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Abstract

Tumor drug resistance involves intrinsic cellular mechanisms, microenvironmental regulation, and
epigenetic alterations. Hypoxia, drug distribution, and microvascular heterogeneity critically mediate
resistance within the tumor microenvironment (TME). We develop a hybrid discrete–continuous
(HDC) model coupling agent-based tumor and endothelial cell dynamics with partial differential
equations (PDEs) governing oxygen, cytotoxic drug, and tumor angiogenic factor (TAF) evolution.
This framework integrates hypoxia-driven angiogenesis and resistance dynamics to address how
microenvironmental feedback shapes resistant phenotype emergence and spatial distribution during
chemotherapy. Our system models tumor cells stochastically proliferating, migrating, and mutating
in response to local oxygen and drug concentrations. Endothelial tip cells remodel vasculature via
TAF-gradient-driven chemotaxis. Simulations indicate that hypoxia-induced angiogenesis causes
uneven drug penetration and creates niches that support resistant subclones. These findings highlight
a complex interplay between vascularization and resistance evolution. This work bridges reaction-
diffusion-chemotaxis PDEs and agent-based modeling to capture tumor-vascular interactions and
microenvironmentally mediated resistance, providing spatial predictions for intervention design.

Keywords: hybrid PDE–ABM modeling; multiscale framework; tumor microenvironment; therapeutic
resistance; angiogenesis; mathematical oncology; therapy optimization; hypoxia; spatial heterogeneity;
tumor evolution

1. Introduction
Understanding how spatially variable drug penetration and hypoxia shape tumor evolution

is essential to improve cancer therapy and motivates the development of multiscale mathematical
models. Chemotherapy and targeted therapy are the main cancer treatments, especially in patients
ineligible for curative surgery or those requiring perioperative intervention [1–7]. Nevertheless, their
efficacy is often impaired by drug resistance [8]. This process is complex and is caused by intrinsic
processes, i.e., preexisting genetic alterations, or by acquired modifications, e.g., therapy-generated
mutations, epigenetic reprogramming, or microenvironmental selection [8–12]. As the disease advances
and treatments continue, most of the tumors exhibit ongoing evolutionary dynamics in reaction to
therapy. This gives rise to multiple drug-resistant subclones and treatment failure [13,14]. Additionally,
heterogeneity of the tumor microenvironment (TME), e.g., hypoxic regions and heterogeneous drug
delivery, significantly affects drug distribution and uptake. These heterogeneities promote resistant
clones’ survival and dominance [15–17]. Modeling cell type competition, drug stress survival patterns,
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and tumor growth in a temporally and spatially heterogeneous microenvironment is thus most crucial
for the prediction of therapy response as well as the design of personalized, effective treatment plans.

To address these challenges, researchers increasingly use mathematical modeling to study resis-
tance mechanisms and predict treatment outcomes quantitatively [18,19]. Mathematical approaches
encompass genetic, epigenetic, and microenvironmental drivers of resistance [20]. They also include
evolutionary dynamics [21] and use multi-omics data with machine learning [22]. Spatial differences
and environmental interactions, such as low oxygen levels, are key resistance factors [23–25]. Low
oxygen occurs when blood flow does not meet the metabolism of rapidly growing tumors. This acti-
vates survival pathways driven by hypoxia-inducible factor-1α (HIF-1α) and encourages blood vessel
growth through vascular endothelial growth factor (VEGF) [26–28]. Pathological neovascularization
partially alleviates oxygen deficits but creates heterogeneous drug distribution landscapes that select
resistant phenotypes.

This interplay between vascular dynamics and therapy resistance motivates mathematical work
on angiogenesis and resistance evolution [29–33]. Early models employed reaction-diffusion systems
to describe tumor-induced vessel formation and validated traveling wave solutions for vessel tips
[34,35]. The Keller-Segel model describes biased movement of cells (e.g., endothelial cells) in response
to chemical gradients such as tumor angiogenic factor (TAF). The original equations are [36]:

∂tn = Dn∆n − χ · ∇(n∇c),

∂tc = Dc∇c − g(c, n).
(1.1)

Here, n denotes cell density, c chemoattractant concentration, Dn and Dc diffusion coefficients and
g(c, n) chemical kinetics. Subsequent angiogenesis models introduced thermodynamically consistent
continuum descriptions of interfacial growth. A key contribution [37] couples endothelial proliferation
and VEGF diffusion:

∂tc+ = ∆c+ − c+, in V+(t),

∂tc− = ∆c− − c−, in V−(t),
(1.2)

where V+(t) and V−(t) denote time-dependent extracellular and capillary lumen volumes, c+

and c− corresponding VEGF concentrations, with appropriate boundary conditions at Σ(t) (endothelial
layer interface) and ∂Vt(t) (tumor surface).

Agent-based models (ABMs) are based on these studies. They simulate how individual cells act
within heterogeneous microenvironments. ABMs can show processes at various levels, ranging from
molecular signaling to tissue characteristics. This ability helps us examine cancer progression, immune
interactions, and responses to therapy [38–40]. ABMs show how microenvironmental niches affect
drug resistance [24], how spatial limits influence residual disease [41], and how both internal and
external factors impact drug resistance [42]. Despite these developments, few models can combine
dynamic changes in blood vessel adaptation with growing tumor resistance during treatment. This
gap makes it hard to understand how angiogenesis influences selective pressures.

Continuum models, for example, reaction-diffusion systems, can capture overall tumor dynamics
but cannot capture single-cell stochasticity. Agent-based approaches address heterogeneity but lack
rigorous coupling to continuum-scale physics. To bridge this gap, we propose a hybrid discrete-
continuous (HDC) framework coupling agent-based tumor/endothelial cell dynamics with reaction-
diffusion-chemotaxis equations for oxygen, drug, and TAF:
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∂tn = Dn∆n −∇ · (χ(c)n∇c),

∂tu = Du∆u + fu,source − fu,sink.
(1.3)

Here n denotes endothelial cell density, u ∈ {c, d, o} represents TAF (c), drug (d), and oxygen (o)
fields, χ(c) the chemotactic function, and fu,source, fu,sink source/sink terms. Tumor cell agents have
state variables:

a =
{

ida, a(X,Y)(t), ao(t), ad(t), adam(t), adeath(t), aage(t), amat
}

,

with random motility via Wiener processes:

da(X,Y) = εdWa
t .

Vessel agents follow:

b = {idb, b(X,Y)(t), bage(t)}.

The discrete component simulates tumor cells (proliferation, apoptosis, mutation, motility) and
endothelial cells (chemotaxis, branching, anastomosis). The continuous component models diffusion,
decay, production, and uptake of biochemical fields, incorporating chemotaxis and cellular consump-
tion/production. This integration analyzes how vascular remodeling influences drug penetration,
hypoxia-driven adaptation, and clonal competition, elucidating feedback loops between angiogenesis
and resistance. We discretize the endothelial chemotaxis equation using probabilistic finite differences
and solve reaction-diffusion equations via semi-implicit alternating direction implicit (ADI) methods.
Simulations reproduce hypoxia-induced angiogenesis and investigate preexisting versus spontaneous
mutations in resistance evolution.

The remainder of the paper is organized as follows. Section 2 presents modeling and computa-
tional techniques; namely, Section 2.1 advances the partial differential equation (PDE) formulation,
Section 2.2 the agent-based approach to tumor and vessel cells, and Section 2.3 the numerical discretiza-
tion of the model. Section 3 presents simulations of the impact of angiogenesis on resistance evolution
and optimal drug delivery strategies. Section 4 discusses biological implications, e.g., reconciliation of
mutually contradictory experimental results, and posits possible model extensions. Section 5 closes
the research.

2. Materials & Methods
2.1. PDE Model for Continuous Fields

We model tumor progression and angiogenesis using spatially resolved reaction-diffusion equa-
tions for endothelial cells n, TAF c, drug d, and oxygen o, where each field couples to discrete tumor
cells (a ∈ Λt) and vessel sites (v ∈ Vt). We denote the collection of tumor cells and vessel agents at
time t by Λt and Vt, respectively. Tumor cells partition into normoxic (a ∈ Λn

t ) and hypoxic (a′ ∈ Λh
t )

subpopulations, with local environments mediating angiogenic signaling and drug resistance.
Endothelial cells undergo diffusive and chemotactic migration:

∂tn = Dn∆n −∇ · (χ(c)n∇c), χ(c) =
χ0k1

k1 + c
, (2.1)
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where Dn denotes the diffusion coefficient and χ(c) is the chemotactic sensitivity function. This
χ(c) adheres to receptor-kinetics law [43–47], where χ0 is the maximal chemotactic coefficient and
k1 > 0 modulates TAF sensitivity.

TAF dynamics combine diffusion, decay, hypoxic cell secretion, and vessel uptake:

∂tc = Dc∆c − ξcc + η ∑
a∈Λh

t

χa − λc ∑
v∈Vt

χv, (2.2)

The indicator functions χa and χv are 1 within radius Rc of tumor cell a or vessel agent v, and 0
otherwise:

χa(x, t) =

1 if
∥∥∥x − a(X,Y)(t)

∥∥∥ ≤ Rc,

0 otherwise,
and χv(x, t) =

1 if
∥∥∥x − v(X,Y)(t)

∥∥∥ ≤ Rc,

0 otherwise.

The positions a(X,Y)(t) and v(X,Y)(t) denote the centers of hypoxic tumor cell a ∈ Λh
t and vessel

site v ∈ Vt at time t. Parameter Dc represents the TAF diffusion rate, ξc the natural decay rate, η the
production rate per hypoxic tumor cell, and λ the endothelial uptake rate.

Drug dynamics include diffusion, degradation, uptake by tumor cells, and delivery by vessels:

∂td = Dd∆d − ξdd − ρdd ∑
a∈Λt

χa + Sd(t) ∑
v∈Vt

χv. (2.3)

Here, Dd is the diffusion rate, ξd the decay rate, ρd the tumor cell uptake rate, and Sd the time-
dependent vessel supply rate.

Oxygen follows analogous dynamics, but with feedback-limited vessel supply:

∂to = Do∆o − ξoo − ρo ∑
a∈Λt

χa + So(omax − o) ∑
v∈Vt

χv, (2.4)

where Do is the diffusion rate, ξo the decay rate, ρo the tumor and endothelial cell uptake rate, So

the vessel supply rate, and omax the saturation concentration. This feedback mechanism suppresses
oxygen release at high concentrations.

Homogeneous Neumann boundary conditions ensure mass conservation in the isolated tissue
domain:

n⃗ · ∇ϕ
∣∣
∂U = 0, ϕ ∈ {n, c, d, o},

where n⃗ is the unit outward normal vector on the boundary ∂U. The chemotaxis equation (2.1)
is discretized using the forward Euler method, while the remaining reaction-diffusion equations are
solved via an alternating direction implicit (ADI) scheme. The governing processes incorporated in
each PDE are summarized in Table 1.
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Table 1. Mechanisms encoded in each partial differential equation (PDE) for endothelial cells n, tumor angiogenic
factor (TAF) c, drug d, and oxygen o. Diffusion coefficients are denoted by Dϕ, decay rates by ξϕ, uptake rates by
λ or ρϕ, and source terms by η or Sϕ.

Field Diffusion Decay Uptake Supply

n Dn None None None
c Dc ξc λc η from hypoxic cells
d Dd ξd ρdd Sd(t) at vessels
o Do ξo ρo So(omax − o)

We non-dimensionalize the system using characteristic scales for length L, diffusion time τ =

L2/D, and field concentrations (n0, c0, d0, omax). These are summarized in Table 2. Here, D denotes
a representative diffusion coefficient, chosen such that τ = L2/D = 5.76 × 104 s for a spatial scale
L = 5 × 10−3 m.

Table 2. Characteristic quantities used for non-dimensionalization.

Symbol Quantity Rationale

L Length Spatial extent of parent vessel to tumor distance
τ Time Typical diffusion timescale / cell cycle duration

n0, c0, d0, omax Field concentrations Normalization of PDE variables

With

D̃n =
Dn

D
, χ̃0 =

χ0c0

D
, α =

c0

k1
, D̃c =

Dc

D
,

η̃ =
ητn0

c0
, λ̃ = λτn0, ξ̃c = τξc,

D̃d =
Dd
D

, ξ̃d = τξd, ρ̃d = ρdτn0, S̃d =
Sdτn0

d0
,

D̃o =
Do

D
, ξ̃o = τξo, ρ̃o =

ρoτn0

omax
, S̃o = Soτn0,

we obtain the non-dimensionalized systems by dropping the tildes:

∂tn = Dn∆n −∇ ·
(

χ0

1 + αc
n∇c

)
, (2.5)

∂tc = Dc∆c − ξcc + η ∑
a∈Λh

t

χa − λc ∑
v∈Vt

χv, (2.6)

∂td = Dd∆d − ξdd − ρdd ∑
a∈Λt

χa + Sd ∑
v∈Vt

χv, (2.7)

∂to = Do∆o − ξoo − ρo ∑
a∈Λt

χa + So(1 − o) ∑
v∈Vt

χv, (2.8)

All fields ϕ ∈ {n, c, d, o} satisfy homogeneous Neumann (no-flux) boundary conditions in dimen-
sionless form:

n⃗ · ∇ϕ
∣∣
∂U = 0.

Table 3 gives an overview of all model parameters used in the study, both for the PDE system, the
ABM, and non-dimensionalization. Each parameter is listed with a brief description of how it enters
the modeling framework.
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Table 3. Summary of all parameters used in the model, grouped by type: PDE system, agent-based model (ABM),
and non-dimensionalization. This table provides an overview of the variables and their modeling roles. For
specific numerical values (dimensional and non-dimensional) and their units, refer to Table 4.

Parameter Meaning

PDE-related parameters

Dn, Dc, Dd, Do Diffusion coefficients of endothelial cells (n),
TAF (c), drug (d), and oxygen (o)

χ0 Chemotactic sensitivity coefficient
α Saturation parameter for chemotaxis
ξc, ξd, ξo Natural decay rates of TAF, drug, and oxygen,

respectively
ρd, ρo Cellular uptake rates of drug and oxygen
Sd, So Vessel supply rates of drug and oxygen
η, λ TAF production rate by hypoxic cells and

uptake rate by endothelial cells
χa, χv Indicator functions for tumor agents and

vessel locations

ABM-related parameters

Λt, Λn
t , Λh

t , Vt, Tt Sets of all tumor cells, normoxic tumor cells,
hypoxic tumor cells, vessel cells, and
endothelial tip cells at time t

At Angiogenic network at time t
ida, idb Lineage identifiers for tumor and endothelial

tip cells
a(X,Y)(t), b(X,Y)(t), v(X,Y)(t) Spatial coordinates of agents a ∈ Λt, b ∈ Tt,

v ∈ Vt at time t
ao(t), ad(t), adam(t), adeath(t), aage(t), amat Local oxygen, drug level, accumulated DNA

damage, death threshold, age, and
maturation time for tumor cell a ∈ Vt

bage(t) Age of endothelial tip cell b ∈ Tt
Rc Cellular radius
µ Mutation intensity for the Poisson process
pr DNA damage repair or clearance rate
ε Tumor cell motility coefficient
omax Maximum oxygen concentration
ohyp, oapop Hypoxia threshold and apoptosis threshold

for oxygen concentration
P0, P1, P2, P3, P4 Probabilities of endothelial cell remaining

stationary or moving left, right, down, or up
ψ Minimum age required for tip branching
cbr Branching intensity coefficient
adeath

S , adeath
R Death thresholds for sensitive and resistant

tumor cells
Thmulti Multiplicative factor defining resistance death

threshold (adeath
R = Thmulti · adeath

S )
℘age Tumor cell cycle duration
αn Proliferation rate of normoxic tumor cells
Fmax Crowding threshold above which

proliferation is suppressed
ton, to f f Treatment-on and drug holiday durations
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Table 3. Cont.

Parameter Meaning

PDE-related parameters

Non-dimensionalization parameters

L Characteristic length scale
τ = L2/D Characteristic time scale
n0, c0, d0 Reference field concentrations used for

normalization

Table 4. The table presents model parameters which include physical (dimensional) values (D-values) in SI
units together with their corresponding non-dimensional values (ND-values) and their sources or justifications.
Non-dimensionalization based on characteristic length (L), time scale (τ = L2/Do), and concentration (c0). The
parameters labeled “scaled” or “calibrated” were selected to attain numerical stability together with biological
realism in situations without available empirical data. For a complete description of all parameters and their
modeling roles, see Table 3.

Parameter Description D-value (SI units) ND-value Source / Justification
∆x Spatial discretization (n/a) 0.005 Calculated
∆t Temporal discretization (n/a) 0.01 Stability constraint
Rc Cellular influence radius 1.25 × 10−5 m 0.005 [48]
Dc TAF diffusion coefficient 5.21 × 10−11 m2/s 0.12 [49,50]
ξc TAF decay rate 3.47 × 10−8 s−1 0.002 [29]
η TAF production rate 1.7 × 10−22 mol/(cell · s) 6.27 × 103 [51]
λ TAF uptake rate (n/a, nondimensionalized) 0.1 [52]
Dd Drug diffusion coefficient (scaled) 0.5 Modeling choice
ξd Drug decay rate (scaled) 0.01 [24]
ρd Drug uptake rate (scaled) 0.5 [24]
Sd Drug supply rate (scaled) 2 [24]
pr Damage clearance rate (scaled) 0.2 [24]
Do Oxygen diffusion coefficient 2.78 × 10−10 m2/s 0.64 [53]
ξo Oxygen decay rate 4.34 × 10−7 s−1 0.025 [54]
ρo Oxygen uptake rate 6.25 × 10−17 mol/(cell · s) 34.39 [24]
So Oxygen supply rate (calibrated) 3.5 Calibrated for model

consistency
ε Tumor motility intensity (modeling choice) 0.01 Modeling choice
omax Maximum oxygen concentration 6.7 mol/m3 1 [51]
ohyp Hypoxia threshold (threshold setting) 0.25 [51]
oapop Apoptosis threshold (threshold setting) 0.05 [51]
Dn Endothelial diffusion coefficient 2.00 × 10−13 m2/s 4.61 × 10−4 [52]
χ0 Chemotaxis coefficient 2.60 × 10−4 m2/(s · mol/m3) 0.38 [52]
α Chemotaxis saturation parameter (scaled) 0.6 [52]
ψ Branching age threshold (scaled) 0.5 [52]
cbr Branching intensity coefficient (scaled) 1 [25]
adeath

S Death threshold (sensitive cells) (scaled) 0.5 [24]
Thmulti Death threshold ratio (resistant cells) 100–1000 100–1000 [55]
℘age Cell cycle duration Uniform[3.24 × 104, 3.96 ×

104] s
0.56–0.69 [56–61]

αn Proliferation rate Derived from log(2)/℘age 1.0082–1.2323 Derived
Fmax Maximum neighbor cell count (modeling choice) 10 [25]

We list all assumptions in our work:

(i) Tumor cells consume oxygen and TAF at fixed rates.
(ii) Drug diffusion and decay are assumed isotropic and linear.
(iii) Angiogenic tip cells follow TAF gradients via chemotaxis.
(iv) Mutation is modeled as a neutral stochastic process.
(v) DNA repair is included but lacks mechanistic biochemical modeling.

Quantitative estimation of critical parameters predicts whether reaction or diffusion dominates.
Key biological implications arise: high decay (ξi) or uptake (ρi) rates induce spatial heterogeneity,
forming hypoxic cores and hypoxia-driven resistance when diffusion is low (Do ≪ 1). Pathologic
vasculature generates low So and Sd; upon normalization, this predicts poor tumor response to
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hypoxia-targeted and vascular normalization therapies. Optimal dosing regimens are defined by
drug properties: low diffusivity (Dd) prevents penetration, so local delivery or carriers are necessary;
rapid decay (ξd) necessitates high infusion rates due to short half-life; and high uptake (ρd) leads to
saturation, best with chronic low-dose over pulsed high-dose schedules.

This PDE model gives a rigorous mathematical framework for tumor growth and resistance to
therapy, grounded in biological mechanisms. Reaction-diffusion equations model heterogeneity in
the microenvironment by diffusion, decay, and local production/consumption, accounting for effects
like hypoxic cores where blood vessels poorly supply certain regions, limited penetration of drugs,
and TAF-induced chemotactic angiogenesis. The bidirectional PDE-ABM coupling enables multiscale
modeling of cellular heterogeneity: cells respond to local signaling fields while dynamically altering
them via production and consumption. This computationally efficient multiscale framework readily
extends to incorporate advanced cellular behaviors and microenvironment interactions.

2.2. Agent-Based Model
2.2.1. Tumor Dynamics

Tumor cells are modeled as discrete agents on a 2D lattice that interact with continuum microenvi-
ronmental fields governed by PDEs (Section 2.1). Each cell follows a set of biologically motivated and
mathematically explicit rules for proliferation, apoptosis, mutation, and motility. Spatial interactions
among agents and their motility are constrained by the lattice neighborhood structure. Figure 1
compares two such structures: the Von Neumann neighborhood, comprising the four adjacent lattice
sites (left, right, down, up), and the Moore neighborhood, consisting of all eight surrounding sites,
including diagonals.

Figure 1. Comparison of Von Neumann and Moore neighborhood structures on a 2D lattice. The Von Neumann
neighborhood includes the four orthogonally adjacent lattice sites (left, right, down, up), while the Moore
neighborhood additionally includes diagonal neighbors. This schematic illustrates how tumor and tip cells detect
neighboring agents and respond to local environmental cues. The directional movement probabilities P0–P4 (2.12)
assigned to Von Neumann neighbors are shown in Figure 2(a), which builds on this neighborhood structure.

We characterize each tumor cell a ∈ Λt by:

a =
{

ida, a(X,Y)(t), ao(t), ad(t), adam(t), adeath(t), aage(t), amat(t)
}

,

where a(X,Y)(t) is the center position of the cell, ao(t) the oxygen concentration, ad(t) the accumu-
lated drug level, adam(t) the drug-induced DNA damage, adeath(t) the death threshold, aage(t) the time
elapsed since thelast division, and amat the maturation time to achieve proliferation competence.

We assign each cell a ∈ Λt a unique lineage identifier ida = (k, i1, . . . , in), where:

(i) k ∈ {1, . . . , N0} is the index of the ancestor cell,
(ii) ij ∈ {1, 2} records the branching decision at the j-th division,
(iii) n ∈ N counts mitotic generations since initiation.
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The initial population (n = 0) has identifiers ida = (k). For any n-generation cell with ida =

(k, i1, . . . , in), mitosis produces two (n + 1)-generation daughter cells with:

ida′ = (k, i1, . . . , in, in+1), in+1 = 1, 2.

Tumor cells move passively through Brownian dynamics:

da(X,Y) = εdWa
t , {Wa

t }a∈Λt i.i.d. Brownian motions,

where ε = 0.01 (dimensionless) regulates noise strength. Positions update via Euler-Maruyama:

a(X,Y)(t + ∆t) = a(X,Y)(t) + ε
√

∆t Za
t , Za

t ∼ N (0, 1) i.i.d.

This random movement, together with division-induced daughter cell displacement, is the only
migration mechanism.

At each time step, tumor cells sense local chemical fields:

ao(t + ∆t) = o(a(X,Y)(t), t), ad(t + ∆t) = ad(t) + d(a(X,Y)(t), t)∆t.

DNA damage evolves through:

adam(t + ∆t) = adam(t) +
[
d
(

a(X,Y)(t), t
)
− pradam(t)

]
∆t,

where pr is the DNA repair rate. Cell death occurs when adam(t) > adeath(t). The death threshold
follows:

adeath
R = θadeath

S , θ ≥ 1,

where θ is the resistance factor (θ = Thmulti fixed for preexisting resistance, mutation-dependent
otherwise).

Cells are classified according to oxygen level ao(t):

(i) Normoxic (a ∈ Λn
t ) if ao(t) > ohyp,

(ii) Hypoxic (a ∈ Λh
t ) if oapop < ao(t) ≤ ohyp,

(iii) Apoptotic (removed immediately from Λt) if ao(t) ≤ oapop, where oapop < ohyp are critical
thresholds.

Cells age only when normoxic:

aage(t + ∆t) =

aage(t) + ∆t if ao(t) > ohyp,

aage(t) otherwise.

Normoxic cells divide when aage(t) ≥ amat(t), where maturation time depends on division rate
αn:

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2025 doi:10.20944/preprints202507.2175.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2175.v1
http://creativecommons.org/licenses/by/4.0/


10 of 35

amat(t) =
log(2)

αn
.

We express the local cell density, F(x, t), in terms of the indicator function χBRc
(x), which merely

checks whether a point x lies within a circular region (a ball) of radius Rc, centered at the origin:

F(x, t) = ∑
ã∈Λt

χBRc

(
x − ã(X,Y)(t)

)
.

This measurement of density at the cell’s position, F(a(X,Y)(t), t), plays a crucial part in deter-
mining whether a cell can divide or not. If the density at the cell’s position is greater than some
threshold Fmax, then the cell will not divide at this time step. It keeps the same age it has now and
must wait until the next time step before trying again. In 2D, when cells are disks that interact with
one another through forces like those of the Lennard-Jones potential, they spontaneously organize
into close-packed hexagonal patterns [25]. In the ideal close-packed arrangement, this pattern restricts
each cell to roughly six immediate neighbors, so one would naively choose Fmax = 6 to allow for close-
packing. Tumor cells are more densely packed than this. To allow for denser packing arrangements
without permitting cells to overlap too much, we choose the cutoff Fmax = 10.

When the density is within acceptable levels, for example, if F(a(X,Y)(t), t) ≤ Fmax, the cell
continues to divide. It divides into two daughter cells, which are denoted a1 and a2, and they each
inherit new spatial coordinates according to the division process:

a(X,Y)
1 (t) = a(X,Y)(t), (Daughter 1)

a(X,Y)
2 (t) = a(X,Y)(t) + 0.1(cos(2πθ)∆x, sin(2πθ)∆y), (Daughter 2)

where θ ∼ Uniform[0, 1] and ∆x, ∆y are spatial discretizations. If a(X,Y)
2 (t) overlaps with existing

cell center positions ã(X,Y)(t), θ is resampled until a valid non-overlapping position is found. We
propose an alternative daughter placement rule: one daughter inherits the mother’s position, while
the other occupies a random vacant site in the Moore neighborhood. Division is blocked if no space is
available, retaining the mother in the proliferative phase.

Upon division, daughter cells a1 and a2 inherit half of the mother cell a’s damage and drug load:

adam
i (t) =

1
2

adam(t), ad
j (t) =

1
2

ad(t), i, j ∈ {1, 2},

and reset their age to 0. The oxygen levels in daughter cells depend on local oxygen concentrations.
Daughter cells retain their mother’s death threshold, proliferation rate, and oxygen consumption rate.

We initialize the zeroth-generation cells with the state vector:

a =
{
(k), a(X,Y)(t), o

(
a(X,Y)(t), t

)
, 0, 0, Tk, Nk, Mk

}
,

with Mk ∼ Uniform[7.776 × 104, 9.504 × 104] s days, Nk ∼ Uniform[0, Mk], and Tk = 0.5 for all
k ∈ {1, . . . , N0} in preexisting resistance scenario. For spontaneous mutation, we set adeath

R = 3adeath
S =

1.5.
Existing mutation models include:

(i) Random mutation, where one of N > 1 predefined phenotypes is selected with equal proba-

bility p =
1
N

during mutation [54];
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(ii) Linear mutation, where phenotypes evolve deterministically along a predefined trajectory of
increasing resistance and aggressiveness. Although linear mutation avoids abrupt phenotypic
jumps, it enforces a deterministic progression toward aggressive phenotypes, disregarding
microenvironmental selection pressures.

To address these limitations, we introduce a neutral, non-directional mutation algorithm that
prevents abrupt trait shifts and enables unbiased phenotypic evolution. Mutations follow a Poisson
process with intensity µ > 0 per cell per time step:

P(mutation in [t, t + ∆t]) = 1 − e−µ∆t ≈ µ∆t

Every cell attribute xi changes with some random multiplier:

xi,new = ri × xi,current, ri ∼ Uniform[0.7, 1.7],

with bounds ensuring biologically plausibility:

0.5xi,baseline ≤ xi,new ≤ 4xi,baseline.

Note that mutations are not directly coupled with cell proliferation. Instead, they are the result of
internal cell mechanisms and environmental stresses [62]. We simulate this using a Poisson process,
modeling the memoryless property of mutation events. This serves to decouple mutation timing
consistently, both analytically tractable and reproducible, regardless of a cell’s division history.

2.2.2. Angiogenesis Dynamics

Endothelial tip cells and vessel cells are modeled as discrete agents b ∈ Tt and v ∈ Vt, respectively,
where angiogenesis is driven by chemotaxis, branching, and anastomosis. The set Tt denotes all tip
cells at time t. Each tip cell b is characterized by:

b = {idb, b(X,Y)(t), bage(t)},

where b(X,Y)(t) denotes spatial coordinates and bage tracks time since last branching. The unique
identifier idb records lineage from branching events. The tip cell age evolves as:

bage(t + ∆t) = bage(t) + ∆t.

Tip cells migrate on a lattice via chemotaxis-diffusion dynamics, with movement probabilities P0

(stationary), P1 (left), P2 (right), P3 (down), and P4 (up) derived from the TAF gradient (see Section 2.3):
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P0 = 1 − 4
Dn∆t
∆x2 −∆tχ0

4∆x2

(
1

1 + αci+1,j
+

1
1 + αci,j

)
(ci+1,j − ci,j)

+
∆tχ0

4∆x2

(
1

1 + αci−1,j
+

1
1 + αci,j

)
(ci,j − ci−1,j)

−∆tχ0

4∆x2

(
1

1 + αci,j+1
+

1
1 + αci,j

)
(ci,j+1 − ci,j)

+
∆tχ0

4∆x2

(
1

1 + αci,j−1
+

1
1 + αci,j

)
(ci,j − ci,j−1)

P1 =
Dn∆t
∆x2 −∆tχ0

4∆x2

(
1

1 + αci+1,j
+

1
1 + αci,j

)
(ci+1,j − ci,j)

P2 =
Dn∆t
∆x2 +

∆tχ0

4∆x2

(
1

1 + αci−1,j
+

1
1 + αci,j

)
(ci,j − ci−1,j)

P3 =
Dn∆t
∆x2 −∆tχ0

4∆x2

(
1

1 + αci,j+1
+

1
1 + αci,j

)
(ci,j+1 − ci,j)

P4 =
Dn∆t
∆x2 +

∆tχ0

4∆x2

(
1

1 + αci,j−1
+

1
1 + αci,j

)
(ci,j − ci,j−1)

(2.9)

These probabilities govern directional movement on a discrete grid with Von Neumann neighbor-
hoods, coupling discrete agents to continuum PDE dynamics.

We model tip branching as a Poisson process with intensity dependent on TAF concentration:

λbr(b, t) = cbr
c(b(X,Y)(t), t)
∥c(·, t)∥∞

H(bage(t)− ψ),

where cbr = 1 denotes the baseline branching rate, ∥c(·, t)∥∞ represents the maximum TAF
concentration, and H is the Heaviside function ensuring branching occurs only after maturity time
ψ = 0.5 days. A branching event occurs if bage > ψ, at least one Moore neighbor is vacant, and

Uniform[0, 1] < 1 − e−λbr(b,t)∆t ≈ λbr(b, t)∆t.

Upon branching, one daughter cell remains at the original location, while the other occupies a
randomly selected vacant Moore neighbor, with both resetting their age to 0.

Anastomosis occurs when a migrating tip enters a site occupied by another tip or vessel agent.
The invading tip ceases migration and branching, converting into a vessel segment and contributing to
a closed-loop vascular network. This mechanism yields a dynamically evolving vascular network with
loops and branches, consistent with physiological neovascularization.

Endothelial tip cell proliferation follows a fixed doubling time τ = 18 hours, with each division
event elongating the vascular sprout by one cell length. The model tracks tip cell proliferation explicitly,
disregarding non-tip endothelial cell proliferation since their contribution to sprout elongation is
identical.

The motion of an individual endothelial cell at the capillary sprout tip governs the entire sprout’s
movement because the remaining endothelial cells lining the sprout wall are contiguous [52]. Thus,
the cumulative paths of tip cells define the angiogenic network:

At =
⋃

b∈Tt

{
b(X,Y)(s) : 0 ≤ s ≤ t

}
.
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Each lattice site intersecting At becomes a vessel agent v = {v(X,Y)(t)} ∈ Vt, modeled as a circle
of radius Rc inscribed in that site. These vessel agents act as sources of oxygen and drug delivery in
the PDEs, coupling the PDE model and ABM. The current formulation, however, excludes explicit
mechanical interactions (e.g., Lennard-Jones potentials) between endothelial and tumor cells. This
simplification isolates chemotactic and proliferative angiogenic dynamics from mechanical effects.
Although these interactions could be incorporated via established force models, their exclusion here
facilitates a focused study of tumor evolution under microenvironmental regulations.

For clarity and reproducibility, we summarize the angiogenesis module per time step: each tip cell
moves probabilistically via Pi (derived from diffusion-chemotaxis dynamics), and anastomosis occurs
if the destination site is occupied. Branching follows a Poisson process with probability λbr(b, t)∆t.
Newly migrated, fused, and branched cells are converted to vessel segments, and the tip cell list and
vessel agent collection are updated accordingly.

2.2.3. Biological and Modeling Implications

Hybrid models that integrate agent-based dynamics with continuum reaction–diffusion processes
are critical for studying tumor proliferation, angiogenesis, and response to treatment in dynamic TME.
We list the biological significance:

(i) Multiscale Coupling Validity: The result ensures that stochastic cell-scale events (division,
migration, vessel remodeling) can be consistently embedded into tissue-scale PDE frameworks.

(ii) Predictive Stability: The simulation results on hypoxic zones, nutrient distribution, and vas-
cular remodeling demonstrate mathematical robustness rather than being numerical artifacts.

(iii) Groundwork for Control and Optimization: Well-formulated mathematical model cre-
ates possibilities to study therapeutic methods such as chemotherapy scheduling and anti-
angiogenic therapy through a rigorous mathematical oncology framework.

The mathematical basis ensures that the simulation results accurately represent stable model behaviors.
This result confirms that hybrid PDE–ABM systems are mathematically sound and biologically credible
for modeling complex tumor–vasculature interactions.

2.3. Discretization Framework

Building upon the mathematical framework established in Sections 2.1 and 2.2, we now detail
the computational methodology. This section rigorously analyzes discretization schemes, stability
properties, and conservation laws essential for simulating coupled tumor-vascular dynamics.

To simulate the coupled tumor-vascular dynamics governed by (2.2)-(2.4), we implement a hybrid
numerical strategy. Specifically, we solve the reaction-diffusion equations that govern the drug,
oxygen, and TAF fields (Eqs. 2.2-2.4) using an ADI method, which offers unconditional stability and
allows for longer time steps than explicit methods. The endothelial cell equation (Eq. 2.1) includes a
nonlinear chemotactic flux, and we employ a forward Euler method with a CFL-constrained time step.
This scheme reflects the model’s multiscale nature, enabling robust simulation of emergent vascular
structures.

A regular Cartesian grid containing (Nx + 1) × (Ny + 1) = 100 × 100 nodes spans the 2.5 ×
10−5 m2 tissue region with equal spacing ∆x = ∆y = 5.0 × 10−5 m. The PDE solver operates with a
fixed time step of ∆t = 0.005 (corresponding to ∆t = 2.88 × 102 s). The ABM runs with a coarser time
step ∆t′ = 0.1 (∆t′ = 5.76 × 103s), and is synchronized with the PDE solver at each ∆t′ interval. This
time-step difference follows multiscale modeling principles to ensure accurate interaction between
continuous fields and discrete agents.

We discretize the endothelial cell equation.

∂n
∂t

= Dn∆n −∇ · (χ(c)n∇c),
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using central differences:

∂n
∂t

≈
nk+1

i,j − nk
i,j

∆t
,

Dn∆n ≈ Dn
nk

i−1,j + nk
i+1,j + nk

i,j−1 + nk
i,j+1 − 4nk

i,j

∆x2 .

The nonlinear chemotaxis term −∇ · (χ(c)n∇c) is discretized using a probabilistic finite difference
method inspired by the HDC framework [52,63,64]. This method encodes the directional bias of cell
movement as a movement probability within a Von Neumann neighborhood, which is consistent with
biological chemotaxis behavior.

The chemotactic term is discretized as follows:

∇ · (χn∇c) ≈
Fi+ 1

2 ,j − Fi− 1
2 ,j

∆x
+

Gi,j+ 1
2
− Gi,j− 1

2

∆x
,

where the chemotactic fluxes are defined by

Fi+ 1
2 ,j := χ(ci+ 1

2 ,j)ni+ 1
2 ,j

ci+1,j − ci,j

∆x

Fi− 1
2 ,j := χ(ci− 1

2 ,j)ni− 1
2 ,j

ci,j − ci−1,j

∆x

Gi,j+ 1
2

:= χ(ci,j+ 1
2
)ni,j+ 1

2

ci,j+1 − ci,j

∆x

Gi,j− 1
2

:= χ(ci,j− 1
2
)ni,j− 1

2

ci,j − ci,j−1

∆x

with half-index values approximated by linear interpolation, for example:

χ(ci+ 1
2 ,j) =

χ(ci+1,j) + χ(ci,j)

2
, ni+ 1

2 ,j =
ni+1,j + ni,j

2
.

The same approach applies to calculating the values of χ(ci− 1
2 ,j), χ(ci,j+ 1

2
), χ(ci,j− 1

2
) and

ni− 1
2 ,j, ni,j+ 1

2
, ni,j− 1

2
in the remaining directions. Substituting these expressions, we get the follow-

ing discrete scheme:

nk+1
i,j = nk

i,j + ∆t
(

Dn

∆x2 δ2nk
i,j −

1
∆x

(δFi,j + δGi,j)

)
(2.10)

To interpret this update probabilistically, we recast the scheme as a weighted sum of contributions
from local Von Neumann neighborhoods:

nk+1
i,j = nk

i,jP0 + nk
i+1,jP1 + nk

i−1,jP2 + nk
i,j+1P3 + nk

i,j−1P4, (2.11)

where P0 is proportional to the probability of remaining stationary, and P1 through P4 correspond
to movement into the four Von Neumann neighboring grid points.

The movement probabilities are derived as:
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P0 = 1 − 4
Dn∆t
∆x2 −∆tχ0

4∆x2

(
1

1 + αci+1,j
+

1
1 + αci,j

)
(ci+1,j − ci,j)

+
∆tχ0

4∆x2

(
1

1 + αci−1,j
+

1
1 + αci,j

)
(ci,j − ci−1,j)

−∆tχ0

4∆x2

(
1

1 + αci,j+1
+

1
1 + αci,j

)
(ci,j+1 − ci,j)

+
∆tχ0

4∆x2

(
1

1 + αci,j−1
+

1
1 + αci,j

)
(ci,j − ci,j−1)

P1 =
Dn∆t
∆x2 −∆tχ0

4∆x2

(
1

1 + αci+1,j
+

1
1 + αci,j

)
(ci+1,j − ci,j)

P2 =
Dn∆t
∆x2 +

∆tχ0

4∆x2

(
1

1 + αci−1,j
+

1
1 + αci,j

)
(ci,j − ci−1,j)

P3 =
Dn∆t
∆x2 −∆tχ0

4∆x2

(
1

1 + αci,j+1
+

1
1 + αci,j

)
(ci,j+1 − ci,j)

P4 =
Dn∆t
∆x2 +

∆tχ0

4∆x2

(
1

1 + αci,j−1
+

1
1 + αci,j

)
(ci,j − ci,j−1)

(2.12)

Here, the chemotactic sensitivity is modeled as χ(c) =
χ0

1 + αc
. These probabilistic coefficients

Pi account for both diffusion (symmetric contributions) and chemotaxis (biased contributions via
centered differences), driving net movement toward higher TAF concentrations.

To implement movement based on these coefficients, we interpret them as discrete probabilities.
These coefficients define the likelihood of each possible movement direction, enabling a stochastic
update of cell positions at each time step based on local chemotactic cues and diffusion. Specifically,
we compute five movement probabilities: P0 for remaining stationary and P1–– P4 for movement to
the Von Neumann neighbors (left, right, down, up, respectively; see Figure 2a). Non-negative values
for probabilities are achieved by setting negative values to zero before normalizing all values so that
∑4

i=0 Pi = 1. The uniform distribution Uniform[0, 1] provides random numbers which determine
movement direction through comparison with the cumulative distribution of Pi. Specifically, the cell
moves in the direction corresponding to the interval Rj containing the sampled value:[52,63,64]

R0 = [0, P0],

Rj =

(
j−1

∑
i=0

Pi,
j

∑
i=0

Pi

]
for j = 1, . . . , 4.

(2.13)

This representation ensures the partitioning of the unit interval by cumulative probabilities.
To validate the directional behavior of the chemotactic flux field Jchemo = χ(c)n∇c in

Eq. 2.1, we visualize the flux field under a representative tumor-derived TAF distribution c(x, y) =
e−0.05((x−1.5)2+(y−1.5)2). As illustrated in Figure 2b, the flux vectors align with the gradient of the TAF
concentration field c(x, y), consistently pointing toward the chemotactic source. This spatial align-
ment confirms the correct implementation of the discretized flux term and demonstrates directional
consistency under the assumed tumor-induced configuration of the TAF field.
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(a) Schematic of Von Neumann neighborhood used
for endothelial cell movement. The central red dot
indicates the current cell position, which is associated
with the probability of remaining stationary P0. The
four adjacent blue dots correspond to the Von Neu-
mann neighborhoods: left (P1), right (P2), bottom (P3),
and top (P4). Movement probabilities are computed
from chemotactic and diffusive cues. This figure uses
the same neighborhood structure shown in Figure 2,
but labels each neighbor direction with its correspond-
ing motility probability.

(b) Visualization of the chemotactic flux field
Jchemo = χ(c)n∇c. Under a tumor-derived tu-
mor angiogenic factor (TAF) concentration c(x, y) =
e−0.05((x−1.5)2+(y−1.5)2) over the unit square domain
U′ = [0, 3]2. The flux is evaluated assuming con-
stant cell density n ≡ 1 and the chemotactic sensi-
tivity χ(c) = 0.38/(1 + 0.6 c). Flux vectors are ori-
ented along ∇c, exhibiting chemotactic drift toward
the TAF peak at (1.5, 1.5). The alignment confirms the
directional correctness of the flux discretization and
its consistency with Eq. 2.1.

Figure 2. Motility probability structure and directional validation of chemotactic flux. Subfigure 2(a) shows the
Von Neumann neighborhood and associated movement probabilities. Subfigure 2(b) validates that the chemotactic
flux field points toward the source, consistent with the model in Eq. 2.1.

To efficiently solve the diffusion-dominated PDEs that govern other quantities (e.g., Equa-
tions (2.2)–(2.4)), we employ the ADI method [65]. It is unconditionally stable for linear diffusion and
computationally efficient on large spatial grids.

At each time step, we solve two sequential tridiagonal systems: first implicit in the x-direction
and explicit in y, then swapped. We handle reaction terms explicitly. To remain consistent with the
chemotaxis update in Equation (2.1), we adopt a uniform time step of ∆t = 0.01; however, larger time
steps such as ∆t = 0.1 can also be used for efficient long-term simulations without stability constraints
from diffusion terms.

Assume a reaction-diffusion equation of the form

∂u
∂t

= D∆u + f (u, x, y, t),

Then the ADI method is implemented as follows:

(
1 − D∆t

2∆x2 δ2
x

)
Uk+1/2 =

(
1 +

D∆t
2∆y2 δ2

y

)
Uk +

∆t
2

f (Uk),(
1 − D∆t

2∆y2 δ2
y

)
Uk+1 =

(
1 +

D∆t
2∆x2 δ2

x

)
Uk+1/2 +

∆t
2

f (Uk),

where Uk+1/2 ≈ u((k + 1/2)∆t) is the intermediate solution at time (k + 1/2)∆t. δ2
x and δ2

y are
the second-order central difference operators in the x and y directions, respectively. This hybrid
explicit-implicit approach strikes a balance between stability and computational efficiency for complex
reaction-diffusion dynamics.
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3. Results
3.1. Parameterization and Non-dimensionalization

To establish biologically relevant scales while ensuring numerical stability, we non-dimensionalize
the model using characteristic length L = 5 × 10−3 m, time τ = L2/D = 5.76 × 104 s with
a representative diffusion rate D, cell density n0 = 6.4 × 1013 cells/m3 [54], and concentration
c0 = 1.0 × 10−7 mol/m3 [52]:

ñ =
n
n0

, c̃ =
c
c0

, t̃ =
t
τ

.

The non-dimensionalization framework facilitates direct comparison of scaled dynamics across
systems and yields the dimensionless parameters summarized in Table 4. These parameters integrate
experimental measurements, established literature values, and calibrated constants tailored for tumor-
vascular modeling. The numerical stability of the model required key parameter calibrations such as
TAF production rate (η) and oxygen uptake rate (ρo). The model uses a dimensionless time unit of
t = 0.5 to represent 2.88 × 104 s to match biological observations [56–61]. Furthermore, we calibrated
the oxygen supply (So) to model the saturation of growth under hypoxic conditions, which acts as the
primary control factor for angiogenesis and tumor growth behavior.

3.2. Agent-based Simulation Design

We implement an agent-based simulation framework that couples PDEs for oxygen, TAF, and
drug diffusion with agent-based rules for tumor and vessel dynamics. This hybrid approach links
spatial concentration fields to stochastic cellular behaviors. Endothelial motility responds to TAF
gradients via probabilistic direction sampling. Tumor and vessel cells evolve through mutation,
branching, anastomosis, and apoptosis. Although simplified to 2D for computational tractability, the
design preserves spatially heterogeneous behaviors characteristic of 3D systems [54], enabling vascular
network emergence.

3.3. Emergent Vascularization and Tumor Growth

We simulate emergent vascularization and tumor-independent angiogenesis by prescribing a
linear TAF field c(x, y, 0) = 5y, consistent with previous models [66]. This initialization induces
vessel formation on a time scale of approximately 1.22 × 106 s, in agreement with experimental data
[34]. Simulations reveal non-perfusing and nonfunctional self-loops (> 95% of anastomosis events)
[67] and traveling wave propagation of vessel fronts (Figure 3), matching theoretical predictions
[34,35,66]. The brush border pattern forms near the tumor source at y = 1, where the intensification
of branching occurs along with increased tip density [52]. The oxygen supply rate So controls the
long-term growth behavior because low supply levels (So = 3) stop growth, yet high levels (So = 5)
lead to unlimited growth; while a moderate level (So = 3.5) maintains a stable, hypoxia-dominated
equilibrium state. This oxygen-limited steady state limits future tumor growth and influences drug
response and resistance trajectories.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2025 doi:10.20944/preprints202507.2175.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2175.v1
http://creativecommons.org/licenses/by/4.0/


18 of 35

Figure 3. A simulation shows how blood vessels form at t = 1.22 × 106 s when the TAF concentration field
is c(x, y) = 5y. Left: vessel sprouts exhibit a brush-border effect characterized by dense branching near the
tumor-aligned boundary at y = 1. Right: traveling wave profiles of tip and vessel densities, obtained by counting
horizontal vessels and tips across y-slices of the domain U = [0, 1]2. The observed wave-like propagation and
steady-state patterns reproduce key analytical predictions of angiogenesis models.

Figures 4 and 5 show the tumor-vascular feedback loop: exponential expansion induces core
hypoxia (Figure 4), hypoxia-driven TAF secretion triggers angiogenesis, and oxygen consumption fluc-
tuations continue until supply and demand are balanced. This vascular template lays the foundation
for therapeutic research.
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Figure 4. Tumor-induced angiogenesis. In the early stages of tumor development, the tumor expands expo-
nentially, leading to hypoxia in the tumor core. Subsequently, hypoxic cells release TAF, which diffuses to the
surrounding tissues, forming a TAF gradient, thereby inducing angiogenesis in the hypoxic area.

Figure 5. Tumor dynamics under vascular regulation. Initially, exponential growth induces hypoxia, triggering
TAF secretion and angiogenesis (avascular → vascular phase). The different oxygen consumption rates between
cell types cause temporary fluctuations in normoxic and hypoxic cell populations, since normoxic cells consume
oxygen quickly to create hypoxia, while hypoxic cells consume less and restore normoxia. These population
oscillations continue until an oxygen supply-consumption equilibrium, which results in a hypoxia-dominated
tumor microenvironment (TME).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2025 doi:10.20944/preprints202507.2175.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2175.v1
http://creativecommons.org/licenses/by/4.0/


20 of 35

3.4. Therapy Without Resistance

We simulate treatment in the absence of resistance to establish a baseline therapeutic response.
Under continuous drug infusion (Sd = 0.05), tumors are fully eradicated (Figure 6). Apoptosis
transiently releases space, restoring normoxia and enabling regrowth. As cell divisions resume,
damage is diluted via symmetric partitioning between daughter cells, reducing intracellular drug
burden by half. This interplay between damage accumulation, cell death, and proliferative dilution
gives rise to oscillatory dynamics in average damage levels. These cycles reflect a balance between
drug-induced cytotoxicity and damage dilution through synchronized mitosis.

Figure 6. Baseline therapy response in the absence of resistance. All tumor cells are initially drug-sensitive, with a
death threshold adeath = 0.5, repair rate pr = 0.2, and no mutational events. The initial population (N0 = 100) is
randomly distributed in the domain center with radius 0.2. Drug administration begins at t = 14 with a constant
influx rate Sd = 0.05. (a) Following the initiation of treatment, tumor cells rapidly decrease in number, leading to
the alleviation of hypoxia in the TME. This promotes accelerated proliferation of the surviving tumor cells, which
are predominantly normoxic. As the tumor cells continue to expand, the normoxic cells gradually transition into
hypoxic cells and are eventually eliminated under the effect of the drug. (b) Linear damage increase drives cells
to apoptosis, temporarily reducing density and restoring normoxia. This facilitates regrowth and synchronized
division, which halves intracellular damage and regenerates the population. The system undergoes repeated
oscillations in average damage, governed by the balance between accumulation and dilution.

3.5. Passive and Active Resistance Mechanisms

Introducing 1% preexisting resistance fundamentally alters treatment outcomes. As shown in
Figure 7, resistant clones—defined by elevated death thresholds—eventually dominate under lower
clearance conditions (pr = 0.2, 0.3). At low clearance rates (pr = 0.2), sensitive cells are eliminated,
while resistant cells persist through oscillatory apoptosis-division dynamics driven by damage accu-
mulation and proliferative dilution. Intermediate clearance (pr = 0.3) accelerates resistance without
oscillation. At maximal clearance (pr = 1), damage is fully repaired at each time step, rendering
therapy ineffective and preserving both sensitive and resistant populations.

Spatially (Figure 8), resistant cells preferentially localize near vasculature under low clearance
(pr = 0.2), exploiting oxygen-rich sanctuaries where proliferation-enabled dilution offsets linear drug
damage accumulation. As clearance increases, spatial bias diminishes and tumor distributions become
more homogeneous, consistent with reduced therapy efficacy.
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Figure 7. Tumor dynamics in the presence of 1% preexisting resistance. The starting population of N0 = 100 tumor
cells consists of one resistant cell (adeath

R = 1.5) and the rest of the sensitive cells (adeath
S = 0.5). The drug treatment

(Sd = 0.05) starts at t = 14. We examine three different rates of damage clearance: pr = 0.2, 0.3, and 1. (a) The
sensitive cells die when the clearance rate is pr = 0.2, but the resistant cells survive. This results in sustained
oscillations in population size, tumor composition, and average damage because of damage-dilution cycling. (b)
When the clearance rate is pr = 0.3, sensitive cells first die in large numbers, and then resistant cells take over the
population until it reaches the carrying capacity. Subsequently, both average damage levels and tumor population
size stabilize, with damage remaining below the threshold while the population maintains complete resistance
to therapy. (c) The maximum clearance rate of pr = 1 results in complete repair, which eliminates effects, thus
enabling survival of both cell types and leading to treatment failure.
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Figure 8. Spatial distributions of normoxic and hypoxic tumor cells under preexisting resistance. The initial tumor
population contains 1% resistant cells (adeath = 1.5). We evaluate cell localization patterns under three clearance
rates (pr = 0.2, 0.3, and 1). At low clearance, resistant cells cluster near vasculature, where elevated oxygen
availability supports proliferation and damage dilution, forming "vascular sanctuaries." As clearance increases,
the spatial bias weakens, and tumor cells distribute more uniformly across the domain, reflecting diminished
spatial selection pressures and reduced therapeutic efficacy.

Spontaneous mutations complement preexisting resistance by enabling adaptive evolution and
conferring active resistance during treatment. Empirical studies estimate stem cell mutation rates
per division to lie between 10−6–10−2 [68,69]. We model mutation events as a Poisson process with
intensities µ = 10−1, 10−2, 10−3, 10−4 per time step ∆t′ = 0.1, assuming all mutation initiate at therapy
onset. Tumor dynamics exhibit strong sensitivity to the mutation rate µ. For µ ≥ 10−3, resistance
emerges progressively, sustaining tumor burden via cycles of apoptosis and regrowth (Figure 9). In
contrast, µ = 10−4 results in eventual eradication.
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Figure 9. Tumor dynamics under spontaneous mutation rates of µ = 10−1, 10−2, 10−3, 10−4. (a, b, c) Tumors
that have µ ≥ 10−3 develop resistance by experiencing repeated population reduction followed by population
rebounds. Two types of mass death events occur: (i) when average damage approaches the lethal threshold with
minimal intercellular variation, leading to synchronized apoptosis; (ii) when substantial damage heterogeneity
causes the upper tail to exceed the average death threshold, eliminating the most vulnerable cells. Surviving pop-
ulations are increasingly resistant due to selective pressure. Tumors reach a quasi-stable phase at reduced carrying
capacity compared to pretreatment levels. The quasi-stable phase is characterized by dampened oscillations in
tumor cell counts and composition, with small-scale death events that further raise resistance through continued
selection. (d) In contrast, for µ = 10−4, insufficient mutation fails to sustain resistance, and tumors are eradicated
after several treatment cycles.

Temporal profiles of oxygen uptake and proliferation (Figure 10) reveal a self-reinforcing feedback
loop: rapidly proliferating cells generate more mutations, while highly resistant mutants preferen-
tially survive. This bidirectional coupling accelerates the dominance of fast-cycling, drug-resistant
phenotypes. The resulting co-selection produces coupled evolutionary trajectories, as evidenced by the
spatial co-localization of high proliferation and resistance traits in Figures 11 and 12. Notably, oxygen
consumption undergoes neutral drift under weak selection, in contrast to proliferation and resistance,
which are strongly co-selected.
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Figure 10. Distributions of oxygen consumption along with proliferation rate exhibit temporal changes when
mutation rates increase. (d) Both traits remain narrowly distributed around their starting values (ρo and αn) when
mutation rates are low at (µ = 10−4), which indicates minimal phenotypic diversification and no emergence
of resistance. (a, b, c) When µ increases from 10−3 to 10−1 the evolutionary patterns start to show up. At
t = 18.9, the distributions of both traits begin to broaden. Oxygen consumption transitions from a unimodal to a
dispersed, multimodal distribution. Directional selection becomes apparent because the unimodal distribution of
the proliferation increasingly favors elevated trait values.
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Figure 11. The spatial distribution of cell proliferation rates under three spontaneous mutation rates: µ =

0.1, 0.01, 0.001. The color bar indicates local proliferation trait values. Higher mutation rates promote fast-
proliferating cells to spread throughout the population earlier in time. A direct comparison with Figure 12 shows
how areas with high proliferation traits match with areas that have high resistance traits, thus demonstrating their
coupled selection during evolution.
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Figure 12. The spatial patterns of resistance trait appear in three different mutation rates µ = 0.1, 0.01, 0.001.
The color bar indicates local resistance trait values. The presence of high mutation rates enables resistant
subpopulations to appear earlier and expand faster. A direct comparison with Figure 11 demonstrates that
resistance frequently matches the locations where high proliferation occurs, which supports the simultaneous
selection of both traits and their joint evolutionary development.

3.6. Comparative Strategy Evolution

We assess the clinical implications of our mechanistic model through the evaluation of seven
iso-dosed regimens, including both pulsed and continuous protocols with different resistance scenarios.
Table 5 presents a summary of treatment plans and their results at various combinations of resistance
mechanism and mutation rate. The continuous administration of high-dose therapy (Sd = 10) achieves
universal success, while pulsed and low-dose regimens do not work even when mutation rates are
moderate (µ ≥ 0.001). Three fundamental factors combine to determine treatment success: resistance
level, mutation rate, and dosing protocol. The success of intermediate dose regimens depends on
low mutation rates and the absence of preexisting resistance, which highlights the need for treatment
approaches based on evolutionary dynamics.
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Table 5. Summary of seven iso-dosed treatment strategies evaluated across four spontaneous mutation rates (µ)
and a preexisting resistance scenario. Each treatment cycle comprises alternating "on" and "off" periods of drug
administration. Continuous regimens (Treatments 5–7) vary in dose intensity, while pulsed regimens (Treatments
1–4) vary in treatment duration but maintain a constant total dose per cycle. A S symbol denotes successful tumor
elimination, while F indicates treatment failure. Co-dependence on mutation rate, resistance architecture, and
regimen type is evident across the outcome matrix.

Treatment ton to f f Sd strategy preexisting µ = 0.1 µ = 0.01 µ = 0.001 µ = 0.0001
1 10 40 10 pulsed S F F S S
2 20 30 5 pulsed F F F S S
3 30 20 10/3 pulsed F F F F S
4 40 10 5/2 pulsed F F F F S
5 50 0 2 continuous F F F F S
6 50 0 5 continuous S F S S S
7 50 0 10 continuous S S S S S

4. Biological Implications and Future Directions
Our model conceptualizes tumor resistance as an emergent phenotype driven by mutation, drug

exposure, and microenvironmental heterogeneity. This framework matches clinically observed dy-
namics that occur in non-small cell lung cancer (NSCLC) with epidermal growth factor receptor
(EGFR)–mutant. The T790M mutation, when co-occurring with activating mutations L858R or exon
19 deletions, confers both therapeutic resistance and enhanced oncogenicity [70,71]. Paradoxically,
experimental studies demonstrate that T790M creates a growth disadvantage [55], implying synergistic
tumor-promoting activities arise from non-T790M genetic alterations that enable aggressive pheno-
typic shifts. Our simulations successful demonstrate this contradiction through two mechanisms: (i)
higher mutation rates confer survival advantages, which reducs treatment efficacy (Figure 9), and (ii)
proliferation and resistance traits become mutually reinforced leading to simultaneous emergence and
the spatial co-localization of highly proliferative, resistant cells (Figures 10–12).

Although molecular mechanisms remain abstracted, these emergent dynamics directly inform
clinical translation strategies. We treat T790M not as a discrete genetic driver, but as a survival-
enhanced phenotype with therapy-altered dynamics. This abstraction captures divergent outcomes
(regression or progression) without detailed EGFR pharmacodynamics, supporting the hypothesis
that tumor fate depends equally on spatial ecology and genetics.

To transform this phenotypic abstraction into precision oncology tools, we propose coupling
intracellular signaling models with our hybrid PDE–ABM framework. The simulation of resistance
mutations, including EGFR T790M in NSCLC, phosphoinositide 3-kinase (PI3K)/protein kinase B
(AKT) in breast cancer, and mitogen-activated protein kinase (MAPK) in melanoma, can be performed
through modular ordinary differential equations (ODEs) or logic-based networks that control cellular
decisions. The modular system governs cellular decisions about division, apoptosis, and repair based
on extracellular oxygen levels and drug concentrations, which connect genotypic information to
phenotypic characteristics within our spatial ecology framework.

Operationalizing this integration requires scalable computational methods. Tools like MaBoSS,
BioNetGen, or PySB could embed molecular systems biology within agent-based platforms, simulating
mutation-specific dynamics (e.g., constitutively active EGFR or phosphatase and tensin homolog
(PTEN) loss) alongside spatially varying therapy. This would enable predictions of resistance, synergy,
and adaptive responses.

Collectively, these extensions would advance multiscale simulations of combined therapies and
resistance evolution, providing mechanistic insights into combination strategies, evolutionary steer-
ing, and sequential regimens tailored to pathway-specific vulnerabilities. Key extensions include:
(i) in silico validation of anti-angiogenic/cytotoxic combinations supporting [72,73]; (ii) vascular in-
travasation/extravasation models capturing dissemination [74,75]; (iii) incorporation of metabolic
reprogramming [76,77], TME remodeling [78,79], and stemness enhancement [80,81] to model collabo-
rative resistance; and (iv) vascular permeability modulation via Sd(t) → PvSd(t) addressing current
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extravasation assumptions and reflecting clinical variability in vascular permeability [82–89]. While
these extensions enhance predictive capacity, our current framework already delivers critical insights
into resistance evolution, as consolidated below.

5. Discussion and Conclusions
The core understanding from these findings reveals that the HDC model proves that hypoxia-

vascularization-drug gradient interactions control resistant subclone development as well as their
spatial patterns throughout chemotherapy. Hypoxia-driven angiogenesis restores oxygen levels
while simultaneously producing uneven drug distribution patterns that establish evolutionary "safe
zones" where resistant phenotypes thrive and expand to become dominant. Therapeutic resistance
emerges through dynamic connections between vascular plasticity and microenvironmental selection
mechanisms.

These mechanistic understanding extends prior spatial cancer evolution models [24,41,52,90], yet
advance the field by explicitly coupling angiogenic remodeling with resistance evolution within a
unified framework. Unlike compartmental or continuum models that neglect stochastic cellular events
or handle static vasculature, our model reproduces tip cell sprouting, anastomosis, and hypoxic cores,
validating biological relevance.

Basic models fail to properly describe the intricate relationship between vascularization and
resistance. The positive relationship between vessel density and drug penetration exists, although
densely packed tissue with high interstitial pressure reduces perfusion according to Jain et al. [91].
Resistance still emerges in well-perfused tumor regions through random mutations, yet the slower
emergence rate makes DNA repair kinetics and mutation rates essential for in vivo calibration.

The study demonstrates both nuanced findings along recognized limitations about tumor anal-
ysis and modeling. 2D domain analysis and simulation oversimplify 3D tumor complexity, even
though it retains computational tractability, yet the angiogenesis module abstracts key molecular
pathways like VEGF signaling and endothelial-pericyte interactions. The model improves its predic-
tion power through additional biochemical details, but this advancement requires more parameters,
together with increased computational resources. Additionally, single-drug assumptions with uniform
pharmacodynamics contrast with clinical combination therapies.

The model delivers usable principles that extend across different scientific fields despite its opera-
tional constraints. Mathematical biologists receive a flexible and rigorous framework that connects
stochastic and deterministic processes. Cancer researchers obtain a mechanistic understanding of
why anti-angiogenic treatments may fail to achieve long-term resistance prevention while showing
initial drug delivery enhancements. Medical practitioners, along with pharmaceutical developers,
must develop time-based drug protocols that focus on particular microenvironmental areas to achieve
enduring therapeutic success. Public discussion gains value through this model because it disproves
basic misconceptions that link more blood vessels to improved outcomes.

By unifying previously isolated modeling approaches (e.g., discrete evolutionary modeling, dy-
namic vascular remodeling), we reveal emergent behaviors like angiogenesis’s paradoxical dual role in
both therapeutic success and failure. This foundational framework prioritizes mechanistic plausibility
over data-fitting, with credibility established through validation against: (i) tumor progression from
avascular to vascular stages (Figures 4 and 5), (ii) TAF-driven angiogenesis wave propagation (see
Figure 3 and [34,35,66]), and (iii) established principles of drug heterogeneity in pharmacokinetics and
pharmacodynamics [92–94].

Advancing this framework into patient-specific predictive tools requires: (i) genomics-informed
calibration of mutation rates (µ) based on EGFR-mutant NSCLC sequencing data [95], (ii) validation
of vascular architectures using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
[96–98], and (iii) integration of pharmacokinetic heterogeneity via PvSd modeling [82–89].

Ultimately, this work establishes a biologically grounded mathematical framework that intercon-
nects angiogenesis, hypoxia, drug distribution, and resistance evolution. By elucidating how vascular
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adaptation may inadvertently foster treatment failure, we emphasize the critical need for spatially
informed therapies—repositioning hybrid modeling from mechanistic explanatory tools to predictive
engines guiding cancer discoveries and precision oncology envisioned in this Special Issue.
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