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Featured Application: This work develops an overview of miniaturized hardware technologies along with a 
practical study on beamforming based on Federated Learning (FL), which will be pivotal items for efficient and 
effective operation at the edge of upcoming 6G and Future Networks (FN). 

Abstract: The forthcoming paradigms of 6G, Future Networks (FN) and Super-Internet of Things (IoT), will 
bring disruption at various levels of the physical infrastructure. This work focuses on the network edge, 
stressing how the forecasted proliferation and technology innovation of the physical systems at the boundary 
of the network (edge), will pose crucial issues to be addressed in the next years. In particular, the continuity 
from the edge to the core of the network will be addressed, suggesting unprecedented design and development 
approaches. Along such a direction, the impact of Micro and Nanotechnologies as a Key Enabling Technology 
(KET) for the network edge of the future is sketched, including numerous examples of already existing 
micro/nano devices, components and systems. Afterwards, a practical study of how improving hardware 
technologies at the edge can be beneficial in terms of more efficient operation is reported. To this end, scattered 
intelligence shall be a key enabler with federated learning at the base station providing decisive assistance to 
adaptive downlink beamforming codebook design for mmWave massive MIMO set-ups as essential 
ingredients for enhanced link reliability in edge networks. 

Keywords: 6G; Future Networks (FN); Internet of Things (IoT); Distributed Computing Continuum 
Systems (DCCS); network edge; Micro/Nanotechnologies; MEMS; NEMS; federated learning; 
MIMO; beamforming 

 

1. Introduction 

As of now, the articulate discussion mainly pulled in recent years by 6G, sketched sets of 
diversified services and applications, Key Performance Indicators (KPI), and Key Enabling 
Technologies (KET), which seem falling well-beyond the next generation of telecommunications itself 
[1]. In fact, observing the way other generations (including 5G) evolved, it is like if 6G is going to 
draw a line between the previous telecommunications-centric networks, and the upcoming services- 
and applications-centric diversified and distributed infrastructures. Trying to capture most of the 
forecasted disruption of 6G within a brief narrative is a non-trivial task. A brilliant approach is 
developed in [2], where KPI and KET are grouped according to a small number of Paradigm Shifts 
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(PS) that will be triggered by 6G. The four PS, after being re-termed and rearranged in [3,4], are 
graphically set as shown in Figure 1, and read as follows. 

 
Figure 1. Graphical arrangement of the four PS of 6G, as re-termed in [3,4]. [All the images and 
thumbnails used to compose the graphic are powered by https://www.Freepik.com]. 

The formation of highly synchronized, low latency and spectrally efficient networks as 
envisioned for 6G wireless communication is critically dependent on millimetric wave (mmWave), 
massive multiple-input multiple-output (MIMO), scattered intelligence (SI), and edge computing 
elements [1][2]. As mmWaves are degraded by atmospheric attenuation and physical obstructions, 
artificial intelligence (AI) aided signal processing, beamforming, and adaptive antenna techniques 
are critical for better link reliability. 

Most commonly mmWave communications utilize hybrid beamforming, where analog 
beamforming manages clusters of users with similar channel characteristics, forming a single beam 
for each cluster. Within these clusters, users are spatially multiplexed via digital beamforming, 
allowing hybrid beamforming to combine the benefits of both analog and digital beamforming while 
requiring fewer RF chains. This approach supports the implementation of massive MIMO, which 
enables the formation of narrow beams. However, these narrow beams increase beam training time 
and necessitate line-of-sight communication, limiting their application in scenarios with high 
mobility. 

Massive MIMO also enables the creation of arbitrarily shaped beams, which is achieved by 
designing the phase values of the analog phase shifters. This design process involves selecting an 
optimal set of phase shift values, referred to as a "codebook," using appropriate algorithms. As the 
number of antennas in massive MIMO systems increases, the search space for phase shift vectors 
grows, making exhaustive search algorithms impractical. Various learning-based methods have been 
proposed for optimal codebook design to achieve these arbitrary beam shapes. Multi-agent 
reinforcement learning (MARL) has demonstrated robustness and situational awareness in adaptive 
codebook design. 

1.1. Scattered Intelligence (SI) 

This PS hinges around the cornerstone technology of Artificial Intelligence (AI). Since the very 
early discussion of 6G, the backbone of decentralized data and computation across the network has 
been stressed as a crucial trend to be addressed [5,6]. Further elaboration of such a proposition led to 
forecasting a massive exploitation of AI at each level of 6G infrastructure, with reference both to the 
service plane (in continuity with previous generations), and (more disruptively) to the network 
operation plane [7,8]. 

AI algorithms can, e.g., optimize network operation by addressing problems that involve large 
amounts of diversified data, including mining, sensing, prediction and reasoning [9]. Focusing on the 
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user-end, AI can put together the sensing of network traffic variations, of resources utilization, 
averaged user demands, along with identification of potential threats, optimizing on a real-time basis 
the functioning of various network entities, like Base Stations (BS) and User Equipment (UE) [10–12]. 

Also, it must be borne in mind that emerging wireless services will evolve into complex systems 
with varying requirements [13], and the characteristics of AI and Machine Learning (ML) algorithms 
can empower self-aware networks. Further ahead, this can lead to developing self-evolutionary 
features of the network of networks (or system of systems), with the ability, among others, to gather 
proper resources to ensure local maintenance of KPI (i.e., resilience), while keeping homogeneity 
with the network as a whole. This implies complex orchestration of the infrastructure [14] and, on 
the other hand, distribution of AI at each level of the network, which (re-termed) is Edge Intelligence 
(EI) [15]. 

1.2. Seamless Coverage (SC) 

This PS builds around another fundamental proposition of 6G, which is that of ensuring the 
same KPI, regardless of whether the user (human or machine) is accessing the network from a 
metropolitan, rural or remote location. Such a remarkable target is driven by the mega-trend towards 
ubiquity of services, and is already being pursued under 5G through extensive diversification of the 
physical infrastructure [16,17]. This concept is shown schematically in Fig. 1, where the network relies 
on terrestrial, airborne, space and oversea nodes. A comprehensive report on this topic is available 
in [18,19]. Given such a frame of reference, the topic of Non-Terrestrial Networks (NTN) is being 
intensively discussed recently [20], with particular focus on aspects at different levels, arising from 
integration of satellites within the classical ground infrastructure [21]. 

1.3. Spectrum Diversity (SD) 

Recalling a few crucial expected KPI of 6G, like breaking the 1 Tbps average data rate per user, 
scoring End-To-End (E2E) latency below 1 ms, and ensuring E2E reliability of 99.99999 % [22], it is 
easy to guess that non-conventional exploitation of the frequency spectrum will be necessary, well 
beyond what 5G is already pursuing today. 

That said, the discussion in [2] forecasts for 6G an all spectra scenario, leveraging the continuity 
across sub-6 GHz frequencies, mm-Waves (10-30 GHz), sub-THz (from 30 GHz to 300 GHz), THz 
range (above 300 GHz), along with optical frequencies, including the visible light spectrum (Visible 
Light Communications – VLC). Such a variety of spectra gives rise to a plethora of pros and cons that 
must be carefully and thoroughly evaluated. To this end, comprehensive discussion of various 
related aspects, ranging from the physics of data transmission at such high frequencies, to key-
features as advanced beamforming, and spectrum policy issues, is available in [23–26]. 

1.4. Enhanced Security (ES) 

Having in mind the discussion above, it is straightforward that 6G-driven high integration of 
technologies and ubiquity of services, along with massive exploitation of AI, will raise so many and 
non-trivial issues in terms of security, privacy and trust of data, that a dedicated PS (ES) is necessary 
for their counteraction and mitigation [27–29]. 

The growth in sensing functionalities and the prevalence of mobile/wearable devices centered 
around human-centric services and communications, will prompt security/privacy challenges across 
multiple fronts. AI itself presents several issues, encompassing data security, AI model and algorithm 
security, Software (SW) vulnerabilities, and the improper utilization of AI technologies. The training 
of AI models involves collecting vast amounts of data, likely containing users’ sensitive information, 
such as identity and location [2]. 

The proliferation of miniaturized and wearable IoT devices raises security concerns due to 
frequent interactions and interconnections, urging for efficient authentication mechanisms and 
strategies. Traditional encryption/decryption techniques become cumbersome in this context, as they 
demand computing resources that are often unavailable given the limited computational and storage 
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capability and power availability, typical of IoT devices. Similar considerations apply to Unmanned 
Air Vehicles (UAV) networks (recalling the PS of SC), prompting the development of lightweight 
encryption protocols [30,31]. 

Just to list (in no particular order) a few key technologies and strategies that can provide 
significant contribution in the PS of ES, the following ones are worth to be mentioned: 1) Acting at 
the Physical Layer Security (PLS) level [32]; 2) Exploitation of Quantum Technologies (QT), e.g., 
through Quantum Key Distribution (QKD) [33,34]; 3) Blockchain [35,36]; 4) Federated Learning (FL) 
[37,38]. 

1.5. Paper Outline 

The paper is organized as follows. After the current Section 1 that introduced the PS of 6G, the 
next Section 2 will first highlight the proliferation and the disruption that will occur in 6G and FN at 
the network edge, and then will address the issues of edge to cloud continuity. Then, Section 3 will 
argue that Micro/Nanotechnologies could address multiple edge requirements in an efficient and 
effective manner. Further, in Section 4 we intend to report the design of certain approach with the 
objective to improve MARL-based codebook design by including federated learning (FL) at the user 
equipment level, resulting in more accurate and adaptive user clustering. Finally, Section 5 will 
collect a few conclusive considerations. 

2. General Considerations on Future Network Edge and Integration with the Whole 
Infrastructure 

This section develops some considerations on the future development of the network edge, from 
the perspective of physical systems. To do so, the features expected for 6G/FN network edge are 
briefly discussed, at first. Then, the resulting open issue of orchestrating an increasingly more 
complex edge with the rest of the infrastructure is introduced. 

2.1. Proliferation and Disruption at the Edge of the Network 

Recalling the discussion developed to this point, it is out of the question that the edge of the 
network will relentlessly proliferate in the future, driven by application paradigms like the (Super-
)IoT and the Tactile Internet (TI), with 6G and FN covering connectivity to the rest of the network 
(i.e., towards the core) and of the world. This statement comes in with important implications to be 
addressed. In particular, two considerations should be borne in mind. 

The first, in close continuity with what is already ongoing, is that the density of devices 
connected to the network per square kilometer of 0.1 M/km2 under 4G, is expected to rise to 1 M/km2 
with 5G, and to 10 M/km2 when 6G will take over [39] (see Figure 2). 

 
Figure 2. Millions of devices per square kilometer from 4G to 6G [39]. 

The second is linked to the inherent disruption of 6G and FN (as sketched in Section 1). It has to 
do with conceiving and designing edge physical systems that implement bio-/nature-inspired 
concepts, which is way far from how semiconductor-based electronics and telecommunications 
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evolved across the past 5-6 decades. Just to mention a few of these unprecedented characteristics, the 
following items must be reported: 

(1) Cognitive-like features, e.g., self-reaction and self-repair intrinsic capacities [40,41]; 
(2) Self-management, high resilience and self-evolution of physical systems [42,43]; 
(3) Energy autonomy and self-sustenance (zero-energy systems and Energy Harvesting – EH) 

[44,45]; 
(4) Post-digital and non-conventional computing (also termed soft-computing) and Computing In-

Memory – CIM systems [46,47]; 
(5) Affective Computing (AC) [48,49]. 

Now that the crucial emerging trends of capillarization and disruption of the network edge are 
addressed, the consequent aspect of integration within the whole infrastructure is going to be 
addressed. 

2.2. Addressing Continuity from the Edge to the Core 

Even at shallow glance, making the future network edge work as a whole with the rest of the 
infrastructure, is not trivial. This is known to the scientific community, and efforts are already being 
spent to address such a complex issue. The resulting research is not yet aggregated in an established 
discipline, but it can effectively be termed as Distributed Computing Continuum Systems (DCCS) 
[50]. 

In fact, already today, systems that leverage the Cloud infrastructure along with new computing 
tiers, like Fog and Edge, are working as a computing continuum [51]. However, the discussion in [52] 
lists a certain number of potential weaknesses, along with boundary conditions, which may yield 
such classical computing continuum approaches not the best option for the network edge of the 
future. 

First, existing strategies are devoted to solve specific challenges. Moreover, they rely on 
traditional top-down methods for design and management, deriving from the first Internet-based 
systems, i.e., with a server and a client, specified by the SW application. 

Also, [52] points out that edge entities may not count on a certain architecture. Therefore, the 
architecture itself should become a dynamic feature of the systems, triggering the ability of reacting 
to (unexpected) situations. On the contrary, in the classical approach, the system characteristics are 
driven by their infrastructure. To this end, a key sentence of [53] is quoted in [52], i.e., “a system is 
complex if its behavior crucially depends on the details of the system”. 

Another important statement, reported in [52] while discussing the novel approach proposed, is 
that a DCCS addresses all the resources required to enable an application of the computing 
continuum, this includes also the application itself but just as another component of the system. 

In addition, it is argued that in the Cloud a certain system infrastructure can have various 
characteristics, counting on the available Degrees of Freedom (DoF) in terms of resources to be 
employed. However, as the infrastructure starts approaching the Edge, the resources are increasingly 
limited, the DoF narrower, and the infrastructure approaches the use of all its capabilities. 

The work in [52] also covers relevant principles, like that of reactive systems, of equilibrium and 
of Free Energy Principle (FEP), borrowed from neuroscience, with reference to the brain adaptive 
behavior [54]. 

It must be noted that all the considerations in [52] mentioned above, refer to systems based on 
SW and to their management through a novel approach based on Markov chains [55]. As the focus 
of this work is that of Micro and Nanotechnologies as potential KET of future network edge physical 
systems, it seems that no overlaps exist. 

In fact, the propositions in [52] stressed above, despite referred to a different field of research, 
carry twofold relevance for the discussion at stake here. One the one hand, it is clear that the classical 
approaches, still in use today, will not be effective to manage the complexity of the future edge. 
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From a different perspective, collective requirements and constraints are identified, like the need 
for high resilience, self-management and self-evolution, along with the scarce availability of 
resources, among which, sophisticated Hardware (HW) items and energy. 

3. Micro/Nanotechnologies as a KET of Future Network Edge 

After pinpointing the general requirements and possible constraints to the evolution of the 
future network edge, it is straightforward that reformulation of the classical approaches to the design 
and development of its physical nodes will be necessary to a certain extent. The resulting landscape 
of KET, both SW and HW, turns by its nature wide and diversified. 

That said, HW technologies for low-complexity physical components, like sensors, actuators and 
transducers, are at stake here. Micro and Nanotechnologies (MEMS/NEMS), intended as highly-
miniaturized devices, systems, along with innovative micro-/nano-materials and electronics [56–59], 
are identified as suitable candidates for meeting (to a large extent) demands and constraints of 
6G/FN/Super-IoT physical edge nodes. 

The way the potential borne by such technologies is reported here, is rather practical. To this 
end, one scheme discussed in [3] is reported in Figure 3, showing the most relevant demands of 
6G/FN network edge nodes, directly and indirectly related to HW technologies. 

 
Figure 3. Most relevant (direct/indirect) HW-related demands of 6G/FN network edge [3]. 

Each surrounding label in Fig. 3 can be related to its partial or total implementation in physical 
(HW) miniaturized items manufactured in MEMS/NEMS technologies. 

This statement is going to be elaborated more in details below, including examples of research 
works in literature, when available. In other cases, consolidated research on some specific themes 
does not exist, already. However, related contributions are sought, as well, and must be intended as 
preparatory knowledge for further development of the related item(s) listed in Figure 3. 

3.1. Resilient Self-Adapting Operation 

The 6G network edge must adjust its operations in real-time to meet local needs and overcome 
temporary disruptions. This presents significant challenges for HW performance. E.g., low-
complexity HW components must independently respond to changing conditions without relying on 
dedicated HW-SW systems, which are impractical due to complexity, cost, and size constraints. A 
practical example is in Radio Frequency (RF) channel switching, where current solutions use 
redundant relays controlled via SW. In contrast, MEMS/NEMS solutions could utilize micro-relays 
that adapt to RF power levels without the need for dedicated control systems, leveraging physical 
properties of thin-films, like, e.g., thermal expansion and self-actuation [60]. 

3.2. Sensing Functionalities 
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In response to the previous point, sensing functionalities must be expanded. This involves 
physical sensors performing various and complementary functions, possibly through redundant 
duplication of different sensors on the same chip or by utilizing a single HW component in multiple 
ways. These capabilities can be facilitated by Microtechnologies and Nanotechnologies, also 
leveraging their substantial inexpensiveness, as discussed in [61,62]. 

3.3. Subsection Actuating Functionalities 

Building upon the prior point, actuators must also expand their functions and modes of 
operation, similar to sensors. Moreover, integrating mixed sensing and actuating capabilities within 
a single physical device aligns with the evolving requirements of the 6G network edge. The current 
state of the art in this area remains constrained, despite a few works, like [63], start stepping along 
this direction. 

3.4. Transduction Functionalities 

Transduction between different physical domain is an inherent feature of sensors and actuators. 
However, devices primarily focused on transduction capabilities, rather than sensing or actuating, 
are anticipated to be crucial, as well. This includes technologies like RF-MEMS/-NEMS, i.e., Radio 
Frequency MEMS/NEMS [64,65], and EH-MEMS/-NEMS, i.e., MEMS/NEMS for Energy Harvesting 
[66,67], which have been extensively explored in literature. Yet, there remains a gap in hybridizing 
these technologies to enable a single hardware unit to perform its function while simultaneously 
harvesting the required energy for operation. A couple of discussions venturing such a direction are 
elaborated in [68,69]. 

A microphotograph of a physical RF-MEMS complex switching device, manufactured in the 
technology discussed in [70], is shown in Figure 4. 

 
Figure 4. Caption to be added. Microphotograph of a complex RF-MEMS switching device [70]. 

A photo of an entire silicon wafer populated by diverse EH-MEMS design concepts targeting 
mechanical vibrations, as discussed in [71], is shown in Figure 5. 
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Figure 5. Caption to be added. Photo of a silicon wafer with diverse EH-MEMS designs [71]. 

3.5. Miniaturization and Integration 

The conduit linking all the previous points, as well as those following, is the relentless need for 
size reduction of physical devices at the edge, with a parallel increase of functionalities. Said that, 
Micro and Nanotechnologies trigger ample opportunities for advancing miniaturization, packaging, 
integration, and the fusion of functions within a single HW unit [72,73]. 

3.6. Energy Availability, Provision and Storage 

As previously emphasized, energy management will be pivotal at the 6G edge. Scientific 
research is advanced in transducer technologies for converting environmental energy (e.g., EH in 
previous Subsection D), transferring it (e.g., Wireless Power Transfer – WPT [74]), and storing it (e.g., 
miniaturized batteries [75]). 

However, there is a need to integrate and align these technologies to achieve the concept of 
Energy-Aware Distributed Optimization (EADO) [3,4]. Despite rich contributions in individual 
technology branches, there remains a gap in inclusive HW platform solutions that encompass diverse 
energy converters, optimized extraction and storage, and adaptive operation strategies tailored to 
real-time power availability. An example is discussed in [76]. 

3.7. Evolution of Functions 

Building on the earlier Subsection 3.1, the self-adaptation of 6G extends beyond mitigating local 
challenges. With extensive use of AI, services and functionalities will evolve, potentially 
incorporating unplanned features. This expanded flexibility cannot solely rely on HW, particularly 
at the network edge, where extensive HW/SW resources are limited and not fully accessible, as 
widely discussed in Section 2. 

3.8. Data Transmission/Reception (Tx/Rx) Capacity 

In contrast to earlier generations, 6G will bring a disruptive shift from centralized (cloud) to 
distributed (fog/edge) capabilities (see Section 2). Yet, this transition does not diminish the 
importance of data transmission and reception across the network periphery and core. Edge HW 
infrastructure nodes will require high-performance, versatile and ultra-low-power RF transceivers 
(transmitters/receivers). MEMS/NEMS solutions are expected to offer significant advantages in 
providing the necessary RF passive components for such systems (see Subsection 3.4). 

3.9. Data Storage 

Combining the trends of resource distribution, AI utilization, and self-adaptive operational 
evolution, alongside the importance of local data storage capacities, the need for miniaturized, ultra-
low power consumption, and very-low access latency HW components becomes paramount. 

Leveraging existing and emerging Micro and Nano technology-based solutions, like, e.g., [77–
79], in a synergic way could prove to be crucial in meeting these demands, as emphasized in the 
subsequent point, too. 

3.10. Computational Capacity 

In connection with the preceding point and with the discussion in Section 2, there will be a 
significant rise in demands for high-efficiency edge computation capacities. Within this context, the 
two emerging research streams of CIM and of non-conventional computing will exert significant 
impact. These research areas, although not fully explored, align well with the capabilities offered by 
Micro/Nano technologies. Examples of investigations along both such directions are discussed in [80] 
and [81], respectively. 
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4. Federated Reinforcement Learning-Assisted Adaptive Downlink Beamforming Codebook 
Design for mmWave MIMO 

As already mentioned, mmWave communications use hybrid beamforming, where analog 
beamforming produces a single beam for clusters of users with identical channel characteristics. By 
spatially multiplexing users within these clusters, digital beamforming allows hybrid beamforming 
to combine analog and digital benefits with fewer RF links. It supports massive MIMO, which 
narrows beams. Line-of-sight communication and extended beam training limit narrow beam 
utilization in high-mobility environments. 

Designing analog phase shifter phase values lets huge MIMO produce any beam pattern [82]. 
This design method chooses the best phase shift ”codebook”, or set of values, using algorithms. In 
large MIMO systems with multiple antennas, phase shift vector search space increases, making 
exhaustive search unfeasible [83]. Multi-learning-based solutions have been devised for optimal 
codebook development to acquire any beam morphology. Multi-agent reinforcement learning 
(MARL) is robust and situational in adaptive codebook design. 

4.1. Common Appproaches of Codebook Design for Hybrid Beamforming in mmWave-Massive MIMO 
Networks  

Generally speaking, codebook design approaches necessitate an initial clustering phase, which 
frequently depends on offline data collecting and training [82] or inefficient beam training methods. 
When dealing with situations that are dynamic, it is vital to re-cluster frequently. It is possible for 
downlink codebook design algorithms to identify the ideal beam for beamforming by utilizing only 
uplink channel state information (CSI) and prior codebook entries [83]. This eliminates the need for 
consumers to provide any personal information. In light of this, there is a requirement for improved 
clustering algorithms that are capable of functioning without the direct transfer of user data to the 
base station. The hybrid beamforming technique is utilized in mmWave communications. In this 
technique, analog beamforming is utilized to create a single beam for groups of users who share the 
same channel characteristics. In these clusters, users are spatially multiplexed through the use of 
digital beamforming, which enables hybrid beamforming to combine the advantages of analog and 
digital technologies while reducing the number of RF chains. Through the use of this technology, 
narrow beams are produced, which permits massive MIMO. Narrow beams necessitate 
communication in a line of sight and longer training sessions, which limits their application in 
environments with high levels of mobility. 

The ability of massive MIMO to generate beams of any shape is made possible by the design of 
analog phase shifter phase values. For the purpose of selecting an optimal phase shift ”codebook”, 
or set of values, this design technique requires the utilization of algorithms. It is impossible to use 
exhaustive search procedures in massive MIMO systems that have a large number of antennas 
because the phase shift vector search space increases. The generation of ideal codebooks for the 
purpose of obtaining arbitrary beam morphologies has been accomplished through the development 
of many learning-based methodologies. Multi-agent reinforcement learning, also known as MRL, is 
a robust and situational technique that is used in adaptive codebook design. 

4.2. FL Assisted Codebook Design for Hybrid Beamforming  

As reported by [84] [85], FL provides a solution by transferring the model to the data rather than 
the other way around, which helps to maintain the confidentiality of the account of the user. This 
makes it possible to make advantage of personal data, such as coarse GPS location, accelerometer, 
and gyroscope data, in order to enhance beamforming effectiveness while simultaneously protecting 
the privacy of the user [86],[87]. The purpose of this work is to improve the design of MARL-based 
codebooks by including FL at the user equipment level. This will make it possible to cluster users in 
a manner that is both more accurate and more customizable. We improve the overall performance of 
codebook design by training a model at each user device to dynamically assign the user to a suitable 
cluster. This is accomplished by utilizing data from GPS, acceleration, and orientation for the training 
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of the model. Figure 6 shows a set-up of a horizontal FL server at the base station for identifying 
cluster at each user devices. It has two components, i.e., a model and a global update. The model 
update is derived from the aggregate of learning that is recorded at the base station with inputs 
received from all users. The CSI feed coming from different users help the system to estimate the 
present state of the channel and share the aggregate update of the model with all the users. Along 
with CSI, data from a Inertial Measurement Unit (IMU) and global positioning system (GPS) unit are 
used to drive the learning of the system. 

 
Figure 6. Horizontal Federated learning server at the base station for identifying cluster at each user 
devices. 

Figure 7 shows the MARL based beam codebook learning that takes place at the base station. 
Here the uplink CSI, reference signal received power (RSRP) (provides the measure of the wireless 
link in 4G/5G networks) feedback, automatic repeat request (ARQ) status, last used phase vector and 
identified cluster at user equipment (UE) level using FL are essential elements for creation of the 
model aggregation. Further, there is agent level collaboration and cooperation for inter-beam 
interference reduction. A bi-directional link between the MARL system and the participating nodes 
share the aggregated FL model, uplink channel sounding, and global update of the learning, ARQ 
status, RSRP feedback and identified cluster feedback for ascertaining the quality of the process. 
Identified cluster ID at each UE is fed back to the base station for improved MARL performance. 
Several such clusters are considered for establishing the effectiveness of the FL based approach. 
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Figure 7. Full System model with MARL at base station improved by user clustering at UE. 

4.3. Experimental Results 

Certain experiments have been carried out for a number of base station (BS) antennas (NBS), 
number of UE antennas (NM), and number of UEs (M) for certain quantization bits (r) for the analog 
part of the hybrid beamforming with numbers of BSs and number of clusters considered to be equal. 
Figure 8 shows a signal to noise ratio (SNR) vs. sum-rate comparison with noisy measurement of CSI 
and array response (with NBS = 32, NM = 4, r = 3, M = 4) for different hybrid beamforming techniques 
with mobile user moving between clusters. The results are compared with those obtained from deep 
reinforcement learning (DRL) in [88], manifold optimization (MO) [89], sparse orthogonal matching 
pursuit (SOMP) algorithm [90], convolutional neural network (CNN)-MIMO and the two-stage 
hybrid beamforming (TS-HB) algorithm [91]. 

The results indicate that for mobile users, FL-based user clustering with MARL outperforms 
traditional initial access-based beam clustering in MARL, as shown in [88]. This is largely due to the 
slower nature of traditional beam sweeping and the non-instantaneous cluster handoff when users 
move from one cluster to another. With coarse GPS and IMU data available at edge devices (mobile 
devices), each device can identify its own cluster, enabling seamless cluster handoff. This further 
improves the convergence of MARL for codebook learning by providing accurate feedback. The 
applicability of the proposed FL-based user clustering is not limited to MARL; it can also be utilized 
with other non-ML-based beam codebook design techniques, as user clustering is a crucial phase in 
any hybrid beamforming codebook design approach. 
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Figure 8. SNR vs. sum-rate comparison with noisy measurement of CSI and array response (NBS = 
32, NM = 4, r = 3, M = 4) for different hybrid beamforming techniques with mobile user moving 
between clusters. 

5. Conclusions 

Next application and service paradigms of 6G, Future Networks (FN), Super-Internet of Things 
(IoT) and Tactile Internet (TI), are paving the way for disruption to take place at any level of the 
network infrastructure. To handle such a huge challenge effectively, a rich and diversified portfolio 
of Key Enabling Technologies (KET) will be necessary. 

Given such premises, this work introduced at first a simplified description of 6G based on 
macro-areas of disruption, named Paradigm Shifts (PS). Then, a few considerations were reported on 
the future development of the network edge, from the perspective of physical systems. Subsequently, 
Micro and Nanotechnologies (MEMS/NEMS), intended as highly-miniaturized devices, systems, 
along with innovative micro-/nano-materials and electronics, were identified as suitable candidates 
for meeting (to a large extent) demands and constraints of 6G/FN/Super-IoT physical edge nodes. To 
this end, numerous examples of already existing research aligned to such a direction were reported. 

Then, the work also focused on a practical example of the concepts mentioned before, taking the 
example of beamforming. Here we have discussed the design and working of a FL driven MARL 
based robust and situationally aware technique for used in adaptive codebook design for mmWave 
massive MIMO set-ups as essential ingredients for enhanced link reliability in beyond 5G networks. 
We showed the effectiveness of such an approach covering base station and mobile users in clusters 
covered by adaptive antenna selection as part of hybrid beamforming technique. 
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