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Abstract: Multimodal remote sensing data classification can enhance the model’s ability to distinguish
land features through multimodal data fusion. In this context, how to help models understand the
relationship between multimodal data and target tasks is the focus of researchers. Inspired by
human feedback learning mechanisms, causal reasoning mechanisms, and knowledge induction
mechanisms, this paper integrates causal learning, reinforcement learning, and meta learning into a
unified remote sensing data classification framework and proposed the causal meta-reinforcement
learning (CMRL). First, based on feedback learning mechanisms, we have overcome the limitations
of traditional implicit optimization of fusion features and customized a reinforcement learning
environment for multimodal remote sensing data classification tasks. Through feedback interactive
learning between agents and the environment, we help them understand the complex relationships
between multimodal data and labels, thereby achieving full mining of multimodal complementary
information. Second, based on the causal inference mechanism we designed causal distribution
prediction action, classification reward, and causal intervention reward, capturing pure causal factors
in multimodal data and cutting off false statistical associations between non-causal factors and class
labels. Finally, based on the knowledge induction mechanism, we designed a bi-layer optimization
mechanism based on meta-learning. By constructing a meta training task and meta validation
task simulation model in the generalization scenario of unseen data, we helped the model induce
cross-task shared knowledge, thereby improving its generalization ability for unseen multimodal
data. The experimental results on multiple sets of multimodal datasets show that the proposed
method achieved state-of-the-art performance in multimodal remote sensing data classification tasks.

Keywords: Multimodal data; remote sensing; reinforcement learning; meta-learning; causal learning

1. Introduction

Remote sensing data classification has important research significance in the fields of urban
planning , mining exploration, and agriculture [1–5]. In recent years, with the rapid development of
sensor technology, a variety of remote sensing data sources have been provided to support remote
sensing data classification tasks. For example, hyperspectral image (HSI) is able to reflect fine spectral
information of ground objects [6,7], but is susceptible to factors such as weather and has challenges
in distinguishing ground objects with similar spectral reflectance. In contrast, light detection and
ranging (LiDAR) is not sensitive to weather conditions, and the elevation information it contains
helps the model distinguish between objects with similar spectral information but different heights [8].
Multimodal remote sensing data classification can improve the model’s ability to distinguish ground
objects through multimodal data fusion, which has attracted extensive attention from researchers in
recent years.

In the process of multimodal data fusion, a key problem is: How to help models understand the
relationship between multimodal data and target tasks? The difficulty of solving this problem lies
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in: On the one hand, the coupling relationship between task-related information and task-unrelated
information in multimodal data is often tight and complex, which makes it difficult for the model
to accurately distinguish the two above. For example, there may be spectral noise in HSI, and
there may also be noise in LiDAR due to the scattering effect of multipath effects. It is frustrating
that the noise information is not only difficult to be directly observed and interfered with, but also
often brings serious interference to the model learning process. On the other hand, the association
pattern between multimodal data and target tasks often changes dynamically with specific context
information. Take HSI and LiDAR for example, different classes of ground objects in urban scenes
often have inconsistent heights and different spectral reflectance (difference in ground object materials),
so multimodal data fusion tends to make comprehensive use of HSI and LiDAR. However, in the forest
scene with similar height of trees, attention to LiDAR information can lead to intermodal information
interference. The dynamic change of the association pattern requires the model to fully understand the
dependency between the context information and the multimodal data fusion, which puts forward
higher requirements for its intelligence.

In order to accurately capture task-related information from multimodal data, inspired by the
human visual system’s focus on only the key information in the visual scene, researchers have
developed a variety of attention mechanisms. These attention mechanisms were designed to adaptively
emphasize task-related information and suppress task-unrelated information in model learning. Gao
et al. [9] proposed an adaptive feature fusion module to adjust the model’s degree of attention
to different modalities through dynamic attention allocation. However, this method only models
the global importance of multimodal data, and the noise information contained in the data is also
concerned when a certain modality is emphasized. Considering the consistency of multimodal data in
describing objects, the mutual supervision between multimodal data can help the model to capture
task-related information. To solve this problem, Zhang et al. [10] proposed a mutual guidance attention
module, which highlights key task-based information and suppresses useless noise information by
establishing mutual supervision between different modal information flows. In order to more fully
mine the consistency information among multimodal data, Song et al. [11] developed a cross-modal
attention fusion module, which learns the global dependency relationship between multimodal data by
establishing deep interaction between them, and then uses this dependency relationship to improve the
model’s ability to capture task-related information. However, optimization of attention mechanisms
in the above methods often relies on establishing statistical associations between multimodal data
and labels, thus minimizing the empirical risk of the model on the training data. It should be noted
that overemphasis on statistical dependencies between multimodal data and labels can lead models
to falsely establish false statistical associations between non-causal factors (such as spectral noise)
and labels. For example, ground objects in a certain region show abnormal spectral responses within
a certain band due to weather factors. If the model establishes a statistical correlation between
abnormal spectral responses and labels, the model will often mistakenly emphasize abnormal spectral
information. In addition, multimodal remote sensing data classification tasks usually face high labeling
costs, which makes it difficult to obtain sufficient labeling training data in practical applications. This
problem of data sparsity leads to the possibility that the training data may not accurately reflect the real
data distribution. In this context, simply minimizing the empirical risk of the model on the training
data may make it difficult for the model to achieve satisfactory generalization performance on the
unseen multimodal data.

Fortunately, human causal reasoning mechanisms and knowledge induction mechanisms provide
solutions to the above problems. On the one hand, humans are able to identify causal associations that
are truly related to each other from appearances, rather than through statistical learning. For example,
although “fish” is usually found in water and the two show a high statistical dependence, humans
can clearly recognize that there is non-causal relationship between “water” and “fish”. Inspired by
this, if a causal reasoning mechanism can be built into the model learning process, it can be made to
cut off the false statistical association between non-causal factors and labels, and learn the real causal
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effect between data and labels. On the other hand, humans are able to generalize core knowledge from
different tasks, so they can effectively deal with unseen tasks. For example, by practicing addition and
subtraction exercises, students can deduce the rules of addition and subtraction operations from them,
so that they can perform them correctly when they encounter addition and subtraction exercises that
they have not seen in practice. Inspired by this, if a knowledge induction mechanism can be established
in the process of model optimization, the model can jump out of the limitations of fitting training data
in the learning process, and generalize cross-task shared knowledge from different multimodal remote
sensing data classification tasks to improve its generalization ability to unseen multimodal data.

In order to capture complex association patterns among multimodal data, researchers have
conducted extensive explorations. Considering that the association modes of multimodal data are
often closely related to the above information, Xue et al. [12] proposed a self-calibrated convolution,
which captures multi-scale context information of multimodal data. The weight of multi-scale context
information is adjusted adaptively by spectral and spatial self-attention. Roy et al. [13] taking into
account the differences among multimodal data, customized a personalized feature learning mode for
HSI and LiDAR, captured HSI rich spatial-spectral information by convolution, and LiDAR spatial
structure information by morphological expansion layer and erosion layer. Finally, multimodal data
was integrated by additive operation. However, simple additive operations are difficult to capture
complex nonlinear relationships between multimodal data. Therefore, Wang et al. [14] proposed a
spatial-spectral mutual guided module to realize cross-modal information fusion of multimodal spatial
and spectral information, and to improve the semantic correlation between multimodal spectrum
and spatial information by using adaptive, multi-scale and mutual learning technologies. Further, in
order to fully capture the local and global associations of multimodal data, Du et al. [15] proposed
a spatial-spectral graph network, which uses image block-based convolution to preserve the local
structures of multimodal data, and uses the information transfer mechanism of graph neural networks
to capture the global associations. The above one-step multimodal data fusion method has significant
limitations in the mining of complex association patterns: The multimodal data only goes through one
forward process in the fusion process, and cannot evaluate the quality of its current fusion strategy
and make adaptive adjustments to it. Such one-step fusion process limits the model’s ability to
mine complex association patterns. In addition, the optimization process of multimodal data fusion
strategies of these methods is often implicit, and is not directly guided by the gradient of classification
loss. It is difficult to ensure that the model truly understands the complex role relationship between
multimodal data and labels in feature fusion, which can lead to the model incorrectly suppressing
task-related information or emphasizing task-unrelated information.

Fortunately, the human feedback learning mechanism provided a solution to this problem,
specifically, humans can understand the complex relationships between things through interactive
feedback with the environment. For example, chemists combine different chemicals during
experiments and get feedback signals by observing the reaction phenomena between them. Based
on the feedback signal, chemists can better understand the interaction between chemical substances
and the effect of this interaction relationship on the reaction phenomenon, and then modify their
experimental operations to obtain the expected experimental results. Inspired by this, if the
task-oriented feedback mechanism can be established in the process of multimodal feature fusion, the
model can fully understand how the current multimodal data fusion strategy acts on the target task,
and adjust its multimodal data fusion strategy according to its performance in the target task, fully
capturing and intelligently adapting to complex association patterns among multimodal data.

In summary, the key issue that this paper aims to address is: How to establish feedback learning
mechanisms, causal inference mechanism and knowledge induction mechanisms in multimodal remote
sensing data classification tasks?

To address this issue, we integrated reinforcement learning, causal learning, and meta-learning
into a unified multimodal remote sensing data classification framework and proposed a causal
meta-reinforcement learning framework. Specifically, to establish feedback learning mechanisms
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and causal reasoning mechanisms, we customized a reinforcement learning environment for
multimodal remote sensing data classification tasks and designed causal distribution prediction
actions, classification rewards, and causal intervention rewards. Through this approach, on the one
hand, intelligent agents can understand the complex relationships between multimodal data and
labels in their interaction feedback with the environment. On the other hand, intelligent agents can
distinguish causal and non-causal factors in multimodal data under the feedback and driving of
reward signals, and accurately capture pure causal factors by mining multimodal complementary
information. To establish a knowledge induction mechanism, inspired by meta-learning scenario
simulation training, we constructed meta training tasks and meta validation tasks, and based on this,
we constructed a bi-layer optimization mechanism. By simulating the generalization scenario of visible
multimodal data to unseen multimodal data, we encouraged intelligent entities to induce cross-task
shared knowledge, thereby improving their generalization ability on unseen multimodal data. The
contributions of this paper are as follows:

1) A causal meta-reinforcement learning (CMRL) is proposed, which simulates human feedback
learning mechanism, causal inference mechanism and knowledge induction mechanism to fully
mine multimodal complementary information, accurately capture true causal relationships, and
reasonably induce cross-task shared knowledge;

2) Breaking the limitations of implicit optimization of fusion features, a reinforcement learning
environment has been customized for the classification task of multimodal remote sensing data.
Through the interaction feedback between intelligent agents and multimodal data, full mining of
multimodal complementary information has been achieved;

3) Breaking through the traditional learning model of establishing statistical associations between
data and labels, causal reasoning has been introduced for the first time into multimodal remote
sensing data classification tasks. Causal distribution prediction actions, classification rewards,
and causal intervention rewards have been designed to encourage intelligent agents to capture
pure causal factors and cut off false statistical associations between non-causal factors and labels;

4) The shortcomings of the optimization mode that minimizes the empirical risk of the model on
training data under sparse training samples are revealed, and a targeted bi-layer optimization
mechanism based on meta-learning was proposed. By encouraging agents to induce cross-task
shared knowledge from scenario simulation, their generalization ability on unseen test data is
improved.

2. Relate Work

2.1. Reinforcement Learning

In recent years, reinforcement learning has achieved tremendous success in fields such as game
AI [16–18], robotics [19–21], and autonomous driving [22–24]. Particularly, with its integration into
large-capacity deep neural networks, reinforcement learning has surpassed expert human performance
in certain scenarios, such as Go [25] and StarCraft [26]. Reinforcement learning, inheriting the
trial-and-error learning mechanism from psychology and the principles of optimal control [27], [28]
can learn optimal strategies through the interaction feedback between an agent and environment
under predefined human rules [29]. Early reinforcement learning methods were plagued by the curse
of dimensionality, as they typically stored and iterated states in a tabular form, making it difficult to
handle tasks with large-scale or continuous actions. Mnih et al. [30] first combined deep learning
with Q-learning, introducing the deep Q-network (DQN), which provided a deep learning solution
for reinforcement learning and surpassed human expert levels in several classic games. Building
on DQN, researchers further explored and proposed solutions like the double DQN [31] to mitigate
overestimation issues and deep recurrent Q-network (DRQN) [32] for partially observable Markov
decision processes..
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However, these methods were unable to handle continuous action scenarios, limiting the
application of reinforcement learning in real-world settings. To address this issue, the theory of
policy gradients [33] was proposed. Breaking through the limitations of value iteration and policy
iteration, this theory directly learns the policy function, mapping states to the probability distribution
of actions without the need to discretize the action space. Based on this theory, Lillicrap et al. [34]
proposed the deep deterministic policy gradient (DDPG), consisting of an actor network for directly
outputting deterministic actions, and a critic network for evaluating future expected returns based on
input states. By optimizing these networks, agents can learn action strategies that maximize future
expected returns under the motivation of reward function signals. However, as an offline reinforcement
learning algorithm, DDPG struggles with the complex dynamic changes and real-time decision-making
demands of real-world scenarios. Proximal policy optimization [35], updating through experience
trajectories and calculating advantage functions to assess the relative advantage of each action over the
average, allows for policy updates using samples obtained from online sampling, effectively resolving
this issue.

It’s noteworthy that, despite the promising feedback learning mechanism of reinforcement
learning for learning multimodal data fusion strategies, its potential in multimodal data fusion
tasks remains underexplored. This paper is the first to utilize the reinforcement learning framework
for multimodal remote sensing data classification, learning multimodal remote sensing data fusion
strategies through agent interaction and feedback with a customized environment, providing a new
reinforcement learning paradigm for multimodal remote sensing data classification.

2.2. Causal Learning

Causal learning focuses on discovering and understanding the true causal relationships between
entities rather than statistical dependencies, offering new solutions for enhancing the generality
and credibility of deep models [36]. In recent years, researchers have been dedicated to exploring
the potential of causal learning in various deep learning tasks. Wang et al. [37] have considered
causal factors that have a real causal relationship with labels as cross-domain invariant, transferable
knowledge in domain generalization tasks. By intervening in features, they have effectively mined
invariant causal factors with strong generalization capabilities. Liu et al. [38] proposed a cross-modal
causal conceptual reasoning framework in visual question answering tasks, discovering the underlying
causal structure between visual and language modalities through causal intervention. Lin et al. [39]
focused on using causal learning to eliminate diagnostic errors induced by task-irrelevant information
in data for medical diagnostic tasks, thereby enhancing the model’s credibility and generality in this
domain. Zhang et al. [40] constructed a structural causal model (SCM) in person re-identification
tasks and intervened in SCM through backdoor adjustment, achieving effective mining of pure causal
factors.

Although the causal reasoning mechanism of causal learning holds promise for helping models
discover the real causal connections between data and labels, thus enhancing credibility in multimodal
data fusion tasks, its potential in this area has not yet been fully explored. This paper is the first to
construct a causal inference mechanism in multimodal remote sensing data classification tasks. By
combining this mechanism with the feedback learning mechanism of reinforcement learning, it enables
agents to capture pure causal factors during their interaction with the environment. This method
cuts off the false statistical association between non-causal factors and labels, providing a new causal
perspective for multimodal remote sensing data classification.

2.3. Meta-Learning

Meta-learning, as an method for “learning to learn” has garnered widespread attention in recent
years due to its unique knowledge induction mechanism, which allows models to induce shared
knowledge across tasks from a large number of similar yet different meta-tasks [41–43].
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Yu et al. [44] created zero-sample face manipulation meta-tasks to simulate unseen external
attacks and shared meta-knowledge across tasks within a meta-learning optimization framework. Jia
et al. [45] constructed pseudo-classes through data augmentation in an unsupervised setting and
based on these, built meta-tasks. They simulated small-sample classification scenarios for unseen
classes by reallocating meta-labels in each meta-task, achieving the induction of general knowledge
for small-sample classification. Lv et al. [46] used meta-learning for drug discovery tasks to facilitate
cross-task knowledge transfer, reducing the model’s dependency on large data volumes. Wang et
al. [47] integrated graph learning with meta-learning into a unified framework for cross-domain
small-sample hyperspectral image classification, utilizing the knowledge induction mechanism of
meta-learning to learn general node aggregation functions.

Despite the potential of the knowledge induction mechanism of meta-learning to help models
induce general knowledge for multimodal data fusion from meta-tasks, thereby enhancing their
generalization performance on unseen multimodal data, its potential in multimodal data fusion tasks
has not been fully explored. This paper establishes meta-training and meta-validation tasks and uses a
bi-layer optimization mechanism to induce shared multimodal data fusion knowledge across tasks,
providing a new meta-optimization mechanism for multimodal remote sensing data classification.

3. Method

3.1. Framework of CMRL

In this section, we will introduce CMRL from two aspects: Meta-optimization mechanisms and
meta-task learning.

3.1.1. Meta-Optimization Mechanisms

The Figure 1 has shown the framework of meta-optimization mechanism. In this section, we will
elaborate on the workflow of the meta-optimization mechanism, which is primarily divided into two
parts: meta-task construction and bi-level optimization.
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Figure 1. Framework of meta-optimization mechanism.

1) Meta-task construction: First, multimodal data is input into the meta-task generation module,
where meta-samples are generated based on a class mixing strategy. Then, an equal number
of meta-samples from each class are randomly selected to construct meta-training tasks and
meta-validation tasks;

2) Bi-level optimization: First, in the inner optimization, calculate the model’s meta-training
loss on meta-training tasks, pseudo-update the model based on this loss, and save the
optimization gradients of the meta-training tasks. Then, in the outer optimization, calculate the
meta-validation loss of the model after pseudo-updates on meta-validation tasks, and perform
meta-updates on the model considering both meta-training and meta-validation losses.
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3.1.2. Meta-Training Task Learning

The Figure 2 has shown the framework of meta training task learning. In this section, we will
elucidate the workflow within the meta-training task:

1) Exploration of interaction: First, input multimodal data from the meta-training task into the
multimodal state perception module to obtain the state st, where t represents the time step.
Then, input st into the action module to obtain causal distribution predictions at, and obtain
causal fusion features zFt by sampling from the causal distribution. Next, use the state transition
function to update the state to st+1 and calculate classification rewards and causal intervention
rewards to obtain the total reward rt. Finally, repeat the above process until the predefined
number of interactions is reached, obtaining an interaction trajectory;

2) Meta-training task loss calculation: First, estimate the state values for each time step in the
interaction trajectory using a state value network. Then, calculate the value loss by computing
the difference between the state value estimate and the future expected rewards. Simultaneously,
use the generalized advantage estimation (GAE) algorithm based on the state value estimate to
obtain the advantage function. Calculate the policy loss based on the advantage function. Finally,
compute the meta-training loss.
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Figure 2. Framework of meta training task learning.

3.1.3. Meta-Validation Task Learning

In this section, we will elucidate the workflow within the meta-validation task:
First, the agent predicts the causal distribution of multimodal data in the meta-validation task

based on the current action policy. It then obtains causal fusion features by sampling from the causal
distribution. Next, it calculates class prototypes based on the causal fusion features of multimodal data
from various classes in the meta-validation task. Class predictions are obtained through prototype
matching. Finally, the meta-validation loss is calculated based on the class predictions and labels.
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3.2. Modeling Multimodal Remote Sensing Data Classification as an MDP

Reinforcement learning can leverage exploration and interaction with the environment to
understand the intricate associations between actions and the environment. In the task of classifying
multimodal remote sensing data, this characteristic of reinforcement learning holds the potential to
assist models in comprehending the complex relationships between multimodal data and labels. This,
in turn, allows the model to capture task-related complementary information from multimodal data.

However, there is currently a lack of research customizing a reinforcement learning environment
specifically for the task of multimodal remote sensing data classification. This poses a challenge to
realizing the full potential of reinforcement learning in this task. Therefore, we model the multimodal
remote sensing data classification problem as a markov decision process (MDP) and customize its
states, state transition function, actions, and rewards. Below, we will provide a detailed explanation of
the modeling process:

3.2.1. State and State Transition Function

The state is a comprehensive description of the environment at any given moment. It not only
reflects the current attributes of the environment but also contains key information needed by the
agent to make decisions. Therefore, the state is the foundation for an agent to learn and understand its
environment, ensuring it can learn effective behavior strategies based on complete information. The
state transition reveals how the current state and the actions of the agent together affect the future state
of the environment. It defines how the environment responds to the actions of the agent and is the
basis for the agent to understand the complex interactions between its actions and the environment.
This section will introduce the design of the state and the design of the state transition function:

Firstly, considering the existence of modal heterogeneity, data from different modalities often
have inconsistent data dimensions. Therefore, we use a dimension unification module to unify the
dimensions of samples from both modalities:{

xH = WHx̃H

xL = WLx̃L (1)

where x̃H and x̃L represent the meta-samples of the two modalities, and their generation methods are
described in Section III.D. xH and xL represent the dimensionally unified HSI and LiDAR, respectively,
WH and WL are the learnable dimension unification parameters for each modality.

Then, we divide the data from the two modalities into a series of spatial tokens along the spatial
dimension, and use encoders to obtain state-aware features for both modalities:{

zH = TE
(
xH

1 , ..., xH
O
)

zL = TE
(
xL

1 , ..., xL
O
) (2)

where TE (·) represents the Transformer encoder. xH
1 and xL

1 are the spatial tokens for the two modalities,
O = h ∗ w, h and w are the spatial dimensions of the two-modal data, zHand zL are the state-aware
features of the two modalities.

Finally, we define the state as the concatenation of the state-aware features of the two modalities
and the causal fusion features, and define the following state transition function:

st =

{
CONCAT

(
zH, zL, Ω

)
if t = 0

CONCAT
(
zH, zL, zFt-1

)
otherwise

(3)

where zFt−1 represents the causal fusion feature at time step t − 1, which is determined by the agent’s
action Ω is the initial causal fusion feature, which can be expressed as Ω = zH + zL.
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The advantage of this design lies in the fact that the state transition function replaces the causal
fusion feature of the previous time step with that of the current time step at each time step, while
retaining the unmerged state-aware features of the two modalities. This helps the agent understand the
potential connections between the causal fusion feature and multimodal data, allowing it to optimize
and adjust its action strategies accordingly.

3.2.2. Designing Actions and Rewards Based on Causal Intervention

In CMRL, the main goal of the agent is to discover the optimal action strategy that maximizes
cumulative rewards through continuous exploration and feedback interactions. The realization of
this goal depends on the fine design of actions and the reward mechanism. The design of actions
needs to consider the characteristics of the environment and task requirements. Rewards, as the
environment’s immediate feedback to specific actions of the agent, quantify the effectiveness of each
action in achieving the target task. By imposing rewards and punishment feedback, the agent is guided
to learn how to optimize its behavior strategy. In this section, we will elaborate on the design of actions
and rewards:

Inspired by human causal reasoning mechanisms, we treat information related to classes in
multimodal data as causal factors, while information independent of classes is considered non-causal
factors, such as spectral noise caused by weather or collection equipment. Multimodal data is a mix of
causal and non-causal factors. Our goal is to capture causal factors to learn the true causal associations
between multimodal data and class labels. Causal factors should meet three conditions: 1) Causal
factors are mutually independent. 2) They contain sufficient task-relevant information. 3) They are
distinct from non-causal factors. Therefore, to enable the agent to intelligently capture causal factors
from multimodal data, we have designed the following actions and rewards:
1) Predicting actions from causal distribution

Inspired by the Variational Autoencoder, we have designed an action module that predicts the
causal distribution in multimodal data based on the current state perceived by the agent. To ensure the
mutual independence of causal factors, in this paper, the prior distribution of the causal distribution is
designed as a multivariate Gaussian distribution with independent components. The output of the
action module is the predicted action at for the causal distribution in the multimodal data, which can
be expressed as:

at = Action (st) , at =
{

ut, σ2
t

}
(4)

where ut and σ2
t respectively represent the mean and variance of the causal distribution predicted at

time step t.
Next, sampling from the causal distribution using reparameterization [48] to obtain causal fusion

features:
zFt = ut + εσ2

t , ε ∼ N (0, I) (5)

where N (0, I) represents a standard multivariate Gaussian distribution, ∼ denoting the sampling
operation.

Finally, we minimize the difference between the causal distribution and the prior distribution
(standard multivariate Gaussian distribution) using the following KL divergence constraint:

LKL =
1
T

T

∑
t=1

KL
(

N
(

ut, σ2
t

)
||N (0, I)

)
(6)

where T represents the predefined total number of time steps, KL (·) represents the KL divergence.
2) Classification rewards

To ensure that the causal fusion features contain sufficient task-relevant information, we have
designed a prototype matching reward mechanism that provides reward signals to the agent by
comparing the similarity between the causal fusion features and class prototypes.
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Specifically, first, we will compute class prototypes based on the collection of classes from the
meta-training task, and obtain class predictions for causal fusion features by calculating the distance
between causal fusion features and class prototypes. For the causal fusion feature zFt at time step t, its
probability prediction for class class c can be represented as:

P
(

yFt = c|zFt
)
=

exp
(
−d

(
zFt , Pc

))
∑C

c=1 exp
(
−d

(
zFt

c , Pc

)) (7)

where yFt is the class label for zFt , d (·) is the distance metric, which is the Euclidean distance in this
case. Pc is the class prototype and can be represented as:

Pc =
1
R

R

∑
r=1

zFs
c,r (8)

where R is the number of samples in the class set, zFs
c,r is the causal fusion feature of the t-th sample in

the c-th class.
Finally, we can calculate the cross-entropy between class predictions and the true labels to obtain

the classification reward for the t-th time step:

rp
t

(
zFt

)
= −λ1CrossEntropy

(
ŷFt , yFt

)
yFt log

(
ŷFt

)
(9)

where yFt is the true class label, ŷFt is the class prediction, λ1 is the reward coefficient.
3) Causal intervention reward

To ensure a sufficient separation between causal and non-causal factors, we attempt to achieve
this goal through causal intervention. If we can intervene on the non-causal factors in multi-modal
data, we can disrupt their spurious statistical associations with class labels, thus capturing pure causal
factors. However, the effectiveness of this mechanism relies on accurate interventions on non-causal
factors, which are often challenging to directly observe and manipulate.

Considering in HSI, the class of objects is typically determined by the trends in their spectral
variations, low-frequency information reflecting changes in spectral curves can be considered causal
factors, while local subtle variations are often caused by high-frequency noise information, which can
be regarded as non-causal factors. Therefore, first, we utilize Fourier transformation to decompose the
HIS xH into low-frequency xHL components and high-frequency components xHH:

xHL, xHH = FFT
(

xH
)

(10)

where FFT (·) represents the Fourier transform.
Then, we perturb the high-frequency components to intervene on the non-causal factors and

obtain the counterfactual HSI xHC by performing an inverse Fourier transform:

xHC == FFT−1
(

xHL, x̂HH
)

(11)

where FFT-1 (·) represents the inverse Fourier transform, and x̂HH represents the high-frequency
components obtained after performing the Fourier transform on the randomly selected HSI.

Afterward, the counterfactual state ŝt is obtained by feeding xHC and the corresponding xL input
into the state perception module, and then it is input into the action module to obtain the counterfactual
causal fusion features ẑFt .

Finally, the classification reward is calculated based on ẑFt , and the causal intervention reward is
obtained by calculating the mean squared error between the classification rewards corresponding to
ẑFt and zFt :

rI
t

(
zFt , ẑFt

)
= −

∥∥∥rp
t

(
zFt

)
− rp

t

(
ẑFt

)∥∥∥2
(12)
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where rp
t
(
ẑFt

)
= −λ1yFt log

(
ȳFt

)
, ȳFt corresponds to class predictions based on counterfactual causal

fusion features. Causal intervention reward is obtained by constraining the consistent causal effects
between counterfactual causal fusion features and causal fusion features, which can break the causal
relationship between non-causal factors and class labels, ensuring a sufficient separation between
causal factors and non-causal factors.
4) Total reward

The total reward can be represented as follows:

rt = rp
t + χrI

t (13)

where χ is the weighting coefficient.

3.3. Policy Gradient-based Reinforcement Learning

This section aims to optimize the action strategies of the agent. Specifically, in this paper, the action
of the agent is to predict the causal distribution of multimodal data, while the prior distribution of the
causal distribution is assumed to be a multivariate Gaussian distribution. Based on this assumption,
the actions of the agent are often high-dimensional and continuous. At this time, reinforcement
learning schemes based on value iteration or policy iteration are often difficult to apply. Fortunately,
policy gradient theory provides a solution for dealing with such situations. Policy gradient theory
optimizes the policy by maximizing the expected return, without the need to solve complex value
functions. The commonly used policy loss can be expressed as:

Lp = −
∫

s
ρπθ

(s)
∫

a
πθ (a|s)Aπθ(a|s) (s, a ) dsda

= −Es˜∼ρπ ,a∼πθ

[
Aπθ(a|s) (s, a)

] . (14)

where ρπθ
(s) = (1 − γ)∑

t
γtρπθ

(st = s). ρπθ
(st = s) represents the distribution of state s at time step

t, and γ is the discount factor. πθ (a|s) is a parameterized policy network that, based on state s, outputs
the corresponding action a, corresponding to the action module in this paper.

Aπθ(a|s) (s, a) is the advantage function, which is used to quantify how much additional reward
the current policy network’s output action, relative to the expected average performance, can bring
given the state s. The advantage function can be represented as follows:

Aπθ(a|s) (s, a) = Qπθ(a|s ) (s, a)− Vπθ(a|s ) ( s) (15)

where Qπθ(a|s) (s, a) represents the expected reward of the agent taking action a in state s, and
Vπθ(a|s) (s) is the expected reward of following the current policy in state s. The optimization goal of
the model is to improve the current policy by maximizing the advantage function, thereby achieving
the maximization of expected rewards.

However, it is often difficult to directly obtain the expected reward for the agent taking action a
in a given state s. Therefore, we use generalized advantage estimation (GAE) [49] to fit the advantage
function. GAE uses a weighted average of a series of temporal difference residuals to estimate the
advantage function. The advantage function at the nth time step t can be represented as:

Aπθ(a|s)
t (s, a) =

T−t−1

∑
l=0

(γλ)lδt+l (16)

where δt+l = V (st) − (rt + γV (st+l+1)− V (st+l)), V (·) is the value module used to assess the
expected value of an input state. λ is discount factors.
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From the above equation, it can be seen that the optimization of the action module is closely
related to the advantage function, and the quality of the advantage function depends on the accuracy
of the state value network’s evaluation of state values. Therefore, we optimize it by minimizing the
following value loss:

LV =
1
T

T

∑
t=1

(V (st)− (rt + γV (st+1)))
2 (17)

3.4. Knowledge Induction Mechanism

The knowledge induction mechanism is designed to help models deduce cross-task shared
knowledge from a multitude of tasks by simulating scenarios where the model generalizes on unseen
data. This is achieved through the construction of meta-training tasks and meta-validation tasks.
Meta-training tasks simulate the available multimodal data to train the model, while meta-validation
tasks simulate unseen multimodal data. The model’s performance on these new data is evaluated to
validate its generalization capability. The knowledge induction mechanism mainly consists of two
parts: Meta-task construction and bi-layer optimization.

3.4.1. Meta-Task Construction

To construct the meta-training and meta-validation tasks, we developed a class-mixing-based
meta-task generation module. This module is designed to ensure that the meta-training and
meta-validation tasks adequately reflect the diversity of real-world data. Specifically, we employed a
class-mixing strategy to generate meta-samples, which are used to expand the original training data
and form the meta-training and meta-validation sets. The class-mixing strategy involves combining
different modal samples from the same class (for example, HSI and LiDAR) to create new meta-samples.
These meta-samples can be represented as:

x̃H = ϑxH
o + (1 − ϑ)

⌢
x

H
o , x̃L = ϑxL

o + (1 − ϑ)
⌢
x

L
o (18)

where x̃H and x̃L are the multimodal meta-samples,
⌢
x

H
o and

⌢
x

L
o are the original HSI and LiDAR

samples randomly selected from the same class sample set, and ϑ is the mixing coefficient, which can
be expressed as ϑ ∼ U (0, 1). Meta-samples can be considered as interpolations within the real data
distribution, allowing them to more comprehensively cover the actual data distribution.

During the construction of the meta-training and meta-validation tasks, we uniformly sample
multimodal data from each class of the meta-training and meta-validation sets, ensuring that the model
can learn each class in a balanced manner. It’s important to note that in each meta-update process, the
samples in both the meta-training and meta-validation tasks will be newly generated meta-samples.
This method ensures the diversity of the meta-training tasks and the novelty of the meta-validation
tasks.

3.4.2. Bi-Layer Optimization

In the inner optimization, we train the model using meta-training tasks and perform
pseudo-updates on the model using gradient descent:

Θ′ = Θ − α∇ΘLTr (Θ) (19)

where Θ represents the model parameters before the update, α is the learning rate for inner layer
optimization, and Tr represents the meta-training tasks. LTr (Θ) denotes the meta-training loss with
model parameters Θ. The meta-training loss can be expressed as:

LTr = Lp + λ1LV + λ2LKL (20)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2024                   doi:10.20944/preprints202402.1296.v1



13 of 22

where λ1 and λ2 are weight coefficients.
In the outer layer optimization, we calculate the loss of the pseudo-updated model on the

meta-validation tasks to assess the model’s generalization ability on new tasks. This process involves
combining both meta-training loss and meta-validation loss to perform a meta-update on the model:

Θ = Θ −∇∂ (LTr (Θ)) + βLVa (Θ′)

∂Θ
(21)

where β is the meta-learning rate, Va represents the meta-validation tasks. LVa (Θ′) denotes the
meta-validation loss corresponding to the model parameters Θ′. The meta-validation loss can be
expressed as:

LVa = CrossEntropy
(

ŷFt
Va, yFt

Va

)
(22)

where ŷFt
Va is the class prediction for the meta-validation task based on causal fusion features, which

can be obtained by measuring the similarity between the causal fusion features and the class
prototypes. Through this approach, the learning objective of the model is not merely to achieve
optimal performance in the meta-training tasks, but rather to learn cross-task shared knowledge that
can be generalized to unseen meta-validation tasks. This, in turn, enables the accurate classification of
unseen multimodal data.

4. Experiment

4.1. HSI Dataset

We selected three sets of HSI and LiDAR datasets to validate the performance of the algorithm
proposed in this paper:

1) MUUFL Dataset: The MUUFL dataset was collected at the University of Southern Mississippi in
Gulfport, covering 11 classes of ground objects. The data was acquired in November 2010 using
Gemini LiDAR and CASI-1500 equipment. These devices were synchronized on the same flight
platform to collect hyperspectral image data and LiDAR data simultaneously, ensuring spatial
and temporal consistency between the two types of data. Both hyperspectral images and LiDAR
data consist of 325 × 220 pixels with a spatial resolution of 1 m. The hyperspectral images have
64 bands, and the LiDAR data records precise elevation information of the terrain;

2) Houston Dataset: Funded by the National Science Foundation of the United States and collected
by the Airborne Laser Mapping Center, the Houston dataset covers 15 classes of ground objects
in and around the University of Houston campus. This multimodal dataset primarily consists
of two parts: hyperspectral data and LiDAR data. Both types of data have the same spatial
resolution of 2.5 meters and include 349 × 1905 pixels. The HSI covers 144 spectral bands from
380 nm to 1050 nm. The LiDAR data records precise elevation information of the terrain;

3) Trento Dataset: The Trento dataset was collected in the rural areas south of Trento, Italy,
encompassing 6 classes of ground objects, including various natural features and artificial
agricultural structures. This dataset integrates hyperspectral images captured by an airborne
hyperspectral imager and LiDAR data obtained from an aerial laser scanning system. Both
modalities have a consistent spatial resolution and consist of 166 × 600 pixels. The hyperspectral
images include 63 spectral bands, and the LiDAR data records precise elevation information of
the terrain.

4.2. Experimental Setting

All experiments were conducted on a computer equipped with a 3.80 GHz Intel Core i7-10700KF
CPU, 32GB RAM, and an RTX 3090Ti GPU, with PyTorch as the experimental environment. The
comparison methods included unimodal approaches: Convolutional recurrent neural networks(CRNN)
[50]; multimodal decision fusion methods: hierarchical random walk network(HRWN) [51];
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and multimodal feature fusion methods: two-branch convolution neural network(TBCNN) [52],
patch-to-patch convolution neural network(PTPCNN) [53], coupled adversarial learning based
classification(CALC) [54], and multimodal fusion transformer(MFT) [55].

To ensure fairness in the comparative experiments, the parameter settings for each method
followed their original configurations. For the unimodal methods, we trained the models using 20 HSI
samples per class. For multimodal methods, we trained the models using 20 paired HSI and LiDAR
samples per class. In all experiments, AdamW was used as the optimizer, with an episode setting of
2000, an inner layer optimization learning rate of 0.001, a meta-learning rate of 0.001, a patch size of 7,
a predefined number of time steps set to 5, and an inner layer optimization count of 5. To balance the
diversity of samples in the meta-training/meta-validation tasks and computational efficiency, we set
the number of samples per class in the meta-task to 20. To eliminate the impact of randomness on the
experiments, all experimental results are the average of 10 runs. Three evaluation metrics were chosen,
including Overall Accuracy (OA), Average Accuracy (AA) per class, and the Kappa coefficient.

4.3. Comparative Experiments

The experimental results of CMRL and its comparative methods on three datasets are shown in
Tables 1–3. From these, it can be observed that:

1) Compared to unimodal methods, multimodal methods exhibit higher classification accuracy.
This is because, due to the phenomena of “different objects have the same spectra” and “the
same objects have different spectra” in HSI, some samples may have low class distinguishability,
making it difficult for unimodal methods that only use HSI to achieve satisfactory performance.
In contrast, multimodal methods can combine LiDAR information to enhance the model’s ability
to differentiate features when such phenomena occur;

2) Compared to multimodal decision fusion methods, multimodal feature fusion methods
demonstrate higher classification performance. This is because multimodal decision fusion
methods integrate the output information of classifiers. When noise exists in multimodal data,
the noise interference from different modalities might accumulate during the decision-making
process, leading to inaccurate class predictions. On the other hand, multimodal feature fusion
methods can establish deep interactions between multimodal data, more effectively mining
class-distinguishing information;

3) CMRL shows the highest classification performance across all three datasets, demonstrating its
superiority in multimodal remote sensing data classification tasks. It particularly shows a clear
classification advantage in challenging classes like “Mixed ground surface” and “Sidewalk.”
The former often contains complex noise information, while the latter is frequently obscured by
structures such as buildings and trees, presenting significant intra-class variability and blurred
inter-class boundaries. The superior performance of CMRL can be attributed to: On one hand,
its feedback learning mechanism and causal inference mechanism allow the agent to fully
understand which information in the multimodal data has a causal relationship with the labels.
This enables the agent to cut off false statistical associations between non-causal factors (like noise
information and obstructed heterogenous ground features) and labels, achieving precise mining
of real causal effects. On the other hand, the knowledge induction mechanism of CMRL enables
the agent to learn cross-task shared knowledge, which can help it achieve higher generalization
performance on unseen multimodal data.
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Table 1. Classification accuracy of the MUUFL dataset.

Class CRNN HRWN TBCNN PTPCNN CALC MFT CMRL
Trees (20/23246) 76.65 77.25 81.90 84.06 85.50 84.74 89.78

Mostly grass (20/4270) 71.15 74.94 76.07 81.08 80.12 79.60 85.34
Mixed ground surface (20/6882) 51.68 64.60 66.05 53.29 70.75 60.52 67.36

Dirt and sand (20/1826) 71.43 88.48 78.41 84.22 92.25 82.56 83.44
Road (20/6687) 76.36 84.43 87.15 89.46 77.53 80.32 89.88
Water (20/466) 99.78 99.78 99.10 97.31 95.96 100 98.66

Building shadow (20/2233) 80.98 89.20 91.32 87.75 94.80 91.59 87.30
Building (20/6240) 90.42 85.02 91.46 90.90 89.84 90.69 92.09
Sidewalk (20/1385) 56.56 68.13 72.89 61.98 74.14 67.18 75.60

Yellow curb (20/183) 66.87 86.50 90.80 91.41 90.18 93.87 95.09
Cloth panels (20/269) 94.78 95.58 95.18 92.77 97.99 97.19 95.98

OA(%) 74.31 78.19 81.44 82.39 83.17 81.34 86.27
AA(%) 76.06 83.08 84.58 84.02 86.28 84.39 87.32

Kappa(%) 67.87 72.54 76.44 77.54 78.44 76.25 82.20

Table 2. Classification accuracy of the Houston dataset.

Class CRNN HRWN TBCNN PTPCNN CALC MFT CMRL
Healthy grass (20/1251) 87.41 84.08 94.96 93.50 96.18 97.40 96.91
Stressed grass (20/1254) 87.93 77.07 80.63 93.03 96.35 95.38 98.46
Synthetic grass (20/697) 94.39 100 99.71 100 100 100 99.85

Trees (20/1244) 91.75 93.87 95.92 92.89 95.10 96.65 98.53
Soil (20/1242) 98.61 97.55 99.26 95.91 96.56 94.11 96.24
Water (20/325) 89.18 97.71 100 96.39 99.02 100 100

Residential (20/1268) 84.06 84.86 83.33 91.27 94.23 94.23 94.55
Commercial (20/1244) 88.07 85.87 84.56 86.93 86.60 93.55 93.30

Road (20/1252) 72.16 75.73 75.89 79.30 85.63 78.25 90.26
Highway (20/1227) 63.22 74.48 88.73 77.71 94.86 96.27 92.46
Railway (20/1235) 62.39 94.73 85.35 92.76 99.34 88.48 97.61

Parking lot 1 (20/1233) 85.41 90.03 87.88 90.68 88.54 94.64 87.80
Parking lot 2 (20/469) 81.74 94.21 95.77 99.11 97.55 99.33 99.55
Tennis court (20/428) 99.76 100 98.28 99.51 100 100 100

Running track (20/660) 97.03 95.63 98.59 100 99.69 99.22 100
OA(%) 83.97 87.79 89.46 91.08 94.50 94.03 95.51
AA(%) 85.54 89.72 91.26 92.60 95.17 95.17 96.37

Kappa(%) 82.68 86.80 88.61 90.36 94.01 93.55 95.14

Table 3. Classification accuracy of the Trento dataset.

Class CRNN HRWN TBCNN PTPCNN CALC MFT CMRL
Apple trees (20/4034) 77.03 96.61 96.21 97.29 98.73 96.56 99.10
Buildings (20/2903) 95.42 92.09 96.07 96.01 96.29 93.65 97.50

Ground (20/479) 93.25 97.82 99.78 97.60 98.48 100 99.35
Woods (20/9123) 99.45 100 97.10 99.82 99.99 99.99 99.35

Vineyard (20/10501) 77.45 80.20 84.50 99.35 99.64 99.31 99.05
Roads (20/3174) 89.09 88.62 92.42 94.20 97.53 97.97 98.35

OA(%) 87.23 90.67 92.05 98.33 99.06 98.48 99.41
AA(%) 88.62 92.56 94.35 97.38 98.44 97.92 99.02

Kappa(%) 83.22 87.76 89.55 97.78 98.75 97.97 99.21
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4.4. Visual Analysis

4.4.1. Classification Accuracy Maps

In this section, we visualized the classification accuracy maps of CMRL and its comparative
methods on three datasets, as shown in Figures 3–5. It can be observed that CMRL exhibits the best
continuity in the classification accuracy diagrams across all three datasets, especially in some easily
confusable classes. For example, in the Trento dataset, the classes “Buildings” (green) and “Roads”
(yellow) are both made of concrete material, hence they have similar spectral curves. However, LiDAR
elevation data helps distinguish these two types of features. Benefiting from the feedback learning
mechanism of reinforcement learning, CMRL shows the strongest capability among all comparative
methods in capturing multimodal complementary information, resulting in the least confusion and
misclassification in these two classes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Classification accuracy map on MUUFL dataset. (a) Label map (b) CRNN (c) HRWN (d)
TBCNN (e) PTPCNN (f) CALC (g) MFT (h) CMRL.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Classification accuracy map on Houston dataset. (a) Label map (b) CRNN (c) HRWN (d) TBCNN (e) PTPCNN (f) CALC (g) MFT (h) CMRL.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Classification accuracy map on Trento dataset. (a) Label map (b) CRNN (c) HRWN (d) TBCNN (e) PTPCNN (f) CALC (g) MFT (h) CMRL.
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4.4.2. T-SNE Maps

In this section, using the Trento dataset as an example, we present the t-SNE diagrams of CMRL
and its comparative methods, as shown in Figure 6. It can be observed that CMRL demonstrates
the highest intra-class consistency and inter-class separability, especially in the easily confusable
classes "Buildings" and "Roads". Other methods show a mix of these two classes, while CMRL almost
entirely avoids this phenomenon. This indicates that CMRL can effectively capture class-distinguishing
information in multimodal data, possessing the best feature learning ability.
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Figure 6. T-SNE map on Trento dataset. (a) CRNN (b) TBCNN (c) PTPCNN (d) CALC (e) MFT (f)
CMRL.

4.4.3. Ablation Study

To validate the effectiveness of the components in this paper, we constructed ablation models as
shown in Tables 4 and 5. Below, we will introduce the design principles of these models: Baseline-A:
The initial causal fusion features are directly used for multimodal remote sensing data classification
tasks through prototype matching, and the model is updated using cross-entropy loss.

Baseline-B: Builds upon Baseline-A by adding a reinforcement learning (RL) feedback learning
mechanism, exclusively using classification rewards as the reward signal, and updating the model
using value loss and policy loss.

Baseline-C: Enhances Baseline-B by incorporating a causal learning (CL) causal inference
mechanism specifically adding causal intervention rewards and constraints on the KL divergence of
the causal distribution.

CMRL: Further develops Baseline-C by integrating a meta-learning (ML) knowledge induction
mechanism, which involves constructing meta-training tasks and meta-validation tasks, and updating
the model using a bi-layer optimization mechanism.
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Table 4. Baseline models.

Component Baseline-A Baseline-B Baseline-C CMRL
RL ✓ ✓ ✓ ✓
CL x x ✓ ✓
ML x x x ✓

Table 5. Impact of different components on OA (%).

Dataset Baseline-A Baseline-B Baseline-C CMRL
MUUFL 80.14 82.95 84.03 86.27
Houston 90.36 92.57 93.48 95.51

Trento 94.53 96.76 98.18 99.41

Tables 4-5 show the classification accuracy of each model on three datasets, from which it can be
observed:

1) Compared to Baseline-A, Baseline-B improved classification performance on three datasets by
2.81%, 2.21%, and 2.23%, respectively. This is because the feedback learning mechanism of
reinforcement learning allows the agent to interact with a custom environment to understand the
complex association mechanisms between its actions (predictions about the causal distribution)
and the multimodal remote sensing data classification task. It can adjust and optimize action
strategies based on immediate feedback from rewards. This iterative feedback structure enhances
the model’s ability to capture task-relevant complementary information in multimodal data. The
experimental performance also validates the effectiveness of the feedback learning mechanism
of reinforcement learning in multimodal remote sensing data classification tasks;

2) Compared to Baseline-B, Baseline-C improved classification performance on three datasets
by 1.08%, 0.91%, and 1.42%, respectively. This is because the causal reasoning mechanism of
causal learning helps the model identify causal and non-causal factors in multimodal data.
This mechanism effectively reduces the influence of spectral noise in HSI by disrupting the
false statistical association between non-causal factors and labels through causal intervention,
helping the model establish a true causal relationship between multimodal data and labels. The
experimental performance also validates the effectiveness of the causal reasoning mechanism of
causal learning in multimodal remote sensing data classification tasks;

3) Compared to Baseline-C, CMRL improved classification performance on three datasets by
2.24%, 2.03%, and 1.23%, respectively. This is because the knowledge induction mechanism
of meta-learning helps the model induce cross-task shared knowledge applicable to unseen
multimodal data from a large number of similar yet different meta-tasks. This effectively
alleviates the issue of limited model generalization capability caused by data distribution bias
between training and test samples. The experimental performance also validates the effectiveness
of the knowledge induction mechanism of meta-learning in multimodal remote sensing data
classification tasks.

5. Conclusion

This paper integrates reinforcement learning, causal learning, and meta-learning into a unified
framework, inspired by human cognitive mechanisms of feedback learning, causal inference, and
knowledge induction. The proposed CMRL addresses key challenges in multimodal remote sensing
data classification tasks, such as the difficulty in mining multimodal complementary information,
suppressing interference from non-causal factors, and generalizing to unseen data. Firstly, the feedback
learning mechanism based on reinforcement learning enables the agent to fully understand the complex
associations between multimodal remote sensing data and labels, capturing class-discriminative
multimodal complementary information from noisy data. Secondly, the causal inference mechanism
based on causal intervention helps the model to establish the true causal connections between

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2024                   doi:10.20944/preprints202402.1296.v1



20 of 22

multimodal remote sensing data and labels, accurately suppressing interference from non-causal
factors. Lastly, the knowledge induction mechanism based on meta-learning assists the model in
capturing cross-task shared knowledge from meta-training and meta-validation tasks, enhancing the
model’s generalization capabilities on unseen multimodal remote sensing data. Experiments on three
multimodal remote sensing datasets demonstrate that CMRL achieves state-of-the-art performance,
offering a new paradigm in reinforcement learning, a novel perspective in causal learning, and an
innovative meta-optimization mechanism for multimodal remote sensing data classification. However,
currently, CMRL focuses only on HSI and LiDAR modalities. In the future, we plan to explore its
potential in a broader range of multimodal remote sensing data.
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