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Abstract: This report is on the reproducibility and performance of bioinformatics software, with a 

specific focus on versions of the widely‐used Basic Local Alignment Search Tool (BLAST+) suite. The 

core  challenges  addressed  are  the  inconsistencies  arising  from  floating‐point  arithmetic 

implementations  across  different  C/C++  compilers  and  hardware  architectures,  alongside  the 

identification and analysis of software performance bottlenecks. Any investigation of this problem 

should  be  focused  on  three  primary  areas:  first,  an  empirical  testing  and  documentation  of  the 

reproducibility  of  BLAST+  outputs  generated  under  varying  compilation  and  execution 

environments, with particular  attention  to  floating‐point mathematical discrepancies;  second,  the 

identification and characterization of performance bottlenecks within  the BLAST+ codebase using 

established profiling  tools  and  analysis;  and  third,  an  exploration  and preliminary  evaluation of 

optimization strategies, including code reordering, the use of alternative mathematical functions, and 

any application of machine‐specific instruction sets (e.g., SIMD). These recommendations are based 

on the goals of reliability of scientific results derived from bioinformatics tools and the computational 

costs  associated with  large‐scale  biological  sequence  analysis.  This  report  further  discusses  the 

advantages  of  open‐source  development  paradigms  and  delves  into  the  technical  intricacies  of 

floating‐point arithmetic, including considerations for 32‐bit versus 64‐bit builds and the historical 

context of legacy software, that underpin the identified challenges. 
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1. Introduction 

Bioinformatics as a field  is critically dependent on complex computational algorithms for the 

analysis of  increasingly voluminous biological datasets. Within this context, the reproducibility of 

results and the operational efficiency of these algorithms are paramount, underpinning both scientific 

integrity and effective resource management. This report details a study centered on the Basic Local 

Alignment  Search  Tool  (BLAST+),  a  foundational  software  package  in  bioinformatics,  which 

addresses pressing issues related to computational reproducibility and performance. 
A central problem confronting computational biology is the variability in how different C/C++ 

compilers and the underlying computer architectures implement floating‐point mathematics. These 

subtle, yet potentially impactful, differences are often inherent in compiler design choices or specific 

hardware implementations. They can lead to divergent numerical results from ostensibly identical 

calculations, a concern particularly pronounced in numerically intensive software such as versions 

of BLAST+. Such discrepancies possess the capacity to undermine the reliability of scientific findings. 

Concurrently, as biological datasets continue to expand, the performance characteristics of tools like 

BLAST+ become increasingly critical. Inefficiencies can translate into prohibitive computational costs 

and unacceptably extended analysis durations. 
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This report employs a multi‐faceted approach to examine these concerns. The main focus is on 

the general  expectations  and putative  reproducibility of machine  code of BLAST+,  and  scientific 

software in general, by a range of C/C++ compilers across diverse hardware platforms, with a specific 

emphasis on variations in floating‐point arithmetic and their consequent impact on analytical results. 

Recommendations  include  the  identification  and  characterization  of  performance  bottlenecks  in 

software  through  systematic  profiling  and  code.  Targeted  optimization  strategies  includes  code 

restructuring, the  judicious use of faster mathematical function  libraries, and  leveraging machine‐

specific code, such as Single Instruction, Multiple Data (SIMD) instructions. These recommendations 

contribute to a better understanding of factors affecting the continued reliability and performance of 

bioinformatics software. 

2. Background and Significance 

2.1. The Challenge of Floating‐Point Arithmetic in Compilers 

Different versions and types of C/C++ compilers, notably the GNU Compiler Collection (GCC) 

(Stallman 2003), are known to exhibit inconsistencies in their handling of floating‐point mathematics. 

This  behavior,  which  can  sometimes  be  mischaracterized  as  a  software  bug,  is  often  a  direct 

consequence of specific design choices made within the compiler or varying levels of adherence to 

different aspects of floating‐point standards, such as IEEE 754. Floating‐point arithmetic is inherently 

sensitive not only to the precision of the values involved and the nature of the arithmetic operations 

themselves but also to how undefined values (e.g., Not‐a‐Number (NaN), infinity) and subnormal 

numbers are represented and processed. Prior experience in computationally intensive fields, such 

as  software‐based  video  rendering,  has  highlighted  similar  precision‐related  issues  that  are 

notoriously difficult to debug. Prior review of the extant scientific literature indicated a notable lack 

of comprehensive surveys specifically addressing this problem within the domain of bioinformatics 

software. 

2.2. Performance Optimization Precedents 

Computational efficiency in demanding applications, for instance, video and audio compression 

or  rendering,  has  frequently  been  achieved  through  the  application  of  low‐level  optimization 

techniques (Abrash 1997). These techniques prominently include Instruction‐Level Parallelism (ILP), 

which seeks to utilize the multiple execution pipelines available within modern Central Processing 

Units  (CPUs),  particularly  their  Floating  Point  Units  (FPU).  Another  key  technique  is  Single 

Instruction, Multiple Data (SIMD), which employs specialized CPU  instructions (e.g., Intelʹs SSE2, 

AVX) designed to perform the same operation on multiple data elements simultaneously, typically 

using wide registers (e.g., 128‐bit, 256‐bit) (Liu et al. 2013; Rao and Fisher 1993; Alpern et al. 1995). 

Such  methodologies  can  significantly  reduce  the  number  of  clock  cycles  required  for  critical 

computational segments. 

2.3. Significance for BLAST+ and Bioinformatics 

The National Center for Biotechnology Information (NCBI) provides BLAST+ as a web service 

for  conducting  biological  sequence  database  searches  (Camacho  et  al.  2009;  NCBI  Resource 

Coordinators  2016).  Consequently,  any  improvements  realized  in  the  performance  of  BLAST+ 

directly translate to reduced CPU usage and, by extension, lower operational costs for maintaining 

this vital public resource. A significant increase in performance, for example, a doubling of speed, 

could potentially halve the server infrastructure costs. The optimization strategies explored within 

this  report  are  designed  to  complement  existing  parallelization  efforts  already  implemented  in 

BLAST+, such as multi‐threading. BLAST+, having undergone numerous revisions and being subject 

to extensive use (as evidenced by over a large number of citations), serves as an ideal model system 

as a candidate of interest. Its inherent complexity and widespread adoption make it a highly suitable 

candidate for analyzing issues of computational reliability and performance. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/


  3  of  9 

 

2.4. Benefits of Open Source Development Practices 

The  source code  for BLAST+ has  traditionally been distributed as downloadable archives. A 

transition of its development infrastructure to a web‐based version control repository, as in GitHub, 

is  beneficial.  The  platform  fosters  greater  community  engagement,  facilitates  collaborative 

development efforts, and  improves overall  transparency  in  the software  lifecycle. Version control 

systems enable meticulous  tracking of all  code modifications,  thereby  simplifying  the debugging 

process by allowing for straightforward reversion to previous stable states. This approach is often 

more effective than traditional debugging methods that rely on extensive logging. Past versions of 

BLAST+ codebase exhibits a mixture of C and C++ programming styles (Jordan 1990) and employs a 

somewhat convoluted build system based on autotools, characterized by static makefiles rather than 

dynamically generated ones. The establishment of a public repository empowers maintainers and 

contributors to collaboratively refactor the code towards consistent standards, improve bug tracking 

mechanisms, and facilitate the porting of the software to a wider array of computational platforms. 

3. Key Aspects of Interest 

3.1. Analysis of Validation and Reproducibility Needs 

The enhancement of efficiency and  reproducibility  in bioinformatic algorithms necessitates a 

synergistic collaboration between biologists and computer scientists. For a project of the scale and 

complexity of BLAST+,  the availability of a  robust  set of  test  files and a  standardized validation 

procedure  is  essential.  This  is  critical  not  only  for  ensuring  algorithmic  correctness  but  also  for 

verifying  the  integrity  of  the  compiled  binary  across  diverse  computational  environments.  This 

approach mirrors  the  bootstrapping  procedure  commonly  employed  in GCC  builds, where  the 

compiler  is  compiled multiple  times  to validate  its own  code  and  to optimize  itself during  each 

iteration  (Stallman  2009).  Given  the  extensive  and  continual  use  of  BLAST+  in  the  scientific 

community (e.g., Friedman 2011), the application of a similarly rigorous validation methodology is 

highly warranted. A contribution of this study is the analysis of requirements for such a verification 

workflow,  applicable  not  only  to  BLAST+  but  also  to  other  bioinformatics  software,  thereby 

highlighting inherent issues in building bioinformatics software and strategies for improvement. 

3.2. Exploration of Advanced Performance Optimization for BLAST+ 

BLAST+ employs heuristic approaches to perform local sequence alignment, a fundamental task 

in  bioinformatics.  It  is  important  to  identify  and  analyze  the  performance‐critical  sections 

(bottlenecks)  within  any  bioinformatics  software  codebase  and  an  exploration  of  advanced 

optimization techniques applicable to these areas. One key aspect is the consideration of vectorization 

through  the use of SIMD  instruction sets and  the exploitation of CPU pipeline concurrency. This 

strategy  is analogous to enhancements previously made to the Smith‐Waterman algorithm (Smith 

and Waterman 1981; Liu et al. 2013), leading to expectations of performance gains at the instruction 

level, thereby complementing existing multi‐threading parallelization strategies already present in 

many software suites today. 

4. Approaches and Methodologies 

4.1. Examination of Reproducibility in Bioinformatics Software 

The core issue of non‐identical binary builds arises from the same source code due to variations 

in  compilers  or  compiler  versions  was  addressed  through  empirical  testing  and  analysis.  The 

investigation  into reproducibility  involves compiling and executing software under a defined  test 

matrix. This matrix encompasses various C/C++ compilers  (e.g., different GCC versions), multiple 

computer platforms (including x86‐64 systems), and diverse BLAST+ parameter settings. A robust 

set of  input sequence files, varying  in attributes such as length, composition (amino acids, nucleic 

acids),  and  complexity,  are  utilized  in  the  case  of  BLAST+ʹs  functionalities.  The  critical  E‐value 
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statistic, a measure of statistical significance in sequence alignments, serves as a primary focus for 

comparing  outputs  across  these different  conditions. A  bioinformatic pipeline,  comprising  batch 

scripts  and  auxiliary  software,  is  often  employed  to manage  the  testing  workflow  from  input 

processing  through  to  result  comparison. Observed discrepancies  in  floating‐point math outputs 

were documented to understand their origins and impact. 

4.2. Analysis of Performance and Low‐Level Optimization Techniques 

Drawing  inspiration  from  successes  in  computationally  demanding  fields  such  as  video 

rendering (Abrash 1997), the use of hand‐coded assembly or compiler intrinsics for FPU and SIMD 

units is discussed below. The GNU Gprof tool is a common tool for preliminary profiling to identify 

potential performance bottlenecks by measuring time spent in different functions during execution 

with representative datasets. Based on this, targeted optimization strategies can be considered. These 

included  SIMD  vectorization,  where  Intel’s  SSE2/AVX  instructions  are  applicable  via  compiler 

intrinsics or  inline  assembly  to parallelize  calculations. For  computationally  expensive  functions, 

such  as  logarithmic  calculations,  the  use  of  lookup  tables  or  faster  approximation  algorithms  is 

possible and applicable. Furthermore, built‐in functions provided by compilers that offer access to 

machine‐level optimizations are another avenue of interest. Manual or compiler‐guided reordering 

of code lines within critical loops or blocks is also recommended as a means to improve instruction 

pipelining and cache utilization. 

4.3. BLAST+ Source Code Management and Build System Analysis 

An older version of the BLAST+ source code (e.g., version 2.6.0+ was originally available from 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/)  was  the  primary  target  of  interest. 

Other legacy versions of BLAST+ (e.g., the 2.2.x branch) were also consulted for insights into software 

modularity  and  potential  simplifications  of  their  build  systems.  The  automake‐based  build 

procedure, with  its  noted  reliance  on  hard‐coded paths within  shell  scripts  and  its use  of  static 

Makefiles, is analyzed. The more standard Cygwin build script serves as a valuable reference point 

in this analysis. The need to streamline the build process, potentially by refactoring Makefiles to be 

more dynamic and by  reducing dependencies on hard‐coded elements, with  the ultimate aim of 

achieving a  standard  configure && make <target> workflow,  is  identified.  Inspired by  the PCRE 

library (a dependency of legacy BLAST+), which includes a robust test suite, the necessity for a similar 

comprehensive suite of input and output files for BLAST+ to validate its correctness across different 

versions and builds was established. 

4.4. Testing Environment and Tools Utilized 

Testing was conducted on common x86‐64 platforms (running Linux and Windows). A range of 

compilers, including multiple versions of GCC and Microsoft Visual C++, were used or considered. 
Initial testing experiences involved building BLAST+ version 2.6.0 (Camacho et al. 2009) with 

GCC compiler version 5.4.0 within 32‐bit Cygwin  for win32 development system  (Cygwin 2017), 

targeting Windows. A notable issue encountered was the failure of the ReleaseMT (multithreading) 

build of BLAST+ to compile in Cygwin. This was attributed, based on GCC bug reports, to the use of 

the compiler option ‐Wall with GCC version 4.7 and higher, specifically related to a pragma line in 

the  blast_kappa.cpp  source  file.  The  suggested workaround,  using  the  parameter  option  ‐Wno‐

unknown‐pragmas,  confirmed  this  diagnosis.  Consequently,  BLAST+  was  compiled  without 

multithreading by modifying the configure script with without‐openmp and without‐mt, followed 

by executing make all_r to build all binaries. These options served to control for any potential deficits 

in Cygwinʹs handling of POSIX multithreading, which relies on a translation layer to standard win32 

analogs, and also to control for problems that multithreading can  introduce when compiling with 

optimization (Batty et al. 2015). 
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It was also observed that not all binaries within the BLAST+ package build successfully under 

Cygwin without modification. Removing a specific dependency, as illustrated by the patch file for 

blastp shown in Figure 1, allowed these binaries to build and function as expected. 
 

--- ncbi-blast-orig/c++/src/app/blast/Makefile.blastp.app 

+++ ncbi-blast/c++/src/app/blast/Makefile.blastp.app 

@@ -15,6 +15,6 @@ LDFLAGS  = $(FAST_LDFLAGS:ppc=i386) 

 CPPFLAGS = -DNCBI_MODULE=BLAST $(ORIG_CPPFLAGS) 

 LIBS = $(CMPRS_LIBS) $(DL_LIBS) $(NETWORK_LIBS) $(ORIG_LIBS) 

  

-REQUIRES = objects -Cygwin 

+REQUIRES = objects 

  

 PROJ_TAG = gbench 

Figure 1. Patch as applied to Makefile.blastp.app for successful Cygwin compilation. 

5. Analysis of Floating‐Point Inconsistencies 

5.1. Compiler Optimizations and IEEE 754 Adherence 

Inconsistencies in floating‐point arithmetic frequently arise from the manner in which compilers 

optimize code and their specific level of adherence to the IEEE 754 standard (IEEE 1985). For instance, 

on 32‐bit x86 systems, Floating Point Units (FPUs) often internally utilize 80‐bit precision, commonly 

referred to as ʺlong double.ʺ When these high‐precision values are moved to 64‐bit CPU registers or 

memory locations (typically ʺdoubleʺ precision), truncation can occur. Compiler optimizations can 

significantly  alter  the  sequence  and  nature  of  these movements  between  registers  and memory, 

leading to different levels of precision being retained at various stages of computation, and thus, to 

potentially different final results. 
Furthermore,  GCC  intrinsic  math  functions  may  exhibit  behaviors  concerning  rounding 

methods or the handling of non‐normal values that differ from those of standard library functions 

(e.g.,  GNU  libm)  or  other  compilers  like Microsoft  Visual  C++.  These  differences,  particularly 

noticeable in legacy 32‐bit builds, can manifest as slight variations in the mantissa of floating‐point 

numbers. While seemingly minor, these can cascade in complex calculations, potentially leading to 

significant errors such as division‐by‐zero or severe performance degradation. Compiler flags can 

sometimes mitigate  these  issues.  For  example,  the  GCC  float‐store  option  forces  floating‐point 

variables  to  be  stored  in memory  rather  than  being  kept  in  FPU  registers, which  can  ensure  a 

consistent level of precision, albeit often at a performance cost. The excess‐precision=standard option 

in GCC can also help align behavior, particularly for non‐arithmetic functions, as noted by Monniaux 

(2008) in his discussion of discrepancies in the sin(p) calculation between Pentium 4 x87/Mathematica 

and GNU  libc on x86_64. On modern x64 platforms, the use of advanced  instruction sets, such as 

SSE2,  for  floating‐point math  is  generally  recommended  for  better  adherence  to  the  IEEE  754 

standard. Alternatively, FPU precision can be explicitly lowered. However, it  is  important to note 

that  compiler  built‐in  functions might  still  override  standard  library  behavior  in  certain  cases. 

Monniaux (2008) also highlighted that even seemingly innocuous changes to source code, such as the 

addition of logging statements, can alter register allocation and instruction ordering by the compiler. 
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This can lead to different floating‐point outcomes despite the C/C++ source code being semantically 

identical. Such issues are further complicated in the context of multi‐threaded applications (Batty et 

al. 2015). 

5.2. Subnormal Numbers and Special Values 

The IEEE 754 standard defines subnormal (or denormal) numbers to represent values that are 

smaller than the smallest ʺnormalʺ floating‐point number, effectively filling the numerical gap that 

would  otherwise  exist  near  zero.  For  a  standard  32‐bit  single‐precision  floating‐point  number 

(comprising 1 sign bit, 8 exponent bits, and 23 mantissa bits, generally represented as ± m × 2e), normal 

numbers have an exponent field ranging from 1 to 254. This biased exponent (typically with a bias of 

127) yields effective exponents from ‐126 to +127. The smallest positive normal float is effectively 2 x 

2‐126, where  the  binary  exponent  field  is  00000001.  The  bit‐field  representation  for  such  a  value 

(approximately, assuming the stored mantissa is all zeros for simplicity, as normal numbers have an 

implicit leading ʹ1ʹ bit not stored in the mantissa field) is shown in Table 1. 

Table 1. Bit‐field representation for the smallest positive normal single‐precision float (approx. 2 x 2‐126). 

| Field | Sign (bit 31) | Exponent (bits 30‐23) | Mantissa (bits 22‐0) | 

| :‐‐‐‐‐‐‐ | :‐‐‐‐‐‐‐‐‐‐‐‐ | :‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ | :‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ | 

| Value | 0 | 00000001 | 00000000000000000000000 | 

Subnormal numbers,  in contrast, are characterized by an exponent  field  that  is all zeros. For 

these  numbers,  the  effective  exponent  is  fixed  at  a  special minimal  value  (e.g.,  ‐126  for  single 

precision, but with an implicit leading ʹ0ʹ for the mantissa, rather than ʹ1ʹ). This convention allows for 

the representation of values down to 2 x 2‐149 for single precision, although this comes at the cost of 

lost  precision  in  the  mantissa.  Values  smaller  than  the  lowest  subnormal  number  trigger  an 

underflow event. The treatment of subnormal numbers can vary between compilers. For  instance, 

legacy versions of  the  Intel C Compiler provides options  that  can  affect precision  in  the  case of 

subnormal values. While preserving precision might seem beneficial, if it implies using more than 

the standard 32 bits of information for a single‐precision float, it can lead to results inconsistent with 

other C/C++ compilers. In another scenario, if an Intel C compiler is set for optimization levels such 

as O1 or higher and an SSE option is chosen, it may flush all, or nearly all, subnormal values to zero 

(a behavior controlled by FTZ/DAZ flags). This is a performance optimization, but it fundamentally 

changes the arithmetic behavior and serves as another example of how floating‐point math can differ 

among compilers. These floating‐point issues extend beyond the handling of subnormal numbers, 

but  this  example  effectively  illustrates  the  problems  inherent  in  binary  computation  and  the 

significant  effects  of  compiler  optimizations. The E‐value  calculation  in BLAST+,  being  a  critical 

statistic  derived  from  floating‐point  operations,  is  identified  as  a  key metric  for  observing  such 

divergences. 

5.3. Impact of 32‐bit versus 64‐bit Architectures on Floating‐Point Stability 

The distinction  between  32‐bit  and  64‐bit  software  builds  is highly  relevant  to  the  study  of 

floating‐point errors. Standard 64‐bit  floating‐point numbers  (double‐precision) offer significantly 

more  precision  and  a wider  dynamic  range  than  their  32‐bit  counterparts  (single‐precision). A 

double‐precision  number  typically  uses  11  bits  for  the  exponent  and  52  bits  for  the mantissa, 

compared to 8 exponent bits and 23 mantissa bits for single‐precision. This increased bit allocation 

inherently makes 64‐bit computations less susceptible to the rapid accumulation of rounding errors, 

which can become pronounced in iterative algorithms or when subtracting nearly equal numbers. 
The behavior of the x87 Floating‐Point Unit (FPU), with  its  internal 80‐bit extended‐precision 

registers, further illustrates this point. When an 80‐bit intermediate result is stored back into memory 

as a 32‐bit single‐precision float, a substantial amount of precision is lost. While storing to a 64‐bit 
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double‐precision variable also involves precision loss from 80 bits, the loss is considerably less severe. 

Consequently,  sequences of operations  that might maintain acceptable accuracy  in a 64‐bit build 

could  exhibit  significant  divergence  or  instability  in  a  32‐bit  build  due  to  this more  aggressive 

truncation. 
Moreover,  on modern  64‐bit  (x64)  architectures,  compilers  often  default  to  using  SSE/AVX 

instruction sets for scalar floating‐point arithmetic, even for double and float types. These instruction 

sets operate on 128‐bit or wider registers and are generally designed for stricter adherence to IEEE 

754 semantics regarding rounding and handling of special values, compared to the older x87 FPU 

instruction set which might still be a factor in some 32‐bit compilation modes or for long double types. 

This can lead to more consistent and predictable floating‐point behavior in 64‐bit builds. 
Although official BLAST+ releases are now commonly 64‐bit, the above inclusion of 32‐bit build 

testing  (as  exemplified  by  the  initial  Cygwin/w32  work)  is  valuable  for  an  understanding  of 

numerical precision  in scientific software. The  lower precision of 32‐bit environments can act as a 

ʺstress test,ʺ potentially exposing classes of numerical instability or compiler‐specific floating‐point 

handling quirks more readily than in a 64‐bit environment where higher precision might mask such 

issues. Understanding these behaviors in a more constrained precision environment provided crucial 

insights  into  the robustness of  the algorithms and  informed best practices  for ensuring numerical 

stability  across  a wider  range of platforms. For  sensitive  calculations  like BLAST+ʹs E‐value,  the 

differences in precision between 32‐bit and 64‐bit builds, or even among different 32‐bit compilation 

environments,  are  observable  for  detection  of  the  more  pronounced  discrepancies  in  output, 

underscoring the importance of comparative analysis. 

5.4. Legacy Context and Software Applicability 

Within this report, certain software components and development environments were discussed 

in contexts that bear relevance to understanding legacy code or older computational paradigms. It is 

important  to  frame  these  discussions  appropriately  and  to  acknowledge  the  limitations  when 

considering more recent software that was not part of this report. 

1. BLAST+ 2.2.x Branch: The report mentions (Section 4.3) that legacy versions of BLAST+, 

specifically the 2.2.x branch, were consulted. This was done in a historical context, primarily to 

gain insights into aspects like software modularity and the relative simplicity of older build 

systems compared to the contemporary BLAST+ (version 2.6.0+) codebase that was the main 

subject of the build and performance analysis. The characteristics and potential numerical 

behaviors of this specific older BLAST+ codebase (2.2.x) are rooted in the development 

practices and compiler/hardware environments prevalent at the time of its active development. 

As such, direct extrapolation of findings specific to the BLAST+ 2.2.x branch to very recent, 

unreviewed versions of BLAST+ or other modern bioinformatics tools should be approached 

with caution, as these newer tools would have evolved under different design principles and 

technological constraints. 

2. 32‐bit Build Environments (e.g., Cygwin/w32 for BLAST+ 2.6.0): The use of a 32‐bit 

Cygwin/w32 development system to build a contemporary version of BLAST+ (2.6.0), as 

detailed in Sections 4.4 and 5.3, also touches upon legacy considerations. While the BLAST+ 

version itself was current at the time of testing, compiling it for a 32‐bit architecture was 

intended to simulate or explore behaviors pertinent to older computational environments 

where 32‐bit processing was standard, or in specialized applications where it might still be 

used. This approach served as a valuable ʺstress testʺ for floating‐point behavior due to the 

inherently lower precision of 32‐bit floating‐point types (Section 5.3). 
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3. x87 Floating‐Point Unit (FPU): The discussion of the x87 FPU (Sections 5.1 and 5.3) is 

primarily historical. The x87 FPU was the standard for floating‐point operations on earlier x86 

architectures, and its unique characteristics (e.g., 80‐bit internal precision, specific instruction 

set) influenced floating‐point results on those legacy systems. While an understanding of x87 

behavior is crucial for analyzing older code or for specific 32‐bit compilation modes where it 

might still be invoked (especially for long double types), modern 64‐bit applications and 

compilers predominantly utilize SSE/AVX instruction sets for floating‐point arithmetic. These 

newer instruction sets generally offer more consistent adherence to IEEE 754 standards. 

Applicability to Recent, Unreviewed Code: 

The analyses presented in this report, particularly those concerning specific build issues (e.g., 

the Cygwin patch for BLAST+ 2.6.0) and the observed floating‐point behaviors, are grounded in the 

versions of software (BLAST+ 2.6.0, GCC 5.4.0, etc.) and the specific build environments detailed. 
It  is  crucial  to  emphasize  that  these  findings,  especially  those derived  from  32‐bit builds or 

considerations of older FPU behaviors, provide a historical and contextual understanding of potential 

numerical sensitivities. While the principles of floating‐point arithmetic and compiler optimizations 

remain  relevant,  the  specific manifestations of errors or  inconsistencies  can differ  significantly  in 

more  recent  software versions  that were not  reviewed  as part  of  this  study. Modern  codebases, 

particularly  those  developed  primarily  for  64‐bit  architectures  and  compiled  with  the  latest 

compilers, would likely benefit from different default settings, more mature SSE/AVX utilization by 

compilers,  and potentially different  algorithmic  approaches  to numerical  stability. Therefore,  the 

direct applicability of  the  specific observations made herein  to unreviewed,  recent  code  requires 

careful  consideration  and would  necessitate  a  separate,  dedicated  investigation  of  that  specific 

software. 

6. Observed Outcomes and Discussion 

The execution of this research yielded several significant observations and insights. A validated 

understanding  of  potential  reproducibility  issues  in  BLAST+  across  different  compilation 

environments was achieved, particularly highlighting the sensitivity of floating‐point calculations. 

Preliminary performance profiling  indicated specific areas within BLAST+ that could benefit from 

targeted  optimization. The  analysis  of  32‐bit versus  64‐bit  builds  confirmed  that  lower‐precision 

environments  can  exacerbate  numerical  instabilities,  providing  a  clearer  picture  of  algorithmic 

robustness. The investigation into the issue underscores the subtle but significant impact of compiler 

and hardware choices, including architectural bitness, on scientific software outputs. Furthermore, 

the analysis of the BLAST+ build system and comparison with open‐source best practices highlights 

areas for continued modernization that benefits the wider bioinformatics community. These findings 

contribute  to  a  further  understanding  of  the  challenges  in  maintaining  reliable  and  efficient 

bioinformatics software. 

7. Conclusion 

This investigation addressed fundamental challenges in computational bioinformatics related to 

the reproducibility of scientific results and the performance of critical software tools. By focusing on 

legacy versions of BLAST+ as a case study, this work developed insights into testing floating‐point 

arithmetic  consistency  and  analyzing  performance  characteristics.  The  outcomes,  including  a 

nuanced understanding of 32‐bit versus 64‐bit floating‐point behaviors, legacy software contexts, and 

build system complexities, contribute to the broader scientific communityʹs efforts to  improve the 

reliability and efficiency of essential bioinformatics infrastructure, thereby fostering more robust and 

cost‐effective scientific discovery. 
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