Pre prints.org

Brief Report Not peer-reviewed version

An Investigation into Reproducibility and
Performance in Bioinformatics Software:
A Case Study of BLAST+ and Floating-

Point Arithmetic

Robert Friedman
Posted Date: 23 May 2025
doi: 10.20944/preprints202505.1859.v1

Keywords: bioinformatics; Blast+ software; floating-point variable; computer compiler; IEEE 754; x87
floating-point unit; 32-bit; 64-bit software

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/1259448

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Brief report

An Investigation into Reproducibility and
Performance in Bioinformatics Software: A Case
Study of BLAST+ and Floating-Point Arithmetic

Robert Friedman *

Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
bob.friedman.2@gmail.com
t Retired.

Abstract: This report is on the reproducibility and performance of bioinformatics software, with a
specific focus on versions of the widely-used Basic Local Alignment Search Tool (BLAST+) suite. The
core challenges addressed are the inconsistencies arising from floating-point arithmetic
implementations across different C/C++ compilers and hardware architectures, alongside the
identification and analysis of software performance bottlenecks. Any investigation of this problem
should be focused on three primary areas: first, an empirical testing and documentation of the
reproducibility of BLAST+ outputs generated under varying compilation and execution
environments, with particular attention to floating-point mathematical discrepancies; second, the
identification and characterization of performance bottlenecks within the BLAST+ codebase using
established profiling tools and analysis; and third, an exploration and preliminary evaluation of
optimization strategies, including code reordering, the use of alternative mathematical functions, and
any application of machine-specific instruction sets (e.g., SIMD). These recommendations are based
on the goals of reliability of scientific results derived from bioinformatics tools and the computational
costs associated with large-scale biological sequence analysis. This report further discusses the
advantages of open-source development paradigms and delves into the technical intricacies of
floating-point arithmetic, including considerations for 32-bit versus 64-bit builds and the historical
context of legacy software, that underpin the identified challenges.

Keywords: bioinformatics; Blast+ software; floating-point variable; computer compiler; IEEE 754; x87
floating-point unit; 32-bit; 64-bit software

1. Introduction

Bioinformatics as a field is critically dependent on complex computational algorithms for the
analysis of increasingly voluminous biological datasets. Within this context, the reproducibility of
results and the operational efficiency of these algorithms are paramount, underpinning both scientific
integrity and effective resource management. This report details a study centered on the Basic Local
Alignment Search Tool (BLAST+), a foundational software package in bioinformatics, which
addresses pressing issues related to computational reproducibility and performance.

A central problem confronting computational biology is the variability in how different C/C++
compilers and the underlying computer architectures implement floating-point mathematics. These
subtle, yet potentially impactful, differences are often inherent in compiler design choices or specific
hardware implementations. They can lead to divergent numerical results from ostensibly identical
calculations, a concern particularly pronounced in numerically intensive software such as versions
of BLAST+. Such discrepancies possess the capacity to undermine the reliability of scientific findings.
Concurrently, as biological datasets continue to expand, the performance characteristics of tools like
BLAST+ become increasingly critical. Inefficiencies can translate into prohibitive computational costs
and unacceptably extended analysis durations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

2 of 9

This report employs a multi-faceted approach to examine these concerns. The main focus is on
the general expectations and putative reproducibility of machine code of BLAST+, and scientific
software in general, by a range of C/C++ compilers across diverse hardware platforms, with a specific
emphasis on variations in floating-point arithmetic and their consequent impact on analytical results.
Recommendations include the identification and characterization of performance bottlenecks in
software through systematic profiling and code. Targeted optimization strategies includes code
restructuring, the judicious use of faster mathematical function libraries, and leveraging machine-
specific code, such as Single Instruction, Multiple Data (SIMD) instructions. These recommendations
contribute to a better understanding of factors affecting the continued reliability and performance of
bioinformatics software.

2. Background and Significance
2.1. The Challenge of Floating-Point Arithmetic in Compilers

Different versions and types of C/C++ compilers, notably the GNU Compiler Collection (GCC)
(Stallman 2003), are known to exhibit inconsistencies in their handling of floating-point mathematics.
This behavior, which can sometimes be mischaracterized as a software bug, is often a direct
consequence of specific design choices made within the compiler or varying levels of adherence to
different aspects of floating-point standards, such as IEEE 754. Floating-point arithmetic is inherently
sensitive not only to the precision of the values involved and the nature of the arithmetic operations
themselves but also to how undefined values (e.g., Not-a-Number (NaN), infinity) and subnormal
numbers are represented and processed. Prior experience in computationally intensive fields, such
as software-based video rendering, has highlighted similar precision-related issues that are
notoriously difficult to debug. Prior review of the extant scientific literature indicated a notable lack
of comprehensive surveys specifically addressing this problem within the domain of bioinformatics
software.

2.2. Performance Optimization Precedents

Computational efficiency in demanding applications, for instance, video and audio compression
or rendering, has frequently been achieved through the application of low-level optimization
techniques (Abrash 1997). These techniques prominently include Instruction-Level Parallelism (ILP),
which seeks to utilize the multiple execution pipelines available within modern Central Processing
Units (CPUs), particularly their Floating Point Units (FPU). Another key technique is Single
Instruction, Multiple Data (SIMD), which employs specialized CPU instructions (e.g., Intel's SSE2,
AVX) designed to perform the same operation on multiple data elements simultaneously, typically
using wide registers (e.g., 128-bit, 256-bit) (Liu et al. 2013; Rao and Fisher 1993; Alpern et al. 1995).
Such methodologies can significantly reduce the number of clock cycles required for critical
computational segments.

2.3. Significance for BLAST+ and Bioinformatics

The National Center for Biotechnology Information (NCBI) provides BLAST+ as a web service
for conducting biological sequence database searches (Camacho et al. 2009; NCBI Resource
Coordinators 2016). Consequently, any improvements realized in the performance of BLAST+
directly translate to reduced CPU usage and, by extension, lower operational costs for maintaining
this vital public resource. A significant increase in performance, for example, a doubling of speed,
could potentially halve the server infrastructure costs. The optimization strategies explored within
this report are designed to complement existing parallelization efforts already implemented in
BLAST+, such as multi-threading. BLAST+, having undergone numerous revisions and being subject
to extensive use (as evidenced by over a large number of citations), serves as an ideal model system
as a candidate of interest. Its inherent complexity and widespread adoption make it a highly suitable
candidate for analyzing issues of computational reliability and performance.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

30of 9

2.4. Benefits of Open Source Development Practices

The source code for BLAST+ has traditionally been distributed as downloadable archives. A
transition of its development infrastructure to a web-based version control repository, as in GitHub,
is beneficial. The platform fosters greater community engagement, facilitates collaborative
development efforts, and improves overall transparency in the software lifecycle. Version control
systems enable meticulous tracking of all code modifications, thereby simplifying the debugging
process by allowing for straightforward reversion to previous stable states. This approach is often
more effective than traditional debugging methods that rely on extensive logging. Past versions of
BLAST+ codebase exhibits a mixture of C and C++ programming styles (Jordan 1990) and employs a
somewhat convoluted build system based on autotools, characterized by static makefiles rather than
dynamically generated ones. The establishment of a public repository empowers maintainers and
contributors to collaboratively refactor the code towards consistent standards, improve bug tracking
mechanisms, and facilitate the porting of the software to a wider array of computational platforms.

3. Key Aspects of Interest
3.1. Analysis of Validation and Reproducibility Needs

The enhancement of efficiency and reproducibility in bioinformatic algorithms necessitates a
synergistic collaboration between biologists and computer scientists. For a project of the scale and
complexity of BLAST+, the availability of a robust set of test files and a standardized validation
procedure is essential. This is critical not only for ensuring algorithmic correctness but also for
verifying the integrity of the compiled binary across diverse computational environments. This
approach mirrors the bootstrapping procedure commonly employed in GCC builds, where the
compiler is compiled multiple times to validate its own code and to optimize itself during each
iteration (Stallman 2009). Given the extensive and continual use of BLAST+ in the scientific
community (e.g., Friedman 2011), the application of a similarly rigorous validation methodology is
highly warranted. A contribution of this study is the analysis of requirements for such a verification
workflow, applicable not only to BLAST+ but also to other bioinformatics software, thereby
highlighting inherent issues in building bioinformatics software and strategies for improvement.

3.2. Exploration of Advanced Performance Optimization for BLAST+

BLAST+ employs heuristic approaches to perform local sequence alignment, a fundamental task
in bioinformatics. It is important to identify and analyze the performance-critical sections
(bottlenecks) within any bioinformatics software codebase and an exploration of advanced
optimization techniques applicable to these areas. One key aspect is the consideration of vectorization
through the use of SIMD instruction sets and the exploitation of CPU pipeline concurrency. This
strategy is analogous to enhancements previously made to the Smith-Waterman algorithm (Smith
and Waterman 1981; Liu et al. 2013), leading to expectations of performance gains at the instruction
level, thereby complementing existing multi-threading parallelization strategies already present in
many software suites today.

4. Approaches and Methodologies
4.1. Examination of Reproducibility in Bioinformatics Software

The core issue of non-identical binary builds arises from the same source code due to variations
in compilers or compiler versions was addressed through empirical testing and analysis. The
investigation into reproducibility involves compiling and executing software under a defined test
matrix. This matrix encompasses various C/C++ compilers (e.g., different GCC versions), multiple
computer platforms (including x86-64 systems), and diverse BLAST+ parameter settings. A robust
set of input sequence files, varying in attributes such as length, composition (amino acids, nucleic
acids), and complexity, are utilized in the case of BLAST+'s functionalities. The critical E-value

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

4 of 9

statistic, a measure of statistical significance in sequence alignments, serves as a primary focus for
comparing outputs across these different conditions. A bioinformatic pipeline, comprising batch
scripts and auxiliary software, is often employed to manage the testing workflow from input
processing through to result comparison. Observed discrepancies in floating-point math outputs
were documented to understand their origins and impact.

4.2. Analysis of Performance and Low-Level Optimization Techniques

Drawing inspiration from successes in computationally demanding fields such as video
rendering (Abrash 1997), the use of hand-coded assembly or compiler intrinsics for FPU and SIMD
units is discussed below. The GNU Gprof tool is a common tool for preliminary profiling to identify
potential performance bottlenecks by measuring time spent in different functions during execution
with representative datasets. Based on this, targeted optimization strategies can be considered. These
included SIMD vectorization, where Intel’s SSE2/AVX instructions are applicable via compiler
intrinsics or inline assembly to parallelize calculations. For computationally expensive functions,
such as logarithmic calculations, the use of lookup tables or faster approximation algorithms is
possible and applicable. Furthermore, built-in functions provided by compilers that offer access to
machine-level optimizations are another avenue of interest. Manual or compiler-guided reordering
of code lines within critical loops or blocks is also recommended as a means to improve instruction
pipelining and cache utilization.

4.3. BLAST+ Source Code Management and Build System Analysis

An older version of the BLAST+ source code (e.g., version 2.6.0+ was originally available from
ftp://ftp.ncbinlm.nih.gov/blast/executables/blast+/LATEST/) was the primary target of interest.
Other legacy versions of BLAST+ (e.g., the 2.2.x branch) were also consulted for insights into software
modularity and potential simplifications of their build systems. The automake-based build
procedure, with its noted reliance on hard-coded paths within shell scripts and its use of static
Makefiles, is analyzed. The more standard Cygwin build script serves as a valuable reference point
in this analysis. The need to streamline the build process, potentially by refactoring Makefiles to be
more dynamic and by reducing dependencies on hard-coded elements, with the ultimate aim of
achieving a standard configure && make <target> workflow, is identified. Inspired by the PCRE
library (a dependency of legacy BLAST+), which includes a robust test suite, the necessity for a similar
comprehensive suite of input and output files for BLAST+ to validate its correctness across different
versions and builds was established.

4.4. Testing Environment and Tools Utilized

Testing was conducted on common x86-64 platforms (running Linux and Windows). A range of
compilers, including multiple versions of GCC and Microsoft Visual C++, were used or considered.

Initial testing experiences involved building BLAST+ version 2.6.0 (Camacho et al. 2009) with
GCC compiler version 5.4.0 within 32-bit Cygwin for win32 development system (Cygwin 2017),
targeting Windows. A notable issue encountered was the failure of the ReleaseMT (multithreading)
build of BLAST+ to compile in Cygwin. This was attributed, based on GCC bug reports, to the use of
the compiler option -Wall with GCC version 4.7 and higher, specifically related to a pragma line in
the blast_kappa.cpp source file. The suggested workaround, using the parameter option -Wno-
unknown-pragmas, confirmed this diagnosis. Consequently, BLAST+ was compiled without
multithreading by modifying the configure script with without-openmp and without-mt, followed
by executing make all_r to build all binaries. These options served to control for any potential deficits
in Cygwin's handling of POSIX multithreading, which relies on a translation layer to standard win32
analogs, and also to control for problems that multithreading can introduce when compiling with
optimization (Batty et al. 2015).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

5o0f 9

It was also observed that not all binaries within the BLAST+ package build successfully under
Cygwin without modification. Removing a specific dependency, as illustrated by the patch file for
blastp shown in Figure 1, allowed these binaries to build and function as expected.

--- ncbi-blast-orig/c++/src/app/blast/Makefile.blastp.app

+++ ncbi-blast/c++/src/app/blast/Makefile.blastp.app

@@ -15,6 +15,6 @@ LDFLAGS = $(FAST LDFLAGS:ppc=1i386)
CPPFLAGS = -DNCBI MODULE=BLAST $(ORIG_CPPFLAGS)

LIBS = $(CMPRS_LIBS) $ (DL LIBS) $(NETWORK LIBS) $(ORIG LIBS)

-REQUIRES = objects -Cygwin

+REQUIRES objects

PROJ TAG = gbench
Figure 1. Patch as applied to Makefile.blastp.app for successful Cygwin compilation.

5. Analysis of Floating-Point Inconsistencies
5.1. Compiler Optimizations and IEEE 754 Adherence

Inconsistencies in floating-point arithmetic frequently arise from the manner in which compilers
optimize code and their specific level of adherence to the IEEE 754 standard (IEEE 1985). For instance,
on 32-bit x86 systems, Floating Point Units (FPUs) often internally utilize 80-bit precision, commonly
referred to as "long double." When these high-precision values are moved to 64-bit CPU registers or
memory locations (typically "double" precision), truncation can occur. Compiler optimizations can
significantly alter the sequence and nature of these movements between registers and memory,
leading to different levels of precision being retained at various stages of computation, and thus, to
potentially different final results.

Furthermore, GCC intrinsic math functions may exhibit behaviors concerning rounding
methods or the handling of non-normal values that differ from those of standard library functions
(e.g., GNU libm) or other compilers like Microsoft Visual C++. These differences, particularly
noticeable in legacy 32-bit builds, can manifest as slight variations in the mantissa of floating-point
numbers. While seemingly minor, these can cascade in complex calculations, potentially leading to
significant errors such as division-by-zero or severe performance degradation. Compiler flags can
sometimes mitigate these issues. For example, the GCC float-store option forces floating-point
variables to be stored in memory rather than being kept in FPU registers, which can ensure a
consistent level of precision, albeit often at a performance cost. The excess-precision=standard option
in GCC can also help align behavior, particularly for non-arithmetic functions, as noted by Monniaux
(2008) in his discussion of discrepancies in the sin(p) calculation between Pentium 4 x87/Mathematica
and GNU libc on x86_64. On modern x64 platforms, the use of advanced instruction sets, such as
SSE2, for floating-point math is generally recommended for better adherence to the IEEE 754
standard. Alternatively, FPU precision can be explicitly lowered. However, it is important to note
that compiler built-in functions might still override standard library behavior in certain cases.
Monniaux (2008) also highlighted that even seemingly innocuous changes to source code, such as the
addition of logging statements, can alter register allocation and instruction ordering by the compiler.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

6 of 9

This can lead to different floating-point outcomes despite the C/C++ source code being semantically
identical. Such issues are further complicated in the context of multi-threaded applications (Batty et
al. 2015).

5.2. Subnormal Numbers and Special Values

The IEEE 754 standard defines subnormal (or denormal) numbers to represent values that are
smaller than the smallest "normal” floating-point number, effectively filling the numerical gap that
would otherwise exist near zero. For a standard 32-bit single-precision floating-point number
(comprising 1 sign bit, 8 exponent bits, and 23 mantissa bits, generally represented as + m x 2¢), normal
numbers have an exponent field ranging from 1 to 254. This biased exponent (typically with a bias of
127) yields effective exponents from -126 to +127. The smallest positive normal float is effectively 2 x
2126, where the binary exponent field is 00000001. The bit-field representation for such a value
(approximately, assuming the stored mantissa is all zeros for simplicity, as normal numbers have an
implicit leading '1" bit not stored in the mantissa field) is shown in Table 1.

Table 1. Bit-field representation for the smallest positive normal single-precision float (approx. 2 x 2:126).

Field	Sign (bit 31)	Exponent (bits 30-23)	Mantissa (bits 22-0)
: [: [
Value	0	00000001	00000000000000000000000

Subnormal numbers, in contrast, are characterized by an exponent field that is all zeros. For
these numbers, the effective exponent is fixed at a special minimal value (e.g., -126 for single
precision, but with an implicit leading '0' for the mantissa, rather than '1'). This convention allows for
the representation of values down to 2 x 2% for single precision, although this comes at the cost of
lost precision in the mantissa. Values smaller than the lowest subnormal number trigger an
underflow event. The treatment of subnormal numbers can vary between compilers. For instance,
legacy versions of the Intel C Compiler provides options that can affect precision in the case of
subnormal values. While preserving precision might seem beneficial, if it implies using more than
the standard 32 bits of information for a single-precision float, it can lead to results inconsistent with
other C/C++ compilers. In another scenario, if an Intel C compiler is set for optimization levels such
as O1 or higher and an SSE option is chosen, it may flush all, or nearly all, subnormal values to zero
(a behavior controlled by FTZ/DAZ flags). This is a performance optimization, but it fundamentally
changes the arithmetic behavior and serves as another example of how floating-point math can differ
among compilers. These floating-point issues extend beyond the handling of subnormal numbers,
but this example effectively illustrates the problems inherent in binary computation and the
significant effects of compiler optimizations. The E-value calculation in BLAST+, being a critical
statistic derived from floating-point operations, is identified as a key metric for observing such
divergences.

5.3. Impact of 32-bit versus 64-bit Architectures on Floating-Point Stability

The distinction between 32-bit and 64-bit software builds is highly relevant to the study of
floating-point errors. Standard 64-bit floating-point numbers (double-precision) offer significantly
more precision and a wider dynamic range than their 32-bit counterparts (single-precision). A
double-precision number typically uses 11 bits for the exponent and 52 bits for the mantissa,
compared to 8 exponent bits and 23 mantissa bits for single-precision. This increased bit allocation
inherently makes 64-bit computations less susceptible to the rapid accumulation of rounding errors,
which can become pronounced in iterative algorithms or when subtracting nearly equal numbers.

The behavior of the x87 Floating-Point Unit (FPU), with its internal 80-bit extended-precision
registers, further illustrates this point. When an 80-bit intermediate result is stored back into memory
as a 32-bit single-precision float, a substantial amount of precision is lost. While storing to a 64-bit

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

7 of 9

double-precision variable also involves precision loss from 80 bits, the loss is considerably less severe.
Consequently, sequences of operations that might maintain acceptable accuracy in a 64-bit build
could exhibit significant divergence or instability in a 32-bit build due to this more aggressive
truncation.

Moreover, on modern 64-bit (x64) architectures, compilers often default to using SSE/AVX
instruction sets for scalar floating-point arithmetic, even for double and float types. These instruction
sets operate on 128-bit or wider registers and are generally designed for stricter adherence to IEEE
754 semantics regarding rounding and handling of special values, compared to the older x87 FPU
instruction set which might still be a factor in some 32-bit compilation modes or for long double types.
This can lead to more consistent and predictable floating-point behavior in 64-bit builds.

Although official BLAST+ releases are now commonly 64-bit, the above inclusion of 32-bit build
testing (as exemplified by the initial Cygwin/w32 work) is valuable for an understanding of
numerical precision in scientific software. The lower precision of 32-bit environments can act as a
"stress test," potentially exposing classes of numerical instability or compiler-specific floating-point
handling quirks more readily than in a 64-bit environment where higher precision might mask such
issues. Understanding these behaviors in a more constrained precision environment provided crucial
insights into the robustness of the algorithms and informed best practices for ensuring numerical
stability across a wider range of platforms. For sensitive calculations like BLAST+'s E-value, the
differences in precision between 32-bit and 64-bit builds, or even among different 32-bit compilation
environments, are observable for detection of the more pronounced discrepancies in output,
underscoring the importance of comparative analysis.

5.4. Legacy Context and Software Applicability

Within this report, certain software components and development environments were discussed
in contexts that bear relevance to understanding legacy code or older computational paradigms. It is
important to frame these discussions appropriately and to acknowledge the limitations when
considering more recent software that was not part of this report.

1. BLAST+ 2.2.x Branch: The report mentions (Section 4.3) that legacy versions of BLAST+,
specifically the 2.2.x branch, were consulted. This was done in a historical context, primarily to
gain insights into aspects like software modularity and the relative simplicity of older build
systems compared to the contemporary BLAST+ (version 2.6.0+) codebase that was the main
subject of the build and performance analysis. The characteristics and potential numerical
behaviors of this specific older BLAST+ codebase (2.2.x) are rooted in the development
practices and compiler/hardware environments prevalent at the time of its active development.
As such, direct extrapolation of findings specific to the BLAST+ 2.2.x branch to very recent,
unreviewed versions of BLAST+ or other modern bioinformatics tools should be approached
with caution, as these newer tools would have evolved under different design principles and
technological constraints.

2. 32-bit Build Environments (e.g., Cygwin/w32 for BLAST+ 2.6.0): The use of a 32-bit
Cygwin/w32 development system to build a contemporary version of BLAST+ (2.6.0), as
detailed in Sections 4.4 and 5.3, also touches upon legacy considerations. While the BLAST+
version itself was current at the time of testing, compiling it for a 32-bit architecture was
intended to simulate or explore behaviors pertinent to older computational environments
where 32-bit processing was standard, or in specialized applications where it might still be
used. This approach served as a valuable "stress test" for floating-point behavior due to the

inherently lower precision of 32-bit floating-point types (Section 5.3).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

8 of 9

3. x87 Floating-Point Unit (FPU): The discussion of the x87 FPU (Sections 5.1 and 5.3) is
primarily historical. The x87 FPU was the standard for floating-point operations on earlier x86
architectures, and its unique characteristics (e.g., 80-bit internal precision, specific instruction
set) influenced floating-point results on those legacy systems. While an understanding of x87
behavior is crucial for analyzing older code or for specific 32-bit compilation modes where it
might still be invoked (especially for long double types), modern 64-bit applications and
compilers predominantly utilize SSE/AVX instruction sets for floating-point arithmetic. These

newer instruction sets generally offer more consistent adherence to IEEE 754 standards.

Applicability to Recent, Unreviewed Code:

The analyses presented in this report, particularly those concerning specific build issues (e.g.,
the Cygwin patch for BLAST+ 2.6.0) and the observed floating-point behaviors, are grounded in the
versions of software (BLAST+2.6.0, GCC 5.4.0, etc.) and the specific build environments detailed.

It is crucial to emphasize that these findings, especially those derived from 32-bit builds or
considerations of older FPU behaviors, provide a historical and contextual understanding of potential
numerical sensitivities. While the principles of floating-point arithmetic and compiler optimizations
remain relevant, the specific manifestations of errors or inconsistencies can differ significantly in
more recent software versions that were not reviewed as part of this study. Modern codebases,
particularly those developed primarily for 64-bit architectures and compiled with the latest
compilers, would likely benefit from different default settings, more mature SSE/AVX utilization by
compilers, and potentially different algorithmic approaches to numerical stability. Therefore, the
direct applicability of the specific observations made herein to unreviewed, recent code requires
careful consideration and would necessitate a separate, dedicated investigation of that specific
software.

6. Observed Outcomes and Discussion

The execution of this research yielded several significant observations and insights. A validated
understanding of potential reproducibility issues in BLAST+ across different compilation
environments was achieved, particularly highlighting the sensitivity of floating-point calculations.
Preliminary performance profiling indicated specific areas within BLAST+ that could benefit from
targeted optimization. The analysis of 32-bit versus 64-bit builds confirmed that lower-precision
environments can exacerbate numerical instabilities, providing a clearer picture of algorithmic
robustness. The investigation into the issue underscores the subtle but significant impact of compiler
and hardware choices, including architectural bitness, on scientific software outputs. Furthermore,
the analysis of the BLAST+ build system and comparison with open-source best practices highlights
areas for continued modernization that benefits the wider bioinformatics community. These findings
contribute to a further understanding of the challenges in maintaining reliable and efficient
bioinformatics software.

7. Conclusion

This investigation addressed fundamental challenges in computational bioinformatics related to
the reproducibility of scientific results and the performance of critical software tools. By focusing on
legacy versions of BLAST+ as a case study, this work developed insights into testing floating-point
arithmetic consistency and analyzing performance characteristics. The outcomes, including a
nuanced understanding of 32-bit versus 64-bit floating-point behaviors, legacy software contexts, and
build system complexities, contribute to the broader scientific community's efforts to improve the
reliability and efficiency of essential bioinformatics infrastructure, thereby fostering more robust and
cost-effective scientific discovery.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1859.v1

9 of 9

Funding: This research received no external funding.

Acknowledgement: Original content by the author, which was further adapted and enhanced by an
Al Assistant, Gemini 2.5 Pro Preview, a model of artificial intelligence by Google (version 05/06/2025).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Abrash M (1997) Michael Abrash's Graphics Programming Black Book. Coriolis Group Books, Scottsdale,
AZ, USA.

2. Alpern B, Carter L, Gatlin KS (1995) Microparallelism and high performance protein matching,
Proceedings of the 1995 ACM/IEEE Supercomputing Conference, San Diego, California.

3. Appel AW, Ginsburg M (1997) Modern compiler implementation in C. Cambridge University Press,
Cambridge.

4. Batty M, Memarian K, Nienhuis K, Pichon-Pharabod], Sewell P (2015) The Problem of Programming
Language Concurrency Semantics. In: Vitek J. (eds) Programming Languages and Systems. ESOP 2015.
Lecture Notes in Computer Science, vol 9032.

5. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos], et al. (2009) BLAST+: architecture and
applications. BMC bioinformatics 10.1: 421.

6. Cygwin. (2017, February 24). In Wikipedia, The Free Encyclopedia. Retrieved 19:26, March 15, 2017, from
https://en.wikipedia.org/wiki/Cygwin.

7. Friedman R (2011) Genomic organization of the glutathione S-transferase family in insects. Mol Phylogenet
Evol 61: 924-32.

IEEE standard for Binary floating-point arithmetic for microprocessor systems (1985).
Jordan D (1990) Implementation benefits of C++ language mechanisms. Communications of the ACM 33:
61-4.

10. Liu Y, Wirawan A, Schmidt B (2013) CUDASW++ 3.0: accelerating Smith-Waterman protein database
search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics 14: 117.

11. Monniaux D (2008). The pitfalls of verifying floating-point computations. ACM Transactions on
Programming Languages and Systems. ACM 30: 12.

12. NCBI Resource Coordinators (2016) Database Resources of the National Center for Biotechnology
Information. Nucleic Acids Research 44: D7-D19.

13. Numerical Computation Guide (2001) Sun Microsystems.

14. Rau BR, and Fisher JA (1993) Instruction-level parallel processing: history, overview, and perspective. The
Journal of Supercomputing 7.1-2 : 9-50.

15. Smith TF, Waterman MS (1981) Identification of Common Molecular Subsequences. Journal of Molecular
Biology 147: 195-7.

16. Stallman R (2003) Free software foundation (FSF). In Encyclopedia of Computer Science (4th ed.), Anthony
Ralston, Edwin D. Reilly, and David Hemmendinger (Eds.). John Wiley and Sons Ltd., Chichester, UK 732-
733.

17. Stallman RM (2009) Using the Gnu Compiler Collection: A Gnu Manual for Gee Version 4.3.3. CreateSpace,

Paramount, CA.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

