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1. Introduction

Differential equations with fractional order appear frequently in applications as the
mathematical modeling of natural phenomena in the fields of sciences and engineering including
fluid flow, economics, electrical networks, and etc. (see [1-5]). In fact, most of these equations are
more accurate for the description of the property of phenomena, as compared with the corresponding
integer-order models. Therefore, the study of such equations has attracted a great deal of attention of
researchers that we refer to the monographs such as Miller and Ross [6], Podlubny [7], Kilbas et al.
[8], Diethelm [9], and some articles [10,11].

The concept of the existence theory of solutions for fractional functional differential equations
with infinite delay is increasing as a necessary district of scholarships [12-17]. There are some papers
dealing with this issue by using some techniques such as, fixed point theorems, the Leray-Schauder
theory, method of steps, lower and upper solutions method and etc. [12,15-21]. In 2008, Benchohra
et al. [19], investigated the existence of solutions for the following Riemann-Liouville fractional order
functional differential equations with infinite delay using the Leray-Schauder fixed point theorem.

D*x(t) = f(t,x;), for t € J=1[0,T], 0<a <1, 1
x(t) = ¢(t), t € (—o0,0],
and
D*(x(t) —g(t,xt)) = f(t,xt), t€]=10,T], )
x(t) = ¢(t), t € (—00,0].

Also, Agarwal et al.,, studied the initial value problem of fractional neutral Caputo fractional

derivative

‘D*(x(t) — g(t,xt)) = f(t,x¢), for t e J=1[0,T], 0<a <1,

_ ®)
X0 = ¢ € B,

and established the existence results of solution of this problem by using Krasnoselskii’s fixed point
theorem [12]. Ren et al. [23], by utilizing the Banach fixed point theorem, the Leray-Schauder fixed
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point theorem and the Krasnoselskii fixed point theorem, discussed the existence and uniqueness of
mild solutions in a-norm to the following semilinear integro-differential evolution equations:

{ Dx(t) = Ax(t) + f(t xi, [} a(t,s,xs)ds), fort € J=[0,T], 0<a <1,
x(t) = ¢(t), t € (—o0,0],

where A is the infinitesimal generator of a compact semigroup. Recently, Xie [24] and
Dabas and Chauhan [25], analyzed the existence and uniqueness results for impulsive fractional
integro-differential evolution equations with infinite delay, by means of Monch fixed point theorem
and Kuratowski measure of noncompactness, respectively.

To close the gap, motivated and inspired by the works above, in this paper we investigate the
existence of solutions for the following fractional neutral functional integral-differential equation:

(4)

‘D*(x(t) —g(t,x¢)) = f(t, x4, Kx(t)), for t€ J=1[0,T], 0 <a <1,
X0 =¢ € B,

which is equipped with the new suitable conditions on functions f, g. Where °D* denotes the Caputo
fractional derivative, f : [0,T] x Bx R — Rand g : [0, T] x B — R, are continuous functions, also B is
a phase space of mapping (—co,0] into R which will be explained in Section 2. For x : (—oo, T] — R,
we define x¢(0) = x(t+6) for t € [0, T] and —co < 0 < 0,as wellas fork : [0, T] x [0, T] — [0,00), we
denote

Kx(t) = /Otk(t,s)x(s)ds,

with kg = supy,-r ‘ fot k(t,s)ds ‘ The main tools used in this paper are Banach fixed point theorem
and the Krasnoselskii’s fixed point theorem.

This paper is organized as follows. In Section 2, we provide some required notation and basic
concepts. In Section 3, the existence of solutions for problem (4) is analyzed under the Banach fixed
point theorem and the Krasnoselskii’s fixed point theorem. As a last point, an application is given in
Section 4 to illustrate our theoretical results.

2. Preliminaries

In this section, we introduce some primary components, definitions and notations from the
fractional calculus and the phase space which are used in the sequel [7].
We consider C(],R) as a Banach space of all continuous functions from | into R with the norm

[[x]| := sup |x(£)],
0<<T

where |.| denotes a suitable complete norm on R. Also, L!(J,R) denotes the Banach space of
measurable functions from | into R, which are Lebesgue integrable with the norm

]| = /]|x<t>|dt.

The fractional integral of order a > 0 of a function x € L!(],R) is defined as

I“x(t) = Iﬂ(ltx) /Ot(t —5)* Lx(s)ds,

where I'(.) is the Gamma function.
Letn —1 < a < n, the a-th Caputo derivative of x € C(],R) is defined as
1

‘D*x(t) = Ti—a) /Ot(t — )" 1) (5)ds.


http://dx.doi.org/10.20944/preprints201706.0090.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 June 2017

30f11

In this paper, to describe fractional neutral functional integro-differential equations with infinite
delay, we assume an evident definition of the phase space (B, ||.|| ) such that is a seminormed linear
space of functions mapping (—oo, 0] into R and satisfies in the following fundamental axioms [19,26]:
(A): for every x : (—oo, T| — R with xg € Band t € [0, T], the following conditions hold:

(l) xt € B
(i) [lxellp < N(f)oiulztlx(SN + M(t) [Ixollg

(i) [x ()| < R ||xel[p,

where i > 0is a constant, N € C([0,T],[0,00)), M : [0, T| — [0, c0) is locally bounded and 4, N and
M are independent of x(.).
(A —1): For x(.) satisfies in (A), x; € C([0, T], B).
(A —2): The space B is complete.
Furthermore, the following notations are used in this paper,

ny = sup |[N(t)|, mp = sup |M(t)]. (5)
0<t<T 0<t<T

and
Q= {x 1(=00, T] = R, x[(_eq € B, x[pg)is continuous}.

3. Main result

In this section, we study the existence of solutions Eq. (4), to demonstrate our results. we list the
following assumptions:
(Hyp): Let f : ] x BxR — R be a continuous function and for each (t,x¢, Kx(t)), (t,y:, Ky(t)) €
J X B x R, there exist L;(t) € C([0, T],[0,0)), i = 1,2, such that

f(t xe, Kx(t)) — f(t,y, Ky(t))|| < La(t) [[xt — yellp + La(t) [|[Kx — Ky .

(Hp): Let g : ] x B — R be a continuous function and for each (t,x;), (t,y:) € ] X B, there exist
Ls(t) € C([0,T], [0, 00)), such that

18 (txe) = g(t,y)|l < La(t) l[xt = yellp,

also, for | L3(t)|| = 1, we assume yin7 < 1.
(H3): The constants I > 0 and A < 1 are determined by

It = max{ sup |I*L;(t)|, i=1,2},
0<t<T
A = [mnt + (ko +n7)I7] .

A function x € () is a solution of problem (4) with initial condition xg = ¢ € B, if x satisfies in
the following integral equation

x(t) = ¢(0) — g(0,¢) +g(t, xt)
+T(la) fot(t — s)“—lf(s, xs,Kx(s))ds, t€1]0,T], 6)
X0 = ¢.

Proof. Assume that x is a solution of (4), therefore, for each t € |, we have
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“D*(x(t) — g(t,x1)) = £(t, xt, Kx(b)).

Applying the Riemann-Liouville fractional integral operator on both sides, we obtain

() =gl 0) + e1 = g [ 0= 9% (s Kx(s))s

Using the initial condition, we get

e =—¢(0) +g(0,¢).
Thus

1 t
x(t) = ¢(0) — g(0,¢) +g(t, xt) + () /0 (t—5)""f(s, x5, Kx(s))ds.
and x is a solution of the integral equation (6). [

Assume that the hypotheses (H;) — (H3) are satisfied. Therefore, the problem (4) has a unique
solution.

Proof. Firstly, in order to prove this theorem, we need to transform problem (4) into a fixed point
problem. Therefore, from the Lemma 1, consider the operator A : (3 — () defined as

$(0) — (0, ¢) +g(t, xt)
Ax(t) = + 7 Jo(E= )" f(s, x5, Kx(s))ds,  t€[0,T],

p(t), te (—oo,0l.

_ ) ¢(0), tel0T],
p(t) = { (), te (—o,0], @

thus ¢(t) € Q and ¢y = ¢. Let x(t) = y(t) + ¢(t), which implies x; = y; + ¢, for each t € [0, T].
It is evident that x satisfies in Eq. (6) if and only if yp = 0 and also, the function y(.) satisfies in the
following equation,

W) = =800+t o)+ i [ =9 o+ g K O )

Set

B={ycQ:yo=0},

and let ||.|| 5 be the seminorm in B defined by

l¥llz = llyolls + sup [y()] = llyll,
0<t<T
thus, (B, ||. 5) is a Banach space. We define the operator A : B — B as follows

N —8(0.9) + 8ty + 1)
Ay(t) = iy Jo(t=8) T f(s,ys + @5, K(y + ) (s))ds,  t€[0,T],
0, te€(—oo,0].
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It is clear that the operator A has a fixed point if and only if A has a fixed point. So, our aim is to
show that the operator A has a fixed point.
From the assumption (A — ii), we get the following estimate,

lpellp < N(t) sup [@(s)| + M(t) [[poll
0<s<t
< nr|@(0)| +mr ||pllg = 7.

On the other hand, since the functions f, ¢ are continuous and ||¢;||z; < 7, therefore, there exist the
constants 7y, 3, such that

Y2 = [If(s, 95, Ke(s))|l, v3 = [Ig(s, 9s) | -
Choosing
0

72T
12> m + 73+ 118(0,9)[| + [y1n7 + (ko + nT)IL]R1,

and considering the set Dg, = {y €B: |yl <Ry }, clearly Dg, is a closed, bounded and convex set
of B.
For every y € Dg,, by means of (Hy), (Hz), (A — ii) and triangle inequality, we get

£ (s,ys + @5, K(y + @) (s)) |
< If(s,ys + @5, K(y + @) (s)) — f(s, 95, Kep(s))]|
+ £ (s, @s, Ko(s))|

< Li(s) lysllg + La(s) Kyl + 72
< Ly(s)nt sup |y(n)| + La(s)ko lyll + 72
0<n<s
< [nrLi(s) +koLa(s)|R1 + 72, )
and
g ys +@s)ll < lg(s,ys + @s) —&(s, @s) |l + 1|85, @s) ||
< L3(s) lysllg + 73 < vintRy + 3. (10)

Now, we show that /~\(DR1) C Dg,. Recalling (H3), (9) and (10), we get

|Ay| < vmrRi 42+ 130.0)]
1

t
+ ’1"(&)/0 (t =) 1([nrL1(s) + koL2(s)]Ry + 72)ds
Tﬂ(
= % + 73+ 18(0,9) || + [yinr + (ko + n7)I}]Ry < Ry,

thus,

/N\H~<R.
E/B_ 1

Next, we shall show that A is a contraction mspping. For u(t),v(t) € Dg, and t € [0,T], we
obtain
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[ Ao
< Mgt + 90—t o0l + s [ -9

[1£ (s, us + @5, K(u + @) (s)) = (5,05 + 95, K(v+ 9)(5)) || ds

< L) ol + gy =
[L4(5) s — 0l + La(s) 1K — Kol Jds
1 t
< ol + |y [ 697 [Ltshnr sup lu(n) o)
+La(s)ko o] | ds
< [y + o+ )] 1 = ol = A = ol

Therefore,

HAu - Avug < Ay flu—ol,

where A is given in (H3). Finally, we deduce A has a unique fixed point by means of the contraction
mapping principle. [

Utilize of fixed point theorems is a suitable tool for proving the existence and uniqueness of
different equations (for instance see [15,16,27,28] and the references therein). For this purpose, in the
following we will use of the Krasnoselskii fixed point theorem.

(Krasnoselskii’s Fixed Point Theorem [12,29]). Let X be a Banach space, E be a bounded closed
convex subset of X, and let S, U be maps of E into X such that Sx + Uy € E for every pair x,y € E. If
S is a contraction and U is completely continuous, then the equation

Sx+ Ux =x,

has at least one solution on E.
Now, we present the subsequent assumptions:
(Hyg): Let f : ] x B x R — R be the continuous function and for each (t, x;, Kx(t)) € ] x B x R, there
exist P;(t) € C([0,T],[0,00)), i = 1,2, such that,
1£(t, xe, Kx ()| < Pr(t) [|xelp + Po(t) [ Kx(E)]] -

(Hs): The constant I > 0 is determined by

Ip = max{ sup |[[*P;(t)|, i =1,2}.
0<t<T

Assume that the hypotheses (H) and (Hy) — (Hs) are satisfied. Then, the problem (4) has at
least one solution.

Proof. Choosing
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Ry > yinpRo+93+(8(0,9)]|
+ [nrRy +mr |9l g + 17 |P(0)] + ko(Ra + [¢(0)])] Ip-

We define the set Dg, = {y € B: |yl 5 < Rz} , 50 Dg, is a closed, bounded and convex set of Banach

space B. Also, we consider operators Aj and A, on Dg, as

Ay(t) = { 0_’8(024;);:3;5%% +q1), teo,T],

Ray(t) = { riag Jo (E =) f(s,ys + 95, K(y + 9)(s))ds, £ €[0,T],
0, te€(—o,0]
Next, we are going to show that A + A has a fixed point in D R,- Since the proof of the theorem
is long, we split it into several steps.
Step 1. /NX(DRZ) C Dg, for some R > 0.
Let u(t),v(t) € Dg,, by (H»), (Hy) and (Hs), we obtain

|t Aol < 800+ llg(t 0l + llg(t e + 91) — (¢, @1)]
1 t
e | 9 s o g Kot )0
t
< Rt g0 + g | [ 09
[PL(5) los + gl + Pa(s) [K (0 + )| s
< mnrRe+ 73+ (8(0,9)|

Ry + mr 91l + 11 9(0)] + ko(Ra + [$(O))] I < Ry,

since
[vs + @sllg < losllg + psllg < nrRo + mr ||| + 17 [(0)| = 177,
and
[K(v+ @)l < kollo+ ol < ko(Ra+[¢(0)]) =7n",
thus, /~\1u +/~\20H§ < R».

Step 2. A is a contraction on Dg,.
For every u(t),v(t) € Dg, and t € [0, T], by means of (H;), we get

| A=Al = A= Ao = llg(t @) —s(t,00+ 90)]

La(t) lus = vtllg < yanr [lu = ol| = mnr [Ju - o3,

B

IN

inview of 0 < yint < 1, A; is a contraction on Dg,.
Step 3. 7\2 is a completely continuous operator.

The continuity of f implies that the operator A, is continuous, we show that A is uniformly
bounded on Dg, . Since

d0i:10.20944/preprints201706.0090.v1
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Ao, = [Rae]] = |y =9 s 0 Kok (o))

< +17 )Ip,

hence, {/~\zv(t) to(t) € DRz} is uniformly bounded.

Finally, we prove that {sz(t) co(t) € DRz} is equicontinuous. Forevery 0 < t; < f, < T, we
obtain
‘/N\zv ta) — /N\zv(fl)‘
f1
<m0 = = s+ g K0+ )(5))

+@/t (t2 =) £ (5,05 + @5, K(v + @) (s))| ds

1

< r(la) /Otl[(tz =) = (1= 8)* 1 [P1(s) los + sl
+R3(6) IR0+ )| s+ s [ (2= 90 [P s+ g
+Py(s) [K(o + ¢)|| ] ds

< (HP1||17F—(:C!P2H);7 [/()t1[<t2_s)a1_(tl—s)ﬂél] ds
+ /ttz(tz - s)“lds}

- (||P1||;7:a+_|—||f)2|| L (2 = t)* + 1] — 15+ (2 — 1)"]

< 2(||P1||77*+”PZH)U**(tZ_tl)tx‘

F'(a+1)

As t; — tp the right-hand side of the above inequality tends to zero. It means that
{7\27}(1‘) co(t) € DRZ} is equicontinuous.  Also, the results of steps 1-3, together with the

Arzela-Ascoli theorem imply that A, is a completely continuous operator. The conclusion of the
theorem holds by using the Krasnoselskii’s fixed point theorem. O

4. Application

To illustrate the application of the obtained results, we consider the following example,

1 [x( 8/ o2ty ds] _ 7/700 tez(S*t)x(S)dS—i—é/Ot sin(t — s)x(s)ds, telo,1],
() =1, te (—c0,0] (11)

Let
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0
B= {4): (—00,0] — R,[m h(s) |9l 5,0y ds < oo} ,
0
19l = [ 1) 19l 50,
where ||¢[|;;0) = supc(sq) [¢(t)] and 7t : (—00,0] — (0,00) is a continuous function with | =

fj’oo h(s)ds < oo. For phase space, we choose h(s) = €%, s < 0, then | = §. Also, we give

t

st =5 [ P
F(t, ¢, Kx(t)) = é/io X (s)ds + Kx(1),
Kx(t) = %/Ot sin(t — s)x(s)ds.

Hence, the equation (11) can be written in the abstract form of the equation (4). Now, for t €
[0,1], ¢1,¢2 € B, and x1,x, € C([0,1],R), we obtain

6,00 Kna(0) = Ft2 K@) < g [ ) = galeh) ds| |5 [sinte =)
<(31(5) — xa(s))ds
< &) - ) as

+ ‘é /Ot sin(t —s)(x1(s) — x2(s))ds

IN

0
L 11(5) — a5 s+ § K (8) — Kia)
= Ly(t)||¢1 — pallp + La(t) |Kx1 (t) — Kxp ()],

and

st sl < |5 [ @) g s <E [ Epnis) o) s

t 0
< %/_m e [|¢1 (s) — ¢2(s) ;50145 = La(£) 191 — 925,

and

|f(t, ¢1, Kxq(1))]

IN

‘;/0 ey (s)ds| + ‘;/Otsin(t—s)xl(s)ds
Pr(t) [|¢nl[p + Pa(t) [Kxa (£)],

IA

where Ly (t) = Pi(t) = &, Lo(t) = Pa(t) = &, La(t) = %. Furthermore, we get that ny = %, 71 =
1
172 _1
s ko=1,1] = 51T and

1
M= |:’71HT+ (ko +11T)IL2:| <1
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Thus the conditions (H;) — (Hs) are fulfilled. We realize that the equation (11) has a unique solution
on [0, 1].

5. Conclusion

In this paper, we discussed the existence results for a class of fractional neutral functional
integro-differential equations with time-dependent delay. Using the Banach fixed point theorem and
the Krasnoselskii’s fixed point theorem some results are presented. The new conditions are assumed
in our works which we can generalize for another problems in the future. To validate the obtained
theoretical results, we analyzed one example.
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