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Article

Distributed Adaptive Formation Control for
Second-Order Multi Agent Systems without Collisions
Juan Francisco Flores-Resendiz *, Jesus David Aviles-Velazquez, Claudia Márquez,
Rigoberto Martinez-Clark and María Alejandra Rojas-Ruiz

Faculty of Engineering, Administrative and social sciences, Autonomous University of Baja California, Tecate 21460, Mexico
* Correspondence: francisco.flores32@uabc.edu.mx

Abstract: This paper presents an adaptive strategy to solve the formation control problem for a set
of second-order agents with parametric uncertainty and nonlinearity. The strategy regards a group
of agents where the nolinearities and uncertainties are represented by a linearly parametrised term,
which allows us to consider non-identical agents. In order to ensure the collision-free motion of agents,
we propose the use of a repulsive vector field component that is applied only when a pair of agents
become nearer than a predefined minimum bound. Numerical simulations were carried out to show
the effectiveness of the proposed scheme, first with a simplified example to verify the key features of
the control law and a general case to illustrate the performance of the algorithm in a more complex
scenario.

Keywords: second-order systems; uncertain systems; adaptive control; collision avoidance

1. Introduction
The study of Multi-Agent Systems (MAS) has increased significantly in the last decades as long as

the development of technology has supported the application of these schemes in a wide variety of
fields such as agriculture, patrolling, search and rescue, etc. [1–5]. In this kind of systems, a group of
agents can perform tasks that for a single robot could be very difficult or even impossible. Among the
main advantages of MAS are modularity, scalability, and decentralisation of tasks into the different
members of the group. In this research area, there exist several issues that have been studied, e. g.,
formation control, synchronisation, path following, containment control, among many others, [6–9].

In the formation control problem, agents have to reach a specific relative position or form a desired
geometric pattern. This spatial distribution could be specified by global positions, inter-agent distances
or relative displacements, known as position-, displacement- and distance-based, respectively. In each
mentioned case, depending on the type of robot, agents need different sensor and communication
capabilities to achieve the desired goal, [10]. In a position-based scheme, communication between
agents is not needed, and agents are supposed to have access to their global positions, allowing
them to reach their desired location without any interaction with other members in the group. On
the other extreme, distance-based strategies only specify desired distances among agents which,
depending on the initial conditions and robot’s sensing accuracy, can lead to a translated or rotated
formation. Displacement-based strategies, serving as a midpoint, enable enhanced performance by
utilising various decentralisation levels to optimise the resources dictated by the chosen robot model.
The mentioned approaches have been applied to different kinds of robots modelled by single or
double integrators, unicycle robots, high-order linear systems, among others, and also considering a
number of additional constraints such as input saturation, failing actuators, time-delay communication,
parametric uncertainty, etc.

In order to enhance the applicability of a proposed algorithm, more general models should be
used to represent a more real behaviour of a physical systems and the constraints imposed by the
structure or the equipment in the selected robots, as the parametric uncertainty and nonlinearity. In
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[11], uncertain second-order systems are studied. The authors assumed that the parameters of each
robot could be different but known. Strategies are proposed to achieve formation tracking of the
desired formation under switching directed topologies. In [12], the authors proposed a distributed
adaptive control strategy for distance-based formation and flocking control. Nonidentical second-
order agents are considered, and global convergence to the desired formation and to the leader’s
velocity is achieved. In [13], strategies for agents to achieve formation tracking control under a leader-
follower scheme regarding constant and time-varying leader velocities. Estimators to compensate
for the uncertainties were designed in conjunction with PI-like controllers using the stress matrix.
The backstepping technique was applied in [14] to estimate not only the uncertain parameters of the
neighbouring agents, but also the desired trajectory parameters when the agents do not have access to
global information. Recently, an adaptive backstepping approach in combination with neural networks
has been proposed to solve the optimal formation control problem in finite-time [15].

One of the most important issues in MAS when they are meant to be deployed in real applications
is the collision avoidance between agents or against obstacles in dynamic environments. This issue
has been studied using a number of approaches. In [16] avoidance functions with finite cutoff were
designed and the avoidance control is given by the gradient of the potential functions. Distance and
velocity information was taken into account in [17] to clearly identify the situation which can lead to a
collisions to reduce the energy consumption and minimize the effect of the avoidance potential field
on the formation maintenance. A learning-based strategy to solve the formation control problem with
collision avoidance was proposed in [18] by combining neural networks and the artificial potential field
Technique. In [19] a scheme based on neural networks and improved potential functions we proposed
for second-order uncertain systems with disturbances. Recently, in [20] a fuzzy logic controller was
proposed to solve the formation control problem for a group of unmanned aerial vehicles where the
collision-free motion is guaranteed applying the artificial potential method.

In this paper, a solution to the formation control problem without collisions is proposed regarding
a general uncertain model for second-order agents. The strategy regards a group of agents where the
nolinearities and uncertainties are represented by a linearly parametrised term, which allows us to
consider non-identical agents. We assume that the communication among agents is such that there
exists, at least, a directed spanning tree. Inspired by an algorithm previously developed for first-order
systems, we propose an extension for second-order systems by using a backstepping-like technique.
Moreover, uncertainty and nonlinearity in the form of a parametrisable structure is added to each
agent. This uncertain term is compensated by a local adaptive component in the control law.

To ensure the collision-free motion of agents, we propose the use of repulsive vector fields that is
applied only when a pair of agents become nearer than a predefined minimum bound. These vector
fields are designed using an unstable focus structure, in such a way that there do not exist undesired
equilibria, that is, the agents do not get stuck at undesired configurations. This additional component
of the control law is position- and velocity-based and is activated in a smooth way by using a bounded
switching function.

In order to distinguish between the effect of local uncertainty and the influence of other surround-
ing agents, the adaptation law is only applied when there is no risk of collision, that is, each agent
estimates its own parameters only when there are no other agents in its detection region. Otherwise,
the agent retains the last estimated value of parameters and a repulsive vector field is enabled to
guarantee the collision-free motion. When the conflict is solved and there is no threatening agents, the
adaptation law is restarted taking the last save parameters values.

The remainder of the paper is organised as follows. In Section II, we review some important
concepts on graph theory and recall some well-known lemmas. We formally state the problem in
Section III and in Section IV we give our main contribution. Numerical simulations were carried out to
show the performance of the proposed algorithms which results are presented in Section V. Finally,
some conclusions and outlines for next stages of this research are listed in Section VI.
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2. Preliminaries
In this Section we recall some important graph theory concepts as well as some lemmas that will

be useful in the rest of the paper.
Communication among a group of agents is represented through a formation graph G = {V, E, C},

which consists of a set of vertices V = {R1, . . . , Rn} representing the agents. The graph also includes a
set of edges E = {(RjRi) ∈ V ×V, i ̸= j}, where each edge indicates that agent Ri receives information
from agent Rj. Here, Rj is called the parent node and Ri the child node. Furthermore, there is a set
C = {cji ∈ R2 | (RjRi) ∈ E, i ̸= j} that contains constant vectors that specify the desired relative
position of agent Ri regarding its neighbours.

A formation graph is undirected if, for any (RjRi) ∈ E, the reverse (RiRj) ∈ E also holds,
indicating bidirectional communication. In contrast, the graph is considered directed if (RiRj) ∈ E
does not imply (RiRj) ∈ E. When a formation graph is neither solely directed nor undirected, it is
classified as mixed. There is a path connecting the vertices Rj and Ri if there is a succession of edges as
follows: (RjRm1), (Rm1 Rm2), . . . , (Rmr Ri), with i ̸= j. A directed tree is defined as a directed graph in
which each node, except one, called the root, has a single parent. The root lacks a parent and has a
direct path to all other nodes. A directed tree incorporating all nodes of a directed graph G is termed a
directed spanning tree.

For a given graph G, its Laplacian matrix is expressed as

L(G) = ∆ −Ad

where the degree matrix ∆ is specified by ∆ = diag{g1, . . . , gn}, with gi representing the number of
edges pointing to Ri, for i = 1, . . . , n. Meanwhile, the adjacency matrix Ad of G is defined as:

aij =

{
1, if (RjRi) ∈ E
0, otherwise.

A function ϕr qualifies as a saturating function if it meets the following criteria:

i) ϕ(x) = 0 ⇔ x = 0,
ii) −r ≤ ϕ(x) ≤ r for some r > 0,
iii) xϕ(x) > 0, for all x ̸= 0, and

iv) 0 < ∂ϕ(x)
∂x < M1 < ∞.

Conversely, a smooth switching function ψ satisfies these conditions:

i) ψ(x) = 1 if x ≤ a,
ii) ψ(x) = 0 if x ≥ b,
iii) 0 < ψ(x) < 1 if a < x < b,

iv) −∞ < ∂ψ(x)
∂x ≤ 0,

where b > a > 0.

Definition 1. The system
ẋ = f (t, x, u) (1)

is said to be input-to-state stable (ISS) if there exist a class KL function β and a class K function γ such that for
any initial state x(t0) and any bounded input u(t), the solution x(t) exists for all t ≥ t0 and satisfies

∥x(t)∥ ≤ β(∥x(t0∥, t − t0) + γ

(
sup

t0≤τ≤t
∥u(τ)∥

)
(2)

Lemma 1 ([21]). Let V : [0, ∞)× Rn → R be a continuously differentiable function such that

α1(∥x∥) ≤ V(t, x) ≤ α2(∥x∥) (3)
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∂V
∂t

+
∂V
∂x

f (t, x, u) ≤ −W3(x), ∀∥x∥ ≥ ρ(∥u∥) > 0 (4)

∀(t, x, u) ∈ [0, ∞)× Rn × Rm, where α1, α2 are class K∞ functions, ρ is a class K function, and W3(x) is a
continuous positive definite function on Rn. Then, the system (1) is input-to-state stable with γ = α−1

1 ◦ α2 ◦ ρ.

Lemma 2 ([21]). Consider the interconnected system

ẋ = f (t, x, y), (5)

ẏ = g(t, y). (6)

If the subsystem (5) with y as input is ISS and y = 0 is a globally uniformly asymptotically stable equilibrium
point of the subsystem (6), then, the origin (x, y) = (0, 0) of the interconnected system (5)-(6) is globally
uniformly asymptotically stable.

Lemma 3 (Barbalat’s Lyapunov-Like Lemma[22]). If a scalar function V(x, t) satisfy the following condi-
tions

• V(x, t) is lower bounded
• V̇(x, t) is negative semi-definite
• V̇(x, t) is uniformly continuous in time

then, V̇(x, t) → 0 as t → ∞.

3. Problem Statement
Consider the set N = {R1, . . . , RN} consisting of agents moving on a plane. Each agent is

represented by a second-order model with uncertainties given by

żi = vi (7a)

v̇i = ui + wT
i (t, vi)θi (7b)

where zi = [xi, yi]
T ∈ R2, vi = [vix , viy ]

T ∈ R2 and ui = [uix , uiy ]
T ∈ R2 are the position, velocity and

acceleration of the i-th agent, respectively. Let wi ∈ R2×pi be a matrix of known bounded nonlinear
smooth velocity- and/or time-dependent functions and θi ∈ Rpi a vector of unknown parameter, that
is, the agents are not identical. It is assumed that each robot can determine for all times its own relative
position and velocity with respect to a specific subset of robots Ni ⊆ N, which is defined according to
the formation graph G. Hence, the desired position is defined as

z∗i =
1
ni

∑
j∈Ni

(zj + cji), (8)

where ni is the cardinality of Ni and cji = [cjix , cjiy ] ∈ R2 are constant vectors that define the geometrical
patter to be reached by the agents. Moreover, each agent can detect and measure the relative position
and velocity of all agents within a radius D, defined as Si(t) = {Rj ∈ N|∥zi(t)− zj(t)∥ ≤ D} and called
the sensing region. In the same way, we define the collision region Ci(t) = {Rj ∈ N|∥zi(t)− zj(t)∥ <

d}, where d is the minimum safety distance between any pair of agents.
The control objective is to design distributed controllers ui(zi, zj, żi, żj), j ∈ Ni ∪ S(i), for i =

1, . . . , N such that

i) The agents achieve the desired formation by reaching their desired positions, that is,

lim
t→∞

(zi(t)− z∗i (t)) = 0, i = 1, . . . , N; (9)

ii) The agents avoid collision by remaining at a distance greater than or equal to the safety distance
d;
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iii) Once the desired formation is reached, the whole pattern does not move from its current location
any more, i. e., limt→∞ vi(t) = 0, ∀i ∈ N.

Error dynamics

As stated in the control objective the agents are required to achieve a desired formation, then we
define the position error as z̃i = zi − z∗i , whose dynamics is

˙̃zi = żi −
1
ni

∑
j∈Ni

żj. (10)

In view of (7a)-(7b) and the fact that the formation should be static once it is achieved, the whole
system could be stacked as

˙̃z =
(

∆−1L(G)⊗ I2

)
v (11a)

v̇ = u + wTθ (11b)

where L(G) is the Laplacian matrix, I2 is the 2 × 2 identity matrix, ⊗ denotes the Kronecker
product, ∆−1 = diag{ 1

ni
, . . . , 1

nN
}, z = [zT

1 , . . . , zT
N ]

T , v = [vT
1 , . . . , vT

N ]
T , u = [uT

1 , . . . , uT
N ]

T , w =

diag{wT
1 , . . . , wT

N}T ∈ R2N×Np , θ = [θT
1 , . . . , θT

N ]
T ∈ RNp , with Np = ∑N

i=1 pi.

4. Control Design
In this Section we present the design of an adaptive control law to locally compensate for the

uncertainties in the model of agents. Once the convergence to the desired formation is guaranteed,
we derive conditions to force the agents to remain separated from one another by applying a comple-
mentary repulsive component to the control law, which consists in regarding any other agent as an
unstable focus structure to generate a repulsive vector field that ensures the collision-free motion.

4.1. Adaptive Formation Control

For our purposes, we begin by designing an adaptive strategy based on the basic result proposed
in [23]. Indeed, using a bounded control input with the form ui = −µϕ(z̃i), being ϕ(·) a saturation
function and µ a positive constant, the closed-loop system in vector form is

˙̃z = −µ(∆−1L(G)⊗ I2)ϕ(z̃), (12)

where ϕ = [ϕT(z̃1), . . . , ϕT(z̃N)] ∈ R2N , is asymptotically stable. Now, if we add and subtract the right
hand term in (12) to the position errors (11a), we have

˙̃z = −µ
(

∆−1L(G)⊗ I2

)
ϕ(z̃) +

(
∆−1L(G)⊗ I2

)
ζ (13)

where the auxiliary variable ζ = v + µϕ(z̃) has been defined and whose dynamics is given by

ζ̇ = u + µ

(
∂ϕ(z̃)

∂z̃

)T

˙̃z + wTθ (14)

or equivalently,

ζ̇ = u + µ

(
∂ϕ(z̃)

∂z̃

)T

(∆−1L(G)⊗ I2)v + wTθ. (15)
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If the parameters θ were known, the control input could be selected as

u = −wTθ − µ

(
∂ϕ(z̃)

∂z̃

)T

(∆−1L(G)⊗ I2)v − λζ, (16)

with λ > 0. Then, the closed-loop system become

˙̃z = −µ(∆−1L(G)⊗ I2)ϕ(z̃) + (∆−1L(G)⊗ I2)ζ (17)

ζ̇ = −λζ, (18)

which was shown in [24] to be asymptotically stable by using the cascades system approach and
implying that agents reach the desired pattern and their velocities become zero once the formation is
achieved.

On the other hand, if the parameters in θ are not exactly known, the control law should be
implemented using the estimated parameters θ̂, that is

u = −wT θ̂ − µ

(
∂ϕ(z̃)

∂z̃

)T

(∆−1L(G)⊗ I2)v − λζ. (19)

Then, the dynamics of the auxiliary variable ζ is now

ζ̇ = −λζ − wT
(

θ̂ − θ
)
= −λζ − wT θ̃. (20)

where the estimation error is defined as θ̃ = θ̂ − θ.

Theorem 1. Consider the system (11a)-(11b) and the control law (19) with µ and λ being positive constants.
Assume that the formation graph contains at least a directed spanning tree. Then, applying the adaptation law

˙̂θ = Γwζ (21)

where Γ > 0 is a positive definite matrix in R2N×2N , the mobile agents reach the desired formation while
compensate for their local uncertainty. Moreover, once the desired pattern is achieved, the velocity of the
formation becomes zero.

Proof. Applying the control law (19) the closed-loop system is

˙̃z = −µ(∆−1L(G)⊗ I2)ϕ(z̃) + (∆−1L(G)⊗ I2)ζ, (22)

ζ̇ = −λζ − wT θ̃. (23)

Using the cascaded system approach it can be shown that (22) is input-to-state stable. Then it is
enough to verify that the subsystem (23) is asymptotically stable to ensure that the whole system is
asymptotically stable [21]. Consider the next Lyapunov candidate function

V1 =
1
2

ζTζ +
1
2

θ̃TΓ−1θ̃. (24)

Then, the corresponding time derivative is

V̇1 = ζT(− λζ − wT θ̃
)
+ θ̃TΓ−1 ˙̃θ
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which can be written as

V̇1 = −λζTζ − θ̃T
(

wζ − Γ−1 ˙̃θ
)

Then, applying the adaptation law (21) and in view that ˙̃θ = ˙̂θ, the Lyapunov candidate function
reduces to

V̇1 = −λζTζ ≤ 0 (25)

which is semidefinite negative and implies V1(t) ≤ V1(0), that is, ζ and θ̃ are bounded. Now, if we use
the second time derivative to verify the uniform continuity of V̇1 we have

V̈1 = −2λζT ζ̇ = −2λζT(−λζ − wT θ̃).

Since we assumed w to be bounded and we have shown that θ̃ and ζ are bounded, then V̈1 is bounded
as well, which implies that V̇1 is uniformly continuous. Hence, by direct application of Barbalat’s
lemma, we can conclude that ζ → 0 as t → ∞. Then, under the cascaded system approach, (22) is
asymptotically stable, which implies that z̃ → 0 and v → 0 as t → ∞, which means that agents reach
the desired formation and the velocity becomes zero. This completes the proof.

4.2. Collision Avoidance Strategy

Once the convergence to the desired formation has been shown, it is necessary to design a
complementary strategy to guarantee collision-free motion by ensuring that the agents remain at a
minimum predefined distance. Similarly to the last subsection, we start with a proposal for a previously
studied first-order system [23] that ensures collision-free performance. The basic strategy is given by

ui = −µϕ(z̃i)− ε
N

∑
j=1,j ̸=i

ψij(dij)F

[
xj − xi

yj − yi

]
, (26)

where the second right-hand term provides a repulsive action in the form of an unstable focus structure
provided by the matrix

F =

[
1 −1
1 1

]
. (27)

The repulsive component is activated in a smooth way using the distance-based switching function
ψij(·) which takes values between 0 and 1 as the distance between the i − th and the agent j − th goes
from D to d; The parameter ϵ is a positive constant that guarantees collision-free motion for values
ϵ = 2µ

d ([25]). If we apply (26), the position error dynamics (11a) becomes

˙̃z = −µ
(

∆−1L(G)⊗ I2

)
ϕ(z̃) + ε

(
∆−1L(G)⊗ I2

)
(Ω ⊗ F)z, (28)

where Ω is a matrix which depends on the distance between every pair of agents and models the
conflicts among agents. Its general form is

Ω =


∑N

j=1,j ̸=i ψ(d1j) −ψ(d12) . . . −ψ(diN)

−ψ(d21) ∑N
j=1,j ̸=i ψ(d2j) . . . −ψ(d2N)

...
. . .

...
−ψ(dN1) −ψ(dN2) . . . ∑N

j=1,j ̸=i ψ(dNj)

. (29)

Remark 1. It is important to note that (28) is reduced to (12) when the agents are far away from each other,
that is, there is no risk of collision between any pair of agents. Then, the second right-hand term in (28) could be
considered as a vanishing perturbation term at the origin of the stable dynamics (12).
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Assumption 1. The intended configuration is specified such that the separation between any two agents exceeds
a predefined minimum d, ensuring that no agent falls within another’s sensing range. In the same way, we assume
that under the initial conditions, there exists no risk of collision between agents, that is, ∥zi(0)− zj(0)∥ > d,
∀i, j ∈ N.

If we proceed as in the previous subsection, we can define an auxiliary variable such that

˙̃z = −µ
(

∆−1L(G)⊗ I2

)
ϕ(z̃) +

(
∆−1L(G)⊗ I2

)
ζ + β(z), (30)

where β(z) = ε
(
∆−1L(G)⊗ I2

)
(Ω ⊗ F)z and ζ = µϕ(z̃) + v − ε(Ω ⊗ F)z. This auxiliary variable has

a dynamics

ζ̇ = µ

(
∂ϕ(z̃)

∂z̃

)T
(∆−1L(G)⊗ I2)v + u + ωTθ − ε

(
Ω̇ ⊗ F

)
z − ε(Ω ⊗ F)v. (31)

At this point, we need to notice that, indeed, the repulsive component of the control law imposes
changes in the trajectory followed by the agents. Then, to distinguish the effect of the repulsive
vector field provoked by the presence of surrounding agents from the local parametric uncertainty,
the adaptation law is just applied when there exists no risk of collision, that is, when no agents are
detected into the sensing region. Otherwise, the control law regarding the repulsive component is
implemented using the last estimated parameters until the conflict between agents is solved. Therefore,
the control input can be chosen as

u = −µ

(
∂ϕ(z̃)

∂z̃

)T
(∆−1L(G)⊗ I2)v − ωT θ̄ + ε

(
Ω̇ ⊗ F

)
z + ε(Ω ⊗ F)v − λζ, (32)

where λ > 0 and θ̄ is the last estimation of the vector θ, giving priority to the safety motion over the
formation control objective. Once the conflict between agents has been solved, the agents restart the
parameter adaptation. We are now ready to state our main result.

Theorem 2. Consider the closed-loop system (11)-(32) along with definitions (27), (29). Consider that the
formation graph contains at least a directed spanning tree, and Assumption 1 holds. If there is no risk of collision
among agents, the control law (32) becomes (19) where the estimated vector θ̂ is obtained from the adaptation law

˙̂θ = Γwζ (33)

where Γ > 0 is a definite positive matrix in R2N×2N . On the other hand, if there is a pair of agents that enter
their sensing region, the control law (32) is applied using θ̄ which is the last estimated value of θ. Then, mobile
agents are able to resolve any conflict between them and reach the desired formation while compensating for
their local uncertainty. Moreover, the velocity of the formation becomes zero once the formation pattern has been
achieved.

Proof. As mentioned, when agents are far enough from each other, the applied control law is (19)
which corresponds to Theorem 1. Then, it is necessary to show that when agents are at risk of collisions,
the strategy (32) is able to effectively solve conflicts to prevent collisions. In closed-loop we have

˙̃z = −µ(∆−1L(G)⊗ I2)ϕ(z̃) + β(z) + (∆−1L(G)⊗ I2)ζ (34)

ζ̇ = −λζ − ωTθ∆, (35)
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where θ∆ = θ̄ − θ is the estimation error which is constant while the collision avoidance component is
applied. Since there is not adaptation law, we just use a single quadratic Lyapunov function

V2 =
1
2

ζTζ

whose time-derivative is
V̇2 = ζT ζ̇ = −λζTζ − ζTωTθ∆.

If ω is bounded by ∥ω∥ ≤ k∥ζ∥, then

V̇2 ≤ −λ∥ζ∥2 + k∥θ∆∥∥ζ∥2 ≤ −(λ − k∥θ∆∥)∥ζ∥2,

which implies that ∥ζ∥ → 0 when λ > k∥θ∆∥. Then, (34) is Input-to-State stable, which in combination
with ensures that z̃ → 0. As a result,

∥v∥+ ∥β(z)∥ → 0

As mentioned before, β(z) is a vanishing perturbation at the origin of the subsystem, then ∥β(z)∥ → 0
which finally means that ∥v∥ → 0. In summary, the agents reach the desired formation while they
avoid collisions. In addition, the whole formation remains static after it is achieved.

5. Simulation Results
In this Section we present the results of numerical simulations carried out to show the performance

of the proposed scheme. The first one consists of a reduced system composed of only two agents and
is meant to illustrate as clearly as possible the main features of our scheme. Then, a second simulation
was developed with the objective of verifying the performance of our strategy in a more complex
scenario composed of four agents.

Two-Agents System with Bidirectional Communication

Consider a pair of second-order agents in the plane with linearly parameterised uncertainty,

ż1 = v1

v̇1 = u1 +

[
0 sin v1y

cos v1x 0

][
1

0.5

]
,

ż2 = v2

v̇2 = u2 +

[
v2x sin t 0

0 v2y cos t

][
0.7
0.3

]
,

with vi = [vix , viy ]
T , i = 1, 2. Assume there exists bidirectional communication between the agents

and the objective is to them be located at some specific position with respect to each other. This
displacement is given by the constant vector c21 = −c12 = [−3,−3]T . The initial conditions were
z1(0) = [5, 5]T , z2(0) = [−5,−5]T , v1(0) = [0, 0]T , and v2(0) = [−1, 2]T . The function used to apply
the repulsive component is given by

ψ(dij) =
1

1 + eb(dij−a)

with values a = 3.4 and b = 5. As we can see in Figure 1, the switching function is fully activated for
distances of about 2.2 metres.

It is important to mention that the initial positions were selected to provoke an imminent risk of
collision. In the same way, initial estimated parameters were assumed to be zero, which means that
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there is no prior knowledge of real values. The results of this first simulation are shown in Figure 2
where, in the upper left corner, the trajectories of the agents in the plane are shown. It is clear that the
agents reach the desired relative desired positions while they avoid the collision successfully and do
not get stuck even when applying the same vector field. Moreover, they exhibit a smooth behaviour
given by the transition and saturation functions involved in the control law. In the upper right corner,
the distance between the agents is depicted. As can be seen, the distance never decreases more than
the safety distance. The magnitudes of the velocities are shown in the lower left corner, while the
estimated parameters are depicted in the lower right corner. The period from 6 to 8 seconds in which
the estimated parameters are constant corresponds to the time at which the parameter estimation is
frozen to attend the collision avoidance control.

Figure 1. Switching function. The parameters a = 3.4 and b = 10 ensure a sensing region radius of about 4.6
metres and an avoidance safety distance of about 2.2 metres.

Figure 2. Trajectories of the agents on the plane.

Four-Agents System with General Communication Topology

As a second example, consider a set of four agents whose communication graph is shown in
Figure 3. The geometric pattern to be formed is defined by the constant vectors c21 = −c12 = [0, 2ℓ]T ,
c23 = [−ℓ,−ℓ]T , c34 = [2ℓ, 0]T , c42 = [−ℓ, ℓ]T , ℓ = 3. For this simulation, we considered agents with a
similar local uncertain term than in the last example, i. e.,

żi = vi

v̇i = ui +

[
0 sin viy

cos vix 0

][
1

0.5

]
,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2025 doi:10.20944/preprints202504.0371.v1

https://doi.org/10.20944/preprints202504.0371.v1


11 of 14

for i = 1, 3, and for i = 2, 4 we have

żi = vi

v̇i = ui +

[
vix sin t 0

0 viy cos t

][
0.7
0.3

]
.

For the switching function, parameters were a = 3.6 and b = 10 which give a fully activation of the
repulsive force about 3 metres. The initial conditions were z1(0) = [0, 0]T , z2(0) = [0, 5]T , z3(0) =

[5, 0]T , z2(0) = [0, 5]T , v1(0) = [0, 0]T , v2(0) = [−0.5, 1.5]T , v3(0) = [0, 0]T , v4(0) = [−0.5, 1.5]T . In
Figures 4–7 the results of this simulation are shown, comparing the behaviour of the system under
the control laws with and without repulsive vector fields on the left and right, respectively. Figure 4
illustrates the trajectories of the agents in the plane, verifying that in both cases the desired formation
is reached. However, in Figure 5 the distances between each pair of agents are shown and it is clear
that when applying the avoidance component the agents remain at a greater distance than the safety
radius. On the other hand, Figure 6 shows that in both cases the velocity of the resulting formation
becomes zero, but the settling time is larger if the collision avoidance strategy is applied. Finally, in
Figure 7 local estimated parameters are depicted. In this case, when there exists a conflict between any
pair of agents, the estimation law is stopped, and the last estimated value is used to apply the control
input. When agents get far from each other, the adaptation law is re-established.

Figure 3. Desired formation for the four-agent’s system.

Figure 4. Trajectories of agents in the plane without collision avoidance component (left) and applying the
repulsive component (right).
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Figure 5. Trajectories of the agents on the plane.

Figure 6. Trajectories of the agents on the plane.

Figure 7. Trajectories of the agents on the plane.

6. Conclusions
In this paper, we have proposed an adaptive strategy to solve the formation control problem for a

set of second-order agents with parametric uncertainty. Repulsive vector fields with unstable focus
structure were used to avoid collisions among agents by keeping them at a distance greater than or
equal to a predefined minimum bound. These vector fields are such that the agents do not get stuck in
any undesired configuration while repelling each other. An adaptation law is applied only when there
is no risk of collisions, while the controller keeps and uses the last estimated parameter into the control
law until the conflict between agents is solved and then the adaptation continues in order to ensure
the desired position is reached despite of the uncertainty. Simulations were carried out to illustrate the
performance of the proposed algorithm, which shows the effectiveness of the approach. As the next
step, time-varying formation tracking, connectivity preservation, and communication delay could be
considered, as well as experimental validation.
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