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Abstract: We show that the mathematical structure of Hilbert space—typically postulated in quantum
theory—emerges as a consequence of two fundamental principles derived within the TEQ framework:
(1) entropy as a generative structural principle; (2) a minimal principle selecting stable distinctions.
These principles, and the resulting entropy-weighted action functional, are derived from first principles
in prior work. Here, we analyze the entropy-weighted path integral and the geometry of entropy
curvature, and prove that the space of entropy-stabilized modes satisfies the axioms of a Hilbert space:
linearity, inner product structure, norm completeness, and probabilistic interpretation. In this view,
the Born rule itself emerges from entropy-weighted path selection. Importantly, this result shows that
the TEQ framework fully recovers the standard Hilbert space formalism—not by postulate, but as
a structural consequence of its core principles—thus preserving compatibility with quantum theory
while providing it with a deeper generative foundation. Our results strengthen the explanatory power
of the TEQ framework and offer a structural derivation of core quantum features from a common
thermodynamic-geometric basis.

Keywords: Hilbert space emergence; entropy geometry; entropy curvature; quantum foundations;
spectral theorem; path integral; Born rule; entropy-stabilized modes; thermodynamic geometry;
quantization

Meta-Abstract
This section summarizes the logical structure, assumptions, and derivational flow of this work,
clarifying what is taken as an axiom and what is derived.

1. Axioms and Principles

• Axiom 1: Entropy Geometry — Physical reality is structured by a local entropy metric that
encodes the cost of distinction in configuration space. [Section 2.1]

• Axiom 2: Minimal Principle of Stable Distinction — Only entropy-stationary (i.e., sta-
ble) paths, minimizing entropy curvature under resolution constraints, persist as physical
structure. [Section 2.1]

The derivation of these axioms and the form of the entropy-weighted action is presented in full
in [8], where it is shown that requiring physical trajectories to minimize the total entropy cost of
maintaining resolvable structure—formally via a variational principle using the local entropy
metric—uniquely yields the form of the entropy-weighted action employed here.

2. Derivation Pathway

• The derivation begins with these two axioms. The entropy-weighted effective action,

Seff[ϕ] =
∫

dt (L(ϕ, ϕ̇)− ih̄β g(ϕ, ϕ̇)),

is constructed as a direct consequence of the entropy geometry and minimal principle.
[Section 2, Eq. (2)]
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• Entropy-stationary paths extremize this action. The second variation of the real part of the
entropy-weighted action defines the entropy curvature operator H, whose eigenmodes are
the entropy-stabilized modes selected by entropy-weighted path dynamics. Quantization
and spectral discreteness arise from the stability properties of these modes. [Section 3]

• The entropy-stabilized mode space is proven to satisfy the full structure of a Hilbert space
(linearity, inner product, completeness, probabilistic interpretation), as a consequence of the
properties of H. [Section 4]

• The Born rule for measurement probabilities emerges structurally from the entropy-weighted
path selection, without additional assumptions. [Lemma 4.5, Section 4]

3. Technical Justification and Locations

• The formal derivation of Hilbert space structure is presented in Lemmas 4.1–4.5. All assump-
tions and boundary conditions for the spectral theorem are explicitly stated in Appendix B.

• The self-adjointness of the entropy curvature operator H, which is crucial for the spectral
theorem and mode completeness, is derived explicitly in Appendix A.

• The mode superposition principle is formalized as a theorem. [Theorem 3.2, Section 3]
• The philosophical interpretation of the Hilbert space structure and superposition is analyzed

in Section 6, extending the structural derivation into a new physical perspective on quantum
theory.

4. Assumptions and Limitations

• The derivation relies on the validity of the TEQ framework (entropy geometry + minimal
principle).

• The applicability of the spectral theorem assumes square-integrability and finite entropy
cost for configurations, with a suitable self-adjoint extension of H. [Appendix B]

• The treatment focuses on structural emergence and does not attempt to reconstruct all
elements of standard operator algebra beyond those induced by entropy geometry.

5. Section References

• Section 1: motivation and critique of standard quantum formalism.
• Section 2: axioms and entropy-weighted action.
• Section 3: second variation, entropy curvature operator, mode superposition theorem.
• Section 4: derivation of Hilbert space structure.
• Section 5: comparison with standard and information-theoretic reconstructions.
• Section 6: philosophical implications of the results.
• Section 7: free particle and harmonic oscillator examples.
• Appendix A: detailed proof of self-adjointness of H.
• Appendix B: spectral theorem assumptions and technical clarifications.

This meta-abstract clarifies that all principal results—especially the emergence of Hilbert space struc-
ture and the Born rule—are derived within the stated structural framework, with each step traceable
to explicit axioms, equations, and sections. No aspect of the quantum formalism is postulated without
structural justification from entropy geometry.

1. Introduction
Hilbert space is central to the mathematical formulation of quantum mechanics. The state of

a quantum system is represented as a vector in a complex Hilbert space, observables correspond
to self-adjoint operators, and measurement probabilities follow from the Born rule applied to inner
products of state vectors [1].

Yet despite its empirical success, this mathematical structure is introduced axiomatically; see, for
example, standard texts [2,3]. The emergence of a complex vector space with an inner product is not
derived from deeper physical principles, nor is the probabilistic interpretation of measurement results.
This has long been recognized as a conceptual gap in the foundations of quantum theory.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2025 doi:10.20944/preprints202506.1032.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1032.v1
http://creativecommons.org/licenses/by/4.0/


3 of 16

Recent critiques have sharpened this point. Hossenfelder [4,5], Wallace, and others have argued
that the lack of a derivational explanation for the Hilbert space structure leaves quantum mechanics
vulnerable to interpretational ambiguity and mathematical incompleteness. Information-theoretic
reconstructions [6,7] attempt to address this gap, but typically rely on abstract axioms that remain
external to the physical dynamics of systems.

The TEQ framework [8,9] offers a different approach. By positing that entropy geometry governs
the emergence of physical structure, and that stable distinctions are selected by a minimal principle
under entropy flow (see Section 2.1), TEQ provides a structural foundation from which quantum
phenomena can be derived. The central object is the entropy-weighted action:

Seff[ϕ] =
∫

dt(L(ϕ, ϕ̇)− ih̄β g(ϕ, ϕ̇)), (1)

where g(ϕ, ϕ̇) encodes the local entropy geometry. The derivation of this action is not postulated,
but follows from extremizing the net entropy flow along system trajectories, subject to a resolution
constraint imposed by the local entropy metric Gij(ϕ, ϕ̇). Explicitly, [8] shows that demanding
stability of distinguishable structure under entropy flow leads necessarily to the form of Eq. (1).
The entropy-weighted path integral (see Section 2.3) then governs the selection of physically realized
trajectories.

In this paper, we show that the space of entropy-stabilized modes defined by this framework
satisfies the axioms of a Hilbert space (see Section 4). Linearity, inner product structure, completeness,
and probabilistic interpretation emerge from the geometry of entropy curvature, detailed in Sections 3
and 4. This suggests that the mathematical architecture of quantum theory is not fundamental, but an
emergent property of the deeper thermodynamic-geometric structure of the physical world.

The result strengthens the explanatory power of the TEQ framework and addresses longstanding
critiques of the standard quantum formalism. It provides a unified perspective in which quantum and
gravitational structures both arise from the same generative principle.

Paper Structure.

Section 2 reviews the two-axiom basis of TEQ and the entropy-weighted action. Section 3
introduces entropy-stabilized modes via the second variation and entropy curvature operator. Section 4
proves the emergence of Hilbert space structure. Section 5 compares this approach to conventional
and information-theoretic reconstructions. Section 6 discusses philosophical implications. Section 7
provides worked examples. Appendix A provides an explicit justification of the self-adjointness of the
entropy curvature operator. Appendix B summarizes the spectral theorem and its application to the
entropy curvature operator.

2. The TEQ Framework Recap
The Total Entropic Quantity (TEQ) framework provides a minimal, axiomatic foundation for the

emergence of physical structure and dynamics, with particular emphasis on the conditions under
which quantum-theoretic features arise. Unlike conventional approaches that postulate the formal
machinery of quantum mechanics, TEQ begins from two explicit structural axioms that specify the
rules governing the distinguishability and stability of configurations in physical systems. These axioms
lead, via well-defined variational principles, to the emergence of quantized structure, mode stability,
and ultimately the Hilbert space framework as a derived—rather than assumed—feature of the theory.
This section summarizes the content and operational implications of the TEQ axioms, introduces the
entropy-weighted action functional as their central mathematical expression, and sets the stage for the
derivations that follow. These axioms and the form of the entropy-weighted action are not introduced
as new postulates here; they are fully derived from a minimal entropic variational principle and the
geometry of entropy flow in [8]. Here, we summarize them to establish the notation and background
required for the present results.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2025 doi:10.20944/preprints202506.1032.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1032.v1
http://creativecommons.org/licenses/by/4.0/


4 of 16

2.1. The Two Axioms

The TEQ framework is constructed upon two fundamental axioms, which serve as the generative
basis for physical structure and dynamics:

1. Entropy as a generative structural principle. The geometry of entropy determines the structure
of distinguishability in physical configuration space. Entropy flow, defined via the entropy metric,
governs both the emergence and stabilization of physical trajectories and structures.

2. Minimal principle selecting stable distinctions. Physical evolution corresponds to trajectories
and structures that are stabilized under the flow of entropy. The system preferentially selects
modes that minimize the entropy cost required to maintain distinguishability from neighboring
configurations. This minimal principle operationalizes the selection of stable, resolvable patterns
in physical systems.

See also Section 3 for how these principles constrain mode structure.

Derivation of the Entropy-Weighted Action.

The form of the entropy-weighted effective action Seff[ϕ] is not introduced as a new postulate;
rather, it is derived in detail in [8]. There, the construction begins with the requirement that physical
trajectories must minimize the total entropy cost of maintaining distinct, resolvable configurations.
This requirement leads naturally to a variational principle, where the action functional accumulates
both the classical Lagrangian dynamics and a penalty for entropy expenditure, as measured by a
locally defined metric Gij(ϕ, ϕ̇). The unique action that extremizes entropy flow under this resolution
constraint is given by Eq. (2). Thus, the dynamical structure of TEQ is a direct consequence of entropy
geometry and the selection of stable distinguishable patterns.

2.2. The Entropy-Weighted Action

The explicit form of the entropy-weighted effective action, used throughout this paper, is a derived
result of the TEQ framework as developed in [8]. There, the action follows from a minimal entropic
variational principle and the geometric structure of entropy flow. We summarize its form here as
background for the present results:

Seff[ϕ] =
∫

dt(L(ϕ, ϕ̇)− ih̄β g(ϕ, ϕ̇)), (2)

where:

• ϕ(t) parametrizes the system trajectory in configuration space,
• L(ϕ, ϕ̇) is the classical Lagrangian,
• g(ϕ, ϕ̇) is the entropy cost functional derived from the local entropy metric Gij(ϕ, ϕ̇),
• β is a scale-setting parameter for entropy weighting.

The entropy metric Gij quantifies the local distinguishability structure. The form of g is system-
dependent but always encodes how resolution (distinguishability) evolves under entropy flow.

2.3. Path Integral Formulation

The entropy-weighted path integral formulation of TEQ, used in this paper, is likewise derived
in [8] as a structural consequence of entropy geometry and variational principles. Here we briefly
summarize its form and role, as background for the present analysis.

Given the effective action (2), the probability amplitude for a given trajectory is governed by the
entropy-weighted path integral:

Z =
∫

Dϕ exp(−βS[ϕ]), (3)

where S[ϕ] is the real part of the effective action and Dϕ denotes the functional integration measure
over the space of configurations, serving as the infinite-dimensional analog of dϕ in path integrals (it is
not a function of ϕ).
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• Paths incurring high entropy cost are exponentially suppressed in Eq. (3).
• Stabilized, low-entropy-cost paths dominate physical behavior and observable outcomes.

This entropy-weighted selection is the mechanism by which quantized structure, interference
phenomena, and probabilistic outcomes emerge—see Sections 3 and 4.

3. Entropy-Stabilized Modes
The structural consequences of the TEQ axioms become fully explicit in the analysis of mode

stability. The foundational derivation of the entropy-weighted action (Eq.(2)) and the corresponding
variational structure is given in [8]. In this paper, we analyze the mode stability structure implied by
this prior result. Once the entropy-weighted action is specified, the stability of physical configurations
is determined by examining variations around stationary paths. This approach reveals how the
quantized, resolvable modes that dominate physical phenomena arise as a direct consequence of
entropy geometry and the minimal principle. In this section, we formalize the notion of entropy-
stabilized modes by analyzing the second variation of the action, introduce the entropy curvature
operator, and establish the spectral basis that underpins the emergent Hilbert space structure.

3.1. Second Variation of the Effective Action

The entropy-weighted action (Eq. (2)) not only governs the selection of dominant physical paths,
but also defines a local stability structure around those paths. Consider a stationary path ϕst(t) that
extremizes Seff:

δSeff[ϕst] = 0. (4)

The entropy curvature operator H, central to the analysis of mode stability, is derived in [8] as the
operator governing the second variation of the entropy-weighted action around a stationary path. We
summarize this structure here for clarity.

The second variation of the effective action about ϕst is given by

δ2Seff[ϕst + δϕ] = ⟨δϕ|H|δϕ⟩, (5)

where H is the entropy curvature operator: a second-order functional differential operator encoding the
local entropy-geometric stability properties of fluctuations δϕ around ϕst.

The eigenmodes of H satisfy
Hψn = λnψn, (6)

where each eigenvalue λn quantifies the entropy curvature (or cost) associated with the mode ψn.
These are the entropy-stabilized modes.

3.2. Theorem: Mode Superposition Principle

Theorem. The entropy-stabilized modes {ψn}, defined as eigenfunctions of the entropy curvature
operator H, form a complete complex vector space under linear superposition.

Proof. Since H is self-adjoint with respect to the entropy-weighted inner product (Lemma 4.2),
its eigenmodes {ψn} form a complete basis (Appendix B). Any physical configuration Ψ with finite
entropy norm can thus be expanded as

Ψ = ∑
n

cnψn, cn ∈ C.

Linearity follows from the vector space properties of this expansion (Lemma 4.1), and completeness is
guaranteed by the spectral theorem.

□
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Linearity.

The linearity of the mode space reflects the geometric structure induced by entropy flow: stabilized
patterns of resolution can combine without violating underlying stability constraints, as long as the
resulting superposition remains within the finite-entropy space (see Lemma 1).

Physical Interpretation.

The entropy-weighted path integral (Eq. (3)) ensures that highly unstable (high-entropy-cost)
configurations are exponentially suppressed. The physical configuration space is thus dominated by
entropy-stabilized modes and their linear combinations, which are selected for stability under the
entropy curvature operator.

4. Constructing the Hilbert Space
We now demonstrate that the space of entropy-stabilized modes {ψn} forms a Hilbert space. This

section provides formal proofs, structured as a sequence of lemmas, showing that this mode space
satisfies the standard Hilbert space axioms:

• Linearity: The space is a complex vector space.
• Inner product: A positive-definite, conjugate-symmetric inner product exists.
• Self-adjoint entropy curvature operator: H is self-adjoint under this inner product.
• Completeness: The stabilized mode basis spans the entire space of finite-entropy configurations.
• Probabilistic interpretation: The Born rule arises from entropy-weighted path selection.

For a summary of the spectral theorem, see Appendix B.

4.1. Lemma 1: Vector Space Structure

Claim: The set of entropy-stabilized modes {ψn}, defined as eigenmodes of the second variation
operator H, forms a complex vector space.

Proof: Let H denote the entropy curvature operator, defined as in Eq. (5). Let {ψn} be its
eigenfunctions (Eq. (6)). Any finite linear combination,

Ψ = ∑
n

cnψn, cn ∈ C, (7)

remains in the space, since H is linear (see Lemma 2). The space is closed under addition and complex
scalar multiplication, satisfying the axioms of a complex vector space.

□

4.2. Lemma 2: Self-Adjointness of H

Claim: The entropy curvature operator H is self-adjoint with respect to the entropy-weighted
inner product.

Proof: The operator H arises from the second variation of the real part of the entropy-weighted
action (see Eq. (5)), and is constructed from the symmetric entropy metric Gij (see Section 2.2). Define
the entropy-weighted inner product,

⟨ψm|ψn⟩ =
∫

Dϕ e−βS[ϕ] ψ∗
m(ϕ)ψn(ϕ). (8)

An explicit integration by parts argument (see Appendix A), under standard boundary conditions for
entropy-stabilized modes, shows that

⟨ψm|Hψn⟩ = ⟨Hψm|ψn⟩,

establishing self-adjointness.
□
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4.3. Lemma 3: Inner Product Properties

Claim: The inner product defined by Eq. (8) satisfies the axioms of a Hilbert space inner product.
Proof:

1. Linearity in the second argument: Follows from the linearity of the integral.
2. Conjugate symmetry: This follows directly from the definition of the inner product (8), which

places the complex conjugate on the first argument. Taking the complex conjugate of ⟨ϕ|ψ⟩ then
yields ⟨ψ|ϕ⟩.

3. Positive-definiteness: ⟨ψ|ψ⟩ =
∫
Dϕ e−βS[ϕ]|ψ(ϕ)|2 ≥ 0, with equality iff ψ = 0.

Thus, all axioms are satisfied.
□

4.4. Lemma 4: Completeness

Claim: The space of entropy-stabilized modes is complete in the norm induced by the inner
product.

Proof: Since H is self-adjoint (Lemma 4.2), the spectral theorem (Appendix B) guarantees that its
eigenfunctions {ψn} form a complete basis for the relevant function space. Thus, any finite-entropy
configuration Φ can be expanded as

Φ = ∑
n

cnψn,

with convergence in the norm ∥ · ∥ defined by Eq. (8).
□

4.5. Lemma 5: Born Rule Emergence

Claim: The probability of observing outcome ψn is given by the Born rule,

Pn =
|⟨ψn|Ψ⟩|2

∑m |⟨ψm|Ψ⟩|2 . (9)

Proof: The entropy-weighted path integral (Eq. (3)) exponentially suppresses high-entropy-cost
paths, so only stabilized modes contribute significantly. This selection mechanism was established
in detail in Ref. [10] (see in particular Sections 5.5–5.6), where the TEQ path integral was shown to
implement spectral filtering and normalization consistent with the emergence of probabilistic structure
from entropy geometry.

Crucially, the entropy-weighted inner product defines a bona fide probability measure because: (i) the
exponential suppression ensures that only configurations with finite norm contribute, (ii) the sum ∑n |⟨ψn|Ψ⟩|2
is finite and positive by construction, and (iii) the normalized quantity Pn satisfies 0 ≤ Pn ≤ 1 and ∑n Pn = 1
by completeness of the stabilized mode basis. Thus, the squared inner product, normalized over all resolved
outcomes, is directly interpretable as a probability measure—mirroring the operational content of the Born rule
but derived here from structural entropy-weighting. This is consistent with the standard operational meaning of
quantum probabilities: the entropy-weighted path selection yields relative frequencies for stabilized outcomes,
not merely amplitudes.

Expanding Ψ = ∑n cnψn, the amplitude for outcome ψn is ⟨ψn|Ψ⟩ = cn⟨ψn|ψn⟩, and normalization
yields Eq. (9).

Summary.

Lemmas 4.1–4.5 together establish that the mode space forms a Hilbert space, with all structure
(linearity, inner product, completeness, and probabilistic interpretation) emerging from the entropy-
weighted action and entropy curvature geometry.
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5. Comparison with Other Approaches
The derivation presented here (see Section 4) contrasts sharply with both the standard formulation

of quantum mechanics and with recent attempts to reconstruct quantum theory from information-
theoretic principles.

5.1. Standard Quantum Formalism

In the standard formalism, the Hilbert space structure is postulated as the foundational setting for
quantum theory [1–3]. The axioms of linearity, the existence of an inner product, and the probabilistic
interpretation of measurement via the Born rule are introduced as independent assumptions, motivated
largely by empirical adequacy. While this approach is mathematically successful, it does not provide a
structural or physical explanation for why quantum theory takes this form.

5.2. Information-Theoretic Reconstructions

More recently, information-theoretic and entropic reconstructions [6,7] have aimed to recover as-
pects of quantum theory from principles of inference, information processing, or epistemic constraints.
Typically, such approaches introduce abstract informational axioms (e.g., the principle of maximum
entropy, or constraints on communication protocols) and demonstrate that certain features of quantum
formalism follow. However, these principles often remain external to the physical dynamics of the
systems they describe and lack a direct connection to the geometric or dynamical structure of physical
configuration space. In contrast, the TEQ framework derives its core geometric structure—including
the entropy-weighted action and the entropy curvature operator—from first principles, as shown in [8],
rather than introducing them as independent postulates.

5.3. The TEQ Perspective

By contrast, the TEQ framework (see Sections 2–4) derives the Hilbert space structure directly
from the geometry of entropy in configuration space. The entropy-weighted action (2) serves as a
variational principle that selects stable, distinguishable modes. The second variation of this action
defines the entropy curvature operator, whose spectral decomposition yields the entropy-stabilized
modes and thus the Hilbert space structure (see Appendix B).

• Origin of Linearity and Inner Product: In TEQ, these properties are not imposed, but arise from
the symmetry and spectral properties of the entropy curvature operator.

• Probabilistic Interpretation: The Born rule (Eq. (9)) emerges structurally from entropy-weighted
path selection, not as a separate axiom.

• Unified Physical Basis: The same generative principle that underlies quantum structure also
governs gravitational and thermodynamic phenomena, offering a pathway to unification [8,9,11,
12].

5.4. Addressing Conceptual Critiques

This derivation addresses key criticisms articulated by authors such as Hossenfelder [4,5], who
point out that many entropic and emergent approaches to quantum theory lack genuine derivational
rigor or physical grounding. Here, the entropy geometry is introduced as a concrete, first-principles
structure governing stability and resolution in the dynamics of physical systems, not merely as a
metaphor or computational device.

Relation to Reconstruction Frameworks.

Recent efforts to reconstruct quantum mechanics from operational or information-theoretic princi-
ples include QBism [13], Hardy’s operational framework [14], and relational quantum mechanics [15].
While these approaches offer valuable insights into the informational structure of quantum theory, they
typically begin from epistemic or operational axioms external to physical dynamics. In contrast, the
TEQ framework derives the full Hilbert space structure from an underlying geometric-thermodynamic
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principle (entropy geometry) and a minimal stability condition. The result is a physically grounded
derivation of quantization and probabilistic structure that does not rely on abstract information-
theoretic postulates.

6. Philosophical Implications
The results presented here suggest a substantial reinterpretation of the mathematical structure of

quantum mechanics and its relation to physical reality.

6.1. From Postulate to Emergence

Traditionally, Hilbert space is introduced as an axiomatic structure [1], motivated by empirical
adequacy rather than derivation from first principles. The existence of a complex vector space with a
conjugate-symmetric inner product is simply assumed, with quantization and probabilistic outcomes
treated as independent postulates.

The TEQ framework, by contrast, demonstrates that the Hilbert space structure is not fundamental
but emerges from the entropy geometry governing distinguishability and stability in physical systems
(see Section 4). The geometry of entropy curvature and the suppression of unstable paths under the
entropy-weighted action (Eq. (2)) naturally lead to a mode space with the properties of a Hilbert space.

6.2. Quantization as Structural Stability

In this view, quantization itself is reframed: discrete, stable modes arise from the spectral decom-
position of the entropy curvature operator (see Section 3 and Appendix B). What is usually taken as a
postulate—the existence of quantized states—is here seen as a stability condition under entropy flow.

The probabilistic interpretation of quantum measurement emerges as a consequence of the
entropy-weighted suppression of unstable configurations (see Eq. (9) and Lemma 4.5), not as a separate
axiom.

6.3. Resolution and the Geometry of Distinguishability

The TEQ framework thus aligns with a structural, generative view of physics: the universe
selects for stable, resolvable patterns of motion and structure, as encoded in the entropy geometry.
The familiar mathematical framework of quantum theory is an effective description of this deeper
geometry of resolution.

This perspective also offers a response to long-standing foundational critiques. By deriving the
mathematical structure of quantum theory from physically motivated geometric and thermodynamic
principles, TEQ addresses the conceptual ambiguity and lack of grounding in standard and information-
theoretic approaches (see Section 5).

6.4. Broader Implications

The emergent view of Hilbert space suggests further directions for foundational research:

• Unification: Quantum, gravitational, and thermodynamic structures can be seen as manifestations
of a single generative principle (see Refs. [8,9,11,12]).

• Interpretation: Quantum phenomena, including superposition and measurement, reflect stability
and resolution constraints in entropy geometry rather than mysterious intrinsic randomness.

• Extension: This framework can, in principle, be applied to quantum field theory, the quantum-
classical transition, and the study of decoherence, all as questions about stability and entropy
flow.

6.5. Hilbert Space as a Stability Structure

The results of this paper suggest that the Hilbert space of quantum mechanics should not be
viewed as a space of intrinsic “states of being,” but rather as a structure encoding the stability
landscape of physical configurations under entropy flow. Each vector in the Hilbert space corresponds
to a superposition of entropy-stabilized resolution patterns, selected not arbitrarily but through a deep
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variational principle rooted in thermodynamic geometry. This shifts the interpretation of Hilbert space
from an abstract representational space to a concrete geometric structure governing resolvability.

6.6. Superposition as Resolution Superposition

In this perspective, quantum superposition reflects the combination of stable resolution patterns
rather than a mysterious coexistence of “ontic” states. The linear structure of the Hilbert space (see
Lemma 4.1) and the probabilistic interpretation of measurement outcomes (see Lemma 4.5) emerge as
structural consequences of the entropy-weighted geometry of distinction. This provides a new lens
through which to understand the longstanding interpretational questions surrounding the nature of
quantum superposition and measurement.

By showing that quantum structure emerges from the geometric dynamics of entropy resolution,
this approach may also provide a natural framework to revisit the conceptual foundations of quantum
gravity and the interface between information, geometry, and dynamics.

7. Example Systems
To concretely illustrate how the Hilbert space structure emerges from entropy geometry, we

present two canonical systems. Each shows explicitly how the entropy-stabilized modes form a Hilbert
space with physically meaningful inner product and probabilistic interpretation.

Note on examples.

The examples below illustrate how the entropy-weighted action and entropy curvature operator
derived in [8,10] reproduce and modify familiar quantum structures in simple systems. While the
underlying classical and quantum results are well known (see e.g. [2,3]), here they are recovered as
emergent properties of entropy geometry and stability under the TEQ framework.

7.1. Example: Free Particle

Consider a one-dimensional configuration space with coordinate x(t), and a constant entropy
metric, Gxx(x, ẋ) = γ. The entropy cost functional is then

g(x, ẋ) = γẋ2. (10)

The entropy-weighted effective action (cf. Eq. (2)) becomes

Seff[x] =
∫

dt
(

1
2

mẋ2 − ih̄βγẋ2
)

. (11)

Stationary paths correspond to classical free trajectories for the imaginary part of Seff, while the
real part imposes entropy-based weighting. The entropy-stabilized modes are constructed around
these stationary paths via the second variation:

H = −m
d2

dt2 + 2ih̄βγ
d2

dt2 . (12)

The stabilized modes are
ψk(t) = eikt, Hψk = λkψk, (13)

with eigenvalues λk depending on both dynamical parameters (the mass m) and entropy parameters
(the entropy weighting factor βγ). The eigenmodes ψk(t) = eikt span a continuous spectrum, forming
a Hilbert space with the entropy-weighted inner product:

⟨ψk′ |ψk⟩ =
∫

dt e−βS[x] ψ∗
k′(t)ψk(t) = δ(k − k′). (14)
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The delta-function normalization reflects the continuous nature of the mode space, while the
entropy-weighted path integral selectively suppresses high-k components, effectively limiting res-
olution. The physically realized mode space is thus a continuous, entropy-filtered Hilbert space of
stabilized trajectories.

7.2. Example: Harmonic Oscillator

Now consider the harmonic potential V(x) = 1
2 mω2x2 with an entropy metric of the form

Gxx(x) = γ(1 + αx2). The entropy cost functional is

g(x, ẋ) = γ(1 + αx2)ẋ2. (15)

The effective action reads:

Seff[x] =
∫

dt
(

1
2

mẋ2 − 1
2

mω2x2 − ih̄βγ(1 + αx2)ẋ2
)

. (16)

The entropy curvature operator is

H = −(m + 2ih̄βγ)
d2

dt2 + mω2 + entropy terms. (17)

Its eigenfunctions are Hermite-Gaussian modes:

ψn(x) = Nn Hn(x) exp
(
− x2

2σ2

)
, (18)

where Hn(x) are Hermite polynomials and the scale σ is entropy-modified.
The spectrum is discrete:

λn ∝
(

n +
1
2

)
, (19)

and the modes are orthonormal under the entropy-weighted inner product.

7.3. Physical Interpretation

In both examples, the stabilized mode space acquires a Hilbert space structure, with linearity,
inner product, completeness, and a probabilistic interpretation via the Born rule (Eq. (9)). These
concrete systems illustrate the general results of Sections 3 and 4.

7.4. Example: Particle on a Curved Entropy Manifold

To illustrate the generality of the TEQ approach, consider a system in which the entropy metric is
non-uniform and position-dependent, corresponding to a configuration space with intrinsic curvature.

Suppose the configuration space is a one-dimensional manifold with coordinate x and an entropy
metric of the form

Gxx(x) = γ (1 + κx2), (20)

where γ > 0 is a constant and κ > 0 introduces curvature. This form encodes a quadratic growth in
entropy cost with distance from the origin.

The entropy cost functional is

g(x, ẋ) = γ (1 + κx2) ẋ2. (21)

The entropy-weighted effective action becomes

Seff[x] =
∫

dt
(

1
2

mẋ2 − ih̄β γ(1 + κx2) ẋ2
)

. (22)
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The second variation yields the entropy curvature operator

H = −
(

m + 2ih̄βγ(1 + κx2)
) d2

dt2 − 2ih̄βγκxẋ
d
dt

, (23)

where additional terms arise from the x-dependence of the metric.
Assuming separable solutions of the form ϕ(t, x) = eiωtψ(x), the time derivatives can be replaced

by d/dt → iω, reducing the eigenvalue problem to an effective position-dependent equation for ψn(x).
The stabilized modes ψn(x) are then defined by

Hψn = λnψn, (24)

where the operator H now acts on ψn(x) through coefficients that depend explicitly on x via the
entropy-curved metric.

In general, the mode structure will reflect both the inhomogeneity and the curvature encoded in
Gxx(x), leading to a Hilbert space of entropy-stabilized modes that is not simply a translation of the
flat-space case. The entropy-weighted inner product is

⟨ψm|ψn⟩ =
∫

dx e−βS[x] ψ∗
m(x)ψn(x). (25)

Physical Interpretation.

This example demonstrates that the TEQ framework admits spatially varying entropy metrics and
curved configuration spaces, naturally generalizing the emergence of Hilbert space structure to settings
with inhomogeneous stability and non-Euclidean geometry. In particular, this setting models systems
with position-dependent noise, disorder, or geometric constraints, and shows that the formalism is not
restricted to idealized cases.

8. Conclusion
We have demonstrated that the Hilbert space structure foundational to quantum mechanics can be

rigorously derived from two fundamental axioms of the TEQ framework: (1) entropy as a generative
structural principle, and (2) a minimal principle selecting stable distinctions (see Section 2.1). By
analyzing the entropy-weighted path integral and the geometry of entropy curvature, we established
that the space of entropy-stabilized modes forms a complex vector space with a well-defined, positive-
definite inner product.

The main results, summarized in Section 4, show that this mode space is complete in the corre-
sponding norm, and that the probabilistic interpretation of quantum measurement—the Born rule
(Eq. (9))—emerges as a structural consequence of entropy-weighted path selection. The mathematical
architecture of quantum theory thus appears not as a fundamental postulate, but as an emergent
property of the entropy geometry that governs physical resolution and stability.

This perspective reframes quantization itself as a condition of spectral stability under entropy
flow, providing a deeper physical grounding for the formalism of quantum mechanics. In doing so, the
TEQ framework addresses long-standing critiques of the axiomatic quantum formalism and unifies
the emergence of quantum and gravitational structures under a common thermodynamic-geometric
principle (see Section 5).

Importantly, this result shows that the TEQ framework does not reject or bypass the Hilbert
space structure of quantum theory. On the contrary, it fully recovers and explains it as a natural and
structurally aligned consequence of entropy geometry. The TEQ derivation clarifies why a Hilbert
space emerges in the first place, and how its linearity, inner product, and probabilistic interpretation
follow from deeper geometric and variational principles—without introducing any ad hoc vector space
assumptions. In this sense, TEQ reinforces and grounds the standard quantum formalism rather than
replacing it.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2025 doi:10.20944/preprints202506.1032.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1032.v1
http://creativecommons.org/licenses/by/4.0/


13 of 16

Future Work.

Further investigations will explore the implications of this entropy-geometric perspective for
quantum field theory, the quantum-classical transition, the foundations of measurement, and potential
unification with gravitational phenomena. The approach also invites new connections to computa-
tional and informational structures in physics, with possible consequences for our understanding of
complexity and emergence.

Outlook on the TEQ Program.

This result reinforces the broader program of the TEQ framework, which seeks to unify quantum
and gravitational phenomena under the same entropy-geometric principle. By deriving Hilbert space
structure as an emergent consequence of entropy dynamics, this work provides a concrete example
of how core elements of modern physics can be reformulated from a minimal generative foundation.
Future papers will extend these methods to field-theoretic systems, quantum-classical transition
phenomena, and the geometric origins of gravitational and cosmological structure within the same
unified framework.

Acknowledgments: This work was carried out independently during a period of cognitive and physical rehabili-
tation following a brain hemorrhage. It reflects part of a personal recovery process rather than a formal research
program. ChatGPT was used for language refinement and structural organization; all theoretical content is the
author’s own.

Appendix A. Self-Adjointness of the Entropy Curvature Operator H
This appendix provides an explicit justification of the self-adjointness of the entropy curvature

operator H under the entropy-weighted inner product used throughout this paper. This property
underpins the spectral theorem (Appendix B) and is essential to the emergence of Hilbert space
structure from entropy geometry.

Appendix A.1. Setup and Inner Product

Recall that H arises from the second variation of the entropy-weighted action around an entropy-
stationary path:

δ2Seff[ϕst + δϕ] = ⟨δϕ|H|δϕ⟩, (A1)

where H is a second-order differential operator of the form:

H = − d
dt

(
A(t)

d
dt

)
+ Veff(t), (A2)

with A(t) > 0 (derived from the entropy metric) and Veff(t) a real potential term.
The entropy-weighted inner product is defined as:

⟨ψm|ψn⟩ =
∫

Dϕ e−βS[ϕ] ψ∗
m(ϕ)ψn(ϕ). (A3)

Appendix A.2. Bra-Ket Notation as Integral Expression

In this notation, ⟨ψm|Hψn⟩ denotes the entropy-weighted integral

⟨ψm|Hψn⟩ =
∫

Dϕ e−βS[ϕ] ψ∗
m(ϕ)(Hψn)(ϕ). (A4)

Similarly,

⟨Hψm|ψn⟩ =
∫

Dϕ e−βS[ϕ] (Hψm)
∗(ϕ)ψn(ϕ). (A5)
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Appendix A.3. Integration by Parts Argument

We now compute ⟨ψm|Hψn⟩ explicitly:

⟨ψm|Hψn⟩ =
∫

Dϕ e−βS[ϕ] ψ∗
m(ϕ)

(
− d

dt

(
A(t)

d
dt

ψn(ϕ)

)
+ Veff(t)ψn(ϕ)

)
=

∫
Dϕ e−βS[ϕ]

(
A(t)

d
dt

ψ∗
m(ϕ)

d
dt

ψn(ϕ) + ψ∗
m(ϕ)Veff(t)ψn(ϕ)

)
+

[
e−βS[ϕ]ψ∗

m(ϕ)A(t)
d
dt

ψn(ϕ)

]
boundary

. (A6)

Under the standard assumption that entropy-stabilized modes vanish sufficiently rapidly at the
boundaries (which is ensured by entropy suppression in e−βS[ϕ] and standard boundary conditions on
physical configuration space), the boundary term vanishes.

Explicitly, the exponential factor e−βS[ϕ] ensures that the integrand decays super-polynomially for all large
values of ϕ (and, for time-dependent problems, as t → ±∞), so any physically admissible solution ψn with finite
entropy norm must itself decay at least as fast as required for the integral to converge. Thus, all entropy-stabilized
modes are regular at the boundary in the sense that both ψn and A(t) d

dt ψn vanish rapidly enough to suppress
the boundary term. This argument holds for any system with positive-definite entropy metric and finite entropy
cost, regardless of the specific form of Gij.

Now compute ⟨Hψm|ψn⟩:

⟨Hψm|ψn⟩ =
∫

Dϕ e−βS[ϕ]
(
− d

dt

(
A(t)

d
dt

ψm(ϕ)

)
+ Veff(t)ψm(ϕ)

)∗
ψn(ϕ)

=
∫

Dϕ e−βS[ϕ]
(

A(t)
d
dt

ψ∗
m(ϕ)

d
dt

ψn(ϕ) + ψ∗
m(ϕ)Veff(t)ψn(ϕ)

)
. (A7)

Appendix A.4. Conclusion

Comparing Eqs. (A6) and (A7), we see that

⟨ψm|Hψn⟩ = ⟨Hψm|ψn⟩

provided that:

– The boundary terms vanish (true for entropy-stabilized modes under the entropy-weighted
measure e−βS[ϕ]);

– H has the symmetric form of Eq. (A2) (which is the case for the entropy curvature operator
derived from the symmetric entropy metric).

Thus, the operator H is self-adjoint with respect to the entropy-weighted inner product, completing
the proof required in Lemma 4.2.

We emphasize that the applicability of the spectral theorem in Appendix B relies on the self-
adjointness established here; see, for example, the formulation for unbounded self-adjoint operators
on separable Hilbert spaces in [2, Theorem VII.3] and [1, Chapter 6]. In particular, the assumption
that the configuration space is a separable Hilbert space with respect to the entropy-weighted inner
product is justified by the decay properties of the measure e−βS[ϕ], which ensures square-integrability
of physically relevant configurations.

Remark A1. Bra-ket notation ⟨·|·⟩ is used here as shorthand for the explicit entropy-weighted inte-
gral (A3). In earlier TEQ papers, such notation was not used because no inner product structure was
required; here, the goal is to establish that the space of stabilized modes forms a Hilbert space, which
legitimizes and clarifies the use of this notation.
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Appendix B. Spectral Theorem and Entropy Curvature Operator
Let H denote the second variation operator derived from the entropy-weighted action around a

stationary path:
δ2Seff[ϕst] = ⟨δϕ|H|δϕ⟩. (A8)

We consider the space of configurations equipped with the entropy-weighted inner product:

⟨ψ|ϕ⟩ =
∫

Dϕ e−βS[ϕ] ψ∗(ϕ)ϕ(ϕ). (A9)

In this space, H is self-adjoint under the following standard assumptions. We assume that the
space of configurations consists of square-integrable functions with finite entropy cost (with respect to
the entropy-weighted norm defined by Eq. (A9)), and that H admits a suitable self-adjoint extension
on this space. These assumptions are standard in the spectral theory of differential operators and
ensure that the spectral theorem applies.

Appendix B.1. Spectral Theorem Statement

We apply the spectral theorem for unbounded self-adjoint operators on separable Hilbert spaces,
as formulated in [2, Theorem VII.3] and [1, Chapter 6]. The required conditions—self-adjointness of
H and square-integrability of the entropy-weighted function space—are established in Appendix A
and by the entropy metric construction. This ensures that the eigenfunctions of H form a complete
orthonormal basis and that the spectral decomposition is valid for the entropy-stabilized mode space.

By the spectral theorem for self-adjoint operators [1,2], the set of eigenfunctions {ψn} of H forms
a complete orthonormal (or orthogonal) basis for the corresponding function space (the space of
finite-entropy configurations with respect to the norm induced by Eq. (A9)). The spectrum may be
discrete, continuous, or mixed, depending on the physical system and the specific entropy geometry.

Any finite-entropy configuration Φ can be expanded as:

Φ = ∑
n

cnψn, (A10)

with convergence in the norm
∥Φ∥2 = ⟨Φ|Φ⟩. (A11)

The eigenvalues λn quantify the entropy curvature (or stability) associated with each stabilized mode.

Appendix B.2. Physical Interpretation

This result justifies the construction of the Hilbert space of entropy-stabilized modes in Section 4,
and underpins the completeness and orthonormality claims of Lemma 4.4. The emergence of quantized
structure and a Hilbert space geometry is thus a direct consequence of spectral stability under entropy-
weighted variation.
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