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Abstract: Interactive video conversation is a complex multimodal task that requires the simultaneous
interpretation of dynamic visual scenes, textual dialogue, and auditory signals when available. In re-
cent years, significant progress has been achieved by leveraging powerful transformer-based language
models, which have established new performance benchmarks. However, many of these advanced
systems tend to focus excessively on textual features, resulting in an underutilization of the rich visual
cues present in video data. To address this challenge, we propose a novel cross-modal framework,
referred to as CIMT, which seamlessly integrates 3D convolutional neural networks (3D-CNNs) with
transformer-based architectures into a unified visual encoder. This encoder is engineered to extract
robust semantic representations by learning local temporal features and contextualizing them through
self-attention mechanisms. The resulting visual features are effectively combined with text and audio
representations within an end-to-end trained architecture. Experimental results on established interac-
tive video conversation benchmarks demonstrate that CIMT significantly outperforms baseline models
on both generative and retrieval tasks, highlighting the benefits of integrated visual-textual learning.

Keywords: interactive conversation; multimodal learning; video understanding; cross-modal
representation; scene analysis

1. Introduction
The objective of interactive video conversation is to generate precise and contextually appropriate

responses based on a short video clip and a series of dialogue turns. In practice, a model is provided
with a dynamic visual scene and an ongoing conversation about that scene; for example, when queried
with a follow-up question such as “Did she re-enter the room?”, the system must correctly resolve
the pronoun “she” by referring to prior mentions in the dialogue, while simultaneously detecting
the corresponding visual action within the video. This intricate interplay between visual cues and
linguistic context renders the task a formidable challenge in multimodal representation learning.

In recent years, transformer-based models have revolutionized natural language processing
by delivering unprecedented performance in text understanding. Nevertheless, despite substantial
advances in textual modeling, current approaches for interactive video conversation often extract visual
features independently—typically via frozen 3D-CNNs trained on action recognition datasets—without
sufficiently capturing the interplay between visual content and dialogue context. Liu et al. [26] have
demonstrated that many of these models exhibit a pronounced bias towards text, thereby neglecting
critical visual information. Such an imbalance can result in suboptimal performance, particularly when
the visual modality carries decisive semantic cues.

To overcome these limitations, our work introduces CIMT (Cross-modal Interaction Multimodal
Transformer), a comprehensive framework that tightly couples visual, textual, and auditory informa-
tion through joint end-to-end training. Unlike traditional pipelines where each modality is processed
in isolation, CIMT employs a two-stage visual encoding process: first, a 3D-CNN is used to capture
localized temporal features, and then a transformer-based encoder refines these features by establishing
long-range dependencies via self-attention. Concretely, if we denote the intermediate feature matrix
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extracted from video segments as F ∈ RN×d, the self-attention mechanism refines the representation
as follows:

SA(F) = softmax

(
FWQ(FWK)

T
√

d

)
FWV ,

where WQ, WK, and WV are learnable projection matrices. This formulation enables the network to
capture nuanced relationships across temporal segments, ensuring that even subtle visual cues are
effectively integrated with textual context.

The challenges inherent in this task can be summarized along four primary dimensions:

1. Visual Feature Extraction: Developing discriminative representations that encapsulate both spatial
and temporal dynamics from video streams.

2. Textual Representation: Capturing the sequential and contextual semantics from dialogue history
with high fidelity.

3. Cross-Modal Fusion: Seamlessly integrating heterogeneous signals—visual, textual, and audi-
tory—into a coherent multimodal representation. This is particularly critical given that each
modality may contribute complementary information.

4. Natural Language Generation: Synthesizing fluent and context-aware responses that accurately
reflect the multimodal input.

In addressing these challenges, CIMT not only leverages well-established architectures but also
introduces novel integration strategies that allow for mutual reinforcement between modalities. For
instance, while conventional methods tend to pre-extract visual features, our approach learns visual
representations in tandem with textual and audio cues, ensuring that the latent space captures cross-
modal correlations more effectively. Such joint training is critical, as it enables the model to dynamically
weigh the importance of each modality based on the context of the query.

Beyond technical novelty, the implications of enhanced interactive video conversation extend
to a wide array of real-world applications. Autonomous vehicles may use such systems to provide
real-time road assistance by interpreting complex traffic scenes [14]. Similarly, assistive technologies
can empower visually impaired individuals by offering detailed scene descriptions, thereby facilitating
better spatial awareness. Other applications include advanced surveillance systems, video summa-
rization, and long-form video content navigation. Recent works [3,17,18,23,34] have largely focused
on individual modalities; however, our integrated approach exemplifies the potential of cross-modal
learning in tackling multifaceted dialog scenarios.

The comprehensive design of CIMT also includes a flexible architecture that supports the incorpo-
ration of additional modalities as required. For example, when audio signals are available, a dedicated
audio encoder is integrated into the joint framework. The resulting multimodal feature vector is then
used to generate responses or perform retrieval tasks. This unified design is governed by an overall
loss function that balances the contributions of each modality, ensuring robustness even in scenarios
where one or more modalities may be degraded or noisy.

The contributions of this work are summarized as follows:

• We introduce a novel unified framework, CIMT, for interactive video conversation that bridges
the gap between visual and textual representations through joint end-to-end learning.

• Our method leverages a two-stage visual encoder that first extracts local temporal features via a
3D-CNN and then refines these features using transformer-based self-attention, thereby capturing
long-range dependencies in dynamic scenes.

• We demonstrate the flexibility of our approach by seamlessly incorporating additional modalities
such as audio, and we validate the effectiveness of our design through extensive experiments on
both response generation and retrieval tasks.

• Comprehensive ablation studies illustrate that the integrated cross-modal learning strategy not
only mitigates the text-bias observed in previous models but also leads to significant performance
gains across various evaluation metrics.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 February 2025 doi:10.20944/preprints202502.1772.v1

https://doi.org/10.20944/preprints202502.1772.v1


3 of 16

Overall, our study highlights the critical importance of balanced multimodal fusion in interactive
video conversation tasks. By jointly optimizing the contributions of visual, textual, and auditory cues,
CIMT sets a new benchmark for future research in cross-modal representation learning.

2. Related Work
The field of video and language understanding has evolved rapidly over the past decade,

driven by the need for advanced human-computer interaction systems. Early work in video
captioning [5,44,49] laid the groundwork for generating natural language descriptions of video content,
while subsequent research in video question answering [19,20,31,48] has focused on aligning dynamic
visual features with textual queries. Moreover, video dialog systems [1,13,24] have pushed the bound-
aries by requiring models to interpret not only static content but also the evolving conversational
context over time.

A seminal contribution in this area is the Audio-Visual Scene Aware Dialog (AVSD) task intro-
duced by Alamri et al. [1], which challenges systems to answer questions based on a short video clip
accompanied by both audio signals and dialog history. This task encompasses two primary settings. In
the discriminative approach, models rank a list of candidate responses [1,29] based on their relevance,
whereas the generative approach trains decoders to produce responses in an auto-regressive man-
ner [11,23]. Both paradigms require deep integration of heterogeneous modalities and have spurred
extensive research into effective cross-modal representation.

The advent of transformer architectures [42] has revolutionized natural language processing by
enabling the extraction of rich, context-aware linguistic representations. Models such as GPT2 [33],
ELMO [32], and BERT [8] have set new standards in various NLP tasks by pre-training on vast
unlabelled corpora and subsequently fine-tuning on specialized downstream applications. In our
work, we employ a pre-trained BERT model to encode the input question and dialog history, ensuring
that high-level semantic information is robustly captured from the textual modality.

Inspired by these successes, researchers have extended self-attention mechanisms to multimodal
settings. A significant body of work now adapts transformer models to handle tasks such as im-
age question answering [7,21,22,27,41] and image dialog [7], where the fusion of visual and textual
tokens is critical. In the realm of video, models such as VideoBERT [39] and contrastive learning
frameworks [38] have been proposed to capture both spatial and temporal dynamics. In parallel,
video dialog systems such as VideoGPT2 [23] and PLATO [3,17] have emphasized generating coherent
responses by leveraging cross-modal interactions.

Approaches in multimodal fusion generally fall into two categories: single-stream and two-stream
architectures. Single-stream methods merge tokens from both video and text into a unified sequence
that is processed by a single transformer network [22,29,37]. This approach allows for deep joint
representation learning but may obscure modality-specific features. Conversely, two-stream methods
process each modality independently using dedicated transformer encoders and later merge the
representations via concatenation or cross-attention mechanisms [27,41]. For instance, Luo et al. [28]
fuse visual and textual features extracted from modality-specific encoders through a cross-modal
attention network, which has shown improved performance in video dialog tasks.

Despite these advances, several limitations persist. A common shortcoming in many existing
methods is the reliance on pre-extracted visual features from 3D-CNNs that are not updated during
training. This practice restricts the model’s capacity to capture subtle temporal dynamics and adapt to
the specific demands of the video dialog task. Liu et al. [26] highlighted that models overly dependent
on static visual features often underutilize the rich, dynamic information available in video content.
Such limitations motivate the need for frameworks that allow end-to-end optimization of visual
feature extractors.

Our proposed framework, CIMT (Cross-modal Interaction Multimodal Transformer), builds upon
and extends these earlier approaches. Unlike previous methods that maintain a frozen visual encoder,
CIMT integrates a 3D-CNN whose parameters are updated jointly with the rest of the network. This
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end-to-end training strategy ensures that the visual extractor adapts specifically to the demands of
video dialog, capturing fine-grained temporal and spatial cues. In addition, CIMT incorporates a
dedicated audio transformer-based encoder that processes auditory signals in parallel with visual and
textual modalities. The outputs from these modality-specific encoders are then fused via a cross-modal
encoder, which dynamically balances and integrates the contributions of each modality.

Other notable contributions in the literature further illustrate the trend towards enhanced mul-
timodal fusion. Le et al. [17] introduced a multimodal transformer network augmented with query-
attention, which selectively focuses on relevant regions of the video and corresponding dialog context.
Zekang et al. [33] extended a pre-trained GPT2 model to jointly learn representations from audio,
visual, and textual inputs through multi-task learning, demonstrating that cross-modal pre-training
can significantly boost performance. Moreover, Cherian A. et al. [35] improved upon audio-visual
transformers by incorporating a student-teacher learning paradigm, thus enhancing the extraction of
complementary features across modalities.

It is also worth noting that many of these models are evaluated under both discriminative
and generative frameworks. While discriminative models excel at ranking candidate responses
by leveraging strong textual priors, generative models focus on synthesizing fluent, context-aware
responses. However, the prevailing challenge remains the effective utilization of visual features, which
are frequently relegated to a secondary role compared to textual information. This imbalance limits
the overall potential of multimodal dialog systems, especially in scenarios where visual context plays
a crucial role.

In summary, the literature on video and language understanding is rich with innovative ap-
proaches that span from early video captioning to sophisticated video dialog systems. The evolution
of transformer-based architectures has enabled significant strides in capturing deep contextual re-
lationships, and the ongoing shift towards joint multimodal training has opened new avenues for
integrating visual, textual, and auditory data. Our proposed framework, CIMT, addresses the short-
comings of previous models by introducing an end-to-end trainable visual extractor and a dedicated
audio encoder, thereby achieving a more balanced and effective fusion of modalities. This holistic
integration paves the way for more robust and contextually sensitive video dialog systems, advancing
the state-of-the-art in multimodal learning and human-computer interaction.

3. Proposed Methodology and Architecture
This section details our novel framework for the video-based dialog task. We describe the

processing of individual modalities, the fusion mechanism, and the training and inference strategies,
thereby presenting a comprehensive view of our proposed approach, CIMT (Cross-modal Interaction
Multimodal Transformer).
3.1. Problem Definition and Task Setup

Given an input video
V = (V1, V2, . . . , Vi, . . . , Vn),

where each Vi represents the ith frame extracted from the video, a dialog history

DHt =
(

C, (Q1, Ans1), · · · , (Qt−1, Anst−1)
)

,

with C being the video caption and (Qt−1, Anst−1) a past question-answer pair, along with an audio
track A, the goal is to generate a response Rt to a follow-up question Qt. This is accomplished by
conditioning on all available modalities—video V, audio A, dialog history DH1:(t−1), and the current
question Qt. Formally, the conditional probability is defined as:

P(Rt | V, A, DH1:(t−1), Qt; θ) =
t−1

∏
j=0

P(Rj | V, A, DH1:j−1, Qt; θ),
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and the training objective is to minimize the cross-entropy loss:

L(θ) = − log P(Rt | V, A, DH1:(t−1), Qt; θ),

where θ denotes the set of trainable parameters across the network.

3.2. Overall Model Architecture

Our framework, CIMT, is designed with a multi-stream architecture to independently process
and then fuse textual, visual, and audio features. The major components of the system are as follows:

• Text Encoder: Processes the dialog history, captions, questions, and answers.
• Visual Encoder: Utilizes a 3D-CNN to extract spatiotemporal features from video frames.
• Audio Encoder: Extracts auditory cues using a dedicated convolutional network.
• Cross-Modal Fusion Module: Integrates the modal-specific embeddings using a cross-attention

mechanism.
• Decoder: An auto-regressive module that generates responses based on the fused multi-modal

representation.

In the following subsections, we describe each component in detail, including additional formulas that
capture the interdependencies and refinement procedures within the model.

3.2.1. Text Encoder

All textual inputs—including the dialog history DH, video caption C, current question Q, and
previous answers Ans—are concatenated to form a single string. Following the approach in De-
vlin et al. [9], we tokenize the input using a WordPiece tokenizer [45] to produce a sequence of
tokens

t = {ti | i ∈ [1, n]},

where n is the total number of tokens. A special [CLS] token is prepended, and [SEP] tokens are
inserted between sentences. This tokenized sequence is then passed through a pre-trained BERT-based
model to obtain a contextualized text embedding:

Ed = BERT(t), Ed ∈ Rn×d,

with d representing the dimensionality of the hidden states.

3.2.2. Visual Encoder

For visual processing, frames are uniformly sampled from the video V at 16 frames per second
and resized to 224 × 224 pixels. Denote the set of subsampled frames as

Vn = {vj | j ∈ [1, m]}.

These frames are fed into a 3D convolutional neural network—specifically, the I3D network [4]
pretrained on ImageNet—to extract temporal features:

fv = I3D(Vn).

The raw feature maps fv, extracted from multiple inception blocks (e.g., Mixed4 and Mixed5), have
dimensions m × d. A subsequent transformer-based visual encoder refines these features via a series
of self-attention and feed-forward layers:

Ev = FFN( fv) + MHA( fv).
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To further enhance temporal consistency, we introduce an auxiliary temporal smoothness loss:

Ltemp =
1

m − 1

m−1

∑
j=1

∥ f (j+1)
v − f (j)

v ∥2
2,

which encourages gradual transitions between consecutive frame representations.

3.2.3. Audio Encoder

The audio modality is processed by first extracting m-dimensional features from the audio signal
A using a VGGish network [10]:

fa = VGGish(Am).

These initial features are then refined using a transformer-based encoder analogous to the visual
branch:

Ea = FFN( fa) + MHA( fa).

To mitigate the effects of noise, we also compute the spectral energy of the audio features:

E(j)
audio = ∥ f (j)

a ∥2,

and include an audio regularization term:

Laudio =
1
m

m

∑
j=1

(
E(j)

audio − µ
)2

,

where µ represents the expected mean energy, thus promoting a stable representation across the audio
sequence.

3.2.4. Cross-Modal Fusion Module

To achieve robust multimodal integration, we fuse the embeddings Ev, Ea, and Ed using a cross-
attention encoder. The embeddings are concatenated to form a unified sequence:

Hfuse =
[

Ev; Ea; Ed

]
.

A series of N = 6 layers combining Multi-Head Attention (MHA) and Feed-Forward Networks (FFN)
is then applied to generate the fused multimodal embedding:

hembd = FFN(Hfuse) + MHA(Hfuse).

To further enhance cross-modal interactions, we segment hembd into modality-specific parts—denoted
hv, ha, and hd for visual, audio, and textual modalities respectively—and minimize the inter-modal
discrepancy via the regularization term:

Linter = ∥hv − ha∥2
2 + ∥ha − hd∥2

2 + ∥hd − hv∥2
2.

Finally, a non-linear projection refines the final embedding:

hfinal = σ(Whembd + b),

with W and b as learnable parameters and σ representing a non-linear activation function (e.g., ReLU).

3.2.5. Training and Inference Strategy

The training of CIMT is guided by two primary objectives, alongside the auxiliary losses intro-
duced above.
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Conditioned Masked Language Modeling (CMLM): In this objective, 15% of the input text
tokens are replaced by a special [MASK] token. The model is then trained to predict these masked
tokens, conditioned on the fused multimodal representation hfinal.

Decoder Reconstructive Loss: During decoding, the auto-regressive decoder generates the answer
token-by-token. At each time step i, given the previously generated token ŷi and the multimodal
context hfinal, the next token is predicted as:

ŷi+1 = arg max P
(
yi+1 = y | ŷi, hfinal

)
.

To stabilize the training process, the total loss function incorporates the primary losses along with the
auxiliary terms:

Ltotal = LCMLM + Ldecoder + λtempLtemp + λaudioLaudio + λinterLinter,

where λtemp, λaudio, and λinter are hyperparameters that control the influence of the temporal, audio,
and inter-modal regularization terms, respectively.

During inference, the decoder generates the response in an auto-regressive manner, selecting
at each step the token with the highest probability until an end-of-sequence token is produced. The
combined effect of the end-to-end trained visual, audio, and textual encoders—along with the refined
fusion mechanism—ensures that the generated responses are both contextually relevant and grounded
in the rich, multimodal input data.

4. Experiments
In this section, we present a comprehensive evaluation of our proposed framework, CIMT

(Cross-modal Interaction Multimodal Transformer), on the Audio-Visual Scene-Aware Dialog (AVSD)
dataset [1]. We describe the dataset and evaluation metrics, detail our preprocessing and training
procedures, and then provide an in-depth analysis of both generative and retrieval tasks. In addition,
we examine the impact of varying the number of fine-tuned visual blocks, the number of sampled
video frames, and the length of dialog history on the overall performance.

4.1. Dataset and Evaluation Metrics

We evaluate our framework on the AVSD dataset [1], which comprises dialogs grounded in
human-centric action videos and includes clips drawn from the Charades dataset [36]. Each dialog
contains a video caption and 10 rounds of question-answer pairs related to the video events. The
dataset is partitioned into 7,659 dialogs for training, 1,787 for validation, and 1,710 for testing. This
diverse and challenging dataset enables the investigation of cross-modal interactions between visual,
audio, and textual modalities.

For quantitative evaluation on the DSTC-test set, we adopt a suite of widely used natural language
generation metrics. Specifically, we report scores for BLEU [30], METEOR [2], ROUGE-L [25], and
CIDEr [43]. These metrics assess the fluency, relevance, and overall quality of the generated responses,
with the test set containing a single ground truth answer per question.

4.2. Preprocessing

Dialog History: For constructing the dialog input, we incorporate up to three turns of dialog history,
restricting the total word count to 100 words. This window has proven sufficient to capture the
essential context from previous interactions alongside the current question.
Video-Audio Features: In our experiments, visual features are extracted from the Mixed5c and Mixed4c

layers. In order to maintain consistency with previous baselines [1], we pre-extracted visual represen-
tations using the I3D [4] network trained on the ImageNet dataset and used the 1024-dimensional
output from the Mixed5c layer for baseline comparisons. For the audio modality, we adopt pretrained
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1024-dimensional features from the VGGish network [10]. It is important to note that the audio encoder
is not fine-tuned on the AVSD dataset, thereby reflecting its generalization across domains.

4.3. Training

Our training regime employs the Adam optimizer [15] with an initial learning rate of 5× 10−5 and
a batch size of 64. The model is trained on 8 RTX-6000 GPUs, and we utilize early stopping to select
the checkpoint that achieves the best performance on the validation set. In addition to the primary
training loss, we also monitor auxiliary losses (e.g., temporal smoothness for video features and audio
regularization) to ensure that all modalities contribute meaningfully to the final joint representation.

5. Results and Analysis
This section provides a detailed examination of the performance of CIMT across both generative

and retrieval tasks. We present quantitative results, ablation studies, and insights into how different
design choices—such as the inclusion of audio, the depth of fine-tuning in the visual encoder, the
number of sampled frames, and the extent of dialog history—affect the overall system performance.

5.1. Results on the Generative Task

We first evaluate our method in the generative setting, where the system is required to generate a
free-form response given the video, audio, dialog history, and the current question. Table 1 summarizes
the performance of various methods on the AVSD test set using standard metrics. In this table, methods
marked with an asterisk (*) incorporate audio features, and those marked with a dagger (†) additionally
use a summary input.

Table 1. Model performance on the AVSD test for the generative task. * includes Audio, † includes summary.

Method BLEU2↑ BLEU3↑ BLEU4↑ METEOR↑ ROGUE-L↑ CIDEr↑
DGR* (2021) – – 0.357 0.267 0.553 1.004
JST*† (2021) – – 0.406 0.262 0.554 1.079
VideoGPT2*† (2020) 0.570 0.476 0.402 0.254 0.544 1.052
MTN † (2019) 0.242 0.174 0.135 0.165 0.365 1.366

JMAN (2020)[6] 0.521 0.413 0.334 0.239 0.533 0.941
Le H. et al. (2021)[16] 0.577 0.476 0.398 0.262 0.549 1.040
TimeSformer*† (2022) [47] 0.572 0.477 0.403 0.255 0.547 1.049

Ours + Audio modality* 0.587 0.483 0.401 0.271 0.565 1.155
Ours 0.592 0.493 0.415 0.269 0.569 1.159

Our approach surpasses several competitive baselines, including VideoGPT2 and JST, across most
evaluation metrics. For instance, our model achieves improvements in BLEU2 (0.592 vs. 0.570), BLEU3
(0.493 vs. 0.476), and BLEU4 (0.415 vs. 0.406). Similarly, METEOR and ROUGE-L scores are higher
for our method, reflecting the benefits of joint training in effectively integrating visual and textual
cues. Although our CIDEr score is marginally lower than that of MTN, it is worth noting that MTN
leverages additional textual information (a summary in addition to the caption and dialog history)
and utilizes a larger model capacity.

These results strongly indicate that the end-to-end joint training paradigm in CIMT significantly
enhances the model’s ability to leverage visual features. With only a modest increase in computational
cost, our framework achieves comparable or better results than deeper networks that do not explicitly
model cross-modal interactions.
Role of Audio Modality: An interesting observation from Table 1 is that incorporating audio features
(methods marked with *) does not yield a significant improvement in performance over using text
alone. This outcome is likely attributable to the nature of the AVSD dataset, where the audio track
primarily contains ambient sounds rather than dialog-specific cues. Nonetheless, including the audio
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modality serves to enhance the generalization of the model and is expected to be more beneficial when
applied to other datasets with richer audio content.

5.2. Results on the Retrieval Task

To further assess the contribution of visual information, we evaluate CIMT in a retrieval setting.
In this configuration, the model receives identical multimodal inputs as in the generative task but
is required to retrieve the correct answer from a candidate pool by producing a ranked list. This
evaluation directly measures the quality of the encoded representations without the influence of the
decoder.

For this purpose, we designed a streamlined retrieval framework in which video embeddings (ex-
tracted via I3D) and text embeddings (derived from the BERT model) are concatenated and optimized
using several objectives: the Masked Language Model loss (Lmlm), the Next Sentence Prediction loss
(Lnsp), and a text-video alignment loss (Lvta). The retrieval model is trained in an end-to-end manner
to capture the interplay between visual and textual features.

Table 2. Model performance on the AVSD dataset. XXXft refers to fine-tuned models, XXXno-ft to non-fine-tuned
models. ↑ indicates that higher scores are better, while ↓ indicates lower scores are preferable.

Input Text Encoder Vid Encoder ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↓ MR

DH LSTM - 50.40 32.76 73.27 88.60 4.72
BERT - 69.71 56.93 86.18 92.93 5.07

DH + V LSTM I3Dno-ft 53.41 36.22 75.86 89.79 4.41
LSTM S3Dno-ft 53.57 36.49 75.64 89.82 4.45
LSTM I3Dft 54.28 37.12 76.62 90.23 4.33

DH + V (Ours) BERTft S3Dno-ft 71.32 59.51 86.92 95.22 4.89
BERTft S3Dft 77.28 67.28 90.39 94.87 4.18

Evaluation Metrics: For the retrieval task, we report several standard metrics including R@1, R@5,
R@10, Mean Rank (MR), and Mean Reciprocal Rank (MRR). The ideal outcome is to rank the correct
answer at the top of the candidate list.

Table 3. Performance by fine-tuning different inception blocks from the visual encoder.

Retrieval Mode Generative Mode

Trained Inception Blocks ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↓ MR ↑ BLEU2 ↑ BLEU3 ↑ BLEU4 ↑ METEOR ↑ ROUGE-L ↑ CIDEr

S3Dno-ft 53.41 36.22 75.86 89.79 4.41 0.58 0.488 0.407 0.268 0.561 1.115
S3DMixed-5 77.21 67.20 90.22 95.06 4.15 0.592 0.492 0.413 0.267 0.563 1.134
S3DMixed-4,Mixed-5 76.88 66.72 90.39 94.77 4.48 0.592 0.493 0.415 0.269 0.569 1.159

Performance of Language Encoders: Table 2 shows that using BERT as the text encoder yields a
substantial improvement over traditional LSTM-based encoders; for instance, BERT achieves an MRR
of 69.71, which represents a 19% absolute gain compared to the LSTM encoder. This improvement
underscores the advantage of transformer-based pre-training on large text corpora, which helps in
generating rich contextualized representations. Notably, even with simpler language models such as
LSTM, the joint training with a visual encoder leads to meaningful performance enhancements.
Effect of Different Visual Encoders: We experimented with various 3D-CNN architectures for visual
feature extraction. Our results indicate that both I3D and S3D yield comparable MRR scores (53.41 vs.
53.57, respectively) when not fine-tuned, suggesting that the benefits arise primarily from the joint
training procedure rather than the specific choice of visual backbone.
Joint Training Efficacy: When the fine-tuned BERT encoder is combined with a fine-tuned S3D visual
encoder (BERTft + S3Dft), the model achieves the highest performance across all metrics, with a notable
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6% increase in MRR compared to models that only utilize textual information. This confirms that
end-to-end joint training is effective in capturing the complex interactions between modalities.

5.3. Effect of the Number of Fine-Tuned Blocks

To assess the influence of fine-tuning depth within the visual encoder, we conducted experiments
where different numbers of inception blocks in the S3D network were fine-tuned. The S3D architecture
consists of three convolutional layers followed by five inception blocks. Table 3 reports the performance
under various fine-tuning configurations in both the retrieval and generative settings. Our results
indicate that fine-tuning additional inception blocks (e.g., both Mixed-4 and Mixed-5) leads to a
consistent improvement in performance, suggesting that deeper adaptation of the visual features is
beneficial for the task.

5.4. Impact of Video Frame Sampling

We further investigated the effect of varying the number of sampled video frames on model
performance. The key question is: How many frames are necessary to capture sufficient visual context for
accurate response generation? We experimented with sampling rates of 6, 16, 32, and 40 frames per
video. As summarized in Table 4, the model shows significant performance gains when increasing the
number of frames from 6 to 32. However, a slight performance drop is observed at 40 frames, which
we attribute to redundancy since the pre-trained models are typically optimized for around 30 frames
per sequence.

Table 4. Evaluation results on the AVSD test set as a function of the number of sampled video frames.

Number of
Sampled Frames

↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↓ MR

6 46.38 31.15 64.70 78.87 8.46
16 74.90 64.11 89.19 94.47 4.63
32 77.28 67.92 90.22 95.06 4.15
40 77.21 66.20 89.62 94.82 4.46

Table 5. Impact of dialog history length on performance.

Dialog
Round

MRR R@1 R@5 R@10 Mean
Rank

1 59.57 46.39 75.70 87.71 4.49
3 81.66 71.65 94.82 98.81 1.82
5 77.21 67.20 89.62 94.82 4.46

10 62.52 52.96 74.46 78.77 18.34

5.5. Effect of Dialog History Length

To explore the influence of dialog context on model performance, we conducted experiments
varying the length of the dialog history. We evaluated the model in different rounds: in Round 1
(with no prior dialog turns), Round 3 (with two previous turns), Round 5, and Round 10. As reported
in Table 5, performance improves substantially from Round 1 (MRR of 59.57) to Round 3 (MRR of
81.66), indicating that the additional context from earlier turns greatly assists the model. However,
performance degrades beyond Round 3, likely because the dialog becomes increasingly generic and
less informative, thereby diminishing its utility for generating accurate responses.

In summary, our extensive experiments demonstrate that the proposed CIMT framework con-
sistently outperforms existing methods in both generative and retrieval tasks. The ablation studies
highlight the importance of jointly fine-tuning the visual encoder, carefully selecting the number of
sampled frames, and incorporating an appropriate amount of dialog history. These findings under-
score the significance of balanced multimodal integration and provide promising directions for future
research in video-based dialog systems.
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6. Conclusions and Future Directions
In this paper, we introduced a novel framework for video-based dialog tasks, termed CIMT

(Cross-modal Interaction Multimodal Transformer). Our approach is centered on the end-to-end joint
training of the visual encoder along with other modalities such as text and audio. By optimizing
the learning process from the visual input concurrently with linguistic and auditory signals, our
framework is able to generate a rich, balanced multimodal representation that significantly alleviates
the bias toward textual information.

Our extensive experiments on both generative and retrieval tasks have demonstrated that the
CIMT framework yields consistent performance improvements across a wide range of evaluation
metrics, including BLEU, METEOR, ROUGE-L, and CIDEr for generative tasks, as well as MRR and
Recall scores for retrieval tasks. Although our method incurs additional computational and memory
costs, the substantial gains observed in our experiments reinforce the critical importance of fine-tuning
the visual encoders in concert with textual and audio modalities. The improvements in performance
validate our hypothesis that the joint learning of visual and textual features is indispensable for tackling
the complexities inherent in video dialog tasks.

Looking ahead, several promising directions for future research emerge. First, we aim to extend
our current work by pretraining the CIMT model on vast amounts of raw, unlabeled video data using
self-supervised learning techniques. For instance, by designing auxiliary tasks such as masked frame
prediction or temporal order verification, we can further enhance the multimodal representations.

In addition, we plan to explore the integration of reinforcement learning methods to refine the
response generation process further by incorporating interactive user feedback. Such approaches
could dynamically adjust the generated responses based on real-time performance metrics and user
satisfaction scores. Moreover, extending our framework to accommodate additional modalities (e.g.,
motion flow, depth information) may provide a more comprehensive understanding of the scene
dynamics, thus paving the way for applications in more complex tasks such as video captioning and
video retrieval.

Furthermore, we are interested in evaluating the robustness and generalizability of CIMT by
testing it on alternative datasets and in different dialog scenarios. This will help determine its
adaptability across varied domains and identify potential areas for further enhancement. Overall, our
work emphasizes that a balanced, joint learning strategy across visual, textual, and auditory inputs is
crucial for advancing video-based dialog systems.

In conclusion, the proposed CIMT framework establishes a new benchmark for integrating
multimodal information in video dialog tasks. Our findings strongly suggest that the end-to-end
joint training paradigm not only improves performance but also offers a scalable path toward more
sophisticated, context-aware multimodal systems. Future work will continue to build on these insights,
striving to further bridge the gap between visual perception and language understanding in complex
interactive environments.
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