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Abstract: In this paper, the development and performance evaluation of a 4WD robot system designed to
follow near-distance moving objects using a 2D LiDAR sensor are presented. The study incorporates identifier
(ID) classification and a distance-based dynamic angle of perception model to enhance the tracking capabilities
of the 2D LiDAR sensor. A particle filter algorithm was utilized to verify the accuracy of object tracking.
Furthermore, a Proportional-Derivative (PD) controller was designed and implemented to ensure the stability
of the robot during operation. Experimental results demonstrate the potential applicability of these approaches
in various industrial applications.
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1. Introduction

The global agricultural landscape has undergone significant changes in recent years, driven by
rising environmental concerns and the evolving needs of a more health-conscious population. As
consumer awareness about sustainable farming and the health benefits of organically grown produce
has increased, there has been a parallel rise in interest toward improving agricultural systems that
support environmentally friendly practices [1,8]. Climate change has also introduced significant
challenges, altering growing conditions and putting strain on existing farming practices, which
necessitates resilient farming solutions [3]. In South Korea, the agricultural sector faces additional
challenges due to the decreasing and aging workforce, leading to a significant labor shortage [9]. This
shortage directly impacts agricultural productivity and sustainability, emphasizing the urgent need
for automation and mechanization in farming practices. Furthermore, the country's compact and
rugged terrains, characterized by narrow and confined furrows between crop rows, limit the
effectiveness of traditional large-scale agricultural machinery. As a result, there is a growing market
need for innovative solutions that can enhance productivity while adapting to these unique
geographical constraints. These dynamics have emphasized the importance of smart, adaptable
technologies that support sustainable practices while minimizing environmental footprints [8].
Recognizing this market demand, our research project aims to develop small mobile robots
specifically designed for transporting crops in challenging outdoor environments. Small mobile
robots have emerged as a promising solution to address both labor shortages and the limitations
posed by the terrain. They offer specific advantages over traditional machinery, such as reducing soil
compaction, enhancing energy efficiency, and operating flexibly in confined spaces. This is
particularly crucial in Republic of Korea, where mobility in narrow spaces is essential for efficient
farming operations. Technological advances in autonomous navigation and machine learning have
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enabled the development of agricultural robots with enhanced efficiency and precision. These robots
are now capable of operating effectively in complex outdoor environments. Innovations in LiDAR-
based perception, vision systems, and multi-modal data integration are key to enhancing robots'
ability to navigate farm paths effectively [2,6]. Research has shown that these technologies can
significantly reduce labor-intensive tasks and increase productivity in precision farming [3,6].
Consequently, with a growing emphasis on reducing labor needs particularly in countries like South
Korea robotics has emerged as a promising solution [7].

Figure 1 illustrates examples of crop transportation equipment in the Republic of Korea,
highlighting the need for improved mobility and automation. This study utilizes a low-spec 2D
LiDAR sensor to develop a system capable of effectively following objects in close proximity within
an outdoor agricultural setting, aiming to enhance the practicality of small mobile robots in such
environments. With the recent advancements in machine learning and robotic systems, recognition
and classification technologies of human forms utilizing various sensor data have become important
research areas. In this context, two-dimensional (2D) LiDAR (Light Detection and Ranging) has
emerged as a widely used technology in various applications such as personal and industrial robots
and autonomous vehicles due to its advantages of being relatively inexpensive and capable of sensing
a wide range. This technology excels at quickly scanning and mapping the surrounding environment
and is essential for recognizing dynamic objects like humans in safety-related industries [11-17].
Figure 2 illustrates various applications of LiDAR sensors, demonstrating their versatility and
importance in modern robotic systems.

o,

Figure 1. Examples of agricultural product transportation methods in Republic of Korea.
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Figure 2. Applications of LiDAR Sensors: Positioning Aid for Container Handling, Navigation Aid
and Collision Prevention for Cranes, Vehicle Classification, and Monitoring Open Spaces for Building
Security.

LiDAR sensing technology can be broadly categorized into two-dimensional (2D) and three-
dimensional (3D) systems, enabling rapid information acquisition through distance and angular
resolution. While single-channel 2D LiDAR scanners offer a cost-effective solution, their lower
specifications can limit perception performance without the implementation of sophisticated
algorithms and data processing methods. On the other hand, high-performance LiDAR sensors are
often used for perception in autonomous vehicles, providing superior specifications but coming at a
relatively high cost [18]. Table 1 compares the specifications of the YDLiDAR-G6 sensor used in this
study with those of other leading LiDAR sensors. As shown, LiDAR sensors from SICK and Velodyne
provide a detection range of over 80 meters with high resolutions of 0.167° and 0.11°, respectively,
but their size and cost pose challenges for small mobile robot applications. In contrast, the YDLiDAR-
G6 sensor offers a cost-effective solution with sufficient key functionalities suitable for such

applications
Table 1. Comparison of LiDAR Sensor Specifications.
YD SICK-LMS Velodyne
Items . :
LiDAR-G6 Alpha Prime
Number of Singl Singl 128 channel
Channels &€ ge chafnets
Field of View
360° 190° 360°1
(Horizontal)
Méx1mum 16 meters 80 meters 245 meters
Distance
Aneular 0.042°,0.083°,
Reso%ution 0.1°,0.14°, 0.24° 0.1667°,0.25°, Minimum 0.11°
0.333°,0.5°, 0.667°, 1°
Protocol Serial TCP/IP, UDP/IP TCP/IP, UDP/IP
. About About About
Price
300 dollars 10,000 dollars 70,000 dollars

This research was conducted to develop a near-distance object-following system using a
relatively low-spec. 2D LiDAR sensor for a crop transport platform suitable for the unique outdoor
agricultural conditions in South Korea, and to analyze its performance. Through this study, we have
observed the potential feasibility of the system in practical applications. We plan to conduct tests in
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actual field environments within South Korea to further explore its usability and effectiveness for
real- environment agricultural applications.

2. System Configuration

Figure 3 illustrates the robot, sensors, and controllers used in this study. The Scout2.0 robot from
Agile X, which can be controlled via an open-source ROS (Robotics Operating System) platform, was
chosen for its versatility across various industrial applications [19]. The robot is driven by four fixed
wheels, employing a skid-steer mechanism. The distance between the wheels is 0.49 m, and the width
is 0.69 m, allowing longitudinal and lateral control through the adjustment of wheel RPMs. The total
weight is approximately 60 kg, and the robot can carry up to 50 kg of payload. The object-following
sensor used was the G6 model from YD-LiDAR, which has a 360° field of view and an angular
resolution of 0.1°, with each particle being measured at 10 kHz. The minimum detection range is 0.12
m, and the maximum range is 16 m The sensor was mounted at a height of 0.4 m from the ground,
facing forward. The controller used in this study was the NVIDIA Jetson AGX Orin board, running
on Ubuntu 20.04 LTS and ROS [20]. A Python-based program was developed for sensor data
acquisition and analysis, enabling object-following and PD control in both longitudinal and lateral
directions.

Jetson AGX Orin board

2D LiDAR Sensor

Scout2.0 from Agile X

Figure 3. The controller, sensors, and robot platform used in the experiment.
3. Mobile Object-Following System Using LiDAR

3.1. Object Classification Using Density-Based Clustering

The density-based clustering technique identifies objects by clustering data points from the
LiDAR sensor based on spatial density, determining the continuity of points around a data point
using density within a defined radius. This approach is particularly effective when using data from
low-specification LiDAR sensors [21]. As shown in Figure 3, a given data point ‘p’ is considered a
neighbor if at least one additional ‘p” exists within a radius “¢’.

By setting ‘e’ to a value within 0.05 m for the target object in front of the LiDAR sensor,
continuous objects could be identified, as confirmed by the distribution of points shown in Figure 4.
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Figure 4. LiDAR sensor data point distribution and density-based clustering method.

3.2. Object Detection and Visualization

The message system in ROS (Robot Operating System) is a core mechanism for data
communication between nodes. ROS messages are simple data structures that follow a defined
format with a series of fields. The 2D LiDAR sensor collects and processes data through a ROS node,
continuously publishing distance data about the surrounding environment to ROS. This data is
represented in the ‘sensor_msgs/LaserScan’ message format. This message type includes the
following information about the LiDAR scan.

Table 2. ROS message type includes the following information about the LiDAR scan.

Type Messages
header Includes the message's timestamp and frame ID
angle_min The angle at which the scan starts
angle_max The angle at which the scan ends.
range_min The minimum distance the LiDAR can detect
range_max The maximum distance the LIDAR can detect

An array of distance data, Each element represents the
ranges
8 distance measured from the LIDAR

The controller receives distance and angle data from reflected LiDAR points and analyzes
sequential data points to identify follow able objects. This process involves detecting the width of
continuous objects that meet threshold conditions and generating object data based on compliant
points. Real-time visualization of object information was achieved using the ROS open-source
software RViz, as shown in Figure 5, enabling intuitive understanding of the distance and orientation
of objects relative to the robot, as well as distinguishing additional objects. Figure 6, provided real-
time insight into sensor readings, offering detailed monitoring and analysis capabilities for data
gathered from the LiDAR sensors.
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Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right Zoom. shift: opl 31fps
Figure 5. 3D Visualization of a tracked object using ROS RViz.
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Figure 6. Monitoring LiDAR sensor data using ROS RQT.

3.3. Object Identifier (ID) Classification

Due to the characteristics of outdoor fields in the Republic of Korea, where multiple objects
besides the target object may be present, initial detected objects were assigned identifiers to maintain
tracking continuity [22]. Dynamic objects detected subsequently were also assigned identifiers to
differentiate them from the initial object. Figures 7 and 8 illustrate the logic for real-time updating of
identifiers and maintaining object tracking during robot navigation, along with the corresponding
pseudocode. This approach ensured that the robot consistently followed the initial object, regardless
of newly detected objects.
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Start: Activate
Target Detection
Svstem

| Scan and Target Detection

New Target
Detection

Measure Distance and Angle of
Yes New Target

Update Existing Target Data

l

Similar to
Object Existing
Target

Maintain Existing ID and Tracking
Information

Assign Existing Target ID Generate and Assign New ID

Shutdown

Figure 7. Flowchart for classification of tracking object identifiers.

Algorithm 1 Target Detection System Pseudocode

1: START

2: // Activate Target Detection System

3: ACTIVATE Target_Detection_System()

1: while TRUE do

5: SCAN_And_Target _Detection()

6: if New_Target_Detected then

7 Measure_Distance_And_Angle Of New_Target()
8: if Similar_To_Existing _Target then

9: Assign_Existing _Target _1D()

10: else

11: Generate_And_Assign_New_ID()

12: end if

13: else

14: Update_Existing_Target_Data()

15: Maintain_Existing_ID_And_Tracking_Information()
16: end if

17: if Additional_Data_Needed() then

18: // Continue monitoring and updating
19: CONTINUE
20 else
21: Maintain_Tracking_Monitoring()
22: end if
23: if System_Shutdown() then
24: SHUTDOWN()
25: BREAK
26: end if
27: end while
28:. END

Figure 8. Tracked object identifier classification pseudocode.
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3.4. Angle Adjustment Based on Distance for Optimal Tracking

A mechanism for dynamically adjusting the perception angle range based on the relative
distance to the target was implemented for the object-following process using the LiDAR sensor.
Given the frequent presence of obstructive elements in outdoor fieldwork and the increased potential
for object loss as distance increases, it is essential for the platform to maintain high close-range
tracking performance [23-25]. Therefore, a broader angle range was applied as the target moved
closer to ensure it remained within the detection range.

L1 L2 L3

Figure 9. Angle adjustment based on distance for optimal tracking diagram.

For instance, as shown in Figure 8, the range from 0.7 m to 1.0 m from the robot was defined as
‘L1’, where a wide angle of +45° was applied. For distances of 1.0 m to 1.5 m (‘L2’), an angle range of
+30° was set, and for distances exceeding 1.5 m (‘L3’), a narrower range of +15° was applied.

4. Particle Filter Model for Experiments

The particle filter is a widely used algorithm for object tracking, suitable for non-linear and non-
Gaussian systems [26].

4.1. Initialization Process

To process LiDAR data and calculate the relative direction between the target and the robot, a
particle filter algorithm was employed. The initialization process involved creating 50 particles with
random initial states. The particles’ distances followed a uniform distribution between 0.5 m and 1.0
m, and the angles ranged from - to .

RY) Uniform(0.5,1.0),6) Uni form(—m, ) g

In Equation 1, R’ represents the distance to the object, and 6" represents the angle Distance
R, as uniformly distributed between 0.5m and 1.0m, and angle 6, was distributed between -7 and
1, under the assumption that the target is located around the robot. Through an estimation process
based on actual measurement data, the estimated position gradually converged to higher accuracy.

4.2. Weight Calculation and Update

At each measurement step, the distance and angle measurements from the LiDAR were used to
calculate errors and update particle weights using a normal distribution probability density function
[27]. The noise standard deviation for distance measurements was set to 0.1, and for angle
measurements to pi/36.
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particle's weight using the probability density function of the normal distribution. Here, z, is
the actual measurement value from LiDAR, h (xt(i)) is the expected measurement value based on the
particle state, and o is the standard deviation of measurement noise. This means that the difference
between actual and expected measurements is normalized by the standard deviation of noise,
determining the weight based on how closely the particle matches the measurement data.

4.3. Resampling and State Estimation

After weight updates, resampling was performed to remove particles with low weights and
replicate those with higher weights.
Z.\" (), (1)
Ty = Li=1%t Ut
Lt+1 = N '(,') 3)
Zi =1% a=1

Equation 3 represents the resampling process, where the new state estimate is calculated as the
weighted average of the particles, minimizing uncertainty and focusing on accurate target tracking.

7

5. Design of Longitudinal and Lateral PD Controllers

Using the calculated direction and distance between the target and the robot as direct control
inputs can lead to excessive overshoot, negatively impacting driving performance [28]. To address
this, a proportional-derivative (PD) controller is designed to reduce overshoot and ensure robust
transient response, as shown in Figure 10 [29]. The PD controller generated direction and speed
control inputs in real-time based on the distance and angle of the target. The transfer functions for
each process are represented by Equations 4 and 5.

0,d———(-"“ Ky L

G(s) »Ye6,Va

LiDAR

A

Figure 10. Flowchart of longitudinal and lateral PD controllers.

K(S) = (p + I{d (4)

_G(s)(Ky+Ky)
= TH G Kyt Ky ©)

T(s)

Figure 11 shows that simulation results with K, setto 0.5 and K, set to 0.3 showed that the PD
controller effectively reduced oscillations and allowed for rapid convergence to zero, outperforming
basic proportional control.
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Figure 11. This is a figure. Schemes follow the same formatting.

6. Experimental Methods

The experimental setup is shown in Figures 12 and 13. Experiment 1 involved navigating a 1.5
m wide corridor in a straight path, passing through two narrow 1 m paths, and returning to the
starting point to assess the effect of obstacle interference on tracking performance. Experiment 2
tested the ability to maintain tracking through two 0.4 m wide obstacles placed diagonally with a 1
m gap between them. This evaluated the system’s capability to retain the initial target while searching
for additional objects during straight-line tracking. The moving object was a human walking at an
average speed of 4 km/h.

Figure 12. Experimental environment for two paths.


https://doi.org/10.20944/preprints202411.2241.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 November 2024 d0i:10.20944/preprints202411.2241.v1

11

Experiment 1 Experiment 2

..
[H gf

Figure 13. Follow driving experiment scenario.

The angle between the robot and the tracked object, calculated in real-time from the LiDAR
sensor, was defined as the actual angle, while the angle estimated through the particle filter was
defined as the estimated angle. The baseline angle (0 rad) indicated a direct alignment between the
robot and the object.

Path of
Movement
-

Obstacle
Robot

7. Experimental Results

Figure 14 shows the change in angle between the robot and the target during Experiment 1. To
facilitate analysis, data were divided into five courses with key points. A comparison of the median
values with the reference angle showed that the estimated results performed 0.01 rad better in course
1 and 0.02 rad. better in course 2. Additionally, fewer outliers were observed in course 5.

Angle
Esti ted
0.2 Anel Estimated Angle Estlmated Somae
Angle Estimated Angle Fehmated g ¢
’ T T 1 T
%
0.2
)
E
x
204
<
-0.6
+
-0.8 '
¢
Course 1 Course 2 Course 3 Course 4 Course 5

Figure 14. Comparison of actual and estimated (particle filter) angle values from experiment 1.

Figure 15 compares the actual and estimated distance values during Experiment 1. The median
values of actual and estimated distances were found to be similar or identical in most courses, with
few outliers.
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Figure 15. Comparison of actual and estimated (particle filter) distance values from experiment 1.

Figures 16 and 17 display results similar to those of Experiment 1, showing a 0.01 rad median
improvement in course 1 and 4, with other courses progressing identically. Distance median values
were either the same or showed minimal differences, which were not statistically significant.

Angle .
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0.3

Course 1 Course 2 Course 3 Course 4

Figure 16. Comparison of actual and estimated (particle filter) angle values from experiment 2.
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Figure 17. Comparison of actual and estimated (particle filter) angle values from experiment 2.

Based on Experiments 1 and 2, as shown in Figures 18 and 19, the final evaluation of the robot's
longitudinal and lateral tracking performance confirmed that the robot maintained a reasonable
distance while moving without deviating excessively from the path. The average tracking distance in
Experiment 1 was 1.02m, and the average tracking angle was 0.563 rad., with standard deviations of
0.022m and 0.083 rad, indicating minimal variability due to human movement. Experiment 2 yielded
an average of 0.967m and 0.287 rad., with standard deviations of 0.005m and 0.069 rad., showing
similar results to Experiment 1.
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Figure 18. Tracking performance results of experiments 1.
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14
Figure 19. Tracking performance results of experiments 2.

8. Conclusion and Discussion

This research developed and evaluated a 4WD robot platform for near-distance moving object
tracking using a relatively low-spec. 2D LiDAR sensor. The integration of ID classification and a
distance-based dynamic recognition angle model improved the object-tracking performance of the
LiDAR sensor. The implementation of a particle filter algorithm further validated the system's
tracking capabilities. Additionally, the PD controller ensured the driving stability of the robot, as
confirmed through performance experiments. The experimental results demonstrated the potential
for effective data processing of the LIDAR sensor in near-distance object tracking, alongside stable
driving performance of the 4WD mobile robot. This research contributes to the advancement of small-
scale autonomous systems for agricultural use by addressing both economic and labor challenges in
compact and rugged terrains. To further assess the system's practicality, future work will involve
conducting tests in actual field environments to validate its usability and effectiveness in real-world
agricultural settings. Additionally, future research should focus on enhancing data processing for
increased complexity, such as medium and long-range navigation with more obstacles, and exploring
dynamic adjustment of perception angles to improve system adaptability to changing environments.

Funding: This research was supported by the “2024 Technology Commercialization Support Project”
(RS-2024-00349535: Development of a 12V electric Air Drill precision seeder for multi-seed rotavator
attachment based on cloud control and embedded) funded by the Ministry of Agriculture, Food and
Rural Affairs of Korea.
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