peaks), weekly (e.g., weekend vs. weekday
patterns), and seasonal (e.g., summer vs. winter) cycles; however, their interaction can be complex
and non-stationary. Moreover, event-based disruptions like holidays, personal events (e.g., vacations,
family gatherings), and special occasions significantly disrupt typical temporal patterns in an irregular
fashion, showcasing the complex temporal dependencies.

4.2. AI Methods Addressing Consumption Pattern Complexity
4.2.1. Addressing Behavioral Volatility

Addressing the behavioral volatility inherent in household load forecasting remains a paramount
challenge, as household electricity consumption is distinct from aggregate loads due to its pronounced
volatility and direct linkage to human behavior.

Uncertainty-Aware Forecasting: Given the stochastic nature of household electricity consumption
and its sensitivity to user behavior, weather conditions, and dynamic system interactions, recent studies
have shown that incorporating uncertainty into forecasting frameworks enhances predictive accuracy
and supports more resilient, adaptive, and user-centric energy management in household contexts. [98]
developed a probabilistic load forecasting model that integrates micrometeorological data and user-
specific consumption patterns to generate predictive distributions rather than point estimates. Their
method improves robustness against unpredictable fluctuations by capturing external environmental
effects alongside behavioral variability. Similarly, [38] proposed a hybrid CNN-GRU architecture
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that combines probabilistic learning with spatial-temporal feature extraction to forecast loads across
different building scales. This model enhances accuracy while quantifying uncertainty, making it
suitable for scenarios with diverse usage patterns. [99] incorporated user preference uncertainty
into a data-driven home energy management system, demonstrating how probabilistic modeling
of occupant behavior can optimize load schedules while accommodating behavioral flexibility. In a
related effort, [100] proposed an uncertainty-aware learning model for thermal comfort prediction in
smart residential buildings. Their model accounts for user comfort variability, further emphasizing the
importance of probabilistic approaches in user-centric energy forecasting.

Behavior Pattern Recognition: Another strategy involves modeling and recognizing behavioral
patterns to improve forecast reliability. [101] utilized family behavior pattern recognition for small-
scale load forecasting, identifying repetitive usage behaviors to reduce prediction errors during periods
of irregular consumption. [102] focused specifically on forecasting during atypical behavioral events,
such as lockdowns or disruptions, demonstrating that model retraining with behavior-specific data
improves performance under unpredictable scenarios. [4] and [103] both emphasized the need for
multi-scale and autoregressive feature selection to track shifting patterns in individual apartments
or homes. These techniques enable the model to adapt dynamically to both sudden spikes and
longer-term deviations in usage behavior. [32] explored BiLSTM and CNN-BiLSTM models for short-
term aggregated load forecasting, showing that combining convolutional layers with bidirectional
memory can enhance pattern extraction from volatile time series. [6] further validated the robustness of
hybrid CNN-LSTM models in forecasting sharp changes in individual household load curves. Beyond
standard architectures, [4] proposed a multi-time scale deep learning framework that integrates long-
term behavioral trends and short-term fluctuations, enabling better adaptation to variable electricity
usage. Likewise, [95] presented a hybrid multitask learning model that fuses diverse contextual
information such as time, weather, and previous load data to handle dynamic household behavior
more effectively.

Ensemble Learning: Ensemble methods have also shown promise in managing volatility by
leveraging model diversity. [104] investigated advanced ensemble learning techniques for residential
load forecasting by integrating explainable Al techniques. Their approach not only improved fore-
casting accuracy under erratic conditions but also enhanced transparency, enabling insights into how
volatile consumption behaviors impact model outputs. Jiang et al. [95] developed a hybrid multitask
framework that simultaneously processes multiple information sources, including weather data and
historical consumption patterns.

4.2.2. Modeling Non-Linearity

As household loads often exhibit sudden spikes, cyclic variations, and irregular trends, recent
advances have focused on developing deep learning architectures that can effectively learn such
patterns. In particular, attention-based mechanisms and hybrid neural networks have emerged as
prominent strategies to address these challenges. These models are designed to capture both local
and global nonlinear relationships within the data, enabling improved generalization and higher
forecasting accuracy under dynamic and volatile consumption scenarios.

Attention mechanisms have emerged as an effective solution for modeling the complex and
nonlinear patterns inherent in household electricity consumption. These mechanisms allow models to
dynamically prioritize informative input segments, enabling the capture of irregular load fluctuations
and context-specific dependencies that are often missed by traditional methods. [37] proposed a
CNN-based sequence-to-sequence model with attention that combines local pattern extraction through
convolutional layers with long-range temporal modeling via an encoder-decoder structure. The atten-
tion module highlights key time steps contributing to prediction, improving performance under highly
variable demand conditions. [46] extended this concept by integrating both spatial and temporal
attention within a transformer-based framework for multivariate forecasting. Their model effectively
learns inter-household relationships and dynamic temporal behaviors, resulting in improved fore-
casting accuracy across diverse input features. Similarly, [11] introduced a spatiotemporal graph
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attention-enabled transformer that incorporates household-level structural information using graph
learning. The attention mechanism adaptively weighs both spatial and temporal signals, enhancing the
model’s ability to track multi-scale nonlinear dependencies. [105] developed a bi-attention mechanism
that refines baseline load profiles using contextual and temporal cues, allowing the model to adapt
to consumption dynamics not captured by static input. Further advancing this line of work, [43]
proposed the deep learning framework, which combines wavelet-based multi-scale feature extraction
with attention-based sequence modeling. This architecture effectively captures periodic fluctuations
and abrupt changes in household loads by selectively emphasizing multi-resolution features. Collec-
tively, these studies demonstrate that attention mechanisms significantly enhance a model’s capacity
to represent nonlinear consumption patterns, particularly when integrated with spatial encoding,
multi-scale processing, or graph-based representations.

Hybrid models that combine different neural network components have been shown to effectively
capture both spatial and temporal nonlinear dependencies in electricity usage. [106] proposed a
hybrid CNN-GRU model in which the convolutional layers learn local patterns while the GRU units
handle temporal dependencies. This architecture demonstrated superior performance in capturing
nonlinearities in short-term residential load profiles. [107] developed a CNN LSTM-based hybrid
network that similarly benefits from the spatial feature extraction of CNN and the long-term sequence
modeling capability of LSTM. Their experiments confirmed that such hybrid structures are well suited
for capturing irregular load fluctuations and underlying nonlinear patterns in short-term forecasting
tasks. [108] extended this paradigm by incorporating time-encoded features into a hybrid deep learning
framework. Their model improves not only predictive accuracy but also interpretability, which is
essential for practical implementation in energy-aware smart homes. Time encoding enables the model
to explicitly account for periodic and temporal variations in a nonlinear context.

4.2.3. Capturing Temporal Dependencies

Temporal dependencies are central to the accurate forecasting of household electricity consump-
tion, as household loads are inherently sequential, time-correlated, and influenced by both short-term
usage patterns and long-term seasonal or behavioral trends. Recent research has leveraged advanced
deep learning architectures to effectively model and forecast load by capturing both short- and long-
term temporal correlations. Approaches based on LSTMs, Transformers, graph-based architectures,
and probabilistic learning each contribute distinct advantages.

RNNs have been widely adopted for modeling sequential household electricity consumption due
to their ability to capture temporal structures over time. Atef et al. [109] developed a deep BiLSTM
model that captures both forward and backward temporal dependencies, resulting in enhanced short-
term forecasting performance. Guo et al. [86] extended this approach by proposing a hybrid long-
and short-term time-series network, which integrates LSTM encoders with multi-resolution feature
extraction to handle temporal patterns at different scales. Xu et al. [30] further improved temporal
learning and interpretability by introducing an LSTM framework augmented with a mixture attention
mechanism that dynamically weights time steps. This not only enhances model focus on relevant
temporal features but also increases transparency. Building on the temporal decomposition perspective,
Gao et al. [110] proposed a hybrid framework combining seasonal-trend decomposition with deep
temporal models to capture both long-term periodicity and intra-seasonal variation. While LSTM-
based models remain effective in capturing complex sequential dependencies, their performance
may degrade when exposed to extreme non-stationarity or irregular consumption behavior without
additional feature regularization or external context.

Transformer-based architectures have emerged as powerful alternatives to RNNSs, offering su-
perior capability in modeling long-range temporal dependencies through self-attention mechanisms.
They treat the entire input sequence as a set of tokens and apply self-attention to weigh the importance
of each time step relative to others. [44] introduced a Transformer-based architecture specifically
designed for very short-term residential load forecasting. Unlike traditional models that rely on
sequential processing, deep-autoformer incorporates an autocorrelation mechanism to capture long-
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range temporal dependencies efficiently. Its series decomposition block separates trend and seasonal
components, allowing the model to focus on time-varying patterns. Extending this, Zhao et al. [11]
demonstrated that Transformer-based models, when combined with spatiotemporal attention mech-
anisms, are highly effective for capturing complex temporal dependencies in household electricity
forecasting. This model represents a significant advance over traditional and sequential deep learning
methods, offering improved accuracy, scalability, and explainability in practical residential energy
forecasting applications.

GNN:s offer a novel approach to temporal learning that goes beyond sequence modeling alone,
particularly due to their ability to capture both inter-household spatial dependencies and local temporal
dynamics. Rather than treating temporal sequences as isolated vectors or series, recent GNN-based
methods construct temporal graphs in which each node represents a time step and edges encode
temporal relationships such as autocorrelation, causality, or learned similarity. Lin and Wu [73]
introduced a novel GNN-based approach to address temporal heterogeneity in household data.
A key innovation of the framework lies in the use of dynamic graph construction and attention-
driven adaptation, which allows the model to focus on temporally correlated patterns even when
data distributions shift across households or seasons. It addresses limitations of both sequential
models and static GNNs by enabling adaptive, interpretable, and data-efficient learning of temporal
relationships across heterogeneous household time series. [111] proposed an explainable causal GNN
that captures both temporal correlations and causal relationships for electricity demand forecasting
at household and distribution levels. Temporal dependencies are embedded in the graph through
time-aware message passing, where each node aggregates information from both historical states
and causally related variables. This design enables the model to reflect how past consumption and
external factors contribute to future demand in a structured and interpretable manner. [112] proposed
a spatial-temporal GNN-based knowledge distillation framework for individual household load
forecasting. The experimental results show that the proposed knowledge-distilled GNN achieves
superior forecasting accuracy on individual household datasets compared to standard LSTM, ARIMA,
and shallow GNN baselines. The model performs particularly well in capturing irregular peaks and
demand fluctuations that span across time, demonstrating its strength in temporal sequence modeling.

Others: Langevin et al. [89] proposed a generative forecasting framework based on non-intrusive
load monitoring, which implicitly captures temporal patterns by learning appliance-level signatures
over time. This enables fine-grained temporal modeling without explicit sequence modeling. Lemos-
Vinasco et al. [96] developed online probabilistic models that estimate the conditional distribution of
load profiles, effectively accounting for variability and sequential correlation in dynamic residential
settings. Ismail et al. [113] presented a multi-level forecasting system that integrates univariate and
multivariate time series models to capture both short-term fluctuations and longer-term trends. While
less complex than attention-based models, these approaches remain practical and interpretable for
temporal learning in constrained environments.

4.2.4. Summary

Al-driven methods have advanced household load forecasting by tackling the complexity of
consumption patterns through three key strategies. First, probabilistic and behavior-aware models
effectively address behavioral unpredictability, improving robustness to user-driven variability. Second,
attention mechanisms and hybrid neural networks capture nonlinear consumption trends and dynamic
fluctuations. Third, temporal modeling approaches such as LSTMs, Transformers, and GNNs capture
both short-term and long-term dependencies across households.These approaches collectively promote
adaptive, scalable, and accurate forecasting in highly volatile household settings. Table 4 summarizes
Al-based approaches addressing consumption pattern complexity in household load forecasting.
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Table 4. Summary of Al-based approaches addressing consumption pattern complexity in household load
forecasting. The table categorizes methods by key aspects. For each approach, representative references and core
model types are listed.

Aspects Approaches Representative References Core Models
[38] CNN, GRU
Uncertainty-Aware [100] LSTM, GRU
Forecasting [99] CNN
[98] CNN, AutoEncoder
56?@119”1 . [101] CNN, GRU
olatility Behavior [4] LSTM
Pattern .
Recognition [32] CNN, BiLSTM
(6] CNN, LSTM
Ensemble [104] Bagging, Boosting
Learning [95] CNN, LSTM
[11] GNN, Transformer
Attention [46] Transformer
Mechanisms [105] CNN, LSTM
Non-Linearity [37] CNN
Hvbrid [108] CNN, LSTM
ybri
Models [106] CNN, GRU
[107] CNN, LSTM
[110] CNN, LSTM
RNN [109] LSTM
[86] LSTM
[30] LSTM
Temporal
Dependencies [11] Transformer, GNN
Transformer
[44] Transformer
[112] GNN, CNN
GNN [111] GNN, CNN
[73] GNN

5. Challenge IV: Privacy and Security

This section addresses the fourth major challenge in household load forecasting, namely privacy
and security concerns. Section 5.1 outlines the nature and implications of these concerns, focusing on
how regulatory constraints and consumer apprehension affect data availability and model performance.
Section 5.2 reviews recent Al-driven approaches designed to mitigate these challenges, including
federated learning architectures, differential privacy-enhanced methods, cryptography-enhanced Al,
and personalized learning techniques, as summarized in Table 5.

5.1. Privacy and Security Concerns

privacy and security pose significant challenges to household load forecasting by fundamen-
tally constraining the volume, granularity, and fidelity of the data required for accurate modeling.
Regulatory frameworks such as the General Data Protection Regulation® in Europe, the Consumer Data
Right* in Australia, and similar privacy legislation in other jurisdictions impose strict requirements

3 https://gdpr-info.eu/
4 https:/ /www.cdr.gov.au/
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on how consumer data is collected, stored, shared, and processed. These regulations often mandate
data anonymization or aggregation, which reduces the temporal and spatial resolution of household
energy data and limits its usefulness for detailed forecasting tasks. At the same time, many consumers
remain hesitant to share their load data due to concerns about potential misuse, unauthorized access,
or unintended inferences about their daily routines, behaviors, or device usage. This reluctance can
significantly reduce participation in data-sharing programs, resulting in data sparsity and the loss of
valuable variability across households.

The limitations imposed by privacy and security considerations often lead to the use of incomplete,
noisy, or biased datasets for training forecasting models. These issues negatively affect the robustness,
generalizability, and accuracy of the resulting predictions. Although emerging privacy-preserving
techniques such as differential privacy and federated learning offer potential solutions by enabling
local training and noise injection to protect sensitive information [114,115], they also introduce new
technical challenges. These include reduced model precision, increased training time, communication
bottlenecks, and additional complexity in model design and deployment. Similarly, security-enhancing
mechanisms such as encryption and secure multiparty computation provide strong data protection
but increase the computational and infrastructural burden, which may hinder real-time or large-scale
forecasting applications. In summary, privacy and security requirements significantly impact the ability
to collect and utilize high-quality household load data, thereby creating a fundamental tension between
data protection and predictive performance. Addressing this challenge will require the development
of innovative machine learning models and system architectures that can operate effectively under
privacy and security constraints while preserving forecasting accuracy and ensuring user trust.

5.2. Al Methods Addressing Privacy and Security Concerns

The widespread deployment of smart meters and advanced forecasting models has heightened
privacy and security concerns in household load forecasting. Al-driven solutions, especially federated
and distributed learning frameworks, have emerged as effective responses to these challenges.

Federated Learning is central to many privacy-preserving efforts. It allows decentralized model
training while keeping raw data local, thus reducing exposure risks, as shown in Figure 3.

Upload local
Gradlen.t model gradient
Aggregation 1y Push updated

e gradient to clients

LSTM-based Model

LSTM-based Model LSTM-based Model
Local data Local data Local data
House 1 - House 2 - House n

Figure 3. A federated learning framework for privacy-preserving household load forecasting. Each house trains a
local LSTM-based model using its private consumption data and shares only the model gradients with a central
aggregator. The aggregator performs gradient aggregation and distributes the updated global model gradients
back to individual clients, thus preserving data locality and mitigating privacy risks associated with centralized
data collection.

This architecture inherently enhances user privacy by eliminating the need for centralized data
storage and transmission, significantly reducing vulnerabilities associated with traditional meth-
ods [116]. [117] demonstrated the feasibility of integrating Federated Learning with edge computing
to support privacy-preserving load forecasting in resource-constrained household environments. Their
approach highlights the practical advantages of localized computation, particularly in reducing data
transmission and enhancing confidentiality. [118] further validated the effectiveness of Federated
Learning by achieving forecasting accuracy comparable to centralized models while maintaining
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data locality, thereby confirming Federated Learning’s suitability for real-world deployment across
heterogeneous households. However, challenges such as communication overhead and convergence
inefficiencies persist, especially in large-scale settings. To overcome these limitations, [119] proposed a
hierarchical Federated Learning framework that clusters households into localized groups for interme-
diate model aggregation, which significantly reduces communication cost and accelerates convergence.
Moreover, [15] demonstrated that combining Federated Learning with Transfer Learning can enhance
model generalizability under non-IID data distributions, further bolstering the robustness and scala-
bility of Federated Learning-based solutions. Collectively, these studies underscore the potential of
federated learning as a privacy-preserving and scalable alternative to traditional centralized forecasting
approaches in smart grid systems.

Differential Privacy-Enhanced AI: Differential privacy (DP) has emerged as a promising tech-
nique in enhancing Al models for privacy-preserving household load forecasting. By introducing
mathematically bounded random noise into data queries, model gradients, or outputs, DP ensures
that the inclusion or exclusion of a single household’s data has negligible impact on the forecasting
results. This mechanism effectively mitigates the risk of re-identification and inference attacks while
allowing Al models to learn meaningful patterns from aggregated consumption data. [120] proposed
a differential privacy-enhanced federated learning framework specifically designed for short-term
household load forecasting. Their approach demonstrates how combining DP with federated learning
can prevent data leakage in distributed environments without significantly degrading predictive
performance. Similarly, [121] developed a privacy-preserved probabilistic forecasting framework,
showing that calibrated noise injection within a DP context can support accurate short-term energy
predictions while satisfying regulatory constraints. In another study, Fernd [122] emphasized the role
of DP in addressing consumer privacy concerns in federated household forecasting systems, further
reinforcing its importance in real-world deployments. Despite the privacy-utility trade-off inherent
to DP, recent advances in adaptive noise calibration and local differential privacy offer promising
directions to reduce accuracy degradation. Overall, the integration of differential privacy into Al-based
forecasting pipelines provides a robust and principled foundation for safeguarding consumer data in
smart grid applications.

Cryptography-Enhanced AI: To mitigate security vulnerabilities in household load forecasting,
recent advances have integrated cryptographic techniques into Al frameworks, resulting in secure and
privacy-preserving predictive models. These cryptography-enhanced Al methods are designed to pro-
tect sensitive consumption data during model training, inference, and transmission, thereby addressing
threats such as data breaches, adversarial manipulation, and model inversion attacks. [123] introduced
a forecasting model that combines temporal convolutional networks with homomorphic encryption
to enable encrypted model inference without exposing raw load data. Their results demonstrate
that their approach achieves high forecasting accuracy while preserving end-to-end confidentiality.
Similarly, [124] proposed a cloud-based forecasting service that employs secure computation protocols
to protect individual load profiles during remote processing. This architecture ensures that neither the
cloud provider nor potential adversaries can access plaintext data. [125] advanced this line of work by
developing a secure federated learning framework that combines encryption, local model training,
and communication protocols to prevent data leakage and unauthorized access in distributed settings.
In parallel, [126] explored secure multiparty computation for real-time household load scheduling,
showing how distributed optimization can be achieved without compromising data privacy or control
integrity. [127] further reinforced the utility of cryptographic methods by demonstrating a privacy-
preserving distributed learning approach using lightweight encryption and secure communication
protocols tailored for IoT-enabled smart grids. Collectively, these efforts underscore the growing
viability of cryptography-enhanced Al in securing forecasting pipelines, though challenges remain
regarding scalability, computational overhead, and deployment complexity in real-world systems.

Personalized AI: Personalized Al, particularly in the form of personalized federated learning,
has emerged as an effective approach for addressing both privacy and security concerns in household
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load forecasting. Unlike traditional centralized models, personalized federated learning enables local
model adaptation to individual household characteristics while avoiding the need to transmit raw data
to external servers. This decentralization inherently reduces the risk of data leakage and unauthorized
access. [128] demonstrated that incorporating personalization into federated frameworks signifi-
cantly improves forecasting accuracy for individual consumers while maintaining privacy compliance.
Building upon this, [129] addressed the challenge of imbalanced historical data across households by
introducing a personalized federated learning approach capable of learning personalized represen-
tations even in the presence of non-uniform data distributions. Their model achieved high accuracy
without compromising privacy. [130] further highlighted the robustness of personalized federated
learning under heterogeneous household settings, showing that personalization mitigates the perfor-
mance degradation typically observed in standard federated learning when client data distributions
diverge. Moreover, [131] proposed a personalized federated differentiable architecture search method
that autonomously optimizes forecasting architectures per household while preserving data locality,
further enhancing scalability and user-specific performance. Collectively, these studies illustrate that
personalized Al offers a promising pathway for developing secure, privacy-aware forecasting systems
capable of accommodating diverse household behaviors without requiring intrusive data access.

Further innovations include interpretable federated learning for edge computing [132], which
introduces model explainability into traditionally opaque architectures. This aspect is particularly
important for ensuring transparency and accountability in energy governance. He et al. [133] incorpo-
rate clustering into FL to address statistical heterogeneity, while Chen et al. [134] empirically validate
the practical trade-offs between accuracy and privacy preservation. Federated Non-Intrusive Load
Monitoring models offer privacy-aware appliance-level disaggregation without raw data transmission.
Zhou et al. [135] propose a federated deep learning approach for non-intrusive load monitoring that
can infer appliance-specific load curves while maintaining household privacy. This advancement is
particularly relevant as non-intrusive load monitoring can reveal sensitive behavioral patterns; thus,
privacy-preserving disaggregation is vital to ethical and compliant deployment. From a system-level
perspective, Chen et al. [136] tackle the challenge of reconstructing baseline loads for demand response
under privacy constraints. Their framework considers the interplay between distributed energy re-
sources and privacy, emphasizing that privacy-preserving methods must also align with operational
requirements of grid services.

Summary. These efforts collectively mark a significant evolution toward privacy-aware, secure,
and intelligent household load forecasting systems. However, challenges remain in balancing system
performance, communication efficiency, and robustness to adversarial manipulation. For example,
integrating differential privacy often introduces noise that can degrade model utility, particularly
in edge cases with limited data. Moreover, the computational demands of encryption and secure
aggregation can strain edge devices. A pressing concern is the robustness of these systems under
coordinated attacks or during unexpected network disruptions, which are common in household
settings. Looking forward, there is a need for lightweight, adaptive Al frameworks that can self-
tune privacy levels based on context, user preference, and legal constraints. Ensuring transparency,
fairness, and verifiability in these systems will also be crucial for maintaining long-term user trust and
regulatory compliance in evolving smart grid infrastructures. Table 5 summarizes key privacy- and
security-preserving approaches in household load forecastin, highlighting how Federated Learning,
DP-Enhanced Al, Cryptography-Enhanced Al, and Personalized Al contribute distinct capabilities to
developing secure and privacy-aware smart grid applications.
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Table 5. Summary of privacy- and security-preserving methods in household load forecasting. The table
categorizes recent approaches by method type, target concerns, key strengths, representative references, and
employed forecasting models.

Method Target Strengths References Models
Category
Data local [15] LSTM, GRU
ata locality,
Ez:f;?;ed Privacy scalability potential, [119] ANN
8 heterogeneity-resilience [118] LSTM
[117] LSTM
Formal privacy guarantees, [75] LLM
DP-Enhanced Privac regulatory compliance, [121] ANN
Al y flexible integration, [122] CNN, LSTM
adaptive mechanisms [120] LSTM
End 4 [124] LSTM
nd-to-end security,
g;{g;i‘z?};};y Security infrastructure compatibility, [123] CNN
secure collaboration [125] CNN, LSTM
[126] ANN
U q [129] ANN
. . ser-centric adaptation,
I;elrsonahzed g;lciiif & resilience to data imbalance, [130] LSTM
y client-specific optimization [151] LSTM, RNN
[128] LSTM

6. Future Directions

As household energy systems become increasingly digitized and decentralized, future advance-
ments in load forecasting must address the growing demand for accurate, reliable, secure, and in-
terpretable predictions. The following directions highlight promising research frontiers that aim to
improve both technical performance and practical applicability of household load forecasting systems.

*  Multimodal Datasets: Creating high-quality multimodal datasets is a critical foundation for ad-
vancing household load forecasting. Traditional forecasting methods typically rely on univariate
or limited multivariate time series data, such as aggregated power usage from smart meters.
However, household energy consumption is inherently influenced by a wide range of interdepen-
dent factors, including real-time IoT sensor readings (e.g., appliance status, motion detectors),
data from wearable devices (e.g., activity levels, health signals), environmental variables (e.g.,
temperature, humidity, solar irradiance), user behavior (e.g., daily routines, occupancy), and
static building characteristics (e.g., insulation, floor area, orientation). Combining these diverse
data sources offers several advantages. It allows for the development of more accurate and
context-aware models that account for the dynamic and personalized nature of household energy
use. For instance, data from wearable devices can indicate changes in residents’ activity or sleep
patterns that influence electricity consumption profiles, while weather information contributes to
the accurate modeling of heating, ventilation, and air conditioning demand. Building characteris-
tics influence thermal inertia and load response, providing a basis for personalized forecasting.
Future research could focus on the development of open, well-annotated, and representative
multimodal household energy datasets to enable the training and benchmarking of advanced Al
models under realistic conditions.

*  Multimodal Learning: With the increasing availability of diverse data sources in household
settings, such as smart meters, IoT devices, environmental sensors, and behavioral logs, there
is a growing need for advanced learning frameworks that can effectively model and integrate
these heterogeneous modalities. Traditional forecasting models struggle to capture the complex,
non-linear interactions between modalities, often treating different data streams in isolation or
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performing simplistic concatenation. To fully leverage the predictive power of multimodal data,
future research should explore sophisticated architectures designed for cross-modal learning.
Attention-based fusion mechanisms, for example, can dynamically weigh the importance of each
modality based on context, enabling the model to focus on the most relevant information at
different time points. GNNs offer another promising avenue, as they can model the relational
structure among various data types and spatial entities, such as rooms, devices, or neighboring
households. Variational inference techniques can also be employed to handle uncertainty and
missing data, a common issue in multimodal household datasets. Ultimately, effective mul-
timodal data learning will be instrumental in enhancing the granularity, interpretability, and
generalizability of household load forecasting systems, paving the way for more personalized
and adaptive energy management solutions.

¢ Integrating LLMs: The integration of LLMs into household load forecasting frameworks opens
new possibilities for leveraging unstructured textual data, which has traditionally been under-
utilized. LLMs can process and understand natural language inputs such as customer feedback,
usage diaries, utility service messages, and policy documents, enabling models to incorporate
subjective and contextual information that complements structured sensor and consumption data.
This can enhance model interpretability by allowing natural language explanations for forecasting
outcomes and recommendations. Furthermore, incorporating LLMs may support user-centric
forecasting by enabling personalized predictions based on textual preferences or behavioral
descriptions. The synergy between LLMs and structured time-series models offers a promising
direction for more interactive, adaptive, and human-understandable energy forecasting systems.
Nonetheless, this integration introduces challenges related to aligning textual and numerical data,
managing computational cost, and ensuring data privacy, which future research must carefully
address

* Adaptive and Continual Learning: Household load patterns are inherently dynamic due to
seasonal changes, occupant behavior shifts, appliance upgrades, and evolving lifestyle patterns.
Traditional static models, which rely on historical data and periodic retraining, often fail to capture
such non-stationarities in real-time. Future research should prioritize adaptive and continual
learning techniques that allow forecasting models to incrementally update with new data while
retaining previously acquired knowledge. Online learning algorithms can support real-time
updates using incoming data streams, while meta-learning enables models to quickly adapt to
new tasks or household-specific patterns with minimal data. Additionally, drift detection and
adaptation mechanisms are crucial for identifying and responding to distributional shifts over
time. Implementing these approaches can significantly enhance the resilience, longevity, and
accuracy of forecasting systems deployed in dynamic household environments, reducing the
need for frequent model redevelopment and retraining. However, challenges such as catastrophic
forgetting, computational efficiency, and maintaining privacy during continual updates remain
important research concerns.

*  Privacy-Accuracy Trade-Off: Maintaining a balance between data privacy and predictive accu-
racy remains a central challenge. Granular consumption data can significantly improve forecasting
performance, but it also raises serious privacy concerns, especially when revealing sensitive behav-
ioral patterns or enabling intrusive inferences. Future research must focus on designing adaptive
frameworks that dynamically manage this trade-off based on contextual risk assessments and
user-defined privacy preferences. For instance, federated learning allows local model training
without centralizing raw data, but it may still be vulnerable to gradient leakage. Integrating
differential privacy can mitigate this risk by adding calibrated noise to model updates, though
excessive noise may reduce model utility. Secure computation methods such as homomorphic
encryption and multi-party computation offer stronger guarantees but often introduce high com-
putational overhead. To address these limitations, future work should explore hybrid techniques
that intelligently combine these methods and tune privacy levels in response to data sensitivity,
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model uncertainty, or user feedback. Such context-aware systems will be crucial to building trust,
encouraging data sharing, and ensuring regulatory compliance in practical household energy
applications.

¢  Explainable Al for Trustworthy Forecasting: To enhance transparency and promote stakeholder
trust, future household load forecasting models should incorporate built-in mechanisms for
interpretability. As these models increasingly influence energy management decisions at both
household and grid levels, understanding how and why specific predictions are made becomes
essential. Techniques such as feature attribution methods, attention weight visualization in deep
networks, and counterfactual reasoning can offer insights into which inputs drive predictions,
detect anomalies, and explain unexpected outputs. Moreover, explainability plays a vital role in
regulatory acceptance and user engagement, especially in privacy-sensitive environments. Future
work should investigate explainable Al methods tailored to time-series and multimodal energy
data, ensuring that interpretability does not compromise accuracy or efficiency. Developing
transparent models that are both accurate and understandable is critical for ensuring responsible
deployment of Al in household energy forecasting.

* Real-Time Processing for Real-World Deployment: As household load forecasting systems
advance toward operational applications, there is an increasing need for models that can deliver
rapid, low-latency predictions under practical constraints. This requirement is especially relevant
in smart homes and energy-aware buildings, where timely responses are essential for tasks such
as load shifting, device scheduling, and grid coordination. Future research should focus on
developing forecasting models that are both lightweight and computationally efficient, making
them suitable for deployment on edge hardware such as smart meters or embedded controllers.
Techniques including model pruning, quantization, and knowledge distillation are promising for
minimizing resource consumption without sacrificing accuracy. Moreover, designing models that
can adapt their computational complexity in response to changing energy demand or hardware
limitations will be critical. Meeting these goals will support the deployment of scalable and
reliable forecasting systems in diverse real-world household environments.

7. Conclusion

This review has presented a comprehensive, challenge-oriented synthesis of recent advances in
Al-driven household load forecasting. We have categorized and analyzed state-of-the-art forecasting
methods with respect to four primary challenges: methodological limitations of traditional approaches,
data-related constraints, consumption pattern complexity, and privacy and security concerns. Across
these dimensions, a wide range of Al techniques have demonstrated significant potential, including
Transformers, GNNs, Transfer and Few-Shot Learning, Federated Learning, Reinforcement Learning,
and LLM. Future research could focus on developing lightweight, personalized forecasting models that
can operate effectively under privacy constraints and varying data conditions. There is also a growing
need for unified benchmarking datasets and evaluation protocols that can support reproducible and
comparable assessments of forecasting performance across diverse settings. In conclusion, household
load forecasting represents a rapidly advancing research area with significant practical implications
for the energy transition. By framing the discussion around fundamental challenges and mapping
them to emerging Al solutions, this review provides a foundation for future work that aims to build
intelligent, equitable, and sustainable energy systems at the household level.
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