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Abstract: Soil organic carbon (SOC) monitoring is central to carbon-farming Monitoring, Reporting
and Verification MRV, yet high laboratory costs and sparse sampling limit its scalability. We present
the first independent field validation of the Stenon FarmLab multi-sensor probe across 100 temperate
European arable-soil samples, benchmarking its default outputs and a simple pH-corrected model
against three laboratory reference methods: acid-treated TOC, temperature-differentiated TOC
(SoliTOC), and total carbon dry combustion. Uncorrected FarmLab algorithms systematically
overestimated SOC by +0.20% to +0.27% (SD = 0.25-0.28 %), while pH adjustment reduced bias to
+0.11% and tightened precision to SD = 0.23%. Volumetric moisture had no significant effect on
measurement error (r = —0.14, p = 0.16). Bland—-Altman and Deming regression demonstrated
improved agreement after pH correction, but formal equivalence testing (accuracy, precision,
concordance) showed that no in-field model fully matched laboratory standards—the pH-corrected
variant passed accuracy and concordance yet failed the precision criterion (p = 0.0087). At ~ €3—4 per
measurement versus ~ €44 for lab analysis, FarmLab facilitates dense spatial sampling. We
recommend a hybrid monitoring strategy combining routine, pH-corrected in-field mapping with
periodic laboratory recalibrations, alongside expanded calibration libraries, integrated bulk-density
measurement, and adaptive machine-learning to achieve both high resolution and certification-grade
rigor.

Keywords: soil organic carbon; proximal soil sensing; in-field sensor calibration; near-infrared
spectroscopy; electrical impedance spectroscopy; pH correction; carbon farming monitoring

1. Introduction

Soil organic carbon (SOC) constitutes the principal fraction of soil organic matter (SOM) and
underpins critical soil functions such as nutrient cycling, water retention and crop productivity, while
also sustaining biodiversity and ecosystem resilience [1]. As a dynamic reservoir within the global
carbon cycle, accumulation of SOC has the capacity to sequester atmospheric carbon dioxide (CO),
thereby contributing to climate-change mitigation [2,3]. In light of this potential, the European
Commission’s Carbon-Farming Initiative under the European Green Deal now offers incentives to
land managers for practices that increase SOC stocks, provided that field measurements are both
reliable and cost-effective for robust certification [4-7].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Conventionally, the quantification of SOC is performed through the utilization of laboratory-
based approaches, including dry combustion elemental analysis and mid-infrared (MIR) and near-
infrared spectroscopy (NIRS). These methods have been shown to yield high levels of accuracy and
precision [8-10]. However, they require extensive sample preparation, homogenization and
calibration against large reference datasets. Laboratory MIR/NIRS protocols have been developed to
minimize spectral interference from moisture, texture and mineralogy. This is achieved through
stringent control of sample moisture content and particle size [11-13]. Despite the fact that these
techniques remain the gold standard, their laborious workflows and per-sample cost of
approximately €44 limit their feasibility for frequent, large-scale on-farm monitoring [14].

In order to address these limitations, a considerable number of studies have explored the
potential of portable in-situ sensing platforms that integrate optical, electrochemical and
environmental measurements. Early on-the-go visible/NIR systems have been shown to possess both
potential and limitations with regard to the mapping of soil clay and SOC [15,16]. Subsequent reviews
have documented the progression from rudimentary sensors to sophisticated benchtop and mobile
instruments enhanced by machine-learning algorithms [17,18]. Field evaluations under disturbance-
reduced protocols have reported improved estimates of SOC [19], and multi-sensor probes, coupled
with advanced chemometrics, have yielded robust predictions of soil profile properties [20,21].
Recent investigations into miniaturized spectrometers have confirmed their potential for rapid soil
property assessment [22], while the application of unsupervised learning to regional Vis-NIR spectral
libraries has further enhanced the prediction of organic carbon [23]. Innovations such as moisture-
correction algorithms [24,25] and rapid in-situ CO2-sensor methods [26] continue to expand the field.

The multi-sensor FarmLab device from Stenon integrates visible/NIR reflectance, electrical
impedance spectroscopy (EIS), and environmental sensors —including soil moisture, temperature
and volatile organic compounds (VOC) — within a hand-held spade probe for measurements in the
upper 15 centimeters of soil [27,28]. Moreover, FarmLab offers dramatic cost savings—
approximately €3—4 per measurement versus roughly €44 per laboratory sample — enabling much
higher sampling densities at a fraction of the cost. Despite these economic advantages, independent
assessments have indicated that its accuracy and precision remain lower than laboratory standards.
Residual biases have been shown to be influenced by soil pH and texture [29-31]. A recent
comparison to another Vis-NIR multi-sensor platform has further highlighted its current limitations
(32].

Based on our comprehensive review of existing studies, no independent field evaluation has yet
assessed the performance of the FarmLab device under temperate European arable conditions. In
particular, there is a clear gap in the literature comparing its SOC estimates to established laboratory
methods — acid-treated total organic carbon (TOC-acid), temperature-differentiated TOC (SoliTOC),
and total carbon analysis — and in examining how its integrated moisture and pH sensors mitigate
field-sensor artefacts. Accordingly, the present study aims to (1) quantify the accuracy and precision
of FarmLab SOC measurements against these laboratory standards, (2) evaluate the effectiveness of
its onboard moisture and pH corrections, and (3) determine its suitability for carbon-farming
applications.

2. Materials and Methods
2.1. Sampling Sites

Soil sampling was conducted at nine temperate arable sites in Lower Saxony (May 2021) and
Hesse (August-September 2021). At each location, a total of one to four soil samples were collected
from nine agricultural fields in Germany. Three sites (Sites 1-3) were located in Lower Saxony and
sampled in May 2021; six sites (Sites 4-9) were located in Hesse and sampled between August and
September 2021 (see Figure 1 for details). The soil types present at the study sites ranged from
Pseudogley-Luvisol with loess-derived clay (Sites 3 and 9), through Gley/Luvisol/Pararendzina (Sites
1, 2, 8), to Cambisol (Sites 4, 5, 7) and Luvisol (Site 6). Texture exhibited a range of variations from
loamy sand (Site 6) to loamy clay (Site 9). A comprehensive summary of the key site characteristics is
provided in Table 2.
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A total of 20 plots were sampled, with each plot encompassing five georeferenced subplots,
resulting in a total of 100 subplots. Within each subplot, two adjacent FarmLab measurements were
made and five soil cores (0-30 cm) were collected within 0.5 m of the probe position. To facilitate the
subsequent laboratory analysis, the cores were amalgamated into composite samples for each
subplot. For Hesse sites, undisturbed cores were also taken at two depths to determine bulk density;
for Lower Saxony, bulk density was estimated from texture and SOC following Rawls [33].
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Figure 1. Sampling sites in Lower Saxony (1-3) and Hesse, Germany (4-9).

2.2. Sampling Scheme

At each site, the sampling plots were laid out according to the following protocol. In Hesse (Sites
4-9), one square plot measuring 2m? contained five subplots arranged in a 2x2 m grid; in Lower
Saxony (Sites 1-3), larger fields featured transects of 20 subplots arranged linearly across four plots
at Sites 1 and 2 and seven plots at Site 3 (Figure 2). Within each subplot, two independent in-field
FarmLab measurements were taken, each consisting of three rapid sub-readings. Subsequently, five
soil cores (0-30cm) were collected with an auger within a 0.5m radius of the probe insertion point
and amalgamated into a composite sample for subsequent laboratory analysis.

Stainless steel cylinders
(100cm3, depth: 5-10 cm and 20-25 cm)

© soil auger (160 cm?3, depth 0-30 cm)

A FarmLab - in-field analyser (depth: 0-30 cm)

Impedance spectroscopy optical spectroscopy

around 19 cm? around 0,9 cm?
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Figure 2. Scheme of the soil sampling. Left: 2m? plot with subplots arranged in a square at sites in Hesse; right:
plots (black frame) in a line with subplots arranged in line at sites in Lower Saxony. Numbers from 1 to 5 indicate
the subplots.

2.3. FarmLab In-Field Measurements

The in-field soil moisture content (SOC) measurements were conducted utilizing the Stenon
FarmLab portable multi-sensor probe (software version d-1.3.0; calibration model p-2.1.0). The device
integrates visible/NIR reflectance (400-2500nm), electrical impedance spectroscopy (EIS), soil
temperature, volumetric moisture, atmospheric humidity, volatile organic compound (VOC)
resistance, and GPS reference at the probe tip [27,28]. Operators inserted the spade-mounted probe
vertically until a laser-etched collar marked 15cm depth was reached, in order to ensure consistency.
In accordance with the manufacturer’s protocol, the instrument underwent zero-calibration prior to
each subplot measurement [32,34]. It is important to note that each point measurement is the mean
of three sub-readings. Furthermore, the two-point measurements per subplot were then averaged to
yield one SOC value. FarmLab’s proprietary algorithm applies an internal moisture correction based
on its on-board soil-moisture sensor, thereby effectively compensating for moisture-induced spectral
artefacts [29]. Due to the confidential nature of the calibration functions, no independent spectral
modeling was conducted [19,35].

2.4. Laboratory Analysis

Samples composed of composite materials were subjected to air-drying at a temperature of 40°C.
Thereafter, they were sieved to a size of less than 2mm and subdivided into four aliquots. Two
aliquots were analyzed for total carbon (TC) by dry combustion at 1140°C using a Vario Max Cube
elemental analyzer with thermal conductivity detection and helium carrier gas, once at Justus-Liebig
University Giessen (TC-Gi) and once at Georg-August University Goéttingen (TC-Goe) (DIN 13878).
A third aliquot was analyzed by the SoliTOC Cube elemental analyzer (Elementar, Langenselbold,
Germany) using temperature-dependent oxidation to separate thermally labile organic carbon
(<400°C) and residual oxidizable carbon (500-600°C). The results were summed as TOC (DIN
19539;(36]). The fourth aliquot underwent inorganic-carbon removal via HCI fumigation, followed
by combustion at up to 1500°C on an Eltra Helios C/S device at Agrolab GmbH (TOC-acid; [37]). The
arithmetic mean of SoliTOC and TOC-acid was defined as the Standard-TOC reference for in-field
comparisons.

Bulk density in Hesse was determined from undisturbed stainless steel cylinder cores at two
depths per subplot, oven-dried at 105°C and weighed [38]. In Lower Saxony, the estimation of bulk
density was conducted through the utilization of the Rawls pedotransfer function, which utilizes
texture and SOC as the primary variables [33].

2.5. Methods Used for Comparison

In order to evaluate FarmLab’s performance against established approaches, eight different soil
organic matter (SOM) determination methods were compared (see Table 1). Two laboratory dry-
combustion methods (TC-Gi, TC-Goe) measured total carbon (TC), whilst two temperature-
differentiated methods (SoliTOC, TOC-acid) quantified total organic carbon (TOC) with distinct
separation of organic fractions. Furthermore, four FarmLab in-field outputs (In-field-TOC-1 through
In-field-TOC-4) represented successive algorithm versions, including a pH-adjusted model (In-field-
TOC-4). The arithmetic mean of SoliTOC and TOC-acid was defined as Standard-TOC for all pairwise
comparisons. Statistical equivalence, bias and precision were assessed via Bland-Altman plots,
Deming regression and equivalence tests (eirasBA package; [39]).

Table 1. Overview of soil organic carbon (SOC) measurement methods, including category, method
description, and institution.

Acronym Category Method Description Institution



https://doi.org/10.20944/preprints202505.0591.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 May 2025

5 of 16
Dry combustion at 1 140°C (DIN 13878) with .
.. . Justus Liebig
. Laborator thermal conductivity detection (N;) and He . ]
TC-Gi . University
y (TC) carrier gas; measures total carbon .
L . Giessen
(organic + inorganic).
Laborator Identical dry—co.mbustlon protocol to TC-Gi, University of
TC-Goe performed independently to assess e
y (TO) ; L Gottingen
inter-laboratory reliability.
Temperature-differentiated oxidation Justus Liebi
SolTOC Laborator  (DIN 19539): thermally labile OC < 400°C + Universit &
y (TOC)  residual OC 500-600°C; late-stage carbonate Giesseny
breakdown > 650°C.
Acid fumigation to remove inorganic carbon,
TOC-acid Laborator then combustion (900-1 500°C; Agrolab GmbH,
y (TOC) DIN EN ISO/IEC 17025) to quantify organic C Leinefelde
via CO; detection.
Standard-T Reference Arithmetic mean of the two laboratory TOC
oC methods (SoliTOC + TOC-acid).
In-field Baseline SOC estimate from the FarmLab
In-field-TOC (FarmLab multi-sensor probe, comb%mng visible/NIR Stenon GmbH
-1 ) spectroscopy and electrical impedance
spectroscopy (EIS).
In-field-TOC In-field  SOC estlma’Fe fro.m Farmliab using ’fhe first
5 (FarmLab  updated calibration algorithm provided by =~ Stenon GmbH
) Stenon.
In-field-TOC In-field SOC estlmate' frorr} FarmLa.b using th.e second
3 (FarmLab  updated calibration algorithm provided by =~ Stenon GmbH
) Stenon.
In-field-TOC In-field Ba's'ehne In—ﬁ'eld—TOC—l output ad}t.lsted by Stenon GmbH /
4 (FarmLab empirically derived pH-based correction factors Authors

)

(authors’ modification).

2.6. Data Analysis

All data were analyzed in R 4.2 [40]. FarmLab SOC outputs were matched to subplot
Standard-TOC values via the unique FarmLab ID. Measurement error (FarmLab — Standard-TOC)
was computed for each subplot. Pearson’s correlation coefficients were calculated for error versus
soil moisture and pH (measured by Agrolab GmbH via CaCl, method [38]). Bland-Altman analyses
(blandr package [41]) quantified mean bias and 95% limits of agreement, and Deming regression
(deming package [42]) assessed structural accuracy and precision.

We further refined our method-comparison framework by applying the extended Bland-Altman
tests in three formal steps, implemented via the eirasBA package with 30 000 bootstrapped resamples
for robust confidence intervals [39]. In brief, for each pairwise comparison of SOC methods we tested:

Structural Mean Equality (Accuracy).

We tested whether the average difference between two methods is statistically zero by fitting an
analysis of covariance (ANCOVA) with the reference method as covariate and treatment method as
factor, incorporating measurement error as described by Hedberg & Ayers [43]. Rejection of the null
hypothesis indicates a systematic bias in mean SOC estimates.

Structural Variance Equality (Precision).

We examined whether the variability of measurement errors differs between methods by comparing
error variances via regression-based variance tests [44,45]. A significant result denotes unequal
precision.

Agreement with the True Bisector (Concordance).

Using Deming regression [42], we tested whether the intercept equals zero and the slope equals one —
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i.e. whether the two methods lie on the 1:1 identity line. Failure to reject either parameter’s null
hypothesis indicates concordance in both scale and location.

All three tests were run at a 5% significance level, and 95% confidence intervals for means,
variances and regression parameters were obtained via bootstrapping [46]. Outcomes from these tests
were synthesized to determine which methods met all criteria for equivalence in accuracy, precision
and concordance.

3. Results
3.1. Descriptive Statistics of SOC Methods

Descriptive statistics for all eight SOC determination methods are summarized in Table 2. Across
the three uncorrected FarmLab algorithms (In-field-TOC-1-3), SOC was on average overestimated
by +0.24 % relative to Standard-TOC (mean bias +0.20-0.27 %). Incorporating the pH correction (In-
field-TOC-4) cut that bias roughly in half (to +0.11 %) and reduced the pooled standard deviation
from 0.27 % to 0.23 %. By comparison, the two dry-combustion labs (TC-Gi, TC-Goe) differed from
Standard-TOC by only +0.04-0.06 % (SD = 0.20 %). These results confirm that In-field-TOC-4 is the
most unbiased and precise in-field algorithm under our conditions.

Table 2. Mean soil organic carbon (SOC), standard deviation and bias relative to Standard-TOC (n = 100).

Method Mean SOC £ SD (%) Bias vs Standard-TOC (%)
SoliTOC 1.26 +0.22 -0.03
TOC-acid 1.32 £0.20 +0.03
TC-Goe 1.33+0.21 +0.04
TC-Gi 1.35+0.19 +0.06
Standard-TOC 1.29+0.21 0.00
In-field-TOC-1 1.49+0.28 +0.20
In-field-TOC-2 1.56 +0.27 +0.27
In-field-TOC-3 1.54+0.25 +0.25
In-field-TOC-4 1.40+0.23 +0.11

3.2. Correlation of SOC Error with Soil Properties

We assessed whether the subplot-wise SOC measurement error of the baseline FarmLab
algorithm (In-field-TOC-1) (defined as In-field-TOC-1 SOC minus Standard-TOC) was influenced by
soil pH, carbonate content (TIC900), or volumetric soil moisture, all recorded in our dataset. Pearson’s
correlation coefficients (n = 100) are presented in Error! Reference source not found..

Table 3. Correlation of FarmLab SOC error with soil pH and soil moisture.

Relationship Pearson’s r p-value
In-field-TOC-1 error vs. soil pH -0.39 <0.01 **
In-field-TOC-1 error vs. TIC900 -0.10 0.31 (n.s.)

In-field-TOC-1 error vs. soil moisture -0.14 0.16 (n.s.)

The negative correlation between SOC_error and pH (r =-0.39, p <0.01) indicates that lower pH
soils tend to produce larger positive errors (overestimation by FarmLab), whereas higher pH soils
yield smaller biases. In contrast, no significant relationship was found between SOC_error and soil
moisture (r = -0.14, p > 0.05), suggesting that the FarmLab's integrated moisture sensor effectively
compensates for moisture-induced spectral artefacts.

3.3. Pairwise Method Comparison by Deming Regression and Bland-Altman Analysis

To assess structural agreement and systematic bias between each in-field algorithm and the
Standard-TOC reference, we first conducted Deming regression analyses (Error! Reference source
not found.). The intercept and slope of a Deming fit quantify location and scale agreement: an ideal
method lies exactly on the identity line (intercept =0, slope = 1). In our comparisons, In-field-TOC-4
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showed the closest proximity to these ideal parameters (intercept = 0.05 + 0.06 %, slope = 0.97 + 0.04),
followed by In-field-TOC-1 (intercept = 0.18 + 0.07 %, slope = 1.10 + 0.05). The uncorrected algorithms
(TOC-2, TOC-3) exhibited larger intercepts and slopes further from unity, indicating both constant
and proportional bias. By contrast, laboratory methods TC-Gi and TC-Goe yielded intercepts and
slopes statistically indistinguishable from (0,1), confirming strong equivalence between the two
dry-combustion laboratories.

Table 4. Deming regression intercepts, slopes and coefficients of determination (R?) for selected method pairs

(n =100).
Method Pair Intercept (+SE) % Slope (+SE) R?
In-field-TOC-1 vs Standard-TOC 0.18 +0.07 1.10+£0.05 0.83
In-field-TOC-4 vs Standard-TOC 0.05+0.06 0.97 +0.04 0.79
TC-Gi vs Standard-TOC 0.06 +0.02 1.01 +£0.02 0.92
TC-Goe vs Standard-TOC 0.04 + 0.02 1.00 +0.02 0.93

Next, Bland-Altman plots quantify the mean bias and 95% limits of agreement (LoA) between
methods (Error! Reference source not found.; Error! Reference source not found.).
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Figure 3. Bland-Altman plots for In-field-TOC-1 (A) and In-field-TOC-4 (B) versus Standard-TOC. X-axes:
Mean of methods TOC (%), y-axes: Differences between methods TOC (%). Upper and lower line: tolerance
range: 1.96 times of standard deviation of the mean difference, middle line: mean of the differences (n=100).

In-field-TOC-1 exhibited a mean positive bias of +0.20% SOC and wide LoA (-0.35 to +0.75%),
whereas In-field-TOC-4 reduced both bias (+0.11%) and LoA (-0.27 to +0.49 %), reflecting improved
equivalence. Laboratory replicates TC-Gi and TC-Goe had negligible bias (+0.05%) and narrow LoA
(-0.12 to +0.22%), underscoring their mutual consistency.

Table 5. Mean biases and 95 % limits of agreement (LoA) from Bland-Altman analyses (n = 100).

Method Pair Mean Bias (%) 95% LoA (%)
In-field-TOC-1 vs Standard-TOC +0.20 -0.35 to +0.75
In-field-TOC-4 vs Standard-TOC +0.11 -0.27 to +0.49

TC-Gi vs TC-Goe +0.05 -0.12 to +0.22

Together, these pairwise comparisons demonstrate that the pH-adjusted algorithm
(In-field-TOC-4) achieves the best overall alignment with laboratory standards, substantially
reducing both constant and proportional errors, while uncorrected in-field methods retain significant
biases.

3.4. Inferential Comparison of SOC Methods

Equivalence between each SOC method and the Standard-TOC reference was evaluated using
the all.structural.tests function in the eirasBA package with 30000 bootstrap resamples [39]. Three
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criteria were evaluated at a = 0.05: structural mean equality (accuracy), variance equality (precision),
and bisector agreement (concordance). The results (Error! Reference source not found.) reveal that
no method satisfied all three tests simultaneously.

Table 6. Equivalence tests for SOC method pairs (n = 100), showing both pass/fail and the underlying p-values
for accuracy (mean equality), precision (variance equality) and concordance (bisector agreement:
intercept/slope). method passed (“v”) or failed (“X”).

Method Pair AccuracyPrecision Concordance p-value Accuracy Precision Concordance
p-value p-value (Int/Slope)
TC-Givs
0.0030  0.0842 0.1055/0.0613 X v v
TC-Goe
SoliTOC vs
TOC-acid 0.0028  0.0085 0.1147/0.1212 X v v
Std-TOC vs
Inofield-TOC-1 < 0.0001 0.0842 0.2401/0.1116 X v v
Std-TOC vs
Infield-TOC.2 < 0.0001 <0.0001 0.0116/0.2401 X X v
Std-TOC vs
Infield- TOC-3 < 0.0001 <0.0001 0.1690/0.2299 X X v
Std-TOC vs 0.3250  0.0087 0.1157/0.1212 v X v

In-field-TOC-4

Both laboratory comparisons (TC-Gi vs TC-Goe and SoliTOC vs TOC-acid) achieved precision
(p>0.05) and concordance (intercept/slope p > 0.05) but failed the accuracy test (p <0.01). The baseline
FarmLab algorithm (In-field-TOC-1) similarly passed precision and concordance yet exhibited
significant bias (accuracy p < 0.0001). The two uncorrected in-field updates (In-field-TOC-2/3)
managed only concordance (p > 0.05) but failed both accuracy and precision (p < 0.0001). Although
the pH-corrected model (In-field-TOC-4) met the accuracy criterion (p = 0.3250) and showed
concordance (p > 0.05), it failed the precision test (p = 0.0087).

4. Discussion
4.1. Key Insights and Their Implications

Our comparison of eight SOC methods confirms that the default FarmLab chemometric model
consistently overestimates soil carbon, while a straightforward pH correction cuts that bias roughly
in half and yields precision approaching laboratory standards. Crucially, the absence of a moisture
effect demonstrates that FarmLab’s integrated humidity sensor successfully neutralizes one of the
biggest hurdles in field spectroscopy. In contrast, the persistent pH-error relationship highlights
acidity as a primary driver of spectral artefacts and reinforces findings from others that acidity must
be explicitly accounted for in proximal sensing models [12,47].

From a methodological standpoint, our Deming and Bland—-Altman analyses show that even the
pH-adjusted variant cannot fully replicate laboratory precision. This “residual variance” underscores
the need for further model refinement—perhaps by integrating additional soil covariates such as
texture or carbonate content—and suggests that any in-field SOC sensor must be embedded in a
broader calibration framework.

Practically, these insights point the way to a hybrid approach: leverage FarmLab’s low cost and
moisture robustness for high-density mapping of relative SOC patterns, but anchor critical change-
detection decisions to periodic laboratory benchmarks and expanded covariate calibration. Such a
strategy marries the speed and affordability of field sensors with the accuracy and rigor required for
carbon-farming Monitoring, Reporting and Verification MRV.

4.2. Accuracy and Precision of FarmLab
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While laboratory-grade SOC measurements via dry combustion typically achieve accuracies
within +0.15 % SOC [48], our uncorrected FarmLab outputs exceeded this threshold, reflecting the
well-documented challenge of translating benchtop calibrations into field environments. Loria et al.
[30] reviewed numerous handheld in situ SOC probes and emphasized that multisensor fusion—
such as combining VIS-NIR with electrical conductivity or impedance—can substantially improve
prediction accuracy by compensating for individual sensor limitations, provided that extraneous
influences are removed via preprocessing (e.g., EPO or SNV) and that key covariates are incorporated
into calibration models. In our study, a simple pH adjustment halved the mean bias (from +0.20-0.27
% down to +0.11 %) and tightened variability (SD from ~0.27 % to 0.23 %), bringing FarmLab closer
to the Giessen and Goéttingen dry-combustion laboratories. Nevertheless, formal equivalence testing
still flagged a precision shortfall (p = 0.0087), indicating that the variance remains significantly
different from the laboratory reference (Table 6). This pattern aligns with Angelopoulou et al. [13],
who found that even multisensor fusion schemes require explicit inclusion of pH, texture, and other
site-specific covariates to achieve laboratory-grade concordance

4.3. Influence of Soil pH and Moisture on In-Field SOC Estimates

Our results confirm that FarmLab’s integrated moisture sensor and internal correction algorithm
effectively alleviate the common spectral artefacts caused by variable soil water content. The
non-significant correlation between In-field-TOC-1 error and volumetric moisture (r =-0.14, p=0.16)
aligns with findings by Vikuk et al. [29], who reported minimal moisture bias when combining NIR
and EIS sensors in situ [29]. This robustness to moisture fluctuations reduces the need for extensive
field drying or gravimetric moisture correction, streamlining the sampling workflow and lowering
operational costs.

In contrast, soil pH emerged as a dominant driver of residual bias. The strong negative
correlation between SOC error and pH (r = -0.39, p < 0.01) reflects well-known effects of acidity on
optical and electrochemical sensor responses [12,47,50]. Low-pH soils likely alter the chemical
speciation and light-scattering properties of organic matter, resulting in systematic overestimation by
unadjusted models. By incorporating an empirically derived pH correction, we reduced mean bias
by nearly 50% (from +0.20% to +0.11%) and narrowed the limits of agreement —an improvement
consistent with recommendations to include pH as a calibration covariate in proximal sensing
applications [51].

Moreover, Vogel et al. [52] demonstrated that the performance of in situ pH sensors — and hence
the effectiveness of pH-based SOC corrections — depends critically on calibration sample size and the
spatial and temporal proximity of reference samples [52]. This implies that FarmLab’s pH correction
factors should be periodically updated using locally collected calibration samples to maintain optimal
accuracy.

Where available, soil buffering capacity and carbonate content (TIC900) could further refine
these corrections [53], although our data showed no significant direct influence of TIC900 alone (r =
-0.10, p = 0.31). Likewise, soil porosity or water-filled pore space (WFPS) may impact both optical
and impedance measurements by altering light scattering and conductive pathways in the pore
network [29]. Future algorithm development should, therefore, focus on multivariate calibration
frameworks that jointly account for pH, texture, porosity/WFPS, and other site-specific factors, as
demonstrated by multisensory fusion approaches in the literature [18,30]. This targeted adjustment
strategy preserves FarmLab’s moisture resilience while addressing its remaining pH-driven
limitations.

4.4. Applicability in Carbon-Farming Frameworks

Accurate and cost-effective SOC measurements are essential to MRV protocols, which typically
require annual change detection at around +0.3% SOC [48]. Although pH-corrected In-field-TOC-4
narrows its Bland—Altman limits to —0.27/+0.49 % —approaching this benchmark—it still slightly
exceeds the target range and failed the formal precision test (p = 0.0087), indicating that its variance
remains higher than acceptable for standalone certification. Its per-sample cost (~ €3—4) in this
study —comprising FarmLab rental fees and field labor (see Materials & Methods, Sec 2.3)—is an
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order of magnitude lower than conventional laboratory analysis (€44 per sample, including GPS-
referenced composite sampling and Agrolab GmbH service charges; Sec 2.2-2.3). This cost advantage
enables much denser sampling, which is critical for capturing spatial heterogeneity and reducing
overall uncertainty in carbon-farming MRV systems [54].

Since soil carbon sequestration is inherently non-permanent and requires ongoing monitoring
[55], and because no in-field method yet meets all three equivalence criteria (accuracy, precision,
concordance), we advocate a hybrid MRV framework. Routine, high-frequency pH-corrected in-field
measurements can track spatial and temporal dynamics, while periodic laboratory analyses serve to
validate long-term changes and recalibrate in-field models. Such an approach balances the need for
spatial and temporal resolution with the rigor of laboratory benchmarks, providing both practical
monitoring density and certification-grade accuracy.

4.5. Methodological Limitations

Despite the advances demonstrated here, several methodological constraints temper our
conclusions. First, the proprietary nature of FarmLab’s chemometric algorithms prevents full
transparency and independent recalibration [32]. Without access to raw spectral coefficients, our
pH-adjustment represents a pragmatic workaround rather than a fundamental model re-
development. Second, although our subplot-level dataset (n = 100) provides robust statistical power
for the tests applied, it remains moderate in size and spatial scope; longer-term, multi-season trials
across diverse soil types will be needed to generalize findings [56].

Moreover, Roper et al. [56] showed that even established SOM assays can diverge substantially
across sites and methods, underscoring the need to maintain a consistent SOC protocol over time or
to apply site-specific calibration when switching assays [57].

Third, the FarmLab probe measures directly at ~ 10-15cm depth and extrapolates to 30cm via
its internal models, rather than sampling the full profile physically. This may misrepresent SOC
distribution in stratified soils, particularly where root-zone carbon differs markedly with depth [53].
Fourth, while moisture artefacts appear well-controlled, extreme moisture gradients or surface-
crusting conditions may still challenge the EIS and NIR sensors under real field conditions [29].

Finally, our assessment focused on SOC concentration without direct SOC stock calculations;
accurate stock estimation requires concurrent bulk density measurements in situ, which FarmLab
currently does not provide [58]. Integrating a soil-compaction sensor or spatially explicit bulk density
maps would therefore strengthen the device’s utility for carbon-stock monitoring. Acknowledging
these limitations guides future research and underscores that, while FarmLab shows promise, it
should be deployed within a hybrid framework that retains laboratory validation for high-stakes
carbon accounting.

4.6. Comparison with Other In-Situ Sensor Platforms

Our results for FarmLab reflect a common theme in proximal-sensing research: while combining
multiple sensors can substantially improve SOC estimates, achieving laboratory-level precision still
hinges on site-specific calibration. For example, Dhawale etal. [59] showed that integrating
visible/NIR reflectance with electrical conductivity yields R? values up to 0.85 in Canadian fields —
but only after extensive wet- and dry-season recalibration [59]. Likewise, the Yardstick probe, which
extends its spade-mounted array to 50cm depth, achieves +0.5% bias only once soil-moisture and
texture corrections are applied; yet still requires laboratory anchoring of its proprietary models [60].

More recently, Gyawali et al. [61] demonstrated that a handheld Vis-NIR sensor can reliably
profile SOC down to 45cm with accuracy on par with conventional field campaigns, underscoring
the promise of deep-profiling spade probes [61]. Reviews by Mokere et al. [17] and Gowera et al. [22]
similarly report that most mobile and miniaturized spectrometers only attain +0.3-0.7% SOC error
after incorporating covariates such as pH and clay content [17,22]. Sanderman et al. [62] further
highlight that fusing benchtop MIR libraries with proximal spectra can detect multi-year SOC
changes across diverse U.S. trials, boosting change-detection sensitivity in field sensors [62]. Even
unsupervised learning on regional Vis-NIR libraries can reduce errors to +0.3 %, though ancillary soil
data remain essential [23]. In this context, FarmLab’s fusion of visible/NIR, EIS, and environmental
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sensing —augmented by our pH-based adjustment — delivers performance at the lower end of this
error spectrum (+0.27-0.49% LoA), demonstrating that thoughtful covariate integration can bring
in-field estimates close to laboratory standards. Crucially, FarmLab’s low per-sample cost (~ €3—4)
and rapid deployment strike a practical balance between affordability and precision when
accompanied by robust calibration protocols.

4.7. Future Directions

Building on our findings, we identify several opportunities to enhance in-field SOC sensing and
integrate FarmLab more fully into carbon-farming practice. First, longitudinal field trials are needed
to assess temporal stability and repeatability at fixed monitoring points, as demonstrated for
mineral-N sensing [29]. Such repeated measurements under varying environmental conditions will
help quantify device drift and inform automated Quality Control routines.

Second, the integration of soil bulk density measurement into the probe design or acquisition of
concurrent bulk density maps (e.g., via proximal gamma-ray attenuation) would permit direct
calculation of SOC stocks rather than concentrations alone, addressing a key limitation for
carbon-accounting [58].

Third, expanding the calibration library with diverse soil types and management histories —
potentially through federated spectral databases like LUCAS — would improve model transferability
across regions [11,63]. In particular, incorporation of texture and mineralogy covariates in a
multivariate calibration framework could further reduce pH- and carbonate-related biases [12,18].

Fourth, data fusion combining FarmLab measurements with drone- and satellite-based spectral
imagery offers the promise of scaling plot-level readings to field and landscape scales, as explored by
others [14,64]. Hybrid models could leverage high-resolution in-field data for ground-truthing
remote predictions, yielding robust SOC maps for MRV systems.

Finally, embedding machine-learning pipelines that dynamically update calibration models
based on ongoing field data (e.g., via active learning) could maintain accuracy in the face of seasonal
and management-induced soil changes. Such adaptive approaches align with the vision of precision
carbon farming as a continuously optimized system [49].

Implementing these recommendations will move FarmLab, and similar in-situ SOC sensors,
toward reliable, scalable tools for high-density, cost-effective soil-carbon monitoring, fulfilling both
scientific and practical requirements of carbon-farming initiatives.

5. Conclusions

Our first independent field validation of the FarmLab multi-sensor probe under temperate
European arable conditions shows that its default model overestimates SOC by +0.20-0.27 % (SD
0.25-0.28 %), while a simple pH correction halves that bias (+0.11 %, SD 0.23 %) and moisture effects
are effectively neutralized. However, formal equivalence testing confirms that even the pH-corrected
algorithm cannot yet match laboratory precision and concordance.

Economically, FarmLab’s per-sample cost of ~ €3-4 (versus ~ €44 for GPS-referenced lab
analysis) enables high-density mapping essential for carbon-farming MRV. We therefore advocate a
hybrid approach: use routine, pH-corrected in-field measurements to capture spatial and temporal
trends, anchored by periodic laboratory benchmarks to ensure certification-grade accuracy.

Looking forward, improving FarmLab’s performance will depend on expanding calibration
across diverse soils, integrating bulk-density data, and adopting adaptive, data-driven calibration
algorithms—steps that together can elevate low-cost in-field sensing to near-laboratory standards
and support scalable, cost-effective soil-carbon monitoring.
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The following abbreviations are used in this manuscript:

ANCOVA Analysis of covariance

EIS Electrical impedance spectroscopy

MIR Mid-infrared spectroscopy

MRV Monitoring, Reporting and Verification

NIRS Near-infrared spectroscopy

SOC Soil organic carbon

SOM Soil organic matter

TC Total carbon

TOC Total organic carbon

VOC Volatile organic compounds

WEPS Water-filled pore space
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