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Abstract

The Alcantara-Bode equivalent (1993) obtained from the Beurling equivalent formulation (1955) of the
Riemann Hypothesis (RH), a Millennium Problem, states that RH holds if and only if the null space of
a specific integral operator on L2(0, 1) related to the Riemann Zeta function, contains only the null
element or equivalently, the operator is injective. Their equivalent formulations allow solutions outside
the area of the number theory. In order to prove the Alcantara-Bode equivalent, we presented a method
for investigating the injectivity of linearly bounded operators built on a generic result introduced
(Theorem 1): a linear bounded operator on a separable Hilbert space strict positive definite on a dense
set is injective. Then, we introduced its versions on finite dimension approximation subspaces whose
union is dense, updating and extending the results from [1] by separating the analysis of the operator
restrictions from their operator approximations on finite-dimension subspaces. The positivity of such
operator approximations on a family of subspaces, ensures the strict positivity of the operator on the
dense set provided that the sequence of the positivity parameters is inferior bounded. The criteria
introduced in [1] reformulated in the new context is useful when no information we have to consider
operator approximations. We proved the Alcantara-Bode equivalent applying this method, having as
effect the solution of RH that is, the Riemann Hypothesis holds.

Keywords: integral operators; approximation methods; riemann hypothesis

MSC: 31A10, 45P05, 47G10, 65R99, 11M26

1. Introduction

The result obtained (Theorem 1) shows that a linear bounded operator T strictly positive on a

dense set S in a separable Hilbert space H, is injective. Equivalently, its null space does not contain
non null elements: Nt = {0}.
The positivity of a linear bounded operator T on S, (Tv,v) > 0 Vv € S not null, ensures that the null
space of T contains from S only the element 0, i.e. Ny NS = {0}. Thus, a zero of T could be only in the
difference set E := H \ S considering that a linear combination of u € S and v € E not null, is inside
the difference set. Let observe that (T*T) is non negative on the entire space and, an integral operator
having the kernel function non negative valued enters in this category, making the method useful
for any linear bounded operator provided that the operator is strict positive on the finite dimension
subspaces of the family whose union is dense.

We will deal with positive operators on a dense set and the norm used here is the norm induced
by the inner product. The idea is to consider the dense set in H be the union of a family F of finite
dimension including subspaces S;,, S, C 5,41, 1 > 1. For obtaining the necessary criteria for injectivity,
we will exploit the relationship between the orthogonal projections of the eligible elements onto the
family subspaces built in a multi-level fashion and the positivity parameters of the operator or its
operator approximations on these subspaces. This framework is similar to multigrid discretisation
(multi-level) methods used in applied mathematics.
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Now, a linear bounded operator T positive on a finite dimension subspace is in fact strictly
positive on it, i.e. there exists a, (T) > 0 such that (Tv,v) > a,(T)||v||*> Yo € S,. Suppose T be positive
in each subspace S, € F. If there exists « > 0 such that a;, > « for any n > 1 then T is strict positive
on the dense set S and, by Theorem 1 introduced below, Nt = {0}. In this case is no need for further
investigations.

If the sequence of the positivity parameters of T is not bounded, a,(T) — 0 with n — oo, we
consider two directions for investigation:

- involving the adjoint operator restrictions on the subspaces of the family, improving in the new
context with Lemma 2 below the criteria introduced in [1] or,

- considering a sequence of positive operator approximations on subspaces.

An inferior bound of the positivity parameters of operator approximations, ensures strict positivity of
the operator on the dense set. Lemma 1 address this case.

Both cases are analysed in the next paragraph. The third paragraph is dedicated to analyse the
dense set most appropriate for obtaining operator or operator approximations having sparse matrix
representations on the finite dimension subspaces whose union is dense in L2(0, 1). The last paragraph
is used for showing that on these subspaces the operator considered by Alcantara-Bode in [2] has the
sequence of positivity parameters bounded inferior and so, verifying the criteria introduced in the
third paragraph.

2. Two Theorems on Injectivity

Let H be a separable Hilbert space and denote with £(H) the class of the linear bounded operators
on H. If T € L(H) is positive on a dense set S C H, i.e. (Tv,v) > 0Vv € S not null, then T has no
zeros in the dense set. Otherwise, if there exists w € S such that Tw = 0 then (Tw, w) = 0 contradicts
its positivity.

Follows: its ‘eligible’ zeros are all in the difference set E := H \ S, i.e. Ny C E. In our analysis
we will take in consideration only the collection of eligible zeros that are on the unit sphere, without
restricting the generality once for an element that is not null w € H, both w and w/ ||w|| are or are not
together in N7.

Theorem 1. If T € L(H) is strictly positive on a dense set of a separable Hilbert space then T is injec-
tive, equivalently Nt = {0}.
Proof.

The set S C H is dense if its closure coincides with H. Then, if w € E := H \ S, for every ¢ > 0

there exists ug,, € S such that ||w — ueq|| < &. Now, the (1) results as follows. If ||w]| > ||uew

0 < |lwll = [[uewll = | — thew + el — [[ttewl < [Jw— tewll + [[uewl — tewll < e
If || ugw| > ||w|| instead, then:
0 < |luewl — [w]] = ltew — w+w|| — [[w]| < [|w— tewl <e
Therefore, given w € E, for every € > 0 there exists ¢, € S such that
lwl]] — [[uewl|| <€ 1)

Let w be an eligible element from the unit sphere, ||w| = 1 and take ¢, = 1/n.
Then there exists at least one element ¢, , € S such that ||u,» — w|| < €, holds. From (1), | 1 -

||ltte, w|| | < 1/n showing that, for any choices of a sequence approximating w, ue,» € S,n > 1, it
verifies ||ue, || — 1.

If T € L(H) is strict positive on S, then there exists & > 0 such that Vu € S, (Tu,u) > a||u|?.
Suppose that there exists w € EN Nr, ||w|| = 1 and consider a sequence of approximations of w,
ue,w € S,n > 1 that, as we showed, has its normed sequence converging in norm to 1. From the

positivity of T on dense set S, follows:

| 0

|2 < (Tue, ) they,w) = (T(Uey0 — W), the,w) < Enl|T|||they,,w

14 ||”£n,w
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With c=||T||/«, we obtain ||ue, | < c¢/n. Then, |[ue,»| — 0 with n — oo, contradicting its conver-
gence ||ug, | — 1 with n — oo.

This occurs for any choice of the sequence of approximations of w, verifying ||w — e, || < €n,n > 1,
when Tw = 0. Thus w ¢ Nr, valid for any w € E, ||w|| = 1, proving the theorem because no zeros of T
there are in S either. [

Suppose that the dense set S is the result of an union of finite dimension subspaces of a family F:
S = Uy>1Sy, S = H. It is not mandatory but will ease our proofs considering that the subspaces are
including: S, C Sy41,n > 1.

Observation 1. Let B, (u) := ||u — uyl|| be the normed residuum of element u € E after its orthogonal
projection onto Sy,. Then, B, (1) — 0 with n — oo.
Proof.

Given € > 0, from the density of the set S in H there exists ue € S verifying ||u — uc|| < €, as per
the observations made in the proof of the Theorem 1. Let S;,. be the coarsest subspace, i.e. with the
smallest dimension, from the family of subspaces containing u.. Because the best approximation of u
in S;, is its orthogonal projection, we obtain

B (1) := ||ju — Py ou|| < ||lu—ue|| < e, valid for every € > 0, proving our assertion. Rewriting
this, B, (1) := ||u — Pyu|| = ||[(I — Py)ul| < ||I — Py||||u| — O for n — oo for any u € H with P, the
orthogonal projection onto S,. [

Theorem 2. Suppose that T € L(H) has a sequence of operator approximations on the dense set S, {S,,n > 1},
having the following properties:

e :=||T = Ty|| = Owithn — oo,

ii) (T,0,v) > ay||v||? Vo € Sy, Sy € F.
If T is positive on S and there exists a > 0 such that

iii)a, >a>0n>1
then Ny = {0}.
Proof.

Being positive on S, the operator does not have zeros in the dense set.
Foru € E := H\ S, ||u]| = 1 denoting the not null orthogonal projection over S, by u,, := P,u,n >
no := no(u), then on any subspace Sy, 1 = ||u||?> = |jun||> + B2 (u). If there exists u € NrNE, ||u =1,
for it denoting B, := Bn(u) we have from ii):

0 < anlunl® < (Tuttn, tn) < || Tt [[tn]]-
Estimating || T, 1, ||,

I Tottall = 1| Tatt — T+ Taty — Ta] < (1T = Tulllstal + |11 = 102

~ (ealltall + ITIIB),
we observe that || T,,u,|| — 0 because ||u,|| — 1, ¢, — 0 (from 1)) and, B, — 0 (from Observation 1).
Now, from iii)

Wl < (e 1B/ 1) 1602
From Observation 1 we have B,/ |[ux|| = Bn/+\/1— p% — 0. So,

& < (e + IT1Ba/ 1) = 0.
The inequality is violated from a range 17 > ng, involving u ¢ Nr, valid for any supposed zero of T in
E. Because T has no zeros in the dense set, Ny = {0}. O

Let T := T, be a Hilbert-Schmidt integral operator. A technique for obtaining approximations
for T := T, to verify i) was used in [5], [6]. When T, n > 1, T, := Pj(T) are approximations of T,
on the subspaces of family F obtained through a class of finite rank operators - that are orthogonal
projection integral operators {P},,n > 1}, then from ||I — P};|| — 0, we obtain the property i). In the
next paragraph we show that {P};,n > 1} is a collection of finite rank projection operators on a family

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202411.1062.v8
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 doi:10.20944/preprints202411.1062.v8

40f9

of finite dimension subspaces (see [5]) whose union is dense in H := L%(0,1). Moreover, if the operator
approximations {T,,n > 1} verifies ii), we can show that the operator T is strictly positive on the
dense set S provided that their positivity parameters sequence is bounded.

Lemma 1. (Criteria for operator approximations). If the finite rank approximations of a positive Hilbert-
Schmidt integral operator T, verify the conditions ii) and iii) from Theorem 2, then T, is strictly positive on the
dense set.

Proof.

From the convergence to zero of the sequence €, n > 1 there exists €y a parameter €( such that
€ := maxy{€y; €, < a}, corresponding to a subspace Spy, g < 0. This parameter is independent of
any v € S and, because of the inclusion property, for any n < ny we have S;, C Sy,;. We could consider
Sy, to be S1 discarding a finite number of subspaces or, we could consider v to be inside of S;,;. Then:

Xy > > €y > €, forn > 1, resulting (a, —€,) > (0 —€g) > 0Vn > 1.

For an arbitrary v € S there exists a coarser subspace (i.e. with a smaller dimension) S;;,n > n; :=
n1(v), for which v € S;,. For it, with T := T, we have:

(Tv,v) = (Tyv,v) — ((Tn — T)v,v) > 0. Since T}, is positive on S,

(Tv,0) > aul[v]|* = (T, — T)o,0).

Because T and T}, are positive on S;, the inner product in the right side of the inequality is real valued
and, |((T, — T)o,v)| < ex|o||*.
So, if ((T, — T)v,v) > 0, then ((T,, — T)v,v) < €,|v||>. From €, < «,, follows:

(Tv,0) > (an —en)[[0]* > (a — €0) [|0]>
Now, if {(T, — T)v,v) < 0, then (Tv,v) > a,|v||? > a|[v|* > (& — €)]|v||*

Thus, taking a(T) = (a — €p), for any v € S we obtain

(Tv,0) > a(T)||v||% ie. T, is strict positive on the dense set S. [J

Corollary. If Q € L(H) is an Hermitian Hilbert-Schmidt operator verifying on a dense set S the prop-
erties 1i) and iii) from Theorem 2, then Q is injective.
Proof.

Being Hermitian, the operator verifies (Qu,v) > 0, for every v € H. Being Hilbert-Schmidt it
could be approximated on a dense family of finite dimension subspaces, its sequence of operator
approximations verifying i). Then,

(Qu,v) = (Quo,v) — ((Qn — Q)v,v) > 0 for any v € S. Following the steps from the proof of
Lemma 1 we obtain that:

(Qu,v) > (a — €)]||v||> meaning that Q is strictly positive on the dense set. Thus, due to Theorem
1/Lemma 1, we obtain Ng = {0}. O

Now, reformulating the injectivity criteria introduced in [1], we have the following lemma, use-
ful when a sequence of operator approximations could not be obtained.

Lemma 2. (Criteria for operator restrictions.) Let T € L(H) positive on the subspaces Sy,n > 1
whose union S is a dense set S, verifying: (Tv,v) > ay||v||* for every v € S, where ay, — 0 with n — .
Consider now the parameters:

Un = an(T)/wy where wy, verifies ||T*v|| < wy||v||, Vo € Sy,n > 1.
If C > 0 exists such that yu, > C for every n > 1, then Nt = {0}.
Proof.

Suppose that there exists u € (H\ S) N Nr, |[u]| = 1 and let u, its orthogonal projection on
Sy, n > 1. Then, denoting with B, := B, (1) = ||u — u,||, we obtain from the (strict) positivity of T on
each of the subspaces S, n > 1 (as in (2)),

n (T)|[tn][* < (Titn, ttn) = (T (tn — ), ttn) = {(tn — 10), T*1t) < Brcwn]|utn]]
Rewriting,
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C < un < Bn/+/1— B% — 0thatis a contradiction from a range no(u). Thus, u ¢ Ny Vu € H\ S.
Follows: Ny = {0}. O

3. Approximations on Subspaces

Let H := Lz(O,l). The semi-open intervals of equal lengths h = 27", m € N,nh =1, A} =
((k—=1)/2",k/2™], k = 1,n — 1 together with the open A}, ,, define for m > 1 a partition of (0,1), k=1,n,
n = 2",nh = 1. Consider the interval indicator functions that have as support these intervals (k=1,n),
nh=1:

Iy(t) = 1for t € Ay and 0 otherwise 3)

The family F of finite dimensional subspaces {S;, nh = 1,n > 2} that are the linear spans of interval
indicator functions of the h-partitions defined by (3) with disjoint supports, S, = span{l,;;k =
1,n,nh = 1}, built on a multi-level structure, are including S;, C S/, by halving the mesh h. In fact,
this property is obtained from (3) observing that any I;,; € S,i = 1,n,nh = 1 can be rewritten as
Ini = Ins22i-1+ Inj2.2i € Snya-

With the observation that the set S = U,>15;, nh = 1 is dense in H well known in the literature, until
now we have met the requests of previous lemmas needed to investigate the injectivity of an integral
operator T,.

Citing [5], (pg 986), integral operator P/, n > 1 with the kernel function:

r(yx) =h Y L (y) I e(x) (4)
k=1n

is a finite rank integral operator orthogonal projection having the spectrum {0, 1} with eigenvalue 1 of
multiplicity n (nh=1) corresponding to the orthogonal eigenfunctions Iy, k =1,n. We will show it, by
proving that Vu € H, Pju € S, and, as a consequence, obviously (Pg )2 = Pj for n > 2,nh = 1. For any
u € H,

(B () = Feeqon) (1 Eecrn Dk () () u(x)dx

= T ki (y),  where ¢ := [y, u(x)dx,

that is the standard orthogonal projection of u onto S;,. Now, for I, j € 5,

Pl (Iyj) = B~ Y1, Cilk, where

k= [ap, Ij(x)dx, is valued as ¢ = h for k=jand 0 for k # j.
Py (Iyj) = I,j and therefore, P} (v),) = v, for every vj, € Sy, involving (P})?u = Pju for any u € H.
Because P} is an orthogonal projection onto S;, and due to the including properties of the finite
dimension subspaces whose union is dense,

|I =Pl = 0forn — oco,nh = 1. Therefore, from (T, — P}(T,)) = (I — P})T, the property
i) in Theorem 2 holds for any integral operator T, € £(H) on the family of finite dimension sub-
spaces spanned by indicator interval functions associated with partitions defined by (3). In fact,

€n = T = Tall = supycp,juj=1 (T = Tn) W)l = supuep, juj =1 [(1 = B (Tu) [ < [|(1 = PHIIT] — O

Remark 1. The matrix representation of Ty, restriction to Sy, is a sparse diagonal matrix: its elements outside the
diagonal are zero valued.
Proof.

The inner product on the subspace S, between u ¢ S, and vy, € Sy, is the result of the orthogonal
projection of u and vy, similar to an inner product between two step functions: (u, v;) := (Pju, vy). If
Ppu = uy = L=, A Ink and vy, = Y1, ¢j15 j, owing to the disjoint supports of the indicator interval
functions, (Ijx, Ij,;) = 0 for k # j and, their inner product is

(U, o) = Lie1,n Wk Tk Ine)-

Let T, be a Hilbert-Schmidt integral operator on H. Now,
Tolnk = Jo 0y, X) I (x)dx = [a,, p(y, %) I i (x)dx.
Follows:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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(Tolik Inj) = [9 [ [y, 00y, ) I (x)dx] I i (y)dy

= Jan fAh], I, (y)e(y, x) Ik (x)dxdy = 0 for k # j because Ij, x and I, ; have disjoint supports for
k#j.
Then, the matrix representation of T, restriction on Sy, M;(T,) is a sparse diagonal matrix having the
diagonal entries

dll, = fAh/k fAh,k L (y)p(y, x) I g (x)dxdy, k=1,n,nh=1and,
<Tpvh/ ’Uh> = Zk:l,n qudlilk for any vy = Zk:l,n Cklh,k from Sh- O

The integral operator approximation of T, on S;, denoting it by T,,, is a finite rank operator ap-
proximation, with a kernel function ([5])

on(y, x) = h’lkZ I (¥)p(y, ) Ik (x) == h’lkZ o5 (v, %) (5)
=1,n =1n

where the pieces p’,j, k = 1,n of the kernel function pj, in the sum have disjoint supports in L2(0,1)?,
namely Aj,x X Ay, k = 1,n,nh = 1. Thus, follows:

Remark 2. The matrix representation of T, is a sparse diagonal matrix and,

M (T,) = h=IMy(T,).
Evaluating Ty, v for v = I;, ;, we obtain

(TouIni) (y) = h=" [ [, (Y, %) Ini(x)dx] I, ;(y). Then,

(ToInis Inj) = 0 for i # j and the matrix representation of the finite rank operator Pj(Ty) := T,
is: M!(T,) = h~'diag [de] k_1,- 1tis asparse diagonal matrix because df; = 0 for i # j having the
diagonal entries

A= [ | LWp,x)hy(x)dxdy == [ [ p(y,x)dxdy, k=1,n. 6)

Dpg Dpg Ay Dy

Follows: M (T,) = h~'M,(T,), showing that both matrices are or are not together positive. More,
Vo = Y1 ki € St (To,vn, on) = h=(Tpoy, vp) O

Remark 3. If the diagonal entries of the matrix representations are strict positive, di’k >0, Vk=1nnh=1,
then T, is positive.
Proof.
From ||vy,|? = h Lx—1 , ckCx we obtain:
(Toyon,on) = ap(Tp,) ||lon]|* where ay,(Tp, ) is the positivity parameter of the finite rank operator
approximation T, given by
ay(Tp,) = h™2min gy, dfy (7)

and, (Tpvp, vy) = Ye—1n ck@dzk = (T}, vy, vy,) showing that T, is positive on Sy, if and only if T, is
positive on Sj,. Moreover, the following relationship holds

ap(Ty) =l tming_y ) (dfy) == hay(Tp, ), nh =1 (8)

4. Proof of the Alcantara-Bode Equivalent
Alcantara-Bode ([2], pg. 151) in his theorem of the equivalent formulation obtained from the
Beurling equivalent formulation ([4]) of RH, states:

The Riemann Hypothesis holds if and only if N1, = {0}

where T, is a Hilbert-Schmidt integral operator ([2]) whose kernel p(y, x) = {y/x} is the fractional
part function of the ratio (y/x). The kernel function p € L?(0,1)? is continue almost everywhere. Its
discontinuities in (0, 1)2 consist of a set of numerable one dimensional lines of the form y = kx, k € N,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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with Lebesgue measure zero.
The entries in the diagonal matrix representation Mj,(T,,) of the finite rank integral operator T}, are
given by: dll, = In i Ia, Ay/ x}dxdy, as valued in [1]:

h? 2k—1 k
h 1202 coogh =D 1 ke >
diy =h"(3—2v)/4 dj 2( 1+ k—lln(k—l) ), fork >2 )

where < is the Euler-Mascheroni constant (~ 0.5772156...).
The formulae in (9) were computed using the suggestion found in [4] for the fractional part: for
0<a<b<2a{b/a} = (b/a)— 1. Subsequently,

Ingg Iny A/ xtdxdy = [ [ [n,, (y/x)dx — f(yk_l)h dx]dy. The sequence

fk) :=h=2d}, = (-1+ ?;{’i—_llln(%)k’l)/Z monotonically decrease for k > 2 and converges to
0.5 for k — co. When k > 2, we have: de >h2/2 > di’l. Then:

w,(T,,) = h~2d" = (3—27)/4 > 0, forany h,nh = 1. (10)

showing that the positivity parameters of the sequence of operator approximations {T,,, nh = 1,n > 2}
verifies ii) and iii) properties in Lemma 1 (Theorem 2).

Theorem 3. The Alcantara-Bode equivalent holds involving that RH is true.
Proof.

Having de > 0 for any k = 1,1, nh = 1 (see (9)), the operator is positive on the dense set S. Thus,
we can consider both cases of the numerical method.
A) Finite rank approximations.

With (10), we obtain the bound of the positivity parameters of the operator approximations on
the subspaces of the family F. From Lemma 1 follows the strict positivity of the operator on the dense
set. Subsequently, from Theorem 1, N7, = {0}.

B) Injectivity criteria.

Using (8), (9) and (10) we obtained the positivity of the operator on the dense set, observing that
ap(Ty) — 0. Therefore, Lemma 2 must be used invoking the adjoint operator whose kernel function is

0*(y,x) = p(x,y) = p(x,y). For v, = Yy, eI} € Sy

Tyon = L1 k Jay, 000 W)Y = Tkmtn i [a,, o0k (%, y)dy,
where pj, . = I (x)o(x, y) I,k (v). Follows:

1Ty onll* = (Skmtn k- Sar, k(6 Y)AY, it €5 Sa, 0, (X, y)dy)

= Yt 6%k (L [ 000 9) I () dy]* Ty e (x)dx)

Because p(x,y) is valued in [0,1), p(x,y) < 1 for every x,y € (0,1), obtaining:

IT5onl? < Lkn cilich® = B2|oy ]| and, || Tyop]| < hfjoy | for every o, € Sy,

With wy,(T;) = h, the injectivity parameter of T on S, given by pj, = a;(T,)/wy(Ty) is evaluated as

up = (3—27)/4 >0, forany h,nh = 1. (11)

a constant on every subspace. Then, applying Lemma 2 we obtain N7, = {0}.

In each case the result is Ny, = {0}. Then in each case the conclusion is: half of Alcantara-Bode
equivalent formulation of the Riemann Hypothesis holds involving the other half should hold. There-
fore the Riemann Hypothesis is true. [J

Observations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202411.1062.v8
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 August 2025 doi:10.20944/preprints202411.1062.v8

8of9

- A connection between Zeta function ¢ and the integral operator T, can be observed in [4] by
reformulating the left term in the expression as (Tpx*~1)(6):

}p(()/x)xsfldx =0/(s—1)—06°C(s)/s, o¢>0,s=0+it.
0

- Considering the indicator of semi-open intervals functions of a partition of the domain, the
subspaces are including (S, C Sy, /») ensuring the monotony of the positivity parameters. If we replace
the indicator open-interval functions for generating the subspace Sj as well as the indicator closed-
interval functions generating the subspace S, nh = 1,n > 1 then both sets 5 and S¢ are still dense
like S losing instead the including subspaces property. Information on the density of the set S° could
be found in textbooks of functional analysis or on math.stackexchange.com. On the density of S, we
showed in V4 of [11] that if one of the sets S, S¢ and S° is dense, then others are dense. A sketch of proof
follows. Let S° be dense. If f is orthogonal on any Ij, ; € S then:

[(F, I = [(f, I8 = L) | < IFINIIE = Ikl = O, k=1,n, Vi, nh = 1, showing that f is orthogonal to
any If and so f should be 0 because S is dense. So, S is dense.

- The dense sets S and S have been used in [5] and [6] to obtain optimal evaluations of the decay
rate of convergence to zero of the eigenvalues of Hermitian integral operators having a kernel function
such as Mercer kernels ([9]).

The references [13-16] are related to other RH equivalents, [8] to exotic integrals and [12] to multi-level
discretisations on separable Hilbert spaces.
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- This solution for RH inspired by the equivalent RH formulations of Beurling ([4]) and Alcantara-Bode
([2]) is not one in the area of number theory. However, the solution to this hypothesis, a Millennium Problem
considered still unproven, is in accordance with the principle of Clay Inst. of Math. expressed as (citing [7]):

"A proof that it is true for every interesting solution would shed light on many of the mysteries surrounding the distribution
of prime numbers.”
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