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Abstract:  In  this paper,  the development and performance evaluation of a 4WD  robot  system designed  to 

follow near‐distance moving objects using a 2D LiDAR sensor are presented. The study incorporates identifier 

(ID) classification and a distance‐based dynamic angle of perception model to enhance the tracking capabilities 

of  the  2D LiDAR  sensor. A particle  filter  algorithm was utilized  to verify  the  accuracy of object  tracking. 

Furthermore, a Proportional‐Derivative (PD) controller was designed and implemented to ensure the stability 

of the robot during operation. Experimental results demonstrate the potential applicability of these approaches 

in various industrial applications. 

Keywords: LiDAR Sensor; Target Tracking; Particle Filtering; Proportional‐Derivative Controller; 

Agricultural Produce Transportation 

 

1. Introduction 

The global agricultural landscape has undergone significant changes in recent years, driven by 

rising environmental concerns and  the evolving needs of a more health‐conscious population. As 

consumer awareness about sustainable farming and the health benefits of organically grown produce 

has increased, there has been a parallel rise in interest toward improving agricultural systems that 

support  environmentally  friendly  practices  [1,8]. Climate  change  has  also  introduced  significant 

challenges,  altering  growing  conditions  and  putting  strain  on  existing  farming  practices, which 

necessitates resilient farming solutions [3]. In South Korea, the agricultural sector faces additional 

challenges due to the decreasing and aging workforce, leading to a significant labor shortage [9]. This 

shortage directly impacts agricultural productivity and sustainability, emphasizing the urgent need 

for automation and mechanization  in  farming practices. Furthermore,  the  countryʹs  compact and 

rugged  terrains,  characterized  by  narrow  and  confined  furrows  between  crop  rows,  limit  the 

effectiveness of traditional large‐scale agricultural machinery. As a result, there is a growing market 

need  for  innovative  solutions  that  can  enhance  productivity  while  adapting  to  these  unique 

geographical  constraints.  These  dynamics  have  emphasized  the  importance  of  smart,  adaptable 

technologies  that  support  sustainable  practices  while  minimizing  environmental  footprints  [8]. 

Recognizing  this  market  demand,  our  research  project  aims  to  develop  small  mobile  robots 

specifically  designed  for  transporting  crops  in  challenging  outdoor  environments.  Small mobile 

robots have emerged as a promising solution  to address both  labor shortages and  the  limitations 

posed by the terrain. They offer specific advantages over traditional machinery, such as reducing soil 

compaction,  enhancing  energy  efficiency,  and  operating  flexibly  in  confined  spaces.  This  is 

particularly crucial in Republic of Korea, where mobility in narrow spaces is essential for efficient 

farming operations. Technological advances in autonomous navigation and machine learning have 
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enabled the development of agricultural robots with enhanced efficiency and precision. These robots 

are now capable of operating effectively in complex outdoor environments. Innovations in LiDAR‐

based perception, vision  systems, and multi‐modal data  integration are key  to  enhancing  robotsʹ 

ability  to  navigate  farm  paths  effectively  [2,6]. Research  has  shown  that  these  technologies  can 

significantly  reduce  labor‐intensive  tasks  and  increase  productivity  in  precision  farming  [3,6]. 

Consequently, with a growing emphasis on reducing labor needs particularly in countries like South 

Korea robotics has emerged as a promising solution [7]. 

Figure  1  illustrates  examples  of  crop  transportation  equipment  in  the  Republic  of  Korea, 

highlighting  the need  for  improved mobility  and  automation. This  study utilizes  a  low‐spec  2D 

LiDAR sensor to develop a system capable of effectively following objects in close proximity within 

an outdoor agricultural setting, aiming  to enhance  the practicality of small mobile robots  in such 

environments. With the recent advancements in machine learning and robotic systems, recognition 

and classification technologies of human forms utilizing various sensor data have become important 

research  areas.  In  this  context,  two‐dimensional  (2D) LiDAR  (Light Detection  and Ranging)  has 

emerged as a widely used technology in various applications such as personal and industrial robots 

and autonomous vehicles due to its advantages of being relatively inexpensive and capable of sensing 

a wide range. This technology excels at quickly scanning and mapping the surrounding environment 

and  is  essential  for  recognizing dynamic objects  like humans  in  safety‐related  industries  [11–17]. 

Figure  2  illustrates  various  applications  of  LiDAR  sensors,  demonstrating  their  versatility  and 

importance in modern robotic systems. 

 

Figure 1. Examples of agricultural product transportation methods in Republic of Korea. 
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Figure 2. Applications of LiDAR Sensors: Positioning Aid for Container Handling, Navigation Aid 

and Collision Prevention for Cranes, Vehicle Classification, and Monitoring Open Spaces for Building 

Security. 

LiDAR sensing  technology can be broadly categorized  into  two‐dimensional  (2D) and  three‐

dimensional  (3D)  systems,  enabling  rapid  information  acquisition  through distance  and  angular 

resolution. While  single‐channel  2D  LiDAR  scanners  offer  a  cost‐effective  solution,  their  lower 

specifications  can  limit  perception  performance  without  the  implementation  of  sophisticated 

algorithms and data processing methods. On the other hand, high‐performance LiDAR sensors are 

often used for perception in autonomous vehicles, providing superior specifications but coming at a 

relatively high cost [18]. Table 1 compares the specifications of the YDLiDAR‐G6 sensor used in this 

study with those of other leading LiDAR sensors. As shown, LiDAR sensors from SICK and Velodyne 

provide a detection range of over 80 meters with high resolutions of 0.167° and 0.11°, respectively, 

but their size and cost pose challenges for small mobile robot applications. In contrast, the YDLiDAR‐

G6  sensor  offers  a  cost‐effective  solution  with  sufficient  key  functionalities  suitable  for  such 

applications 

Table 1. Comparison of LiDAR Sensor Specifications. 

Items 
YD 

LiDAR‐G6 

SICK‐LMS  Velodyne 

Alpha Prime 

Number of 

Channels 
Single  Single  128 channels 

Field of View 

(Horizontal) 
360°  190°  360°1 

Maximum 

Distance 
16 meters  80 meters  245 meters 

Angular 

Resolution 
0.1°, 0.14°, 0.24° 

0.042°,0.083°, 

0.1667°,0.25°, 

0.333°,0.5°, 0.667°, 1° 

Minimum 0.11° 

Protocol  Serial  TCP/IP, UDP/IP  TCP/IP, UDP/IP 

Price 
About 

300 dollars 

About 

10,000 dollars 

About 

70,000 dollars 

This  research  was  conducted  to  develop  a  near‐distance  object‐following  system  using  a 

relatively low‐spec. 2D LiDAR sensor for a crop transport platform suitable for the unique outdoor 

agricultural conditions in South Korea, and to analyze its performance. Through this study, we have 

observed the potential feasibility of the system in practical applications. We plan to conduct tests in 
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actual field environments within South Korea to further explore  its usability and effectiveness for 

real‐ environment agricultural applications. 

2. System Configuration 

Figure 3 illustrates the robot, sensors, and controllers used in this study. The Scout2.0 robot from 

Agile X, which can be controlled via an open‐source ROS (Robotics Operating System) platform, was 

chosen for its versatility across various industrial applications [19]. The robot is driven by four fixed 

wheels, employing a skid‐steer mechanism. The distance between the wheels is 0.49 m, and the width 

is 0.69 m, allowing longitudinal and lateral control through the adjustment of wheel RPMs. The total 

weight is approximately 60 kg, and the robot can carry up to 50 kg of payload. The object‐following 

sensor used was  the G6 model  from YD‐LiDAR, which has  a 360°  field of view  and an  angular 

resolution of 0.1°, with each particle being measured at 10 kHz. The minimum detection range is 0.12 

m, and the maximum range is 16 m The sensor was mounted at a height of 0.4 m from the ground, 

facing forward. The controller used in this study was the NVIDIA Jetson AGX Orin board, running 

on  Ubuntu  20.04  LTS  and  ROS  [20].  A  Python‐based  program was  developed  for  sensor  data 

acquisition and analysis, enabling object‐following and PD control in both longitudinal and lateral 

directions. 

 

Figure 3. The controller, sensors, and robot platform used in the experiment. 

3. Mobile Object‐Following System Using LiDAR 

3.1. Object Classification Using Density‐Based Clustering 

The density‐based  clustering  technique  identifies  objects  by  clustering data points  from  the 

LiDAR sensor based on spatial density, determining  the continuity of points around a data point 

using density within a defined radius. This approach is particularly effective when using data from 

low‐specification LiDAR sensors [21]. As shown in Figure 3, a given data point ‘p’ is considered a 

neighbor if at least one additional ‘p’ exists within a radius ‘ε’. 

By  setting  ‘ε’  to  a  value within  0.05 m  for  the  target  object  in  front  of  the  LiDAR  sensor, 

continuous objects could be identified, as confirmed by the distribution of points shown in Figure 4. 
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Figure 4. LiDAR sensor data point distribution and density‐based clustering method. 

3.2. Object Detection and Visualization 

The  message  system  in  ROS  (Robot  Operating  System)  is  a  core  mechanism  for  data 

communication  between  nodes. ROS messages  are  simple  data  structures  that  follow  a  defined 

format with a series of fields. The 2D LiDAR sensor collects and processes data through a ROS node, 

continuously  publishing distance data  about  the  surrounding  environment  to ROS. This data  is 

represented  in  the  ‘sensor_msgs/LaserScan’  message  format.  This  message  type  includes  the 

following information about the LiDAR scan. 

Table 2. ROS message type includes the following information about the LiDAR scan. 

Type  Messages 

header  Includes the messageʹs timestamp and frame ID 

angle_min  The angle at which the scan starts 

angle_max  The angle at which the scan ends. 

range_min  The minimum distance the LiDAR can detect 

range_max  The maximum distance the LiDAR can detect 

ranges 
An array of distance data, Each element represents the 

distance measured from the LiDAR 

The  controller  receives  distance  and  angle  data  from  reflected  LiDAR  points  and  analyzes 

sequential data points to  identify follow able objects. This process involves detecting the width of 

continuous objects  that meet  threshold conditions and generating object data based on compliant 

points.  Real‐time  visualization  of  object  information  was  achieved  using  the  ROS  open‐source 

software RViz, as shown in Figure 5, enabling intuitive understanding of the distance and orientation 

of objects relative to the robot, as well as distinguishing additional objects. Figure 6, provided real‐

time  insight  into  sensor  readings, offering detailed monitoring  and  analysis  capabilities  for data 

gathered from the LiDAR sensors. 
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Figure 5. 3D Visualization of a tracked object using ROS RViz. 

 

Figure 6. Monitoring LiDAR sensor data using ROS RQT. 

3.3. Object Identifier (ID) Classification 

Due  to  the  characteristics of outdoor  fields  in  the Republic of Korea, where multiple objects 

besides the target object may be present, initial detected objects were assigned identifiers to maintain 

tracking  continuity  [22]. Dynamic objects detected  subsequently were also assigned  identifiers  to 

differentiate them from the initial object. Figures 7 and 8 illustrate the logic for real‐time updating of 

identifiers and maintaining object tracking during robot navigation, along with the corresponding 

pseudocode. This approach ensured that the robot consistently followed the initial object, regardless 

of newly detected objects. 
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Figure 7. Flowchart for classification of tracking object identifiers. 

 

Figure 8. Tracked object identifier classification pseudocode. 
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3.4. Angle Adjustment Based on Distance for Optimal Tracking 

A mechanism  for  dynamically  adjusting  the  perception  angle  range  based  on  the  relative 

distance  to  the  target was  implemented  for  the object‐following process using  the LiDAR sensor. 

Given the frequent presence of obstructive elements in outdoor fieldwork and the increased potential 

for  object  loss  as distance  increases,  it  is  essential  for  the platform  to maintain high  close‐range 

tracking performance  [23–25]. Therefore, a broader angle  range was applied as  the  target moved 

closer to ensure it remained within the detection range.   

 

Figure 9. Angle adjustment based on distance for optimal tracking diagram. 

For instance, as shown in Figure 8, the range from 0.7 m to 1.0 m from the robot was defined as 

‘L1’, where a wide angle of ±45° was applied. For distances of 1.0 m to 1.5 m (‘L2’), an angle range of 

±30° was set, and for distances exceeding 1.5 m (‘L3’), a narrower range of ±15° was applied. 

4. Particle Filter Model for Experiments 

The particle filter is a widely used algorithm for object tracking, suitable for non‐linear and non‐

Gaussian systems [26]. 

4.1. Initialization Process 

To process LiDAR data and calculate the relative direction between the target and the robot, a 

particle filter algorithm was employed. The initialization process involved creating 50 particles with 

random initial states. The particles’ distances followed a uniform distribution between 0.5 m and 1.0 

m, and the angles ranged from −π to π. 

 
(1)

In Equation 1,  𝑅଴
ሺ௜ሻ  represents the distance to the object, and    𝜃଴

ሺ௜ሻ  represents the angle Distance 

𝑅଴  as uniformly distributed between 0.5m and 1.0m, and angle  𝜃଴   was distributed between –π and 

π, under the assumption that the target is located around the robot. Through an estimation process 

based on actual measurement data, the estimated position gradually converged to higher accuracy. 

4.2. Weight Calculation and Update 

At each measurement step, the distance and angle measurements from the LiDAR were used to 

calculate errors and update particle weights using a normal distribution probability density function 

[27].  The  noise  standard  deviation  for  distance  measurements  was  set  to  0.1,  and  for  angle 

measurements to pi/36. 
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(2)

particleʹs weight using the probability density function of the normal distribution. Here,  𝑧௧  is 

the actual measurement value from LiDAR,  ℎ ቀ𝑥௧
ሺ௜ሻቁ  is the expected measurement value based on the 

particle state, and  𝜎  is the standard deviation of measurement noise. This means that the difference 

between  actual  and  expected measurements  is  normalized  by  the  standard  deviation  of  noise, 

determining the weight based on how closely the particle matches the measurement data. 

4.3. Resampling and State Estimation 

After weight updates,  resampling was performed  to  remove particles with  low weights and 

replicate those with higher weights. 

a = 1, 

(3)

Equation 3 represents the resampling process, where the new state estimate is calculated as the 

weighted average of the particles, minimizing uncertainty and focusing on accurate target tracking. 

5. Design of Longitudinal and Lateral PD Controllers 

Using the calculated direction and distance between the target and the robot as direct control 

inputs can lead to excessive overshoot, negatively impacting driving performance [28]. To address 

this, a proportional‐derivative  (PD) controller  is designed  to  reduce overshoot and ensure  robust 

transient  response, as  shown  in Figure 10  [29]. The PD  controller generated direction and  speed 

control inputs in real‐time based on the distance and angle of the target. The transfer functions for 

each process are represented by Equations 4 and 5. 

 

Figure 10. Flowchart of longitudinal and lateral PD controllers. 

  (4)

 
(5)

Figure 11 shows that simulation results with 𝑲𝒑  set to 0.5 and 𝑲𝒅  set to 0.3 showed that the PD 

controller effectively reduced oscillations and allowed for rapid convergence to zero, outperforming 

basic proportional control. 
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Figure 11. This is a figure. Schemes follow the same formatting. 

6. Experimental Methods 

The experimental setup is shown in Figures 12 and 13. Experiment 1 involved navigating a 1.5 

m wide corridor  in a straight path, passing  through  two narrow 1 m paths, and  returning  to  the 

starting point  to assess  the  effect of obstacle  interference on  tracking performance. Experiment 2 

tested the ability to maintain tracking through two 0.4 m wide obstacles placed diagonally with a 1 

m gap between them. This evaluated the system’s capability to retain the initial target while searching 

for additional objects during straight‐line tracking. The moving object was a human walking at an 

average speed of 4 km/h. 

 

Figure 12. Experimental environment for two paths. 
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Figure 13. Follow driving experiment scenario. 

7. Experimental Results 

The angle between  the  robot and  the  tracked object, calculated  in  real‐time  from  the LiDAR 

sensor, was defined as  the actual angle, while  the angle estimated  through  the particle  filter was 

defined as the estimated angle. The baseline angle (0 rad) indicated a direct alignment between the 

robot and the object. 

Figure 14 shows the change in angle between the robot and the target during Experiment 1. To 

facilitate analysis, data were divided into five courses with key points. A comparison of the median 

values with the reference angle showed that the estimated results performed 0.01 rad better in course 

1 and 0.02 rad. better in course 2. Additionally, fewer outliers were observed in course 5. 

 

Figure 14. Comparison of actual and estimated (particle filter) angle values from experiment 1. 

Figure 15 compares the actual and estimated distance values during Experiment 1. The median 

values of actual and estimated distances were found to be similar or identical in most courses, with 

few outliers. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2024 doi:10.20944/preprints202411.2241.v1

https://doi.org/10.20944/preprints202411.2241.v1


  12 

 

 

Figure 15. Comparison of actual and estimated (particle filter) distance values from experiment 1. 

Figures 16 and 17 display results similar to those of Experiment 1, showing a 0.01 rad median 

improvement in course 1 and 4, with other courses progressing identically. Distance median values 

were either the same or showed minimal differences, which were not statistically significant. 

 

Figure 16. Comparison of actual and estimated (particle filter) angle values from experiment 2. 
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Figure 17. Comparison of actual and estimated (particle filter) angle values from experiment 2. 

Based on Experiments 1 and 2, as shown in Figures 18 and 19, the final evaluation of the robotʹs 

longitudinal  and  lateral  tracking performance  confirmed  that  the  robot maintained  a  reasonable 

distance while moving without deviating excessively from the path. The average tracking distance in 

Experiment 1 was 1.02m, and the average tracking angle was 0.563 rad., with standard deviations of 

0.022m and 0.083 rad, indicating minimal variability due to human movement. Experiment 2 yielded 

an average of 0.967m and 0.287 rad., with standard deviations of 0.005m and 0.069 rad., showing 

similar results to Experiment 1. 

 

Figure 18. Tracking performance results of experiments 1. 
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Figure 19. Tracking performance results of experiments 2. 

8. Conclusion and Discussion 

This research developed and evaluated a 4WD robot platform for near‐distance moving object 

tracking using a  relatively  low‐spec. 2D LiDAR  sensor. The  integration of  ID classification and a 

distance‐based dynamic recognition angle model improved the object‐tracking performance of the 

LiDAR  sensor.  The  implementation  of  a  particle  filter  algorithm  further  validated  the  systemʹs 

tracking capabilities. Additionally,  the PD controller ensured  the driving stability of  the robot, as 

confirmed through performance experiments. The experimental results demonstrated the potential 

for effective data processing of the LiDAR sensor in near‐distance object tracking, alongside stable 

driving performance of the 4WD mobile robot. This research contributes to the advancement of small‐

scale autonomous systems for agricultural use by addressing both economic and labor challenges in 

compact and rugged terrains. To further assess the systemʹs practicality,  future work will  involve 

conducting tests in actual field environments to validate its usability and effectiveness in real‐world 

agricultural settings. Additionally,  future research should  focus on enhancing data processing  for 

increased complexity, such as medium and long‐range navigation with more obstacles, and exploring 

dynamic adjustment of perception angles to improve system adaptability to changing environments. 
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