
Brief Report Not peer-reviewed version

An Investigation into Reproducibility and

Performance in Bioinformatics Software:

A Case Study of BLAST+ and Floating-

Point Arithmetic

Robert Friedman *

Posted Date: 23 May 2025

doi: 10.20944/preprints202505.1859.v1

Keywords: bioinformatics; Blast+ software; floating‐point variable; computer compiler; IEEE 754; x87

floating‐point unit; 32‐bit; 64‐bit software

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1259448

Brief report

An Investigation into Reproducibility and

Performance in Bioinformatics Software: A Case

Study of BLAST+ and Floating‐Point Arithmetic

Robert Friedman †

Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;

bob.friedman.2@gmail.com

† Retired.

Abstract: This report is on the reproducibility and performance of bioinformatics software, with a

specific focus on versions of the widely‐used Basic Local Alignment Search Tool (BLAST+) suite. The

core challenges addressed are the inconsistencies arising from floating‐point arithmetic

implementations across different C/C++ compilers and hardware architectures, alongside the

identification and analysis of software performance bottlenecks. Any investigation of this problem

should be focused on three primary areas: first, an empirical testing and documentation of the

reproducibility of BLAST+ outputs generated under varying compilation and execution

environments, with particular attention to floating‐point mathematical discrepancies; second, the

identification and characterization of performance bottlenecks within the BLAST+ codebase using

established profiling tools and analysis; and third, an exploration and preliminary evaluation of

optimization strategies, including code reordering, the use of alternative mathematical functions, and

any application of machine‐specific instruction sets (e.g., SIMD). These recommendations are based

on the goals of reliability of scientific results derived from bioinformatics tools and the computational

costs associated with large‐scale biological sequence analysis. This report further discusses the

advantages of open‐source development paradigms and delves into the technical intricacies of

floating‐point arithmetic, including considerations for 32‐bit versus 64‐bit builds and the historical

context of legacy software, that underpin the identified challenges.

Keywords: bioinformatics; Blast+ software; floating‐point variable; computer compiler; IEEE 754; x87

floating‐point unit; 32‐bit; 64‐bit software

1. Introduction

Bioinformatics as a field is critically dependent on complex computational algorithms for the

analysis of increasingly voluminous biological datasets. Within this context, the reproducibility of

results and the operational efficiency of these algorithms are paramount, underpinning both scientific

integrity and effective resource management. This report details a study centered on the Basic Local

Alignment Search Tool (BLAST+), a foundational software package in bioinformatics, which

addresses pressing issues related to computational reproducibility and performance.
A central problem confronting computational biology is the variability in how different C/C++

compilers and the underlying computer architectures implement floating‐point mathematics. These

subtle, yet potentially impactful, differences are often inherent in compiler design choices or specific

hardware implementations. They can lead to divergent numerical results from ostensibly identical

calculations, a concern particularly pronounced in numerically intensive software such as versions

of BLAST+. Such discrepancies possess the capacity to undermine the reliability of scientific findings.

Concurrently, as biological datasets continue to expand, the performance characteristics of tools like

BLAST+ become increasingly critical. Inefficiencies can translate into prohibitive computational costs

and unacceptably extended analysis durations.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 9

This report employs a multi‐faceted approach to examine these concerns. The main focus is on

the general expectations and putative reproducibility of machine code of BLAST+, and scientific

software in general, by a range of C/C++ compilers across diverse hardware platforms, with a specific

emphasis on variations in floating‐point arithmetic and their consequent impact on analytical results.

Recommendations include the identification and characterization of performance bottlenecks in

software through systematic profiling and code. Targeted optimization strategies includes code

restructuring, the judicious use of faster mathematical function libraries, and leveraging machine‐

specific code, such as Single Instruction, Multiple Data (SIMD) instructions. These recommendations

contribute to a better understanding of factors affecting the continued reliability and performance of

bioinformatics software.

2. Background and Significance

2.1. The Challenge of Floating‐Point Arithmetic in Compilers

Different versions and types of C/C++ compilers, notably the GNU Compiler Collection (GCC)

(Stallman 2003), are known to exhibit inconsistencies in their handling of floating‐point mathematics.

This behavior, which can sometimes be mischaracterized as a software bug, is often a direct

consequence of specific design choices made within the compiler or varying levels of adherence to

different aspects of floating‐point standards, such as IEEE 754. Floating‐point arithmetic is inherently

sensitive not only to the precision of the values involved and the nature of the arithmetic operations

themselves but also to how undefined values (e.g., Not‐a‐Number (NaN), infinity) and subnormal

numbers are represented and processed. Prior experience in computationally intensive fields, such

as software‐based video rendering, has highlighted similar precision‐related issues that are

notoriously difficult to debug. Prior review of the extant scientific literature indicated a notable lack

of comprehensive surveys specifically addressing this problem within the domain of bioinformatics

software.

2.2. Performance Optimization Precedents

Computational efficiency in demanding applications, for instance, video and audio compression

or rendering, has frequently been achieved through the application of low‐level optimization

techniques (Abrash 1997). These techniques prominently include Instruction‐Level Parallelism (ILP),

which seeks to utilize the multiple execution pipelines available within modern Central Processing

Units (CPUs), particularly their Floating Point Units (FPU). Another key technique is Single

Instruction, Multiple Data (SIMD), which employs specialized CPU instructions (e.g., Intelʹs SSE2,

AVX) designed to perform the same operation on multiple data elements simultaneously, typically

using wide registers (e.g., 128‐bit, 256‐bit) (Liu et al. 2013; Rao and Fisher 1993; Alpern et al. 1995).

Such methodologies can significantly reduce the number of clock cycles required for critical

computational segments.

2.3. Significance for BLAST+ and Bioinformatics

The National Center for Biotechnology Information (NCBI) provides BLAST+ as a web service

for conducting biological sequence database searches (Camacho et al. 2009; NCBI Resource

Coordinators 2016). Consequently, any improvements realized in the performance of BLAST+

directly translate to reduced CPU usage and, by extension, lower operational costs for maintaining

this vital public resource. A significant increase in performance, for example, a doubling of speed,

could potentially halve the server infrastructure costs. The optimization strategies explored within

this report are designed to complement existing parallelization efforts already implemented in

BLAST+, such as multi‐threading. BLAST+, having undergone numerous revisions and being subject

to extensive use (as evidenced by over a large number of citations), serves as an ideal model system

as a candidate of interest. Its inherent complexity and widespread adoption make it a highly suitable

candidate for analyzing issues of computational reliability and performance.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 9

2.4. Benefits of Open Source Development Practices

The source code for BLAST+ has traditionally been distributed as downloadable archives. A

transition of its development infrastructure to a web‐based version control repository, as in GitHub,

is beneficial. The platform fosters greater community engagement, facilitates collaborative

development efforts, and improves overall transparency in the software lifecycle. Version control

systems enable meticulous tracking of all code modifications, thereby simplifying the debugging

process by allowing for straightforward reversion to previous stable states. This approach is often

more effective than traditional debugging methods that rely on extensive logging. Past versions of

BLAST+ codebase exhibits a mixture of C and C++ programming styles (Jordan 1990) and employs a

somewhat convoluted build system based on autotools, characterized by static makefiles rather than

dynamically generated ones. The establishment of a public repository empowers maintainers and

contributors to collaboratively refactor the code towards consistent standards, improve bug tracking

mechanisms, and facilitate the porting of the software to a wider array of computational platforms.

3. Key Aspects of Interest

3.1. Analysis of Validation and Reproducibility Needs

The enhancement of efficiency and reproducibility in bioinformatic algorithms necessitates a

synergistic collaboration between biologists and computer scientists. For a project of the scale and

complexity of BLAST+, the availability of a robust set of test files and a standardized validation

procedure is essential. This is critical not only for ensuring algorithmic correctness but also for

verifying the integrity of the compiled binary across diverse computational environments. This

approach mirrors the bootstrapping procedure commonly employed in GCC builds, where the

compiler is compiled multiple times to validate its own code and to optimize itself during each

iteration (Stallman 2009). Given the extensive and continual use of BLAST+ in the scientific

community (e.g., Friedman 2011), the application of a similarly rigorous validation methodology is

highly warranted. A contribution of this study is the analysis of requirements for such a verification

workflow, applicable not only to BLAST+ but also to other bioinformatics software, thereby

highlighting inherent issues in building bioinformatics software and strategies for improvement.

3.2. Exploration of Advanced Performance Optimization for BLAST+

BLAST+ employs heuristic approaches to perform local sequence alignment, a fundamental task

in bioinformatics. It is important to identify and analyze the performance‐critical sections

(bottlenecks) within any bioinformatics software codebase and an exploration of advanced

optimization techniques applicable to these areas. One key aspect is the consideration of vectorization

through the use of SIMD instruction sets and the exploitation of CPU pipeline concurrency. This

strategy is analogous to enhancements previously made to the Smith‐Waterman algorithm (Smith

and Waterman 1981; Liu et al. 2013), leading to expectations of performance gains at the instruction

level, thereby complementing existing multi‐threading parallelization strategies already present in

many software suites today.

4. Approaches and Methodologies

4.1. Examination of Reproducibility in Bioinformatics Software

The core issue of non‐identical binary builds arises from the same source code due to variations

in compilers or compiler versions was addressed through empirical testing and analysis. The

investigation into reproducibility involves compiling and executing software under a defined test

matrix. This matrix encompasses various C/C++ compilers (e.g., different GCC versions), multiple

computer platforms (including x86‐64 systems), and diverse BLAST+ parameter settings. A robust

set of input sequence files, varying in attributes such as length, composition (amino acids, nucleic

acids), and complexity, are utilized in the case of BLAST+ʹs functionalities. The critical E‐value

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 9

statistic, a measure of statistical significance in sequence alignments, serves as a primary focus for

comparing outputs across these different conditions. A bioinformatic pipeline, comprising batch

scripts and auxiliary software, is often employed to manage the testing workflow from input

processing through to result comparison. Observed discrepancies in floating‐point math outputs

were documented to understand their origins and impact.

4.2. Analysis of Performance and Low‐Level Optimization Techniques

Drawing inspiration from successes in computationally demanding fields such as video

rendering (Abrash 1997), the use of hand‐coded assembly or compiler intrinsics for FPU and SIMD

units is discussed below. The GNU Gprof tool is a common tool for preliminary profiling to identify

potential performance bottlenecks by measuring time spent in different functions during execution

with representative datasets. Based on this, targeted optimization strategies can be considered. These

included SIMD vectorization, where Intel’s SSE2/AVX instructions are applicable via compiler

intrinsics or inline assembly to parallelize calculations. For computationally expensive functions,

such as logarithmic calculations, the use of lookup tables or faster approximation algorithms is

possible and applicable. Furthermore, built‐in functions provided by compilers that offer access to

machine‐level optimizations are another avenue of interest. Manual or compiler‐guided reordering

of code lines within critical loops or blocks is also recommended as a means to improve instruction

pipelining and cache utilization.

4.3. BLAST+ Source Code Management and Build System Analysis

An older version of the BLAST+ source code (e.g., version 2.6.0+ was originally available from

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/) was the primary target of interest.

Other legacy versions of BLAST+ (e.g., the 2.2.x branch) were also consulted for insights into software

modularity and potential simplifications of their build systems. The automake‐based build

procedure, with its noted reliance on hard‐coded paths within shell scripts and its use of static

Makefiles, is analyzed. The more standard Cygwin build script serves as a valuable reference point

in this analysis. The need to streamline the build process, potentially by refactoring Makefiles to be

more dynamic and by reducing dependencies on hard‐coded elements, with the ultimate aim of

achieving a standard configure && make <target> workflow, is identified. Inspired by the PCRE

library (a dependency of legacy BLAST+), which includes a robust test suite, the necessity for a similar

comprehensive suite of input and output files for BLAST+ to validate its correctness across different

versions and builds was established.

4.4. Testing Environment and Tools Utilized

Testing was conducted on common x86‐64 platforms (running Linux and Windows). A range of

compilers, including multiple versions of GCC and Microsoft Visual C++, were used or considered.
Initial testing experiences involved building BLAST+ version 2.6.0 (Camacho et al. 2009) with

GCC compiler version 5.4.0 within 32‐bit Cygwin for win32 development system (Cygwin 2017),

targeting Windows. A notable issue encountered was the failure of the ReleaseMT (multithreading)

build of BLAST+ to compile in Cygwin. This was attributed, based on GCC bug reports, to the use of

the compiler option ‐Wall with GCC version 4.7 and higher, specifically related to a pragma line in

the blast_kappa.cpp source file. The suggested workaround, using the parameter option ‐Wno‐

unknown‐pragmas, confirmed this diagnosis. Consequently, BLAST+ was compiled without

multithreading by modifying the configure script with without‐openmp and without‐mt, followed

by executing make all_r to build all binaries. These options served to control for any potential deficits

in Cygwinʹs handling of POSIX multithreading, which relies on a translation layer to standard win32

analogs, and also to control for problems that multithreading can introduce when compiling with

optimization (Batty et al. 2015).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 9

It was also observed that not all binaries within the BLAST+ package build successfully under

Cygwin without modification. Removing a specific dependency, as illustrated by the patch file for

blastp shown in Figure 1, allowed these binaries to build and function as expected.

--- ncbi-blast-orig/c++/src/app/blast/Makefile.blastp.app

+++ ncbi-blast/c++/src/app/blast/Makefile.blastp.app

@@ -15,6 +15,6 @@ LDFLAGS = $(FAST_LDFLAGS:ppc=i386)

 CPPFLAGS = -DNCBI_MODULE=BLAST $(ORIG_CPPFLAGS)

 LIBS = $(CMPRS_LIBS) $(DL_LIBS) $(NETWORK_LIBS) $(ORIG_LIBS)

-REQUIRES = objects -Cygwin

+REQUIRES = objects

 PROJ_TAG = gbench

Figure 1. Patch as applied to Makefile.blastp.app for successful Cygwin compilation.

5. Analysis of Floating‐Point Inconsistencies

5.1. Compiler Optimizations and IEEE 754 Adherence

Inconsistencies in floating‐point arithmetic frequently arise from the manner in which compilers

optimize code and their specific level of adherence to the IEEE 754 standard (IEEE 1985). For instance,

on 32‐bit x86 systems, Floating Point Units (FPUs) often internally utilize 80‐bit precision, commonly

referred to as ʺlong double.ʺ When these high‐precision values are moved to 64‐bit CPU registers or

memory locations (typically ʺdoubleʺ precision), truncation can occur. Compiler optimizations can

significantly alter the sequence and nature of these movements between registers and memory,

leading to different levels of precision being retained at various stages of computation, and thus, to

potentially different final results.
Furthermore, GCC intrinsic math functions may exhibit behaviors concerning rounding

methods or the handling of non‐normal values that differ from those of standard library functions

(e.g., GNU libm) or other compilers like Microsoft Visual C++. These differences, particularly

noticeable in legacy 32‐bit builds, can manifest as slight variations in the mantissa of floating‐point

numbers. While seemingly minor, these can cascade in complex calculations, potentially leading to

significant errors such as division‐by‐zero or severe performance degradation. Compiler flags can

sometimes mitigate these issues. For example, the GCC float‐store option forces floating‐point

variables to be stored in memory rather than being kept in FPU registers, which can ensure a

consistent level of precision, albeit often at a performance cost. The excess‐precision=standard option

in GCC can also help align behavior, particularly for non‐arithmetic functions, as noted by Monniaux

(2008) in his discussion of discrepancies in the sin(p) calculation between Pentium 4 x87/Mathematica

and GNU libc on x86_64. On modern x64 platforms, the use of advanced instruction sets, such as

SSE2, for floating‐point math is generally recommended for better adherence to the IEEE 754

standard. Alternatively, FPU precision can be explicitly lowered. However, it is important to note

that compiler built‐in functions might still override standard library behavior in certain cases.

Monniaux (2008) also highlighted that even seemingly innocuous changes to source code, such as the

addition of logging statements, can alter register allocation and instruction ordering by the compiler.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 9

This can lead to different floating‐point outcomes despite the C/C++ source code being semantically

identical. Such issues are further complicated in the context of multi‐threaded applications (Batty et

al. 2015).

5.2. Subnormal Numbers and Special Values

The IEEE 754 standard defines subnormal (or denormal) numbers to represent values that are

smaller than the smallest ʺnormalʺ floating‐point number, effectively filling the numerical gap that

would otherwise exist near zero. For a standard 32‐bit single‐precision floating‐point number

(comprising 1 sign bit, 8 exponent bits, and 23 mantissa bits, generally represented as ± m × 2e), normal

numbers have an exponent field ranging from 1 to 254. This biased exponent (typically with a bias of

127) yields effective exponents from ‐126 to +127. The smallest positive normal float is effectively 2 x

2‐126, where the binary exponent field is 00000001. The bit‐field representation for such a value

(approximately, assuming the stored mantissa is all zeros for simplicity, as normal numbers have an

implicit leading ʹ1ʹ bit not stored in the mantissa field) is shown in Table 1.

Table 1. Bit‐field representation for the smallest positive normal single‐precision float (approx. 2 x 2‐126).

| Field | Sign (bit 31) | Exponent (bits 30‐23) | Mantissa (bits 22‐0) |

| :‐‐‐‐‐‐‐ | :‐‐‐‐‐‐‐‐‐‐‐‐ | :‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ | :‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ |

| Value | 0 | 00000001 | 00000000000000000000000 |

Subnormal numbers, in contrast, are characterized by an exponent field that is all zeros. For

these numbers, the effective exponent is fixed at a special minimal value (e.g., ‐126 for single

precision, but with an implicit leading ʹ0ʹ for the mantissa, rather than ʹ1ʹ). This convention allows for

the representation of values down to 2 x 2‐149 for single precision, although this comes at the cost of

lost precision in the mantissa. Values smaller than the lowest subnormal number trigger an

underflow event. The treatment of subnormal numbers can vary between compilers. For instance,

legacy versions of the Intel C Compiler provides options that can affect precision in the case of

subnormal values. While preserving precision might seem beneficial, if it implies using more than

the standard 32 bits of information for a single‐precision float, it can lead to results inconsistent with

other C/C++ compilers. In another scenario, if an Intel C compiler is set for optimization levels such

as O1 or higher and an SSE option is chosen, it may flush all, or nearly all, subnormal values to zero

(a behavior controlled by FTZ/DAZ flags). This is a performance optimization, but it fundamentally

changes the arithmetic behavior and serves as another example of how floating‐point math can differ

among compilers. These floating‐point issues extend beyond the handling of subnormal numbers,

but this example effectively illustrates the problems inherent in binary computation and the

significant effects of compiler optimizations. The E‐value calculation in BLAST+, being a critical

statistic derived from floating‐point operations, is identified as a key metric for observing such

divergences.

5.3. Impact of 32‐bit versus 64‐bit Architectures on Floating‐Point Stability

The distinction between 32‐bit and 64‐bit software builds is highly relevant to the study of

floating‐point errors. Standard 64‐bit floating‐point numbers (double‐precision) offer significantly

more precision and a wider dynamic range than their 32‐bit counterparts (single‐precision). A

double‐precision number typically uses 11 bits for the exponent and 52 bits for the mantissa,

compared to 8 exponent bits and 23 mantissa bits for single‐precision. This increased bit allocation

inherently makes 64‐bit computations less susceptible to the rapid accumulation of rounding errors,

which can become pronounced in iterative algorithms or when subtracting nearly equal numbers.
The behavior of the x87 Floating‐Point Unit (FPU), with its internal 80‐bit extended‐precision

registers, further illustrates this point. When an 80‐bit intermediate result is stored back into memory

as a 32‐bit single‐precision float, a substantial amount of precision is lost. While storing to a 64‐bit

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 9

double‐precision variable also involves precision loss from 80 bits, the loss is considerably less severe.

Consequently, sequences of operations that might maintain acceptable accuracy in a 64‐bit build

could exhibit significant divergence or instability in a 32‐bit build due to this more aggressive

truncation.
Moreover, on modern 64‐bit (x64) architectures, compilers often default to using SSE/AVX

instruction sets for scalar floating‐point arithmetic, even for double and float types. These instruction

sets operate on 128‐bit or wider registers and are generally designed for stricter adherence to IEEE

754 semantics regarding rounding and handling of special values, compared to the older x87 FPU

instruction set which might still be a factor in some 32‐bit compilation modes or for long double types.

This can lead to more consistent and predictable floating‐point behavior in 64‐bit builds.
Although official BLAST+ releases are now commonly 64‐bit, the above inclusion of 32‐bit build

testing (as exemplified by the initial Cygwin/w32 work) is valuable for an understanding of

numerical precision in scientific software. The lower precision of 32‐bit environments can act as a

ʺstress test,ʺ potentially exposing classes of numerical instability or compiler‐specific floating‐point

handling quirks more readily than in a 64‐bit environment where higher precision might mask such

issues. Understanding these behaviors in a more constrained precision environment provided crucial

insights into the robustness of the algorithms and informed best practices for ensuring numerical

stability across a wider range of platforms. For sensitive calculations like BLAST+ʹs E‐value, the

differences in precision between 32‐bit and 64‐bit builds, or even among different 32‐bit compilation

environments, are observable for detection of the more pronounced discrepancies in output,

underscoring the importance of comparative analysis.

5.4. Legacy Context and Software Applicability

Within this report, certain software components and development environments were discussed

in contexts that bear relevance to understanding legacy code or older computational paradigms. It is

important to frame these discussions appropriately and to acknowledge the limitations when

considering more recent software that was not part of this report.

1. BLAST+ 2.2.x Branch: The report mentions (Section 4.3) that legacy versions of BLAST+,

specifically the 2.2.x branch, were consulted. This was done in a historical context, primarily to

gain insights into aspects like software modularity and the relative simplicity of older build

systems compared to the contemporary BLAST+ (version 2.6.0+) codebase that was the main

subject of the build and performance analysis. The characteristics and potential numerical

behaviors of this specific older BLAST+ codebase (2.2.x) are rooted in the development

practices and compiler/hardware environments prevalent at the time of its active development.

As such, direct extrapolation of findings specific to the BLAST+ 2.2.x branch to very recent,

unreviewed versions of BLAST+ or other modern bioinformatics tools should be approached

with caution, as these newer tools would have evolved under different design principles and

technological constraints.

2. 32‐bit Build Environments (e.g., Cygwin/w32 for BLAST+ 2.6.0): The use of a 32‐bit

Cygwin/w32 development system to build a contemporary version of BLAST+ (2.6.0), as

detailed in Sections 4.4 and 5.3, also touches upon legacy considerations. While the BLAST+

version itself was current at the time of testing, compiling it for a 32‐bit architecture was

intended to simulate or explore behaviors pertinent to older computational environments

where 32‐bit processing was standard, or in specialized applications where it might still be

used. This approach served as a valuable ʺstress testʺ for floating‐point behavior due to the

inherently lower precision of 32‐bit floating‐point types (Section 5.3).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 9

3. x87 Floating‐Point Unit (FPU): The discussion of the x87 FPU (Sections 5.1 and 5.3) is

primarily historical. The x87 FPU was the standard for floating‐point operations on earlier x86

architectures, and its unique characteristics (e.g., 80‐bit internal precision, specific instruction

set) influenced floating‐point results on those legacy systems. While an understanding of x87

behavior is crucial for analyzing older code or for specific 32‐bit compilation modes where it

might still be invoked (especially for long double types), modern 64‐bit applications and

compilers predominantly utilize SSE/AVX instruction sets for floating‐point arithmetic. These

newer instruction sets generally offer more consistent adherence to IEEE 754 standards.

Applicability to Recent, Unreviewed Code:

The analyses presented in this report, particularly those concerning specific build issues (e.g.,

the Cygwin patch for BLAST+ 2.6.0) and the observed floating‐point behaviors, are grounded in the

versions of software (BLAST+ 2.6.0, GCC 5.4.0, etc.) and the specific build environments detailed.
It is crucial to emphasize that these findings, especially those derived from 32‐bit builds or

considerations of older FPU behaviors, provide a historical and contextual understanding of potential

numerical sensitivities. While the principles of floating‐point arithmetic and compiler optimizations

remain relevant, the specific manifestations of errors or inconsistencies can differ significantly in

more recent software versions that were not reviewed as part of this study. Modern codebases,

particularly those developed primarily for 64‐bit architectures and compiled with the latest

compilers, would likely benefit from different default settings, more mature SSE/AVX utilization by

compilers, and potentially different algorithmic approaches to numerical stability. Therefore, the

direct applicability of the specific observations made herein to unreviewed, recent code requires

careful consideration and would necessitate a separate, dedicated investigation of that specific

software.

6. Observed Outcomes and Discussion

The execution of this research yielded several significant observations and insights. A validated

understanding of potential reproducibility issues in BLAST+ across different compilation

environments was achieved, particularly highlighting the sensitivity of floating‐point calculations.

Preliminary performance profiling indicated specific areas within BLAST+ that could benefit from

targeted optimization. The analysis of 32‐bit versus 64‐bit builds confirmed that lower‐precision

environments can exacerbate numerical instabilities, providing a clearer picture of algorithmic

robustness. The investigation into the issue underscores the subtle but significant impact of compiler

and hardware choices, including architectural bitness, on scientific software outputs. Furthermore,

the analysis of the BLAST+ build system and comparison with open‐source best practices highlights

areas for continued modernization that benefits the wider bioinformatics community. These findings

contribute to a further understanding of the challenges in maintaining reliable and efficient

bioinformatics software.

7. Conclusion

This investigation addressed fundamental challenges in computational bioinformatics related to

the reproducibility of scientific results and the performance of critical software tools. By focusing on

legacy versions of BLAST+ as a case study, this work developed insights into testing floating‐point

arithmetic consistency and analyzing performance characteristics. The outcomes, including a

nuanced understanding of 32‐bit versus 64‐bit floating‐point behaviors, legacy software contexts, and

build system complexities, contribute to the broader scientific communityʹs efforts to improve the

reliability and efficiency of essential bioinformatics infrastructure, thereby fostering more robust and

cost‐effective scientific discovery.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 9

Funding: This research received no external funding.

Acknowledgement: Original content by the author, which was further adapted and enhanced by an

AI Assistant, Gemini 2.5 Pro Preview, a model of artificial intelligence by Google (version 05/06/2025).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Abrash M (1997) Michael Abrashʹs Graphics Programming Black Book. Coriolis Group Books, Scottsdale,

AZ, USA.

2. Alpern B, Carter L, Gatlin KS (1995) Microparallelism and high performance protein matching,

Proceedings of the 1995 ACM/IEEE Supercomputing Conference, San Diego, California.

3. Appel AW, Ginsburg M (1997) Modern compiler implementation in C. Cambridge University Press,

Cambridge.

4. Batty M, Memarian K, Nienhuis K, Pichon‐Pharabod J, Sewell P (2015) The Problem of Programming

Language Concurrency Semantics. In: Vitek J. (eds) Programming Languages and Systems. ESOP 2015.

Lecture Notes in Computer Science, vol 9032.

5. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. (2009) BLAST+: architecture and

applications. BMC bioinformatics 10.1: 421.

6. Cygwin. (2017, February 24). In Wikipedia, The Free Encyclopedia. Retrieved 19:26, March 15, 2017, from

https://en.wikipedia.org/wiki/Cygwin.

7. Friedman R (2011) Genomic organization of the glutathione S‐transferase family in insects. Mol Phylogenet

Evol 61: 924‐32.

8. IEEE standard for Binary floating‐point arithmetic for microprocessor systems (1985).

9. Jordan D (1990) Implementation benefits of C++ language mechanisms. Communications of the ACM 33:

61‐4.

10. Liu Y, Wirawan A, Schmidt B (2013) CUDASW++ 3.0: accelerating Smith‐Waterman protein database

search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics 14: 117.

11. Monniaux D (2008). The pitfalls of verifying floating‐point computations. ACM Transactions on

Programming Languages and Systems. ACM 30: 12.

12. NCBI Resource Coordinators (2016) Database Resources of the National Center for Biotechnology

Information. Nucleic Acids Research 44: D7–D19.

13. Numerical Computation Guide (2001) Sun Microsystems.

14. Rau BR, and Fisher JA (1993) Instruction‐level parallel processing: history, overview, and perspective. The

Journal of Supercomputing 7.1‐2 : 9‐50.

15. Smith TF, Waterman MS (1981) Identification of Common Molecular Subsequences. Journal of Molecular

Biology 147: 195–7.

16. Stallman R (2003) Free software foundation (FSF). In Encyclopedia of Computer Science (4th ed.), Anthony

Ralston, Edwin D. Reilly, and David Hemmendinger (Eds.). John Wiley and Sons Ltd., Chichester, UK 732‐

733.

17. Stallman RM (2009) Using the Gnu Compiler Collection: A Gnu Manual for Gcc Version 4.3.3. CreateSpace,

Paramount, CA.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1859.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1859.v1
http://creativecommons.org/licenses/by/4.0/

