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Abstract: In this paper, we propose an imagined speech-based brain wave pattern recognition using
deep learning. Multiple features were extracted concurrently from eight-channel
Electroencephalography (EEG) signals. To obtain classifiable EEG data with fewer number of
sensors, we placed the EEG sensors on carefully selected spots on the scalp. To decrease the
dimensions and complexity of the EEG dataset and to avoid overfitting during the deep learning
algorithm, we utilized the wavelet scattering transformation. A low-cost 8-channel EEG headset was
used with MATLAB 2023a to acquire the EEG data. The Long-Short Term Memory Recurrent Neural
Network (LSTM-RNN) was used to decode the identified EEG signals into four audio commands:
Up, Down, Left, and Right. Wavelet scattering transformation was applied to extract the most stable
features by passing the EEG dataset through a series of filtration processes. Filtration has been
implemented for each individual command in the EEG datasets. The proposed imagined speech-
based brain wave pattern recognition approach achieved a 92.50% overall classification accuracy.
This accuracy is promising for designing a trustworthy imagined speech-based Brain-Computer
Interface (BCI) future real-time systems. For better evaluation of the classification performance,
other metrics were considered, and we obtained 92.74%, 92.50% and 92.62% for precision, recall,
and Fl-score, respectively.

Keywords: Inner Speech; Imagined Speech; EEG Decoding; Brain-Computer Interface; BCI; LSTM;
Wavelet Scattering Transformation; WST

1. Introduction

Enormous research has been done over the past decade aiming to convert human brain signals
to speech. Although experiments have shown that the excitation of the central motor cortex is
elevated when visual and auditory cues are employed, the functional benefit of such a method is
limited [1]. Imagined speech, sometimes called inner speech, is an excellent choice for decoding
human thinking using the Brain-Computer Interface (BCI) concept. BCI is being developed to
progressively allow paralyzed patients to interact directly with their environment. Brain signals
usable with the BCI systems can be recorded with a variety of common recording technologies, such
as the Magnetoencephalography (MEG), the Electrocorticography (ECOG), the functional Magnetic
Resonance Imaging (fMRI), functional Near-Infrared Spectroscopy (fNIRS), and the
Electroencephalography (EEG). EEG headsets are used to record the electrical activities of the human
brain. EEG-based BCI systems can convert the electrical activities of the human brain into commands.
An EEG-based implementation is considered an effective way to help patients, with a high level of
disability or physically challenged, control their supporting systems like wheelchairs, computers, or
wearable devices [2], [3], [4], and [5]. Moreover, in our very recent research [6] and [7], we
accomplished excellent accuracy in classifying EEG signals to control a drone and consider the
Internet of things (IoT) to design an Internet of Brain Controlled Things (IoBCT) system.

Applying soft-computing tools, such as Artificial Neural Networks (ANNSs), genetic algorithms,
and fuzzy logic helps designers implement intelligent devices that fit the needs of physically
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challenged people [8]. Siswoyo et al. [9] suggested a three-layer neural network to develop the
mapping from input received from EEG sensors to three control commands. Fattouh et al. [10]
recommended a BCI control system to distinguish between four control commands besides the
emotional status of the user. If the user is satisfied, the specific control command is still executed, or
the controller should stop the implementation and ask the patient to choose another command.
Decoding the brain waves and presenting them as an audio command is a more reliable solution to
avoid the execution of unwanted commands, and this is mainly true if the user can listen to the
translated commands from his brain and confirm or deny the execution of that command. A deep
learning algorithm offers a valuable solution for processing, analyzing, and classifying brainwaves
[11]. Modern studies have concentrated on both healthy and patient individuals only to communicate
their thoughts [12]. Vezard et al. [13] reached 71.6% accuracy in a Binary Alertness States (BAS)
estimation by applying the Common Spatial Pattern (CSP) to extract the feature. The methods in [14]
and [15] reached an EEG classification accuracy of merely 54.6% and 56.76%, respectively. This was
achieved by applying a multi-stage CSP for the EEG dataset feature extraction. In [16], researchers
employed the power of a deep learning algorithm using the Recurrent Neural Network (RNN) to
process and classify the EEG dataset.

For cheaper and more effortless setup and maintained BCI systems, it is preferable to have as
few EEG channels as possible. There are two types of BCI systems: online, such as the systems
described in [17] and [18], and offline BCI systems, such as the systems described in [19]. In the offline
EEG system, the EEG data recorded from the participants are stored and processed later; on the other
hand, the online BCI system processes the data in real time, such as in the case of a moving
wheelchair. Recent research [20] revealed that inner speech differs at the phonologic level. Wang et
al. [21] demonstrated in their study, which was based on common spatial patterns and Event-Related
Spectral Perturbation (ERSP) that the highly significant EEG channels for classifying inner speech are
the ones laid on the Broca’s and Wernicke’s regions. Essentially, the Wernicke region is responsible
for ensuring that the speech makes sense, while the Broca region ensures that the speech is produced
fluently. Given that both Wernicke’s and Broca’s regions are participating in inner speech, it is not
easy to eliminate the effect of the auditory activities from the EEG signal recorded during speech
imagination. Indeed, some researchers suggested that auditory and visual activities are essential to
decide the brain response [22] and [23].

In most studies, the participants are directed to imagine speaking the commands only once.
However, in [24] and [25], the participants must imagine saying a specific command multiple times
in the same recording. In [26], the commands “left,” “right,” “up,” and “down” have been used. This
choice of commands is not only motivated by the suitability of these commands in practical

a

applications but also because of their various manner and places of articulation. Maximum
classification accuracy of 49.77% and 85.57% were obtained, respectively. This was accomplished
using the kernel Extreme Learning Machine (ELM) classification algorithm. Significant efforts have
been recently published by Nature [27] where a 128-channel EEG headset was used to record inner
speech-based brain activities. The acquired dataset consists of EEG signals from 10 participants
recorded by 128 channels distributed all over the scalp according to the ‘ABC’ layout of the
manufacturer of the EEG headset used in this study. The participants were instructed to produce
inner speech for four words: ‘up’, ‘“downy’, ‘left’, and ‘right’ based on a visual cue they saw in each
trial. The cue was an arrow on a computer screen that rotated in the corresponding directions. This
was repeated 220 times for each participant. However, since some participants reported fatigue, the
final number of trials included in the dataset for each participant differed slightly. The total number
of trials was 2236 with an equal number of trials per class for all participants. The EEG signals
included event markers and were already preprocessed. The preprocessing included a band pass
filter between 0.5-100 Hz, a notch filter at 50 Hz, artifact rejection using Independent Component
Analysis (ICA), and down-sampling to 254 Hz. The Long-Short Term Memory (LSTM) algorithm has
been used in [28] and [29] to classify EEG signals. In [28], 84% accuracy of EEG data classification was
achieved. In [29], an excellent accuracy of 98% was achieved in classifying the EEG-based inner
speech, but researchers used an expensive EEG headset. Getting high accuracy in classifying the brain
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signals is considered essential in the design of future brain-controlled systems, which can be tested
in real-time or in simulation software such as V-Rep [30] to check for any uncounted errors.

Most of the researchers have used high-cost EEG headsets to build BCI systems for imagined
speech processing. Using the RNN for time-series input showed good execution in extracting features
over time, and they achieved an 85% classification accuracy. Although innovative techniques in
conventional representations, such as Event-Related Potential (ERP), and Steady-State Visual Evoked
Potential (SSVEP), have expanded the communication ability of patients with a high level of
disability, these representations are restricted in their use for the availability of a visual stimulus [31],
[32]. Practicality research studied imagined speech in EEG-based BCI systems and showed that
imagined speech could be extrapolated using texts with high discriminatory pronunciation [33].
Hence, BCl-based gear can be controlled by processing brain signals and extrapolating the inner
speech [34]. Extensive research has been conducted to develop BCI systems using inner speech and
motor imagery [35]. To investigate the feasibility of using EEG signals for imagined speech
recognition, a research study reported promising results on imagined speech classification [36]. In
addition, a similar research study examined the feasibility of using EEG signals for inner speech
recognition and increasing the efficiency of such use [37].

In this paper, we have used a low-cost low-channel 8-channel EEG headset, g.tec Unicorn Hybrid
Black+[38], with MATLAB 2023a for recording the dataset to decrease the computational complexity
required later in the processing. Then, we decoded the identified signals into four audio commands:
Up, Down, Left, and Right. These commands were performed as an imagined speech by four healthy
subjects whose ages are between 20-year to 56-year-old, and those were two females and two males.
The EEG signals were recorded while the imagination of speech occurred. An imagined speech based
BCI model was designed using deep learning. Audio cues were used to stimulate the motor imagery
of the participants in this study, and the participant responded with imagined speech commands.
Pre-processing and filtration techniques were employed to simplify the recorded EEG dataset and
speed up the learning process of the designed algorithm. Moreover, the short-long term memory
technique was used to classify the imagined speech-based EEG dataset.

2. Materials and Methods

We considered research methodologies and equipment in order to optimize the system design,
simulation, and verification.

2.1. Apparatus

In order to optimize the system design, reduce the cost of the designed system and decrease the
computational complexity, we used a low-cost EEG headset. We have used a low number of EEG
channels with the concentration on the placement of EEG sensors at the proper places on the scalp to
measure specific brain activities. The EEG signals were recorded using the g.tec Unicorn Hybrid Black+
headset. It has eight-channel EEG electrodes with a 250 Hz sampling frequency. It records up to
seventeen channels, including the 8-channel EEG, a 3-dimensional accelerometer, a gyro, a counter
signal, a battery signal, and a validation signal. The EEG electrodes of this headset are made of a
conductive rubber that allows recording dry or with gel. Eight channels are recorded on the following
positions: (FZ, C3, CZ, C4, PZ, PO7, OZ, and POS8). The used g.tec headset provides standard EEG
head caps of various sizes with customized electrode positions. A cap of appropriate size was chosen
for each participant by measuring the head boundary with a soft measuring tape. All EEG electrodes
were placed in the marked positions in the cap, and the gap between the scalp and the electrodes was
filled with a conductive gel provided by the EEG headset manufacturer.

We considered the international electrode placement 10-20 recommended by the American
clinical neurophysiology society [39]. The head cap has been adjusted to ensure their electrodes are
placed as close to Broca’s and Wernicke’s regions as possible, which we assume to produce good
quality imagined speech-based EEG signals due to this placement. Figure 1 shows the g.tec Unicorn
Hybrid Black+ headset with the electrode map. Ground and reference are positioned on the back of the
ears (mastoids) of the participant using a disposable sticker.
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Figure 1. (a) Broca’s and Wernicke’s regions, (b) The electrode positions of the system. Ground and
reference are fixed on the back of ears (mastoids) by a disposable sticker, (c) 8-channel EEG headset.

2.2. Procedure and Data Collection

The study was conducted in the Department of Electrical & Computer Engineering and
Computer Science at Jackson State University. The experimental protocol was approved by the
Institutional Review Board (IRB) at Jackson State University in the state of Mississippi [40]. Four
healthy participants: two females and two males in age range (20-56), with no speech loss, no hearing
loss, and with no neurological or movement disorders participated the experiment and signed their
written informed consent. Each participant was a native English speaker. None of the participants
had any previous BCI experience and contributed to approximately one hour of recording. In this
work, the participants are classified by aliases “sub-01” through “sub-04”. The age, gender, and
language information about the participating subjects is provided in Table 1.

Table 1. Participants Information.

Participant Gender Age Native language
sub-01 Male 56 English
sub-02 Female 20 English
sub-03 Male 29 English
sub-04 Female 26 English

The experiment has been designed to record the brain’s activities while imagining speaking a
specific command. When we usually talk to each other, our reactions will be based on what we hear
or sometimes on what we see. Therefore, we could improve the accuracy of classifying different
commands by allowing participants to respond to an audio question. Each participant was seated in
a comfortable chair in front of another chair where a second participant would announce the question
as an audio cue. To familiarize the participant with the experimental procedures, all experiment steps
were explained before the experiment date and before signing the consent form. The experimental
procedures were explained again during the experiment day while the EEG headset and the external
electrodes were placed. The setup procedure took approximately 15 minutes. Four commands have
been chosen to be imagined as a response to the question: “Where do you want to go?” A hundred
recordings were acquired for each command where each participant finished 25 recordings. Each
recording lasted approximately 2 minutes and required two participants to be present. Unlike the
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procedure in [24] and [25], we did not set a specific number for each command to be repeated. When
the recording began, the question was announced after 10 to 12 seconds as audio cues by one of the
other three participants. After 10 seconds, the participant started executing his response for 60
seconds by keeping repeat imagining saying the required command, and the recording was stopped
after 10 seconds. In each recording, the participant responded by imagining saying the specified
command, which was one of the four commands. Since we have four commands, the total recorded
EEG dataset for all was 400 recordings.

The recorded EEG dataset for all 400 recordings was labeled and stored; then, the EEG dataset
was imported into MATLAB to prepare it for processing. The EEG dataset was processed and
classified together without separating them according to their corresponding participants, so we
could evaluate our designed algorithm according to its performance in dealing with a dataset from
different subjects. For each command, the first 25 recordings were for subject 1, the second 25
recordings were for subject 2, and so on. After finishing the classification process, the results were
labeled according to the order of the participant’s dataset. Figure 2 illustrates the recording and signal
processing procedures. Figure 3 shows sample of the recorded 8-channel raw EEG signals.
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Figure 2. The recording procedure.
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Figure 3. Sample of the recorded 8-channel raw EEG dataset.

2.3. Data Pre-processing and Data Normalization

Preprocessing the raw EEG signals is essential to remove any unwanted artifacts raised from the
movement of face muscles during the recording process from the scalp that could affect the accuracy
of the classification process. The recorded EEG signals were analyzed using MATLAB where
bandpass filter between 10 and 100 Hz was used to eliminate any noisy signals from EEG. This
filtering bandwidth maintains the range frequency bands corresponding to human brain EEG
frequency limit [41]. Then, normalization (vectorization) and feature extraction techniques have been
applied to simplify the dataset and reduce the computing power required to classify the four
commands. The dataset was divided into 320 recordings and 80 recordings for the testing dataset
(80% for training and 20% for testing). The EEG dataset was acquired from eight EEG sensors, and it
contains different frequency bands with different amplitude ranges. Thus, it was beneficial to
normalize the EEG dataset to boost the training process speed and get as many accurate results as
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possible. The training and testing dataset were normalized by determining the mean and standard
deviation for each of the eight input signals. Then, the mean value was calculated for both the training
and testing dataset. Then, the results for both were divided by the standard deviation as follows:

X-u
o

EEG 1)

Normalized —
where (X) is the raw EEG signal, () is the calculated mean value, and (o) is the calculated standard
deviation. After the normalization procedure, the dataset was prepared for the training process.
Figure 4 shows the normalized representation of the 8-channel raw EEG signals.
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1000 1500 2000 2500 3000 3500 4000 4500
Sample

Figure 4. Eight-channel normalized EEG dataset.

2.4. Feature Extraction

Wavelet scattering transform is a knowledge-based feature extraction technique that employs
complex wavelets to balance the discrimination power and stability of the signal. This technique
filters the signal by assembling a cascade of wavelet decomposition coefficients, complex modulus,
and low-pass-filtering processes. The wavelet scattering transformation method facilitates the
modulus and averaging process of the wavelet coefficients to acquire stable features. Then, the
cascaded wavelet transformations are employed to retrieve the high-frequencies data loss that
occurred due to the previous wavelet coefficients” averaging modulus process. The obtained wavelet
scattering coefficients retain translation invariance and local stability. In this feature-extracting
procedure, a series of signal filtrations is applied to construct a feature vector representing the initial
signal. This filtration process will continue until the feature vector for the whole signal length is
constructed. A feature matrix is constructed for the eight EEG signals. As an outcome of the
normalization stage, the obtained dataset consists of one vector with many samples for each
command in each of the 100 recordings. Training the deep learning algorithm with a similar dataset
is computationally expensive. For instance, in the first recording of the command Up, a (1x80480)
vector has been constructed after the normalization stage. After filtering the dataset for all 100
recordings and using wavelet scattering transformation, 8 features were extracted and the (1x80480)
vector of the normalized data was minimized to an (8x204) matrix for each recording.

Using the wavelet scattering transformation for all the recorded dataset (training and testing
datasets) minimized the time spent during the learning process. Moreover, the wavelet scattering
transformation provided more organized and recognizable brain activities. Using the wavelet
scattering transformation allowed us to optimize the classifications generated by the deep learning
algorithm for distinguishing between the four different commands more accurately. Figure 5 shows
the eight extracted features after applying the wavelet scattering transformation.
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Figure 5. Eight extracted features using wavelet scattering transformation.

2.5. Data Classification

The normalization and feature extraction techniques were used with both the learning and
testing datasets to enhance the classification accuracy of the designed BCI system. At this point, the
processed datasets were prepared to be trained in deep learning. An LSTM is a type of RNN that can
learn long-term dependencies among time steps of a sequenced dataset. The LSTM architecture is a
good fit for classifying the sequenced EEG dataset. On the input side, the LSTM was constructed to
have an input layer receiving sequence signals, which were eight time-series EEG signals. On the
output side, the LSTM was constructed to have a one-vector output layer with Rectified Liner Unit
(ReLU) activation function. The output values were set to be (0, 0.5, 0.7, 1.0) for the desired four
commands: Up, Down, Left, and Right, respectively. During the training process of the used LSTM
model, we noticed that limiting the output values of the four indicated classes between zero and one
made the learning faster and more efficient. Three LSTM layers were chosen with 80 hidden units
followed by a dropout layer between them. To prevent or reduce overfitting in the training process,
we considered dropout ratios of 0.1, 0.3, and 0.1 for the training parameters in the LSTM neural
network layers. The dropout layers randomly set 10%, 30%, and 10% of the training parameters to
zero in the first, second, and third LSTM layers, respectively. Another technique was used to
overcome the overfitting in the learning process and for a smoother training process, which is the L2
Regularization. The L2 Regularization is the most common type of all regularization techniques and is
also commonly known as weight decay or ride regression.

The mathematical form of this regularization technique can be summarized in the following two
equations:

Qw) =| W =2 w; @

LOVY=Z W [ +LOV) =23 3w + LOV) ®

i

During the L2 Regularization, the loss function of the neural network is expressed by a purported
regularization term, which is called Q) in (2). W is the weight vector, A is the regularization coefficient
(initial value has been set to 0.0001), and the regularization function is Q(w). The regularization term
Q) is defined as the L2 norm of the weight matrices (W), which is the summation of all squared weight
values of a weight matrix. The regularization term is weighted by the scalar & divided by two and
added to the regular loss function L(W) in (3). The scalar ¢ is sometimes called as the regularization
coefficient (initial value has been set to 0.0001) and is a supplementary hyperparameter introduced
into the neural network, and it determines how much the model is being regularized. The network
ended with two fully connected and SoftMax output layer with the number of class labels equal to
the desired number of the four outputs. Two fully connected layers and one dropout layer with a 0.1
dropout ration were added after the output of the LSTM hidden units. These two fully connected
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layers consisted of 16 and 8 nodes and used ReLU activation functions, and these two layers
computed the weighted sum of the inputs and passed the output to the final output layer. Figure 6
illustrates the architecture of the designed LSTM model.
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Figure 6. The architecture of the LSTM model.

3. Results

Using the eight-channel EEG headset enabled us to design a minimized compute-intensive
algorithm to distinguish between four imagined speech commands. Moreover, using the wavelet
scattering transformation improved the simplicity of the EEG dataset by extracting features from each
channel and reducing the dimension of the EEG feature matrix. The feature matrix was calculated for
each recording of the four imagined speech commands. Using the feature mattresses to train the
LSTM model improved the learning process and the execution time of the learning process. Using
the auditory stimuli by asking a question to the participants showed that more accuracy in an offline
BCI system could be achieved to classify an imagined speech, and we were able to obtain better
results than what was achieved in [42] where a mixed visual and auditory stimuli were used. An
accuracy of 92.50% was achieved when testing the resulting LSTM model with the remaining 20% of
the normalized and filtered EEG dataset. The results were achieved with the utilization of the
Adaptive Moment Estimation (Adam) optimizer. The Adam optimizer is a method for calculating
the adaptive learning rate for each of the hyper-parameters of the LTSM-RNN model. We achieved
92.50% after training the LSTM-RNN model on 80% of the recorded EEG dataset with 800 max Epochs
and 40 for mini-batch size. Figure 7 illustrates the classification accuracy of the designed LSTM model.

By employing the LSTM model, we could distinguish between four different imagined speech-
based commands. For each command, 20 recordings were used for the testing stage, and the nominal
values (0, 0.5, 0.7, and 1.0) were assigned for each command as an output value, respectively. The
output value of (0) representing the command Up predicted (16/20) of the expected outputs and
accomplished 80% of classification accuracy. The output values of (0.5) and (0.7), which represent the
commands Down and Left, predicted (19/20) of the expected outputs and accomplished 95% of
classification accuracy. While the output value of (1.0), which represents the command Right,
predicted (20/20) of the expected outputs and accomplished 100% of classification accuracy. We
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calculated the 92.50% overall classification accuracy from averaging (80%, 95%, 95%, 100%) resulting
from each imagined speech command.
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Figure 7. The performance of the designed LSTM model. The wrong predicted commands (red bars)
were only 6 out of 80 (5 recordings per participant) for all participants, which leads to 92.50% accuracy
in the overall prediction of the designed LSTM model.

Figure 8 illustrates the number and percentage of correct classifications by the trained LSTM
network.
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Figure 8. The confusion matrix for the classification of the four imagined speech commands.

For better evaluation of the performance of the trained LSTM model, the classified dataset was
categorized into true positive, true negative, false positive, and false negative. The number of true
positive and true negative are the classes number that are correctly classified. Numbers of false
positive and false negative are the classes number that have been misclassified. The state-of-art
metrics for classification are accuracy, precision, recall, and F-score. The recall or sometimes called
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sensitivity estimates the ratio of true positive over the total number of true positive and false negative.
Precision estimates the ratio of true positive over the total number of true positive and false negative.
The F-score estimates the average between the recall and precision. Using the above confusion matrix,
we calculated all the three metrics, and we obtained 92.74%, 92.50%, and 92.62% for precision, recall,
and F1-score, respectively.

4. Discussion

Although the overall accuracy of classifying the imagined speed for the designed BCI system is
considered excellent, one of the commands still needs improvements to show a higher accuracy
compared with the other three commands. For each of the 100-recordings, the participants imagined
saying each of the individual four commands. Unlike the recording scenario in [24] and [25], we did
not set a specific number for each command to be repeated. Rather, the participants were instructed
to keep repeating each command for 60 seconds. The first command Up was always the first to be
imagined. The reason might be because the participant’s brain has adapted to the speech-imagining
process gradually. At the beginning of the recording, a participant might not have been focused
enough to produce a good EEG signal while imagining saying a command. Another reason might be
because the timing to present the question is not enough to generate the best EEG signal, especially
at the beginning of the recording where the question was announced immediately as soon as the
recording has started. Another limitation is related to the participants who were all healthy subjects,
and no one had any challenges in normal speech or language production.

Although the recorded EEG dataset has a potential flaw, we still have an excellent performing
LSTM imagined speech classification model that can be used to decode our brain thoughts. We used
audio cues to stimulate the brain by asking a question to the participants and let the person imagine
the response unlike [27] and [29] where visual cues were used. The resulting LSTM model can be
converted to a C++or Python code using MATLAB code generation and uploaded to a microcontroller
to be tested in real-time.

5. Conclusions

A BCI system is particularly more beneficial if it can be converted into an operational and
practical real-time system. Although the offline BCI approach allows the researchers to use
computationally expensive algorithms for processing the EEG datasets, it is applicable only in a
research environment. This research provided insights towards using low-cost with a low number of
channels EEG headset to develop a reliable BCI system using a minimized computing for optimum
learning process. We accomplished the resulting imagined speech classification model by employing
the LSTM neural architecture in the learning and classification process. We placed the EEG sensors
on carefully selected spots on the scalp to demonstrate that we could obtain classifiable EEG data
with fewer numbers of sensors. By employing wavelet scattering transformation, the classified EEG
signals showed the possibility of building a reliable BCI to translate brain thoughts to speech and
helped physically challenged people to improve the quality of their lives. All the testing and training
stages were implemented offline without any online testing or execution. Future work is planned to
implement and test an online BCI system using MATLAB/Simulink and g.tec Unicorn Hybrid Black+
headset.

6. Future Work

Further deep learning and filtration techniques will be implemented on the EEG dataset to
improve the classification accuracy. We obtained a promising preliminary result with the Support
Vector Machine (SVM) classification model. Online testing for the resulting classification model is
planned to be implemented using MATLAB Simulink for better evaluating the classification
performance in real-time.
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