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Abstract: In this paper, we propose an imagined speech-based brain wave pattern recognition using 

deep learning. Multiple features were extracted concurrently from eight-channel 

Electroencephalography (EEG) signals. To obtain classifiable EEG data with fewer number of 

sensors, we placed the EEG sensors on carefully selected spots on the scalp. To decrease the 

dimensions and complexity of the EEG dataset and to avoid overfitting during the deep learning 

algorithm, we utilized the wavelet scattering transformation. A low-cost 8-channel EEG headset was 

used with MATLAB 2023a to acquire the EEG data. The Long-Short Term Memory Recurrent Neural 

Network (LSTM-RNN) was used to decode the identified EEG signals into four audio commands: 

Up, Down, Left, and Right. Wavelet scattering transformation was applied to extract the most stable 

features by passing the EEG dataset through a series of filtration processes. Filtration has been 

implemented for each individual command in the EEG datasets. The proposed imagined speech-

based brain wave pattern recognition approach achieved a 92.50% overall classification accuracy. 

This accuracy is promising for designing a trustworthy imagined speech-based Brain-Computer 

Interface (BCI) future real-time systems. For better evaluation of the classification performance, 

other metrics were considered, and we obtained 92.74%, 92.50% and 92.62% for precision, recall, 

and F1-score, respectively. 

Keywords: Inner Speech; Imagined Speech; EEG Decoding; Brain-Computer Interface; BCI; LSTM; 

Wavelet Scattering Transformation; WST 

 

1. Introduction 

Enormous research has been done over the past decade aiming to convert human brain signals 

to speech. Although experiments have shown that the excitation of the central motor cortex is 

elevated when visual and auditory cues are employed, the functional benefit of such a method is 

limited [1]. Imagined speech, sometimes called inner speech, is an excellent choice for decoding 

human thinking using the Brain-Computer Interface (BCI) concept. BCI is being developed to 

progressively allow paralyzed patients to interact directly with their environment. Brain signals 

usable with the BCI systems can be recorded with a variety of common recording technologies, such 

as the Magnetoencephalography (MEG), the Electrocorticography (ECOG), the functional Magnetic 

Resonance Imaging (fMRI), functional Near-Infrared Spectroscopy (fNIRS), and the 

Electroencephalography (EEG). EEG headsets are used to record the electrical activities of the human 

brain. EEG-based BCI systems can convert the electrical activities of the human brain into commands. 

An EEG-based implementation is considered an effective way to help patients, with a high level of 

disability or physically challenged, control their supporting systems like wheelchairs, computers, or 

wearable devices [2], [3], [4], and [5]. Moreover, in our very recent research [6] and [7], we 

accomplished excellent accuracy in classifying EEG signals to control a drone and consider the 

Internet of things (IoT) to design an Internet of Brain Controlled Things (IoBCT) system. 

Applying soft-computing tools, such as Artificial Neural Networks (ANNs), genetic algorithms, 

and fuzzy logic helps designers implement intelligent devices that fit the needs of physically 
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challenged people [8]. Siswoyo et al. [9] suggested a three-layer neural network to develop the 

mapping from input received from EEG sensors to three control commands. Fattouh et al. [10] 

recommended a BCI control system to distinguish between four control commands besides the 

emotional status of the user. If the user is satisfied, the specific control command is still executed, or 

the controller should stop the implementation and ask the patient to choose another command. 

Decoding the brain waves and presenting them as an audio command is a more reliable solution to 

avoid the execution of unwanted commands, and this is mainly true if the user can listen to the 

translated commands from his brain and confirm or deny the execution of that command. A deep 

learning algorithm offers a valuable solution for processing, analyzing, and classifying brainwaves 

[11]. Modern studies have concentrated on both healthy and patient individuals only to communicate 

their thoughts [12]. Vezard et al. [13] reached 71.6% accuracy in a Binary Alertness States (BAS) 

estimation by applying the Common Spatial Pattern (CSP) to extract the feature. The methods in [14] 

and [15] reached an EEG classification accuracy of merely 54.6% and 56.76%, respectively. This was 

achieved by applying a multi-stage CSP for the EEG dataset feature extraction. In [16], researchers 

employed the power of a deep learning algorithm using the Recurrent Neural Network (RNN) to 

process and classify the EEG dataset.  

For cheaper and more effortless setup and maintained BCI systems, it is preferable to have as 

few EEG channels as possible. There are two types of BCI systems: online, such as the systems 

described in [17] and [18], and offline BCI systems, such as the systems described in [19]. In the offline 

EEG system, the EEG data recorded from the participants are stored and processed later; on the other 

hand, the online BCI system processes the data in real time, such as in the case of a moving 

wheelchair. Recent research [20] revealed that inner speech differs at the phonologic level. Wang et 

al. [21] demonstrated in their study, which was based on common spatial patterns and Event-Related 

Spectral Perturbation (ERSP) that the highly significant EEG channels for classifying inner speech are 

the ones laid on the Broca’s and Wernicke’s regions. Essentially, the Wernicke region is responsible 

for ensuring that the speech makes sense, while the Broca region ensures that the speech is produced 

fluently. Given that both Wernicke’s and Broca’s regions are participating in inner speech, it is not 

easy to eliminate the effect of the auditory activities from the EEG signal recorded during speech 

imagination. Indeed, some researchers suggested that auditory and visual activities are essential to 

decide the brain response [22] and [23]. 

In most studies, the participants are directed to imagine speaking the commands only once. 

However, in [24] and [25], the participants must imagine saying a specific command multiple times 

in the same recording. In [26], the commands “left,” “right,” “up,” and “down” have been used. This 

choice of commands is not only motivated by the suitability of these commands in practical 

applications but also because of their various manner and places of articulation. Maximum 

classification accuracy of 49.77% and 85.57% were obtained, respectively. This was accomplished 

using the kernel Extreme Learning Machine (ELM) classification algorithm. Significant efforts have 

been recently published by Nature [27] where a 128-channel EEG headset was used to record inner 

speech-based brain activities. The acquired dataset consists of EEG signals from 10 participants 

recorded by 128 channels distributed all over the scalp according to the ‘ABC’ layout of the 

manufacturer of the EEG headset used in this study. The participants were instructed to produce 

inner speech for four words: ‘up’, ‘down’, ‘left’, and ‘right’ based on a visual cue they saw in each 

trial. The cue was an arrow on a computer screen that rotated in the corresponding directions. This 

was repeated 220 times for each participant. However, since some participants reported fatigue, the 

final number of trials included in the dataset for each participant differed slightly. The total number 

of trials was 2236 with an equal number of trials per class for all participants. The EEG signals 

included event markers and were already preprocessed. The preprocessing included a band pass 

filter between 0.5-100 Hz, a notch filter at 50 Hz, artifact rejection using Independent Component 

Analysis (ICA), and down-sampling to 254 Hz. The Long-Short Term Memory (LSTM) algorithm has 

been used in [28] and [29] to classify EEG signals. In [28], 84% accuracy of EEG data classification was 

achieved. In [29], an excellent accuracy of 98% was achieved in classifying the EEG-based inner 

speech, but researchers used an expensive EEG headset. Getting high accuracy in classifying the brain 
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signals is considered essential in the design of future brain-controlled systems, which can be tested 

in real-time or in simulation software such as V-Rep [30] to check for any uncounted errors. 

Most of the researchers have used high-cost EEG headsets to build BCI systems for imagined 

speech processing. Using the RNN for time-series input showed good execution in extracting features 

over time, and they achieved an 85% classification accuracy. Although innovative techniques in 

conventional representations, such as Event-Related Potential (ERP), and Steady-State Visual Evoked 

Potential (SSVEP), have expanded the communication ability of patients with a high level of 

disability, these representations are restricted in their use for the availability of a visual stimulus [31], 

[32]. Practicality research studied imagined speech in EEG-based BCI systems and showed that 

imagined speech could be extrapolated using texts with high discriminatory pronunciation [33]. 

Hence, BCI-based gear can be controlled by processing brain signals and extrapolating the inner 

speech [34]. Extensive research has been conducted to develop BCI systems using inner speech and 

motor imagery [35]. To investigate the feasibility of using EEG signals for imagined speech 

recognition, a research study reported promising results on imagined speech classification [36]. In 

addition, a similar research study examined the feasibility of using EEG signals for inner speech 

recognition and increasing the efficiency of such use [37]. 

In this paper, we have used a low-cost low-channel 8-channel EEG headset, g.tec Unicorn Hybrid 

Black+ [38], with MATLAB 2023a for recording the dataset to decrease the computational complexity 

required later in the processing. Then, we decoded the identified signals into four audio commands: 

Up, Down, Left, and Right. These commands were performed as an imagined speech by four healthy 

subjects whose ages are between 20-year to 56-year-old, and those were two females and two males. 

The EEG signals were recorded while the imagination of speech occurred. An imagined speech based 

BCI model was designed using deep learning. Audio cues were used to stimulate the motor imagery 

of the participants in this study, and the participant responded with imagined speech commands. 

Pre-processing and filtration techniques were employed to simplify the recorded EEG dataset and 

speed up the learning process of the designed algorithm. Moreover, the short-long term memory 

technique was used to classify the imagined speech-based EEG dataset. 

2. Materials and Methods 

We considered research methodologies and equipment in order to optimize the system design, 

simulation, and verification. 

2.1. Apparatus 

In order to optimize the system design, reduce the cost of the designed system and decrease the 

computational complexity, we used a low-cost EEG headset. We have used a low number of EEG 

channels with the concentration on the placement of EEG sensors at the proper places on the scalp to 

measure specific brain activities. The EEG signals were recorded using the g.tec Unicorn Hybrid Black+ 

headset. It has eight-channel EEG electrodes with a 250 Hz sampling frequency. It records up to 

seventeen channels, including the 8-channel EEG, a 3-dimensional accelerometer, a gyro, a counter 

signal, a battery signal, and a validation signal. The EEG electrodes of this headset are made of a 

conductive rubber that allows recording dry or with gel. Eight channels are recorded on the following 

positions: (FZ, C3, CZ, C4, PZ, PO7, OZ, and PO8). The used g.tec headset provides standard EEG 

head caps of various sizes with customized electrode positions. A cap of appropriate size was chosen 

for each participant by measuring the head boundary with a soft measuring tape. All EEG electrodes 

were placed in the marked positions in the cap, and the gap between the scalp and the electrodes was 

filled with a conductive gel provided by the EEG headset manufacturer. 

We considered the international electrode placement 10-20 recommended by the American 

clinical neurophysiology society [39]. The head cap has been adjusted to ensure their electrodes are 

placed as close to Broca’s and Wernicke’s regions as possible, which we assume to produce good 

quality imagined speech-based EEG signals due to this placement. Figure 1 shows the g.tec Unicorn 

Hybrid Black+ headset with the electrode map. Ground and reference are positioned on the back of the 

ears (mastoids) of the participant using a disposable sticker. 
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Figure 1. (a) Broca’s and Wernicke’s regions, (b) The electrode positions of the system. Ground and 

reference are fixed on the back of ears (mastoids) by a disposable sticker, (c) 8-channel EEG headset. 

2.2. Procedure and Data Collection 

The study was conducted in the Department of Electrical & Computer Engineering and 

Computer Science at Jackson State University. The experimental protocol was approved by the 

Institutional Review Board (IRB) at Jackson State University in the state of Mississippi [40]. Four 

healthy participants: two females and two males in age range (20-56), with no speech loss, no hearing 

loss, and with no neurological or movement disorders participated the experiment and signed their 

written informed consent. Each participant was a native English speaker. None of the participants 

had any previous BCI experience and contributed to approximately one hour of recording. In this 

work, the participants are classified by aliases “sub-01” through “sub-04”. The age, gender, and 

language information about the participating subjects is provided in Table 1. 

Table 1. Participants Information. 

Participant Gender Age Native language 

sub-01 Male 56 English 

sub-02 Female 20 English 

sub-03 Male 29 English 

sub-04 Female 26 English 

The experiment has been designed to record the brain’s activities while imagining speaking a 

specific command. When we usually talk to each other, our reactions will be based on what we hear 

or sometimes on what we see. Therefore, we could improve the accuracy of classifying different 

commands by allowing participants to respond to an audio question. Each participant was seated in 

a comfortable chair in front of another chair where a second participant would announce the question 

as an audio cue. To familiarize the participant with the experimental procedures, all experiment steps 

were explained before the experiment date and before signing the consent form. The experimental 

procedures were explained again during the experiment day while the EEG headset and the external 

electrodes were placed. The setup procedure took approximately 15 minutes. Four commands have 

been chosen to be imagined as a response to the question: “Where do you want to go?” A hundred 

recordings were acquired for each command where each participant finished 25 recordings. Each 

recording lasted approximately 2 minutes and required two participants to be present. Unlike the 
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procedure in [24] and [25], we did not set a specific number for each command to be repeated. When 

the recording began, the question was announced after 10 to 12 seconds as audio cues by one of the 

other three participants. After 10 seconds, the participant started executing his response for 60 

seconds by keeping repeat imagining saying the required command, and the recording was stopped 

after 10 seconds. In each recording, the participant responded by imagining saying the specified 

command, which was one of the four commands. Since we have four commands, the total recorded 

EEG dataset for all was 400 recordings. 

The recorded EEG dataset for all 400 recordings was labeled and stored; then, the EEG dataset 

was imported into MATLAB to prepare it for processing. The EEG dataset was processed and 

classified together without separating them according to their corresponding participants, so we 

could evaluate our designed algorithm according to its performance in dealing with a dataset from 

different subjects. For each command, the first 25 recordings were for subject 1, the second 25 

recordings were for subject 2, and so on. After finishing the classification process, the results were 

labeled according to the order of the participant’s dataset. Figure 2 illustrates the recording and signal 

processing procedures. Figure 3 shows sample of the recorded 8-channel raw EEG signals. 

 

Figure 2. The recording procedure. 

 

Figure 3. Sample of the recorded 8-channel raw EEG dataset. 

2.3. Data Pre-processing and Data Normalization 

Preprocessing the raw EEG signals is essential to remove any unwanted artifacts raised from the 

movement of face muscles during the recording process from the scalp that could affect the accuracy 

of the classification process. The recorded EEG signals were analyzed using MATLAB where 

bandpass filter between 10 and 100 Hz was used to eliminate any noisy signals from EEG. This 

filtering bandwidth maintains the range frequency bands corresponding to human brain EEG 

frequency limit [41]. Then, normalization (vectorization) and feature extraction techniques have been 

applied to simplify the dataset and reduce the computing power required to classify the four 

commands. The dataset was divided into 320 recordings and 80 recordings for the testing dataset 

(80% for training and 20% for testing). The EEG dataset was acquired from eight EEG sensors, and it 

contains different frequency bands with different amplitude ranges. Thus, it was beneficial to 

normalize the EEG dataset to boost the training process speed and get as many accurate results as 
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possible. The training and testing dataset were normalized by determining the mean and standard 

deviation for each of the eight input signals. Then, the mean value was calculated for both the training 

and testing dataset. Then, the results for both were divided by the standard deviation as follows: 

.Normalized

X
EEG

µ

σ

−
=  (1) 

where (X) is the raw EEG signal, (µ) is the calculated mean value, and (σ) is the calculated standard 

deviation. After the normalization procedure, the dataset was prepared for the training process. 

Figure 4 shows the normalized representation of the 8-channel raw EEG signals. 

 

Figure 4. Eight-channel normalized EEG dataset. 

2.4. Feature Extraction 

Wavelet scattering transform is a knowledge-based feature extraction technique that employs 

complex wavelets to balance the discrimination power and stability of the signal. This technique 

filters the signal by assembling a cascade of wavelet decomposition coefficients, complex modulus, 

and low-pass-filtering processes. The wavelet scattering transformation method facilitates the 

modulus and averaging process of the wavelet coefficients to acquire stable features. Then, the 

cascaded wavelet transformations are employed to retrieve the high-frequencies data loss that 

occurred due to the previous wavelet coefficients’ averaging modulus process. The obtained wavelet 

scattering coefficients retain translation invariance and local stability. In this feature-extracting 

procedure, a series of signal filtrations is applied to construct a feature vector representing the initial 

signal. This filtration process will continue until the feature vector for the whole signal length is 

constructed. A feature matrix is constructed for the eight EEG signals. As an outcome of the 

normalization stage, the obtained dataset consists of one vector with many samples for each 

command in each of the 100 recordings. Training the deep learning algorithm with a similar dataset 

is computationally expensive. For instance, in the first recording of the command Up, a (1x80480) 

vector has been constructed after the normalization stage. After filtering the dataset for all 100 

recordings and using wavelet scattering transformation, 8 features were extracted and the (1x80480) 

vector of the normalized data was minimized to an (8x204) matrix for each recording. 

Using the wavelet scattering transformation for all the recorded dataset (training and testing 

datasets) minimized the time spent during the learning process. Moreover, the wavelet scattering 

transformation provided more organized and recognizable brain activities. Using the wavelet 

scattering transformation allowed us to optimize the classifications generated by the deep learning 

algorithm for distinguishing between the four different commands more accurately. Figure 5 shows 

the eight extracted features after applying the wavelet scattering transformation. 
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Figure 5. Eight extracted features using wavelet scattering transformation. 

2.5. Data Classification 

The normalization and feature extraction techniques were used with both the learning and 

testing datasets to enhance the classification accuracy of the designed BCI system. At this point, the 

processed datasets were prepared to be trained in deep learning. An LSTM is a type of RNN that can 

learn long-term dependencies among time steps of a sequenced dataset. The LSTM architecture is a 

good fit for classifying the sequenced EEG dataset. On the input side, the LSTM was constructed to 

have an input layer receiving sequence signals, which were eight time-series EEG signals. On the 

output side, the LSTM was constructed to have a one-vector output layer with Rectified Liner Unit 

(ReLU) activation function. The output values were set to be (0, 0.5, 0.7, 1.0) for the desired four 

commands: Up, Down, Left, and Right, respectively. During the training process of the used LSTM 

model, we noticed that limiting the output values of the four indicated classes between zero and one 

made the learning faster and more efficient. Three LSTM layers were chosen with 80 hidden units 

followed by a dropout layer between them. To prevent or reduce overfitting in the training process, 

we considered dropout ratios of 0.1, 0.3, and 0.1 for the training parameters in the LSTM neural 

network layers. The dropout layers randomly set 10%, 30%, and 10% of the training parameters to 

zero in the first, second, and third LSTM layers, respectively. Another technique was used to 

overcome the overfitting in the learning process and for a smoother training process, which is the L2 

Regularization. The L2 Regularization is the most common type of all regularization techniques and is 

also commonly known as weight decay or ride regression.  

The mathematical form of this regularization technique can be summarized in the following two 

equations: 

2 2
2( ) || || ij

i j

w W wΩ = =  (2) 

2 2
2( ) || || ( ) ( )

2 2 ij

i j

L W W L W w L W
α α

= + = +  (3) 

During the L2 Regularization, the loss function of the neural network is expressed by a purported 

regularization term, which is called Ω in (2). W is the weight vector, λ is the regularization coefficient 

(initial value has been set to 0.0001), and the regularization function is Ω(w). The regularization term 

Ω is defined as the L2 norm of the weight matrices (W), which is the summation of all squared weight 

values of a weight matrix. The regularization term is weighted by the scalar α  divided by two and 

added to the regular loss function L(W) in (3). The scalar α  is sometimes called as the regularization 

coefficient (initial value has been set to 0.0001) and is a supplementary hyperparameter introduced 

into the neural network, and it determines how much the model is being regularized. The network 

ended with two fully connected and SoftMax output layer with the number of class labels equal to 

the desired number of the four outputs. Two fully connected layers and one dropout layer with a 0.1 

dropout ration were added after the output of the LSTM hidden units. These two fully connected 
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layers consisted of 16 and 8 nodes and used ReLU activation functions, and these two layers 

computed the weighted sum of the inputs and passed the output to the final output layer. Figure 6 

illustrates the architecture of the designed LSTM model. 

 

Figure 6. The architecture of the LSTM model. 

3. Results 

Using the eight-channel EEG headset enabled us to design a minimized compute-intensive 

algorithm to distinguish between four imagined speech commands. Moreover, using the wavelet 

scattering transformation improved the simplicity of the EEG dataset by extracting features from each 

channel and reducing the dimension of the EEG feature matrix. The feature matrix was calculated for 

each recording of the four imagined speech commands. Using the feature mattresses to train the 

LSTM model improved the learning process and the execution time of the learning process. Using 

the auditory stimuli by asking a question to the participants showed that more accuracy in an offline 

BCI system could be achieved to classify an imagined speech, and we were able to obtain better 

results than what was achieved in [42] where a mixed visual and auditory stimuli were used. An 

accuracy of 92.50% was achieved when testing the resulting LSTM model with the remaining 20% of 

the normalized and filtered EEG dataset. The results were achieved with the utilization of the 

Adaptive Moment Estimation (Adam) optimizer. The Adam optimizer is a method for calculating 

the adaptive learning rate for each of the hyper-parameters of the LTSM-RNN model. We achieved 

92.50% after training the LSTM-RNN model on 80% of the recorded EEG dataset with 800 max Epochs 

and 40 for mini-batch size. Figure 7 illustrates the classification accuracy of the designed LSTM model. 

By employing the LSTM model, we could distinguish between four different imagined speech-

based commands. For each command, 20 recordings were used for the testing stage, and the nominal 

values (0, 0.5, 0.7, and 1.0) were assigned for each command as an output value, respectively. The 

output value of (0) representing the command Up predicted (16/20) of the expected outputs and 

accomplished 80% of classification accuracy. The output values of (0.5) and (0.7), which represent the 

commands Down and Left, predicted (19/20) of the expected outputs and accomplished 95% of 

classification accuracy. While the output value of (1.0), which represents the command Right, 

predicted (20/20) of the expected outputs and accomplished 100% of classification accuracy. We 
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calculated the 92.50% overall classification accuracy from averaging (80%, 95%, 95%, 100%) resulting 

from each imagined speech command. 

 

Figure 7. The performance of the designed LSTM model. The wrong predicted commands (red bars) 

were only 6 out of 80 (5 recordings per participant) for all participants, which leads to 92.50% accuracy 

in the overall prediction of the designed LSTM model. 

Figure 8 illustrates the number and percentage of correct classifications by the trained LSTM 

network. 

 

Figure 8. The confusion matrix for the classification of the four imagined speech commands. 

For better evaluation of the performance of the trained LSTM model, the classified dataset was 

categorized into true positive, true negative, false positive, and false negative. The number of true 

positive and true negative are the classes number that are correctly classified. Numbers of false 

positive and false negative are the classes number that have been misclassified. The state-of-art 

metrics for classification are accuracy, precision, recall, and F-score. The recall or sometimes called 
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sensitivity estimates the ratio of true positive over the total number of true positive and false negative. 

Precision estimates the ratio of true positive over the total number of true positive and false negative. 

The F-score estimates the average between the recall and precision. Using the above confusion matrix, 

we calculated all the three metrics, and we obtained 92.74%, 92.50%, and 92.62% for precision, recall, 

and F1-score, respectively. 

4. Discussion 

Although the overall accuracy of classifying the imagined speed for the designed BCI system is 

considered excellent, one of the commands still needs improvements to show a higher accuracy 

compared with the other three commands. For each of the 100-recordings, the participants imagined 

saying each of the individual four commands. Unlike the recording scenario in [24] and [25], we did 

not set a specific number for each command to be repeated. Rather, the participants were instructed 

to keep repeating each command for 60 seconds. The first command Up was always the first to be 

imagined. The reason might be because the participant’s brain has adapted to the speech-imagining 

process gradually. At the beginning of the recording, a participant might not have been focused 

enough to produce a good EEG signal while imagining saying a command. Another reason might be 

because the timing to present the question is not enough to generate the best EEG signal, especially 

at the beginning of the recording where the question was announced immediately as soon as the 

recording has started. Another limitation is related to the participants who were all healthy subjects, 

and no one had any challenges in normal speech or language production.  

Although the recorded EEG dataset has a potential flaw, we still have an excellent performing 

LSTM imagined speech classification model that can be used to decode our brain thoughts. We used 

audio cues to stimulate the brain by asking a question to the participants and let the person imagine 

the response unlike [27] and [29] where visual cues were used. The resulting LSTM model can be 

converted to a C++ or Python code using MATLAB code generation and uploaded to a microcontroller 

to be tested in real-time.  

5. Conclusions 

A BCI system is particularly more beneficial if it can be converted into an operational and 

practical real-time system. Although the offline BCI approach allows the researchers to use 

computationally expensive algorithms for processing the EEG datasets, it is applicable only in a 

research environment. This research provided insights towards using low-cost with a low number of 

channels EEG headset to develop a reliable BCI system using a minimized computing for optimum 

learning process. We accomplished the resulting imagined speech classification model by employing 

the LSTM neural architecture in the learning and classification process. We placed the EEG sensors 

on carefully selected spots on the scalp to demonstrate that we could obtain classifiable EEG data 

with fewer numbers of sensors. By employing wavelet scattering transformation, the classified EEG 

signals showed the possibility of building a reliable BCI to translate brain thoughts to speech and 

helped physically challenged people to improve the quality of their lives. All the testing and training 

stages were implemented offline without any online testing or execution. Future work is planned to 

implement and test an online BCI system using MATLAB/Simulink and g.tec Unicorn Hybrid Black+ 

headset.  

6. Future Work 

Further deep learning and filtration techniques will be implemented on the EEG dataset to 

improve the classification accuracy. We obtained a promising preliminary result with the Support 

Vector Machine (SVM) classification model. Online testing for the resulting classification model is 

planned to be implemented using MATLAB Simulink for better evaluating the classification 

performance in real-time. 
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