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Abstract

This paper presents a federated learning (FL) architecture tailored for anomaly detection in wire arc
additive manufacturing (WAAM) that preserves data privacy while enabling secure and distributed
model training across heterogeneous process units. WAAM’s inherent process complexity,
characterized by high-dimensional and asynchronous sensor streams, including current, voltage,
travel speed, and visual bead profiles, necessitates a decentralized learning paradigm capable of
handling non-identical client distributions without raw data pooling. To this end, the proposed
framework integrates reversible data hiding in the encrypted domain (RDHE) for the secure
embedding of sensor-derived features into weld images, enabling confidential parameter
transmission and tamper-evident federation. Each client node employs a domain-specific long short-
term memory (LSTM)-based classifier trained on locally curated time-series or vision-derived
features, with model updates embedded and transmitted securely to a central aggregator. Three FL
strategies, FedAvg, FedProx, and FedPer, are systematically evaluated against four robust
aggregation techniques, including KRUM, Multi-KRUM, and Trimmed Mean, across 100
communication rounds using eight non-independent and identically distributed (non-IID) WAAM
clients. Experimental results reveal that FedPer coupled with Trimmed Mean delivers the optimal
configuration, achieving maximum F1-score (0.912), area under the curve (AUC) (0.939), and client-
wise generalization stability under both geometric and temporal noise. The proposed approach
demonstrates near-lossless RDHE encoding (PSNR > 90 dB) and robust convergence across
adversarial conditions. By embedding encrypted intelligence within weld imagery and tailoring FL
to WAAM-specific signal variability, this study introduces a scalable, secure, and generalizable
framework for process monitoring. These findings establish a baseline for federated anomaly
detection in metal additive manufacturing, with implications for deploying privacy-preserving
intelligence across smart manufacturing networks.

Keywords: wire arc additive manufacturing; federated learning; process monitoring; reversible data
hiding; anomaly detection

1. Introduction

Additive Manufacturing (AM) has emerged as a transformative approach in modern
manufacturing due to its ability to fabricate geometrically complex components with reduced
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material waste and customization across industries [1,2]. Among the various metal AM techniques,
wire arc additive manufacturing (WAAM) has gained significant attention for its capability to
produce large-scale metallic structures using an arc-welding-based deposition mechanism with
comparatively low operational cost [3,4]. WAAM is particularly suited for structural applications in
sectors like maritime engineering, defence, and aerospace due to its high deposition rate and
compatibility with widely available wire feedstock [5-7]. However, the process involves complex
thermal-fluid relations, including abrupt thermal gradients, dynamic molten pool behavior, and arc-
induced disturbance, which contribute to unpredictable variations in bead geometry and
microstructural inhomogeneity [8]. These complexities require the deployment of advanced
monitoring and control mechanisms to ensure geometric consistency, integrity, and overall process
stability [9]. Addressing these challenges requires sensor-driven and data-centric strategies that can
interpret high-dimensional and time-dependent process signatures in real-time and across diverse
operational rules.

To address the inherent complexity of WAAM, recent developments in process monitoring have
increasingly favored data-driven methodologies that utilize real-time sensor streams to infer thermal,
geometric, and electrical process states [10]. These monitoring systems integrate high-frequency
process signatures, producing asynchronous and high-dimensional datasets that are difficult to
interpret through conventional rule-based methods [11]. Machine learning, particularly deep
architectures such as convolutional and recurrent neural networks, has demonstrated the ability to
learn nonlinear correlations and to detect subtle anomalies that precede physical defects from these
heterogeneous signals [12,13]. However, implementing these models through centralized learning
paradigms dictates the pooling of raw process data from different WAAM stations, which raises
critical concerns around intellectual property exposure, operational confidentiality, and compliance
with industrial data governance policies [14]. Moreover, process parameter distributions and sensor
modalities differ significantly across WAAM installations, resulting in highly non-independent and
identically distributed (non-1ID) data that violates the assumptions of uniform training routines [15].
These constraints need a distributed and privacy-preserving learning framework capable of
maintaining both local customization and global generalization.

Federated Learning (FL) has emerged as a decentralized machine learning paradigm that
enables multiple clients to collaboratively train a shared model without exposing their raw local
datasets [16]. In a typical FL workflow, each client performs localized training on its process data and
transmits model weight updates or gradients to a central server, which then performs global
aggregation while maintaining data privacy [17]. This makes FL particularly well-suited for industrial
environments, such as WAAM, where different workstations operate under distinct process
dynamics but share the same underlying goal of real-time anomaly detection or quality assurance.
Furthermore, FL architectures are inherently capable of addressing statistical heterogeneity across
clients by supporting personalized models and employing aggregation strategies, which improve
generalization across non-IID conditions [18]. Importantly, since FL retains sensitive process
information in local computational nodes, it aligns with the stringent data governance requirements
of manufacturing ecosystems [19]. Despite these benefits, the application of FL to WAAM-specific
anomaly detection remains largely unaddressed, especially in contexts involving encrypted visual-
signal fusion and process-aware client specialization.

While FL has gained attention in SM for applications such as predictive maintenance, fault
classification, and process health monitoring in domains like laser powder bed fusion or injection
molding, its potential in WAAM systems remains largely unexplored [20,21]. In particular, to our
knowledge, no existing study has implemented a federated architecture designed explicitly for
WAAM, which presents distinct challenges due to its high deposition rates and varied sensor
configurations. Moreover, current FL implementations often focus on unimodal inputs and do not
accommodate the secure fusion of electrical signatures, positional telemetry, and geometric features
extracted from vision systems under a unified learning framework. These approaches typically
assume trusted aggregators and overlook the risks posed by adversarial updates or tampered
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communications, limiting their applicability in sensitive industrial settings. Aforementioned critical
gaps motivate the need for an FL system that is both WAAM-specific and resilient, enabling secure,
multi-source anomaly detection across distributed process units.

To this extent, this study proposes an FL-based architecture for secure and distributed anomaly
detection in WAAM. The architecture introduces client-specific models trained on process signals
such as current, voltage, speed, position, and arc-related geometry, which are securely embedded
into high dynamic range (HDR) weld images using reversible data hiding. It integrates local model
customization with centralized aggregation strategies, including FedAvg, FedProx, and FedPer, to
accommodate statistical heterogeneity across WAAM units. The proposed architecture is validated
through a multi-client simulation framework that emulates eight distributed cells under replicated
non-1ID conditions. The remainder of the paper is structured as follows: Section 2 presents a review
of FL in SM, AM, and secure communication; Section 3 outlines the proposed framework with secure
transmission; Section 4 details the system-level deployment and proof of concept; Section 5 analyzes
the experimental results and compares aggregation strategies; and Section 6 concludes the study and
suggests future research directions.

2. Related Works

In this section, we detail some recent literature concerning FL, where we investigate FL based
on additive manufacturing in particular and SM in general. FL is also explored for its security and
data encryption, and significant research gaps are outlined.

2.1. Federated Learning in Additive Manufacturing

FL has recently been explored in the context of AM due to its ability to enable collaborative
model training across multiple sites without sharing sensitive data. This decentralized approach is
particularly beneficial for AM, where diverse datasets are often distributed across various
organizations, each with unique process parameters and machine settings. For instance, Mehta et al.
implemented an FL-based semantic segmentation approach using a U-Net architecture for defect
detection in laser powder bed fusion processes. Their method demonstrates that FL achieves defect
detection performance comparable to centralized learning while preserving data privacy and
significantly outperforms individual learning, with improvements seen from data diversity and
transfer learning for generalizability [22].

Moreover, Shi et al. developed a knowledge distillation-based information sharing (KD-IS)
framework that enhances monitoring performance for data-poor units in decentralized
manufacturing by leveraging distilled knowledge from data-rich units. Their method achieved
comparable accuracy and F-score to models trained with six times more data, while reducing training
time by 25% and effectively preserving data privacy [23]. On the other hand, Russell et al. detailed an
approach combining Self-Supervised Learning (SSL) with Barlow Twins and FL to improve fault
detection in manufacturing. Their results show that integrating FL boosts accuracy from 67.6% to
73.7% for supervised models and from 82.4% to 83.7% for SSL models, demonstrating enhanced
generalization and fault discriminability in decentralized settings [24].

The studies have applied FL to additive manufacturing processes, particularly in laser powder
bed fusion (LPBF), fused deposition modeling (FDM), and extrusion-based setups. These works
typically explore quality prediction, thermal monitoring, or control optimization while preserving
data privacy across distributed manufacturing units. However, none of these implementations
extend to WAAM, which operates under fundamentally different physical conditions involving high-
temperature electric arcs, dynamic melt pool behavior, and continuously evolving deposition
geometry. Moreover, the existing frameworks often rely on single-channel data inputs such as force
feedback or thermal signatures, whereas WAAM requires the integration of multiple process
parameters, including voltage, current, wire feed rate, arc length, speed, and bead geometry. These
parameters vary in temporal resolution, demanding a more advanced learning approach. In addition,
current federated models assume uniform architectures across clients and do not support local
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personalization, making them unsuitable for systems where each client observes different signal
domains.

2.2. Federated Learning in Smart Manufacturing

FL plays a critical role in enhancing predictive maintenance, anomaly detection, and process
optimization while maintaining data security. The nature of SM systems [25], which often involve
interconnected devices and sensors across multiple locations, makes FL an ideal solution for
decentralized data analysis and model training.

For example, at a smart factory/enterprise level, Aggour et al. propose a federated multimodal
Big Data storage and analytics platform that integrates diverse datasets from the additive
manufacturing lifecycle, including material properties, design models, process parameters, sensor
data, and inspection results, enabling scalable, unified access for advanced analytics and
visualization to optimize manufacturing processes and accelerate technology maturation [26]. Then
again, Huong et al. proposed FedeX, an FL-based explainable anomaly detection architecture for
industrial control systems, which integrates Variational Autoencoders, Support Vector Data
Description, and Explainable Al FedeX achieves exceptional performance with up to 1 Recall and
0.9857 F1-score on SWaT data, outperforms 14 existing methods, and is both fast and lightweight for
real-time edge deployment [27]. Also, Dib et al. developed an FL methodology to predict defects in
sheet metal forming by training machine learning models locally on client data and aggregating
model weights using federated averaging, achieving similar accuracy to centralized neural networks,
demonstrating its reliability and potential for preserving data privacy while enhancing collaboration
in SM environments [28]. Chen et al. implemented a federated Markov chain Monte Carlo method
with delayed rejection (FMCMC-DR) for digital twin-assisted federated analytics, achieving superior
global distribution estimation with 50% and 95% contour accuracy and faster convergence compared
to the Metropolis-Hastings and random walk MCMC algorithms, enhancing distributed data privacy
and resource utilization in SM [29].

Moreover, for, IloT implementation, Kanagavelu et al. proposed a Two-Phase MPC-enabled FL
framework that reduces communication costs and enhances scalability by electing a committee for
privacy-preserving model aggregation, integrated into an IloT platform for SM, demonstrating
superior model accuracy and execution efficiency compared to traditional peer-to-peer frameworks
[30]. In addition, Gao et al. detailed RaFed, a resource allocation scheme for FL in IIoT systems, which
uses a heuristic algorithm to reduce training latency by 29.9% compared to state-of-the-art methods,
achieving a balance between interference and convergence time through optimal device and resource
allocation in static wireless networks [31].

Furthermore, applications in Industry 4.0 are demonstrated by Brik et al. developed a federated
deep learning-based monitoring tool that predicts disruptions due to resource localization errors in
real-time using Fog computing, achieving low latency, high prediction accuracy, and efficient task
rescheduling via Tabu search, outperforming traditional methods in terms of QoS, total tardiness,
and makespan [32]. Similarly, Kusiak et al. proposed the XRule algorithm for generating user-defined
explicit rules and introduced federated explainable AI (fXAI) to enhance model transparency and
insight. Their approach allows for user control over rule characteristics and leverages fXAI to
discover new model parameters and insights, supported by numerical examples and industrial
applications [33]. Likewise, Putra et al. detailed a FL-enabled digital twin architecture for smart
additive manufacturing, particularly 3D printing, using a CNN-based model for fault detection. The
model achieved an 8% increase in accuracy compared to other deep learning models while
maintaining low training times, and demonstrated low latency, averaging 1026.16 ms between the
physical printer and the digital twin platform [34]. Additionally, Verma et al. detailed a FL-enabled
deep intrusion detection framework for SM, utilizing a hybrid CNN+LSTM+MLP model for detecting
cyber threats. The framework achieved high accuracy (up to 99.447%) and ensured data privacy using
Paillier encryption for secure communication, outperforming other state-of-the-art methods while
addressing FL-based attack concerns [35].
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The federated approach also included by Sun et al. implemented the Sustainable Production
concerned with External Demands (SP-ED) method, integrating FL and blockchain to enhance energy
production and distribution. Their approach achieves an 11.48% improvement in sustainability,
14.65% better flaw detection, and reductions in modifications and detection time, compared to
DDSIM, demonstrating effective validation and optimization of energy supply-demand processes
[36]. Yang et al. developed a client selection method for FL that uses model parameter variations and
graph theory to filter participants, reducing the impact of data heterogeneity. Their approach
improved accuracy by 0.93% to 2.65% compared to baseline methods and mitigated the effects of
heterogeneity, demonstrating enhanced training efficiency in SM scenarios [37]. Zhang et al.
developed DetectPMFL, a privacy-preserving FL approach that uses Cheon-Kim-Kim-Song
homomorphic encryption to protect data and a detection method to handle unreliable agents.
Evaluated on F-MNIST and CASE WESTERN datasets, DetectPMFL shows superior robustness and
accuracy compared to traditional methods, with improved performance in the presence of unreliable
agents [38].

Discussion above showed, FL being applied in various SM systems to support decentralized
fault detection, equipment health monitoring, and distributed control optimization. While these
frameworks offer privacy-preserving analytics across factory networks, they often rely on generic
architectures that do not incorporate domain-specific process behaviors. Additionally, most
implementations do not analyze round-wise convergence metrics like global loss trends or client
divergence, making it difficult to evaluate training stability during deployment. Aggregation
strategies also remain static, ignoring variability in process conditions, signal quality, or operational
complexity across clients. This limits the adaptability of the global model to high-variance systems
such as WAAM.

2.3. Federated Learning in Secure Comminucation

Security is a critical concern in FL, especially when applied in industrial settings like AM and
SM, where data privacy and integrity are paramount. FL’s decentralized nature introduces unique
challenges and opportunities in ensuring secure model training and data protection. Such as,
Ranathunga et al. developed a Blockchain-based decentralized FL framework with a hierarchical
network of aggregators to handle low-quality model updates, ensuring security through additive
homomorphic encryption and off-chain credibility verification using trusted execution
environments, thus minimizing convergence time and latency, and maximizing accuracy and fairness
across predictive maintenance and product inspection use cases [39]. Again, Kuo et al. developed a
privacy-preserving FL framework using Fully Homomorphic Encryption (FHE) to perform
computations on encrypted data, ensuring data privacy across segregated data ownership scenarios
in SM. Their approach demonstrates superior performance in protecting against cyber-attacks while
maintaining predictive model accuracy, as validated through real-world case studies [40].

In addition, Li et al. detailed a privacy-preserving and Byzantine-robust FL. scheme (PBFL)
designed for Industry 4.0, leveraging agglomerative hierarchical clustering for robust aggregation
and 2-party computation (2PC) protocols to enhance security and efficiency. Their approach achieves
significant runtime reductions while maintaining accuracy, even with up to 49% malicious
participants, ensuring effective protection against Byzantine attacks [41]. Zhang et al. proposed a joint
optimization framework for FL in industrial internet of things (IloT) systems, balancing learning
speed and cost by optimizing edge association, resource allocation, and transmit power. Their
method, which involves decomposing the problem into three subproblems and using an alternating
optimization algorithm, demonstrates improved learning performance and efficiency, effectively
managing the tradeoff between speed and cost [42].

Secure FL, as deliberated above, has been widely adopted in domains where data privacy is
critical, including healthcare diagnostics, industrial IoT, and sensor-based monitoring. These systems
commonly rely on encryption protocols, differential privacy, or trusted execution environments to
protect information during model transmission and aggregation. However, existing methods rarely
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incorporate embedded security mechanisms such as reversible data hiding or image-based parameter
encoding into the training pipeline itself. This limits their ability to verify integrity or support tamper-
evident learning in sensitive industrial environments. Furthermore, most aggregation strategies
assume idealized or balanced data distributions and are not resilient to adversarial updates that can
arise under non-IID conditions typical in manufacturing. Without mechanisms like outlier
suppression or similarity-based filtering, a single corrupted client can distort the global model.
Additionally, current frameworks depend heavily on trusted aggregators and lack tamper-proof
audit trails to verify the source and structure of incoming updates.

3. Proposed Methodology

In order to address the limitation in the existing literature, the proposed methodology is
designed to meet the critical need for secure learning across distributed WAAM setups, where each
unit operates under unique conditions and generates heterogeneous process data. These datasets,
which include time-dependent electrical signals, geometrical bead representations, and high-frame-
rate visual sequences, cannot be pooled due to confidentiality and data ownership constraints.
Therefore, this architecture adopts an FL framework that allows each WAAM client to independently
train local models using its own process data while contributing to a shared anomaly detection model
through periodic encrypted updates. The approach ensures that no raw data leaves the local
boundary and that every site maintains control over its data assets. As shown in Figure 1, the
architecture initiates with individual data acquisition and training at the client nodes, followed by
secure transmission of encoded model parameters, iterative model fusion under privacy-preserving
protocols, and redistribution of the aggregated model for continued local refinement.
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Figure 1. Proposed framework of the FL. model.
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e Local Data Collection and Preprocessing: Each WAAM client acquires structured and
unstructured process data, which are filtered, normalized, and aligned temporally to construct
feature matrices suitable for model training.

e Local Model Training: Clients train sensor-specific models on preprocessed data to learn
localized anomaly patterns without transmitting raw information externally.

e Model Aggregation via FL: Encrypted local model parameters are securely transmitted and
aggregated into a global model using privacy-preserving fusion techniques.

e Global Model Update: The aggregated model updates are redistributed to clients, enabling them
to enhance their local inference capabilities based on collective knowledge.

e [teration and Model Convergence: The training-aggregation-update cycle repeats multiple times
until the model achieves convergence across all validation criteria.

o Security and Privacy Mechanisms: A dual-layered protection scheme combining reversible
encryption and differential privacy ensures confidentiality and resistance to inference attacks.

e Model Deployment and Inference: Once converged, the global model is deployed locally at each

client for real-time anomaly detection and process monitoring.

The architectural design starts at the client level, where each WAAM unit functions
autonomously as an isolated training node equipped with domain-specific sensing equipment.
Depending on the physical configuration and instrumentation, clients acquire distinct classes of data,
ranging from high-frequency current-voltage signals and travel speed signals to HDR imaging for
bead geometry and arc characterization. These sources present variations not only in temporal
samples and statistical structure but also in signal integrity and failure patterns. To accommodate
this diversity, each client implements a tailored data curation pipeline involving time-based
resampling, filtering, and segmentation. For time-series data, statistical features such as root mean
square, kurtosis, and spectral entropy are computed over sliding windows. At the same time, image
streams undergo contrast enhancement, region-of-interest isolation, and dimensionality reduction
via pretrained encoders. The resulting feature matrices are fed into neural network architectures
tailored to the data type, including convolutional encoders for visual patterns, long short-term
memory (LSTM) blocks, or gated recurrent unit (GRU) blocks for sequential signals. This design
ensures each client captures anomalies specific to its operational domain while preserving
heterogeneity within the federation.

Following local training, each client generates model parameter updates encoded in a secure
format to ensure privacy during transmission. Before dispatch, the gradient tensors undergo
differential excitation using calibrated Laplacian noise, hiding sensitive training signatures while
retaining representational fidelity. These excited tensors are then embedded using reversible data
hiding techniques, which allow precise restoration of the original model update post-decoding
without information loss. Once encoded, the parameter sets are exchanged through a secure channel
using integrity-preserving communication protocols. At the aggregation layer, the encrypted updates
are decoded, verified for consistency, and fused into a global model through federated averaging
weighted by client-specific data contributions. This aggregated model is redistributed to the clients,
serving as a refined beginning for subsequent local updates. The process iterates until convergence
is detected through global stability in loss metrics and local validation scores. Such iterative
synchronization across non-identical clients requires a rigorous and sensor-aware data processing
framework at the client level, which is presented in detail in the following.

3.1. Multi-Source Data Collection and Processing

The WAAM process generates diverse sensor data, including high-frequency current and
voltage signals, slower travel speed and wire feed rate readings, and vision-based bead and arc
imagery, that differ in sampling rates, resolution, and statistical properties. To harmonize this
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heterogeneous data for federated training, each client builds a custom preprocessing pipeline.
Structured signals are filtered, normalized, and resampled onto a unified temporal grid, then
segmented into overlapping windows from which descriptive features (e.g., root mean square (RMS),
kurtosis, spectral entropy) are extracted. These features capture steady-state behavior and transient
anomalies, ensuring that input data fed into local models is consistent, representative, and aligned in
time.

For clients with visual data, image frames are processed using grayscale conversion, contrast
enhancement, and region-of-interest isolation to highlight weld features, such as bead width and arc
boundaries. Pretrained convolutional encoders then extract fixed-length feature vectors, which are
synchronized with structured sensor data via timestamp matching. The resulting fused feature
matrices are semantically rich and temporally coherent, enabling effective anomaly learning. This
dual-channel preparation, combining signal-based and vision-based approaches, ensures that each
client independently constructs a reliable training set tailored to its sensor configuration, laying the
groundwork for stable federated learning across non-identical WAAM environments.

3.2. Federated Secure Channel

Once local training is complete, each WAAM client must transmit its model updates to the
federation without exposing sensitive information. However, sharing model parameters introduces
several integrity risks that can compromise the entire learning process. One major concern is model
inversion, where adversaries attempt to reconstruct the client’s training data by analyzing gradients.
Gradient leakage is also a threat, particularly when signals like current or voltage are sparse and
contain identifiable operational patterns. Moreover, adversarial clients may inject poisoned updates
that degrade the global model or distort anomaly boundaries. These vulnerabilities are exacerbated
by the uneven data distributions across WA AM sites, which increase the likelihood that unique client
patterns become identifiable during aggregation. Therefore, the transmission pipeline must protect
against unauthorized access, preserve the fidelity of model updates, and prevent any attempt to infer
client data or interfere with training. To meet these challenges, the system employs a dual-layer
security framework that combines reversible encryption and privacy-preserving perturbation. This
ensures that model updates remain protected during transfer and that any tampering or
manipulation can be detected and corrected before aggregation. These safeguards are critical in
maintaining trust and consistency throughout the FL process.

To ensure secure and reversible transmission of model updates, each client applies a two-stage
encoding process that combines differential privacy and reversible data hiding. The first stage
involves agitating the local model gradients or weight tensors using calibrated Laplacian noise, which
masks the contribution of individual training samples. This step provides formal privacy guarantees
by ensuring that even if an update is intercepted, it cannot be traced back to specific input patterns
or process states. In the second stage, the noise-added tensors are embedded into image-like
structures using reversible data-hiding techniques. These methods encode the encrypted tensors into
the least significant bits of pixel matrices, allowing for the full restoration of the original model
parameters after decoding without any loss of precision. This is especially useful for maintaining the
floating-point resolution required for aggregation. Additionally, a watermarking signature is
embedded within the payload as a tamper-detection mechanism, which enables clients and
aggregators to verify the authenticity of received updates. The advantage of this approach is that it
enables high-capacity, low-distortion embedding that is both reversible and secure. As a result, the
shared updates are protected from both passive inference and active manipulation, allowing only
valid and untampered updates to enter the aggregation cycle.

Beyond protecting the content of model updates, the transmission setup must also ensure that
communication occurs through secure and verifiable channels. To enforce this, each client operates
under a network security framework that monitors outbound and inbound parameter flows for
unusual patterns. Packet inspection routines are configured to detect anomalous payload sizes,
irregular transmission intervals, or unauthorized access attempts, all of which may indicate
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tampering or injection attacks. Each outgoing model update is tagged with a cryptographic signature
and a timestamp to enable verification upon arrival. These signatures are checked before any
aggregation occurs, ensuring that only authenticated updates contribute to the global model. In
addition, all update histories are logged in an append-only local registry, which serves as a trail in
case of disputed behavior or rollback attempts. This logging also supports traceability for update
provenance and client accountability. Together, the layered protection scheme, which encompasses
noise-based privacy, reversible embedding, and network validation, ensures that the federated
system can operate reliably across distributed WAAM environments. With secure exchange
mechanisms in place, the next challenge lies in tailoring local models that can effectively learn from
the prepared data streams while remaining compatible with the global aggregation process.

3.3. Local Client Model Development

Each WAAM client deals with unique data modalities, such as high-frequency time-series
signals (e.g., current, voltage, speed) or image-based features (e.g., bead geometry, arc profiles),
which demand tailored neural network models. Clients with visual data use convolutional encoders
to extract spatial patterns, while those processing sequential signals rely on LSTM or GRU
architectures to capture temporal dependencies. For clients handling both data types, feature vectors
are fused and passed through fully connected layers. To ensure stable training and prevent
overfitting, standard techniques such as dropout, batch normalization, and gradient clipping are
applied. Validation is monitored in real time to stop training once loss and accuracy stabilize. This
design guarantees that models are lightweight, architecture-compatible with FL, and sensitive to each
client’s unique operational domain.

To support secure federation, each client maps its model outputs into a shared representation
space via dimensionality-matching layers. Before transmission, model parameters are perturbed with
calibrated Laplacian noise to ensure privacy and embedded into image-like structures using
reversible data hiding, thereby preserving both precision and security. Cryptographic signatures and
local logging ensure the authenticity and traceability of each update. These encoded updates, once
transmitted through secure channels, enable consistent and interpretable aggregation at the server
side. This localized yet interoperable approach ensures that every client contributes meaningfully to
the global model while preserving privacy, architectural flexibility, and robustness in WAAM-
specific anomaly detection.

3.4. Global Server Model Aggregation

Aggregating updates from heterogeneous WAAM clients poses challenges due to varying data
types, sample sizes, and model dynamics. Simple averaging can bias the global model toward clients
with more data or dominant feature patterns, reducing the system’s ability to generalize. To address
this, the server initiates a selective aggregation process that assesses the alignment of each client
update with the federation’s latent space using similarity metrics such as gradient direction and
statistical distribution. Outliers or inconsistent updates are down-weighted or excluded to enhance
robustness. Updates are decoded from their reversible data-hiding format, verified for authenticity
via cryptographic signatures, and then projected into a common latent space to reconcile architectural
differences. The server calculates update weights based on historical reliability and consistency,
aggregating the remaining updates using a strategy that emphasizes diversity and stability. To
support local adaptation, client-specific personalization layers are added before redistributing the
refined global model.

Throughout training, the server monitors convergence by tracking validation metrics and loss
stabilization across rounds. If progress plateaus, aggregation is halted to conserve resources and
prevent overfitting. The system dynamically adjusts communication schedules based on client
availability and data shifts, incorporating explainability tools such as feature attribution to enhance
transparency and operator trust. Final global models are securely redistributed with privacy-
preserving guarantees intact. Overall, this aggregation strategy ensures a secure, adaptive, and

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2394.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2025 d0i:10.20944/preprints202507.2394.v1

10 of 36

generalizable federated learning cycle, enabling effective anomaly detection in distributed WAAM
systems under non-IID conditions.

4. System Development Architecture

To validate the proposed FL framework outlined in Section 3, a scaled implementation was
developed to serve as a system-level proof of concept. This implementation demonstrates the end-to-
end realization of a secure, distributed anomaly detection pipeline tailored for WAAM environments.
Each component of the architecture, from sensor-based data acquisition and preprocessing to
reversible data embedding, client-specific model training, and federated coordination, was
constructed and tested using real process data captured under controlled deposition scenarios. The
setup simulates an eight-client federated ecosystem, where each client represents a distinct subset of
process signatures and sensor capabilities, reflecting the variations encountered in practical WAAM
systems. By recreating the logical sequence of the methodology in an experimental setting, this
section validates the functional interoperability of each module. The following will describe the
development pipeline in chronological order, beginning with synchronized data collection and
temporal alignment, followed by the implementation of reversible data hiding, local model
configuration and training per client, and concluding with the design and operation of the FL
framework.

4.1. Data Collection and Preprocessing

To train federated client models effectively, a well-structured and synchronized dataset is critical
for achieving meaningful convergence across distributed nodes. In this study, a GTAW-based
WAAM system was used to collect electrical signals and HDR video of the deposition process. Using
computer vision techniques, additional process features, such as torch speed, feed angle, and arc
length, were extracted from the video. All data were timestamped and temporally aligned to support
LSTM-based time-dependent modeling. The experimental setup consisted of a six-axis Fanuc
ArcMate 120iC robot with an R-30iA controller and a Miller Dynasty 400 GTAW power source,
allowing for precise control of deposition parameters [43]. A Weldvis HDR camera captured the weld
pool and feed wire under varying lighting conditions. Low-carbon steel was used as the feedstock,
and consistent wire feeding was maintained across trials. Two controlled experiments simulated
normal and abnormal conditions: one with stable parameters (160 A, 20 cm/min travel speed, 160
cm/min feed rate), and another with altered settings (140 A, 40 cm/min, 180 cm/min) to induce defects.
These trials provided the basis for binary labeling of the dataset. All sensor data were continuously
and synchronously recorded, providing temporally and spatially rich inputs for federated LSTM-
based anomaly detection.

First, the electrical data comprising current and voltage signals was collected using a Miller
Insight ArcAgent Auto sensor, which samples at a temporal resolution of 0.10 seconds, ensuring
sufficient granularity for capturing dynamic fluctuations during deposition. Raw signal traces often
contain inconsistent entries due to arc instability at ignition and extinction; therefore, the initial and
terminal segments of the sequence were cleaned by removing frames with near-zero values using a
binary thresholding scheme. Furthermore, the recorded timestamps from the current-voltage sensor
were used as reference markers for synchronizing all other sensor data, including video-based speed
and geometric parameters. A significant preprocessing step involved detecting and eliminating
anomalous data points introduced by sensor latency and transient disruptions, such as those
occurring during rapid parameter transitions or signal dropout. Outliers were identified using
statistical filters and replaced via interpolation to preserve temporal continuity. These cleaning
procedures were essential to mitigate noise-induced irregularities that could degrade model
generalization. The resulting voltage and current time-series data, free of noise and aligned with
video-derived timestamps, form a reliable and temporally coherent input to the LSTM classifier for
each respective client model.
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Second, both normal and abnormal deposition sequences under controlled conditions, as are
depicted in Figure 2(a). Each video stream was decomposed into individual frames, with the frame
per second (FPS) extracted to enable time dependency. Following frame extraction, grayscale
conversion was applied to reduce computational overhead, and binary thresholding was used to
isolate high-intensity regions corresponding to the welding arc. Contour detection was performed on
each thresholded frame, and the largest contour, typically representing the arc plasma, was selected
for centroid computation. Spatial moments of the contour were used to determine the centroid
position (x.,y.) per frame, which represents the torch’s instantaneous spatial location. The welding
speed v was then estimated by computing the Euclidean displacement of the centroid between
consecutive frames and scaling it to physical units using the FPS and a spatial calibration factor o =
0.1 mm/pixel, as in Eq. 1.

v= \/(xt+1 = %)%+ (V41 — Y0)* X FPS X « (]i;l
where (x,yy) and (X¢+1,Yt+1) are the centroid positions at consecutive time steps. The entire process
of which has been shown in Algorithm 1. These speed values were paired with the corresponding
centroid coordinates and timestamped at 0.10-second intervals to align with the current-voltage
measurements. Given that real-world sensor fusion requires time synchronization, the centroidal
position and derived speed were matched and mapped onto the current-voltage timestamp axis to
ensure time-based coherence across data types.

Finally, the detection of part parameters; specifically arc length and feed angle; was conducted
using computer vision techniques applied to HDR video frames, allowing precise geometric
characterization of the welding process, as depicted in Figure 2(b). Arc length, denoted as L,,., was
estimated by measuring the vertical spread of the arc plasma region in the image. First, each frame
was converted to grayscale, and a fixed binary threshold of intensity 190 was applied to isolate the
arc region. The vertical extent of the arc was computed by identifying the first and last rows
containing non-zero pixels in the binary image, and the difference between these rows provided the
arc height in pixels. Assuming a vertical spatial resolution of 100 pixels per millimeter, the arc length
was computed as Eq. 2.

o Ymax — Ymin (Eq

arc 100 2)

where y,,, and y,;, represent the bottommost and topmost positions of the arc segment,
respectively. For feed angle estimation, a region of interest (ROI) was cropped around the feed wire
to isolate the visible wire path. The cropped segment was preprocessed with grayscale inversion,
contrast normalization, and multi-stage Gaussian blurring to enhance edge features while
suppressing noise. Canny edge detection was applied to extract the wire boundaries, followed by a
probabilistic Hough Line Transform to detect straight line segments representing the wire
orientation. The angle of each line was computed using its slope and averaged over all detected lines
to yield the feed angle 6y, by Eq. 3.

N . . Eq.
Oed = lz tan™! Ym0 (3?
'feed N . x§ — xi
=1
Each value of L, and 6, was timestamped and interpolated to match the current-voltage time in

Section 4.2, ensuring multi-data temporal alignment. Heuristics of determining L, and 6, was
shown in Algorithm 2.
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Figure 2. Detection process for (a) speed and centroid position and (b) feed angle and arc length.

Algorithm 1: Centroid and Speed Extraction from Video

Input: V: Video file, P: Output CSV file

Output: CSV with frame-wise timestamp, centroid, speed, and label
1 Function ExtractCentroidAndSpeed(V, P):

2 Open video V and extract fps
3 frame_id + 0
4 prev_cz,prev_cy < None, None
5 Initialize results < ||
6 while frame available do
7 Read frame and convert to grayscale
8 Apply thresholding and extract contours
9 if contours exist then
10 Select largest contour ¢
11 Compute moments M of ¢
12 if Moy # 0 then
13 cr %ﬁ cy %::f]
// Estimate speed based on centroid displacement
14 speed 0
15 if prev_cz, prev_cy exist then
16 dz « cx — prev_cx, dy < cy— prev_ey
17 distance < \/dxz? + dy?
18 | speed %‘Ui // Convert px to mm/s
19 Update prev_cz, prev_cy « cx,cy
20 timestamp < ‘%
21 Append [frame_id, timestamp, cx, cy, speed, label| to results
22 frame_id < frame_id + 1
23 Save results to CSV file P with header
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Algorithm 2: Arc Length and Feed Angle Extraction

Input: I: Segragated frames

Output: Feed angle o (degrees), Arc length L (cm)
1 Function ProcessImage(/):

2 Load RGB image from path I

3 if image is empty then

4 L return None, None

// Arc Length Estimation

5 Convert to grayscale G « Gray([)

6 Apply binary threshold: T «- Threshold(G, 190)
7 Find arc region R « {i | max(T[i,:]) > 0}

8 if |R| > 1 then

9 | L round((Rena — Ritart)/100,1)

// Feed Angle Estimation

10 Crop region of interest ..o, + 1[350:450, 200:450]
11 Resize Ircgizea < Resize(lerop, 250 x 250)

12 Convert to grayscale G « Gray(/ esized)

13 Enhance contrast:

G’ + convertScaleAbs(Invert(GaussianBlur(G)))
14 Apply edge detection: E < Canny(G’,75,130)

15 Detect lines: L; - HoughLinesP(E)

16 if L; is not empty then

17 foreach line (x1,y1,22,y2) € L; do

18 Compute slope 6 = atan2(ys — yy, 22 — x1)
19 Append |deg(f)| to a-values

20 « < round(mean(a—wvalues), 1)

21 return o, L

Following the synchronization and preprocessing of sensor-derived and vision-based process
features, the next step involved constructing labeled datasets to enable supervised training across
federated clients. Each deposition video was independently reviewed by two WAAM domain
experts, who visually identified normal and abnormal deposition sequences based solely on unbiased
observation of the bead morphology. These annotations were mapped to exact frame timestamps and
aligned with corresponding multimodal feature sets. The labeled data included temporally
synchronized current and voltage signals obtained directly from sensors, as well as centroid position
and welding speed, which; although part of the same labeled dataset; were extracted using a frame-
wise computer vision pipeline. Each instance was assigned a binary class label, with ‘0" denoting
normal and ‘1" representing abnormal deposition. Separately, geometric parameters such as arc
length and feed angle matched to their respective timestamps and labeled in the same manner. These
two labeled sources were distributed across eight client models with distinct input combinations, as
described in Section 4.3. To match non-uniform industrial data availability, clients received varying
numbers of samples, ranging from 216 in Client 1 to 1692 in Client 3 shown in Table 1, while a
consistent 75:25 train-test partitioning was applied across all clients.

Table 1. Train and test data distribution across the clients.

Client Train Data Test Data

1 216 72

2 348 116
3 1692 564
4 300 100
5 348 116
6 348 116
7 348 116
8 348 116

4.2. Reversible Data Hiding

The reversible data hiding in the encrypted domain (RDHE) module, illustrated in Figure 3, is
designed to embed high-resolution, WAAM process parameters (current, voltage, travel speed, arc
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length, and feed angle) into visual process images without introducing irreversible distortion similar
to [44]. The process begins with the acquisition of a weld image during the deposition cycle, which is
spatially divided into n xm Each sub-block is decomposed into its RGB planes, denoted as

c ZM*W serving as the embedding substrates. These channels are scanned in a pixel-wise

IR'IG'IB
raster order, and low-gradient regions, determined via a Sobel and Laplacian filter threshold, are
identified as candidate embedding zones to avoid perceptual degradation at high-intensity edges
near the weld pool. The payload P, which encapsulates the serialized process parameters in 8-bit
ASCII format, is then converted into a binary stream b = by, b,,...,b;, appended with a fixed
delimiter pattern “=====" for stream termination. The embedding operation modifies the two least

significant bits of selected pixel values I.(i,j) usin Eq. 4.
N LA Y)) 1 (Eq.
16GJ) = |57 - 4+ bin™ (baie, bai) 1
4 4)
where, ¢ € {R,G,B} and bin"denotes the inverse binary-to-decimal mapping. This substitution
yields the encoded image I, which visually preserves the structural texture and colorimetry of the

original image I, while encapsulating process intelligence at a pixel level.

Data Preparation

Channel =3
(S - ) IR ——
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Raw Image —
_!‘] ~char
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Figure 3. Reversible data hiding in the encrypted domain scheme.

Before transmission, a distortion verification stage evaluates the peak signal-to-noise ratio
(PSNR) and mean squared error (MSE) between [ and I* to ensure that the embedding-induced
perturbation remains below a perceptual threshold. In parallel, a digest of the unmodified image is
embedded within P, enabling post-hoc verification of image integrity upon decoding. This
interfaced mechanism supports both synchronous and asynchronous client-server data retrieval and
can be used for flexible integration into edge-deployed WAAM control systems and cloud-
aggregated analytics pipelines.

Decoding is initiated by retrieving the stored image and its associated metadata. The system re-
scans the image in accordance with the spatial and channel-wise offset map, extracting the embedded
two-bit sequences from I;(i,j) using Eq. 5.

(bag-1,b2k) = lez(I:(i:j)) (Eq.
5)

The aggregated binary stream is parsed until the terminator sequence is identified, at which
point it is deserialized to recover the original textual parameter payload. Simultaneously, the image
is restored to its original form by reconstructing the higher-order bits and reinserting preserved LSBs
from the reversible buffer using Eq. 6.
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IGij) = {—I: ¢ )J 4+ R(0,)) o

where R_(i,j), denotes the retained LSB snapshot prior to embedding. This guarantees exact recovery
of I, and ensures that all embedded WAAM parameters are faithfully restored.

The RDHE pipeline can support modular deployment and real-time streaming, enabling
continuous, in-situ encoding of high-speed weld monitoring feeds in edge-mounted WAAM systems.
As shown in Figure 3, it decouples the encoding and decoding layers, facilitating scalable client-
server interaction across a federated network of WAAM nodes. The encoded image functions dually
as a visual object and a secure telemetry carrier, allowing seamless integration with FL workflows.
This process ensures that WA AM-specific process data are embedded, transported, and recovered
without compromising confidentiality or signal integrity.

4.3. Client Models Development

Each federated client in the WAAM system is configured to train a local sequence-based
classifier using a shared architectural backbone composed of an LSTM encoder followed by a linear
classification head. The adopted model, referred to as LSTMClassifier, is designed to process fixed-
length temporal sequences and is parameterized by an input feature dimension of three and a hidden
state size of 256 as described by Algorithm 3. The recurrent layer is implemented to, capture dynamic
time dependencies across successive observations within each client’s local sensor stream. The
hidden layers extracted at the final time step are passed through a fully connected layer with a single
output neuron, representing the logit for binary classification between normal and abnormal
deposition states. The input to each model is a tensor of shape [N, 5,3], where N is the number of
sequences, 5 is the sequence length, and 3 is the dimensionality of the client-specific feature set. To
preserve the chronological structure of the input signals, overlapping temporal windows are
constructed using a sliding frame technique, enabling the model to learn short-term temporal
variations crucial for identifying anomalous transitions in WAAM. Although the core model
structure remains identical across all clients, the feature spaces differ, reflecting the heterogeneous
nature of data distributed across the sensor network. During the federated training phase, only the
parameters of the shared LSTM layer are uploaded to the federated server, while the final fully
connected layer is retained locally when using personalization strategies such as FedPer. This ensures
that each client maintains its specialized decision boundary tuned to its own feature distribution
while contributing to the globally shared temporal encoder.

Algorithm 3: Binary Classification Using LSTM Sequence Encoding

Input: d: Input feature dimension, h: LSTM hidden state dimension
Output: Logit prediction § € R for binary classification
1 Function LSTMClassifier(z € REXT*d);

// Initialize layers
2 Define LSTM with input size d, hidden size h, batch-first mode
3 Define linear projection: fc: R* — R
// Forward pass
4 Pass input 2 through LSTM: (/(h,,) ) = LSTM(z)
5 Extract final hidden state: z = h,[-1] € REX"
6 Compute output: § = fc(z)
7 return gy

The eight clients participating in the FL system are differentiated based on the data types of their
input features, each reflecting a unique sensor perspective on the WAAM process, to replicate real-
world muti-enterprise WAAM process. Clients 01 to 04 form the first cluster of diversity, each
focusing on a distinct aspect of process monitoring. Client 01 utilizes average voltage, average
current, and normalized timestamp as its input features, emphasizing electrical signal dynamics and
temporal progression during deposition. The timestamp is normalized to [0,1] to maintain scale
consistency and prevent temporal magnitude from dominating the input. Client 02 incorporates
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spatial centroids of the arc region, x and y coordinates, together with arc voltage, linking arc
geometry with instantaneous electrical behavior. This fusion allows the model to learn
spatiotemporal correlations between arc spread and voltage fluctuations. Client 03 extends spatial
tracking by combining welding speed with centroid coordinates, thereby encoding motion-induced
variations and spatial drift, which are indicative of instability in torch trajectory. In contrast, Client
04 is entirely geometric and focuses on arc length, feed angle, and timestamp. These features are
extracted using vision-based analysis of HDR frames and represent structural characteristics of the
weld bead and wire orientation. Prior to training, Client 04 applies standard scaling normalization to
arc length and feed angle due to their varying physical scales and to ensure that both features
contribute equally during gradient updates. For all clients, data is converted into five-step
overlapping sequences using sliding windows, such that the i sequence includes time steps [i,i +
1,...,i+ 4] with the label taken from the final frame. This setup enables the model to learn not only
the temporal evolution of the signal but also localized transitions that may signify emerging defects.

Clients 05 through 08 extend the representational diversity of the federated setup by combining
hybrid features from both electrical and kinematic modalities, offering complementary perspectives
for anomaly detection, from diverse enterprises. Client 05 utilizes speed, current, and voltage as its
feature set, capturing the joint dynamics of mechanical motion and electrical load fluctuations, which
are especially useful for detecting disruptions caused by arc instability or inconsistent travel. Client
06 incorporates timestamp, speed, and current, embedding explicit temporal progression into the
sequence alongside instantaneous physical measurements; this configuration is particularly useful
for modeling time drift and time-aligned degradation. Client 07 is structurally similar, replacing
current with voltage, allowing the model to capture high-frequency variations in power delivery
relative to travel speed and timestamp. In contrast, Client 08 combines current with spatial position
(centroid_x and centroid_y), enabling a unique fusion of electrical energy and localized arc trajectory.
For all clients, the extracted feature sequences are sampled at 0.10-second intervals and interpolated
when necessary to match the reference timestamps derived from the current-voltage signal, ensuring
multimodal synchronization. The resulting sequence tensor, uniformly shaped as [N, 5, 3], preserves
the order and spacing necessary for LSTM-based temporal learning. Training data is fed into Data
Loader objects with a fixed batch size of 32, preserving mini-batch stochasticity while ensuring
consistent time structure within each sequence. The use of timestamp alignment across all clients
ensures that each local model operates within a temporally harmonized view of the process, even
though the input features vary. This deliberate heterogeneity across Clients 05 to 08 introduces
robustness into the global model by allowing it to encode diverse forms of anomaly indicators,
ranging from spatial distortion to electrical jitter, thereby strengthening the generalization capability
of the federated LSTM encoder.

During local training, each client executes a full optimization cycle using its data-specific
sequences, leveraging a recurrent learning architecture tuned for temporal classification, described
by Algorithm 4. The forward pass involves processing each input sequence through the LSTM layer
to extract temporal features, followed by a projection through the fully connected classification head,
which produces a scalar logit for binary classification. The loss is computed using the Binary cross-
entropy loss function, which integrates sigmoid activation and cross-entropy into a numerically
stable formulation suitable for binary output. For optimization, all clients adopt the Adam optimizer
with a learning rate of 0.001, and gradient norms are clipped to a maximum of 1.0 to prevent
instability from exploding gradients. When the FedProx strategy is activated, a proximal
regularization term is added to the loss function to penalize deviation from the received global
weights, defined as §|w - wgloba,|2, where p = 0.01 acts as the regularization coefficient. This term
encourages each client’s update to stay within a bounded neighborhood of the global model, thus
mitigating divergence due to non-IID data. After training, only the LSTM encoder weights are shared
with the server, while the classifier head remains local when FedPer is used, thereby enabling client-
specific decision boundaries. Evaluation is performed by thresholding the sigmoid-activated outputs
at 0.5 and computing performance metrics including accuracy, precision, recall, F1-score, and ROC-
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AUC, as described by Algorithm 5. Each client logs its evaluation metrics and confusion matrix for
each round, enabling fine-grained analysis of local generalization. These logs also contribute to the
aggregated global metrics stored on the server. Collectively, this federated training and evaluation
pipeline ensures that each client contributes to a robust global temporal encoder while maintaining
architectural consistency and data privacy, which are critical for secure, distributed WAAM anomaly
detection.

Algorithm 4: Federated Client-Side Training Procedure

Input: D: Local dataset (X;,;), S: Sequence length, 7: Learning
rate, Wyiopar: Global LSTM weights, ji: FedProx coefficient
(optional)

Output: Wj,ea: Updated LSTM weights (excluding head if FedPer)

Data: Batch size, feature dimensionality, and sequence tensors

1 Function train_client (D, S,n, Wgiobal, 1)

2 Preprocess D to normalize features and construct overlapping
sequences of length S

3 Form tensors X € R"*S*d and y € R®

4 Initialize model fp + LSTMClassifier(d, 256)

5 Replace LSTM weights with Wiopa

6 Define loss function L£,,,i, + BCEWithLogitsLoss()

7 Initialize optimizer O + Adam( fy, 1)

8 foreach minibatch (X,y3) in X do

9

Vo  fo(Xsp) // Forward pass
10 Compute loss Lain = BCE(Ys,ys)
11 if FedProz is enabled then
12 L Lproz = 4§ 3, 10 — Wtobat,i[|*
13 Ltotal = Limain + Lproz
14 else
15 I_ Ltotal = Limain
16 Perform backpropagation and gradient clipping
17 Update parameters via optimizer O

18 return Wi,cu

Algorithm 5: Client-Side Evaluation Procedure
Input: fy: Trained local model, X, 4, Yoa: Validation features and
labels, 7: Threshold for binary decision (default 7 = 0.5)

Output: Classification metrics: Accuracy, Precision, Recall, F1-score,
ROC-AUC, Confusion matrix: TP, TN, FP, FN

Data: Predicted probabilities y, binary labels ¥pin

Function evaluate_client (fy, Xyal, Yval, 7)¢

Perform forward pass: y = o(fo(Xyat)) ; // Sigmoid activation

Threshold outputs: ¥pin = I(y > T) H // Binarize predictions

Compute confusion matrix elements: TP, TN, FP, FN;

Compute metrics:;

ey —  TPHTN
Accuracy = gprrN i pprENG

oW N

@

Lo '

Precision = TP+FPTe [1: w2y ok
__r .

Recall = TPTFNTS

_ _2-Precision-Recall .
Fl-score = Precision+Recall+e€?

10 ROC-AUC = Compute fromROC curveusingy, yval;
11 return All metrics and confusion matrix

© ® N o

4.4. Federated Learning Approach

In the FL approach, each WAAM client performs local training on its own time-series process
data, which includes sensor-specific modalities. Rather than sharing raw data, each client sends the
updated weights of its local LSTM model to a central server, which collects these weights, computes
an aggregated global model, and sends the updated model back to all clients for the next training
round.

Each of the eight WAAM clients is designed to handle a unique combination of process
parameters, reflecting the multi-modal nature of the system. These data include timestamped
measurements of current, voltage, centroidal position, linear travel speed, feed angle, and arc length;
each of which carries distinct temporal dynamics relevant to the WAAM deposition process. Prior to
model training, the raw sensor signals are segmented into overlapping fixed-length sequences of five-
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time steps, which serve as inputs to a client-specific LSTMClassifier. The LSTM model, comprising a
recurrent layer and a fully connected output layer, learns to map temporal input features to binary
labels representing normal and anomalous deposition. The model training is performed using a
binary cross-entropy loss function with logits and optimized using the Adam optimizer with gradient
clipping to stabilize training. The temporal correlations captured in the hidden states of the LSTM
are crucial for identifying deviations in process behavior that unfold across consecutive time steps.

First, after local training, the client prepares its model for participation in the federated round
by selecting only the base LSTM layer weights for upload. The fully connected classification layer
remains local, particularly in the case of personalization strategies such as Federated Personalization
FedPer, which aims to adapt decision boundaries to local data heterogeneity by excluding the final
layer from global, given by Algorithm 8. The server collects these LSTM weights from all clients and
constructs a global model by applying one of the defined federated optimization strategies. In this
study, we employed three distinct strategies to evaluate the effects of optimization under varying
conditions. Federated Averaging (FedAvg), implemented as Algorithm 6, the baseline, performs a
weighted average of client models using the number of local data samples as the weight factor. This
method assumes IID distributions and thus serves as a performance benchmark under relatively
homogeneous scenarios. Federated Proximal (FedProx), developed as Algorithm 7, introduces an
additional regularization term p = 0.01 to the local objective function, penalizing divergence from
the global model by imposing a proximal constraint. This improves stability when client data are
non-identically distributed by discouraging large local deviations. Federated Personalization
(FedPer) is particularly suited for environments where clients have fundamentally distinct data
distributions, as it maintains shared representations in the encoder while enabling local adaptation
through private classification layers.

Second, to ensure robustness against untrustworthy or faulty clients, we employed resilient
aggregation mechanisms that are selectively triggered after a fixed number of training rounds.
Specifically, we implemented three robust aggregation strategies, Krum, Multi-Krum, and Trimmed
Mean, that each mitigates the influence of outliers or poisoned updates. Krum aggregation, shown in
Algorithm. 9, computes pairwise Euclidean distances between client models and selects the update
most similar to its nearest neighbors, effectively eliminating aberrant updates that deviate
significantly from the majority. Multi-Krum generalizes this by selecting multiple such close-to-
majority models and averaging them as given by Algorithm 10, thereby improving resilience while
allowing greater representation. Trimmed Mean takes a statistical approach as in Algorithm 11 by
sorting each weight element and removing extreme values before averaging, thus minimizing the
effect of adversarial noise or anomalous gradients. These mechanisms are activated after a predefined
threshold round to allow the initial rounds to benefit from unconstrained learning diversity before
enforcing robustness and are used in combination with each federated optimization strategy to
evaluate a total of twelve configurations. This exhaustive permutation; comprising Fed Avg, FedProx,
and FedPer, each paired with Vanilla, Krum, Multi-Krum, and Trimmed Mean; allows systematic
assessment of convergence stability and resilience under varying assumptions of data distribution
and client reliability.

Algorithm 6: FedAvg Strategy
Input: r Round index, R: List of client results, F: Failure list
(optional)
Output: 6.: Agpregated global weights
1 Function FedAvg(r. R, F):
// Extract weights and metadata
2 W; + parameters_to._ndarrays(res.paramelers) for all
(eid,res) € R
3 n; + res.num_examples for all (cid, res) € R
// Weighted averaging
N=3%n;
5 6, = % Song-W;
return 6,

[

=]
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Algorithm 7: FedProx Strategy
Input: r: Round index, R: List of client results, F: Failure list
(optional), p: Proximal regularization parameter
Output: #,.: Aggregated global weights
1 Function FedProx(r,R,F, pu):

// Client-side uses p - ||w —wo|? penalty in local loss

// Server-side aggregation same as FedAvg
2 W; + parameters_to_ndarrays(res.parameters) for all
(cid,res) e R
n; + res.num_examples for all (cid,res) € R
N=3%mn;
O =% >on - W,
return &,

@ @ k@

Algorithm 8: FedPer Strategy
Input: r: Round index, R: List of client results (base layers only), F:
Failure list, Lp,s.: Number of base layers to aggregate
Output: 6,: Aggregated base layer weights
1 Function FedPer (r, R, F, Ly,..):
// Extract only base layers from each client
foreach (cid,res) € R do
W; + parameters_to.ndarrays(res.parameters)
Whese — W3[0 2 Lyase)
n; 4 res.num_eramples

woR W

// hggregate only the base layers
N=%mn

for ¢ + 0 to Lpase — 1 do

s | | 6l=2Tn whelg

9 return 6,

a4

Algorithm 9: KRUM Aggregation
Input: W: List of weight vectors from n clients, f: Maximum number
of faulty clients
Output: Aggregated model parameters
1 Function KRUM(W, f):

2 if n < f+2 then
3 |_ return weighted average of all W // Fallback to FedAvg
4 for i + 1 to n do
5 for j #ido
o | Du=Swe - wh
k
7 S; = of n— f — 2 smallest D;;
8 i* = argmin S;
9 return W;- // Select most trustworthy client

Algorithm 10: MULTIKRUM Aggregation
Input: W: Client weights, f: Faulty clients, m: Number of selected
models
Output: Aggregated model parameters
1 Function MULTIKRUM(W, f,m):
2 if n<f+2o0rm<0then
3 | return FedAvg of W

4 for i « 1 to n do

5 for j #ido
L Dij = |Wf - WF|?
3
7 Si =3 of n— f — 2 smallest D
8 Select m indices with smallest S;
9 Compute average of corresponding W;

10 return aggregated weights

Algorithm 11: TRIMMED MEAN Aggregation
Input: W: List of client weights, : Trimming fraction
Output: Aggregated model parameters

1 Function TRIMMED_MEAN (W,):

n=|W|, m=|n]
if n < 2m + 1 then
| return FedAvg of W

2
3
4
5 for each parameter index k do
6
7
8

Vi = sortedlistof WF
Remove m smallest and m largest from Vj.
A = mean(Vy)

9 return aggregated weights A = [Ay]
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Finally, the central server is responsible for coordinating each training round, managing model
updates, and evaluating convergence through empirical tracking implemented using Algorithms 12-
14. At each round, the server initializes or updates the global model and distributes its parameters to
the selected clients. Once the updated models are returned, it computes the L2 norm difference
between successive global model parameters to quantify the progression of convergence, a metric
that reflects model stability and learning dynamics over time. The server then aggregates client-
reported evaluation metrics, including loss, accuracy, precision, recall, F1-score, and ROC-AUC,
using weighted averages based on local validation sample sizes. These global metrics are saved
systematically for reproducibility and downstream analysis. Additionally, the server stores client-
specific metrics and confusion matrices to support diagnostic performance evaluations. This logging
infrastructure enables the generation of detailed visualizations, such as round-wise accuracy trends,
loss curves, and convergence trajectories, offering a transparent understanding of model behavior
across strategies and clients. Through this structured and modular FL framework, the system is
capable of addressing data privacy, heterogeneity, and adversarial risk in distributed WAAM
environments, while enabling comparative benchmarking across multiple learning configurations.

Algorithm 12: Strategy Selection and Server Launch

Input: M: Aggregation strategy, R: Total number of rounds, T Start
round for robust aggregation, C: Number of participating
clients

Output: Training history, accuracy/loss logs, convergence log

1 Function ServerInitialization(M,R,T,C):

2 Set directories for saving metrics and results

3 if M == FedAvg then

4 | Initialize S « LoggingFedAvg(M,T)

5 else if M == FedProz then

6 B « LoggingFedAvg(M,T)

7 Initialize S « LoggingFedProx(B, M, T)

8 else if M == FedPer then

9 | Initialize S « LoggingFedPer(M,T)

10 if M € {Krum, MultiKrum, TrimmedMean} then

11 S.min_fit_clients « C

12 S.min_available_clients < C
13 S.fit_clients < C

14 Launch server with S for R rounds

Algorithm 13: Round-wise Robust Aggregation and Convergence
Monitoring

Input: r: Current round, R: Result list from clients, F: Failure list, T
Threshold round for robust aggregation, A: Aggregation
method (e.g., Krum)

Output: W,: Aggregated global weights for round r

1 Function AggregateFit(r. R, F.T, A):

2 Extract local weights W, +— parameters_to.ndarrays(R)

3 if » > T then

4 if A == Krum then

5 | W, krun(IV;)

6 else if A == MultiKrum then

T | W, + multikrum(WW;)

8 else if A == TrimmedMean then

9 ‘ W, < trimmed mean(1V;)

10 else

11 | W, Fedavg(R,F)

12 else

13 L W, + FedAvg(R,F)

14 if previous global weights exrist then

15 Compute L2-norm difference §, = ﬁ ZJ HH’}U) - W’]E},]lH
16 Append é, to convergence log

17 Store W, as W,._; for next round

18 | return W,
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Algorithm 14: Evaluation Metric Aggregation and CSV Logging
Input: &: Evaluation metrics list, 7: Current round number
Output: Global performance dictionary M

1 Function AggregateMetrics(&,r):

2 N« > m[num_ezamples|
(m)e€
3 foreach k € {loss, accuracy, precision, recall, f1_score} do
4 \\ pie < Y m[k] - m[num_examples|/N
(,m)e&

5 | Haue < Y m[roc.auc| - m[num_examples| /N

6 HMaue < None

7 foreach ((m) € £ do

8 cid + m/client_id|

9 Append mlaccuracy] to accuracy log for cid

10 Append mlloss| to loss log for cid
11 Open file: global metrics.csv
12 if file not exists then

13 | Write header row
14 Append row ["- Hlosss Haccuracys Hprecisions Hrecalls f1_scores Ha lu']
15 M « dictionary with all aggregated metrics
16 | return M

5. Results and Discussion

The evaluation of the FL framework designed for anomaly detection in WAAM is carried out
through a series of controlled experiments. The focus of the evaluation is to assess how well different
federated strategies perform under varying levels of model personalization and aggregation
robustness. Specifically, the study compares three federated strategies, FedAvg, FedPer, and
FedProx, each deployed over 100 communication rounds. For every strategy, four aggregation
techniques are tested: standard federated averaging (Vanilla), KRUM, Multi-KRUM, and Trimmed
Mean. This combination yields twelve distinct configurations that are evaluated using both global
metrics and client-specific metrics. The aim is to capture the model behavior not only in terms of
overall convergence and stability but also in terms of fairness and consistency across data sources.
These configurations are tested on client-specific datasets extracted from diverse sensor streams.

For every combination of strategy and aggregator, both global and local classification
performance is measured using five standard evaluation metrics: Accuracy, Fl-score, Precision,
Recall, and Area Under the Receiver Operating Characteristic Curve (AUC). Additionally, the
optimization behavior of the global model is captured through the L2-norm of the weight difference
between consecutive communication rounds, which serves as an indicator of convergence stability.
Moreover, to ensure secure and verifiable data transmission, the reversible data hiding in encrypted
domain (RDHE) mechanism is separately evaluated based on Peak Signal-to-Noise Ratio (PSNR),
Mean Squared Error (MSE), and embedding rate. The local client models across all sites are
implemented using LSTM networks trained on time-aligned, process-specific data matrices. The
evaluation results presented in the following aim to uncover the performance boundaries and
deployment feasibility of FL. models in decentralized WA AM environments.

5.1. Global Performance Across Strategies and Aggregators

The choice of aggregation strategy significantly influenced global performance across all
federated configurations, as seen from the final-round metrics and their trajectory in Figures 4-6.
Figure 4 provides a comprehensive view of the global performance metrics for the FedAvg strategy
across different aggregation methods. The accuracy trend in Figure 4(a) shows that Trimmed Mean
and Multi-KRUM achieve higher and more stable accuracy than KRUM, which lags behind
consistently. In Figure 4(b), the loss curve for KRUM fluctuates heavily, indicating unstable
convergence, while Trimmed Mean ensures smoother and faster loss reduction. Precision, illustrated
in Figure 4(c), peaks under Trimmed Mean and Multi-KRUM, whereas KRUM exhibits suppressed
values. The F1-score plot in Figure 4(d) mirrors these results, with Trimmed Mean achieving over
0.91 by round 100. Recall, seen in Figure 4(e), follows a similar trend, with KRUM failing to exceed
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0.88, while other methods stabilize beyond 0.93. Lastly, the ROC AUC in Figure 4(f) highlights the
early underperformance of KRUM and the consistent superiority of Multi-KRUM and Trimmed
Mean throughout the communication rounds.

— kum o9
— Multikn.
06 — Timme: g
— vanilla

05

0.4

— 03

— Multikru
05 — Trimmec
— vanila 02

— Krum
—— Multikn.
— Trimme:
—— vanilla

0 20 40 60 80 0 20 a0 60 80 0 20 a0 60 80

08

0.6

04

0.2 — krum 02
Multikn
— Trimme

— Krum

~— Multikn
= Trimme
— vanila o — vanilla oo — vanilla

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

(d) (e ®

Figure 4. Final metrics vs. rounds for FedAvg; (a) accuracy, (b) loss, (¢) precision, (d) F1-score, (e) recall, and (f)

area under curve.

Figure 5 illustrates the performance of the FedPer strategy, which demonstrates the most rapid
and robust learning across all metrics. Accuracy, in Figure 5(a), rises quickly and converges above
0.95 for all aggregation methods except KRUM, which trails behind. In Figure 5(b), the loss under
Trimmed Mean and Multi-KRUM reduces sharply and remains below 0.2, while KRUM’s loss
remains elevated. Precision values in Figure 5(c) show that Vanilla, Multi-KRUM, and Trimmed
Mean offer closely matched performance, with KRUM again being the weakest. Figure 5(d)
highlights FedPer’s Fl-score dominance, Trimmed Mean surpasses 0.91 early and maintains it,
outperforming other aggregators. Recall scores in Figure 5(e) show that all aggregators perform well
initially, but KRUM degrades over time. In Figure 5(f), the ROC AUC curve reaches 0.94 by round
30 under Trimmed Mean, reflecting strong early-stage generalization and robustness in FedPer.
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Figure 5. Final metrics vs. rounds for FedPer; (a) accuracy, (b) loss, (c) precision, (d) F1-score, (e) recall, and (f)
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Figure 6 focuses on the FedProx strategy, which achieves stable but slower improvements across
all metrics compared to FedAvg and FedPer. Figure 6(a) shows moderate accuracy growth with
Trimmed Mean and Multi-KRUM outperforming KRUM, although the convergence is slower than
FedPer. In Figure 6(b), the global loss steadily declines under all methods, but remains above 0.25 for
KRUM, indicating ineffective learning. Precision (Figure 6(c)) remains balanced and less volatile
under Trimmed Mean and Vanilla, while KRUM again underperforms. The F1-score in Figure 6(d)
demonstrates smoother progression, particularly for Trimmed Mean, reaching nearly 0.91 by round
100. Recall (Figure 6(e)) improves gradually across configurations, but the KRUM curve stagnates
around 0.86. In Figure 6(f), the ROC AUC values confirm that Trimmed Mean ensures robust and
steady growth, while KRUM fails to generalize effectively.

— Kum
~ MultiKrum
— Trimmedme

—— vanilla

0.9

08

06
— Kkum
—— Multikrum
— Trimmedm¢
00 — vanilla

— Krum
—— MultiKrum
05 —— Trimmedme
— vanilla

0 20 40 60 80

(a) Accuracy

02 — kum — Kum
— Multikrum — Multikrum
= Trimmedme¢ —— Trimmedme
00 — vanilla osq ! — vanilla

0 20 40 60 80 100 0 20 40 60 80 1 0 20 a0 60 80 1

(d) F1-Score (e) Recall (f) Area Under Curve

Figure 6. Final metrics vs. rounds for FedProx; (a) accuracy, (b) loss, (c) precision, (d) F1-score, (e) recall, and (f)

area under curve.

Among the three strategies, FedPer consistently outperforms both FedAvg and FedProx across
all global metrics, especially when paired with Trimmed Mean or Multi-KRUM. Its partial
personalization allows for better adaptation to local data heterogeneity, enabling rapid convergence
and higher classification accuracy. FedAvg performs reasonably well under robust aggregators but
is more sensitive to noise and client imbalance, particularly when using KRUM, which often
undercuts performance. FedProx, while not the fastest learner, shows stable convergence and better
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resistance to client drift, making it suitable for scenarios where training consistency is prioritized over
rapid convergence. Overall, FedPer with Trimmed Mean emerges as the most effective and balanced
combination for secure and generalizable anomaly detection in decentralized WAAM environments.

5.2. Client-Level Performance Disaggregation

The client-level performance, visualized in Figure 7, reveals substantial differences in how each
federated strategy and aggregation method impacts individual WAAM clients under non-identical
data distributions. The variations across client architectures, input modalities, and process
complexity result in distinct convergence behaviors, especially when the federated configurations
interact with heterogeneous data. Under the Fed Avg strategy, as shown in Figures 7(a—d), we observe
sharp inter-client disparities. Clients such as Client 3 (Speed + PosX + PosY) and Client 8 (Current +
PosX + PosY) maintain accuracy above 90%, whereas Client 4 (Time + Arc Length + Feed Angle)
stagnates around 80% accuracy with elevated loss. The use of KRUM exacerbates these differences,
leading to erratic performance in Clients 1 and 5 and delayed improvement for Client 2. In contrast,
Multi-KRUM and Trimmed Mean yield greater consistency and better accuracy across clients. When
FedPer is employed, as depicted in Figures 7(e-h), inter-client accuracy trajectories stabilize
significantly. Most clients converge to over 90% accuracy, particularly under Trimmed Mean and
Vanilla aggregators. Clients such as Client 2 (Voltage + PosX + PosY) and Client 6 (Time + Speed +
Current) show strong early acceleration and maintain robust convergence. FedPer’s model
personalization clearly supports diverse input distributions and mitigates the negative impact of
outlier data. The FedProx strategy, illustrated in Figures 7(i-1), provides an intermediate level of
performance. While its convergence is slower than FedPer, it helps clients like Client 5 recover from
early instability. However, KRUM again introduces oscillatory behavior and suppresses learning for
several clients. Trimmed Mean remains the most balanced, showing smooth and equitable accuracy
gains for most clients, indicating its ability to retain representational diversity without sacrificing
stability.

Vanilla KRUM MultiKRUM Trimmed Mean

HINTI = N —

[T
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Figure 7. Accuracy vs. rounds for different strategies (Vanilla, KRUM, MultiKRUM, and Trimmed Mean) for (a-
d) FedAvg, (e-h) FedPer, and (i-1) FexProx.

Complementing these accuracy results, Figure 8 presents the corresponding client-wise loss
trajectories, further exposing how aggregation strategies influence learning stability under each
federated scheme. In Figures 8(a—d), loss trends mirror accuracy patterns. KRUM leads to volatility
and plateauing, especially for Clients 1 and 5. Multi-KRUM and Trimmed Mean again demonstrate
superior performance, reducing client loss more steadily, though early-stage variability remains a
concern under Vanilla. Under FedPer, shown in Figures 9(e-h), clients generally achieve lower final
loss values, with Trimmed Mean resulting in the smoothest and most consistent convergence. Client
4 and Client 7, which rely on geometric or time-sensitive inputs, still present minor instability, but
overall loss values remain bounded below 0.25, which is an indicator of strong model generalization
across the federation. Finally, Figures 8(i-1) show moderate loss decay across clients. While Trimmed
Mean delivers the most consistent performance, KRUM’s restrictive aggregation again hinders
certain clients like Client 6 and Client 3. Vanilla performs well for stable clients (e.g., Client 3 and 8)
but introduces convergence spikes, reinforcing that careful aggregator selection is critical under
FedProx.

Vanilla KRUM MultiKRUM Trimmed Mean

@) G) (k) @

Figure 8. Loss vs. rounds for different strategies (Vanilla, KRUM, MultiKRUM, and Trimmed Mean) for (a-d)
FedAvg, (e-h) FedPer, and (i-1) FexProx.

Overall, the comparison reveals that FedPer with Trimmed Mean offers the best combination for
equitable performance across clients, enabling rapid and stable learning even for those handling
noisy, weakly correlated, or visually-derived input features. FedAvg, while occasionally peaking in
accuracy for well-behaved clients, fails to support convergence robustness in geometrically complex
domains. FedProx, although slower, provides reliable performance improvements in later rounds,
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especially under robust aggregation schemes. These trends highlight the importance of aligning
federated strategy with aggregator design when handling non-IID, multimodal data in distributed
WAAM environments.

5.3. Client-Wise Confusion Matrices Analysis

While the global metrics offered valuable insights into convergence behavior and overall
classification robustness, a detailed examination of the client-wise confusion matrices, as shown in
Tables 2-4, reveals the critical role of client-specific data heterogeneity in shaping the final predictive
outcomes. Clients were configured to capture distinct process signals, including current-voltage
profiles, bead geometry, travel speed, and part parameters, which resulted in non-uniform data
distributions and increased task complexity. Under the FedAvg strategy, the Multi-KRUM and
Trimmed Mean aggregators yielded strong performance consistency across all clients, with accuracy
exceeding 0.90 for all but Client 5, which still improved significantly from 0.69 under KRUM to 0.98
under robust aggregation. Notably, Client 4, which encapsulated arc length and feed angle, exhibited
substantial false positive rates under KRUM (FP = 17, Accuracy = 0.80), indicating its sensitivity to
process parameter variability and confirming that conservative aggregators suppress local
discriminability in such cases. FedPer demonstrated even greater robustness for Clients 5 through 7,
where both Trimmed Mean and Multi-KRUM pushed accuracy above 0.96 and minimized false
negatives. Notably, the improvement for Client 6, from 0.66 in KRUM to 0.97 in robust aggregators,
corresponds to reduced misclassification of current-voltage fluctuations, implying that
personalization enables better local calibration against stochastic electrical noise. FedProx exhibited
a stabilizing effect, especially for Client 4 and Client 5, where KRUM'’s underperformance (Client 5
Accuracy =0.93) was notably compensated by Trimmed Mean, which elevated all clients beyond 0.94.
This behavior is further supported by the consistently low false positives and false negatives
observed in Clients 1 and 8 across all configurations, indicating that these clients capture linearly
separable features such as centroid shifts and deposition symmetry.

Table 2. Client-wise confusion matrices after 100 communication rounds for the FedAvg strategy.

Krum Multi-Krum Trimmed Mean FedAvg (Vanilla)
©12345678123456781234567812345678
T QO 3000 B0 N0 RS OO WOy, S © Oy &y X Oy &y &y O
LTSS S S S S IS0 ATSSSS SO DSOS S S —
Table 3. Client-wise confusion matrices after 100 communication rounds for the FedPer strategy.

Krum Multi-Krum Trimmed Mean FedAvg (Vanilla)
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Table 4. Client-wise confusion matrices after 100 communication rounds for the FedProx strategy.

Krum Multi-Krum Trimmed Mean FedAvg (Vanilla)
U1234567 81234567 81234567 812345¢6738
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A finer inspection of per-client trade-offs reveals that the impact of federated strategies and
aggregation robustness varies significantly across clients due to the nature and entropy of the
captured process signals. Client 1, which models current-voltage-time data, consistently achieved
perfect classification (Accuracy = 1.00) under all strategies and aggregators, indicating a highly
separable anomaly distribution and minimal signal ambiguity. In contrast, Client 2, associated with
bead geometry detection through high-dynamic-range imaging, showed pronounced sensitivity to
aggregation noise. Under FedPer-KRUM, Client 2’s accuracy dropped to 0.89 with a corresponding
false positive rate of 6, whereas both FedAvg and FedProx preserved their performance near 0.94
under Trimmed Mean and Multi-KRUM. This emphasizes the need for robust averaging in vision-
based feature representations where illumination artefacts and geometric distortions may mimic
anomalous behavior. For Client 3, which handles speed and position data, the classification behavior
remained invariant across all strategies, stabilizing around 0.91. This invariance suggests that travel
speed anomalies are sufficiently encoded in the temporal patterns captured by the LSTM classifier,
and the aggregation strategy plays a minimal role when the feature evolution is strongly time-
dependent.

Client 4, responsible for arc length and feed angle estimation, remained the most difficult to
stabilize. The misclassifications, reflected in higher false positive rates under KRUM (FP = 17-19)
across all strategies, can be attributed to the irregular arc morphology and its erratic gradient
behavior, which weak aggregators fail to model effectively. Personalization under FedPer and
regularization under FedProx marginally improved accuracy to 0.87, yet Multi-KRUM remained
more stable than Vanilla, emphasizing its resilience against local misalignment. Client 5, with
aggregated parameters from current, speed, and voltage, displayed large accuracy gaps, 0.69 in
FedAvg-KRUM to 0.98 in FedPer-Trimmed Mean, demonstrating how complex feature couplings
benefit from both personalization and robust suppression of gradient outliers. Clients 6 and 7, dealing
with overlapping signal domains, such as voltage-speed and voltage-time, also showed strong
sensitivity to aggregation. They only approached ideal performance (Accuracy > 0.96) under Multi-
KRUM and Trimmed Mean, further underscoring the requirement for variance-aware aggregation in
non-1ID edge environments. Finally, Client 8, designed to capture centroidal shifts through positional
tracking, maintained 100% accuracy across all configurations, validating its role as a baseline
indicator for network stability and robustness in federated deployment. These individual behaviors
establish the foundation for strategy-adaptive model allocation in WAAM deployments, where
assigning specific aggregation mechanisms to clients based on sensing modality may enhance overall
system resilience and fault localization precision.

5.4. Comparative Convergence Trends

The convergence behavior of FedAvg across different aggregation rules, as shown in Figure 9,
reveals clear distinctions in model stability and responsiveness over federated rounds, as evident in
the plotted L2-norm trends of global model updates. Under the FedAvg-Vanilla configuration, the
convergence curve exhibits a steep descent in the initial rounds, followed by pronounced oscillations
before stabilizing near round 60 (Figure 9(a)). This instability in the early rounds can be attributed to
the aggressive averaging of heterogeneous client updates, which occurs without any gradient
correction or outlier rejection, leading to overfitting or oscillatory convergence. In contrast, FedAvg-
KRUM (Figure 9(b)) and Fed Avg-Multi-KRUM (Figure 9(c)) demonstrate more stable convergence
trajectories. Specifically, the Multi-KRUM plot maintains a gradual and smooth decline in the L2-
norm, reflecting its robustness to Byzantine gradients and stochastic noise by excluding extreme
update vectors. The KRUM variant, although initially fluctuating, shows dampened volatility after
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round 30, indicating resilience against malicious or anomalous client updates. The Fed Avg-Trimmed
Mean configuration (Figure 9(d)), however, shows the slowest convergence, with the norm values
plateauing prematurely around round 50. This underfitting behavior is likely due to extreme
elimination of potentially useful updates when client data distributions are non-1ID, resulting in a
loss of learning signal. These observations suggest that while FedAvg achieves fast initial
convergence, its generalization ability and convergence consistency are strongly influenced by the
choice of aggregation rule, particularly under client heterogeneity.

The convergence behavior under the FedPer strategy presents a fundamentally different
dynamic compared to FedAvg, primarily due to its personalization mechanism which decouples
local and global representations. In the FedPer-Vanilla configuration, the convergence curve exhibits
a relatively smooth decline in L2-norm with minor oscillations, as shown in Figure 9(e). This is
indicative of steady synchronization of shared layers while allowing local heads to diverge, thereby
reducing the impact of client heterogeneity on global updates. In contrast, FedPer with KRUM
aggregation, shown in Figure 9(f), introduces more pronounced volatility in the initial rounds, with
the L2-norm fluctuating sharply up to round 30 before gradually stabilizing. This can be attributed
to KRUM's selective filtering of updates, which becomes less effective when most client updates are
already partially personalized, resulting in a conflict between local retention and global alignment.
FedPer with Multi-KRUM, depicted in Figure 9(g), offers improved noise suppression, exhibiting a
monotonic decrease with infrequent spikes, which demonstrates enhanced robustness against erratic
local gradients. However, in the case of FedPer-Trimmed Mean, Figure 9(h), the convergence
decelerates significantly after round 40, indicating underfitting due to the aggressive exclusion of
boundary updates in the presence of already reduced shared model capacity. Overall, FedPer’s
convergence trends suggest that while personalization facilitates stable updates in heterogeneous
environments, the choice of aggregator modulates the balance between adaptability and
synchronization of shared weights.

When examining the convergence behavior of FedProx, a more nuanced stabilization dynamic
becomes apparent, particularly in how it manages gradient drift through proximal regularization. As
observed in Figure 9(i), the FedProx-Vanilla setup demonstrates a consistently decreasing L2-norm
with relatively minor oscillations, indicating that the addition of the proximal term successfully
constrains local updates closer to the global direction, thereby mitigating client divergence without
fully decoupling representations. This controlled descent contrasts with Fed Avg’s more erratic early-
stage behavior, confirming that FedProx introduces stability without requiring architectural
personalization. In the KRUM-based configuration of FedProx shown in Figure 9(j), convergence is
delayed, and the curve fluctuates significantly in the early rounds before reaching stability, which
reveals that the aggregation selectively retains updates that are already proximal. Still, its
effectiveness diminishes when the proximal constraint inherently suppresses inter-client gradient
variance. FedProx-Multi-KRUM, as in Figure 9(k), maintains a stable and steep convergence slope,
demonstrating the synergistic effect of robust outlier filtering and proximity-based update anchoring.
However, in the case of the Trimmed Mean (Figure 9(1)), convergence is slower and plateaus earlier,
underscoring the effect of excessive exclusion of informative boundary updates when combined with
already conservative local training. These observations collectively emphasize that FedProx, when
paired with moderate aggregators, can deliver fast and stable convergence, but becomes sub-optimal
under aggressive gradient selection, especially in systems with structurally aligned clients.
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Figure 9. Global model convergence vs. rounds for different strategies (Vanilla, KRUM, MultiKRUM, and
Trimmed Mean global) for (a-d) FedAvg, (e-h) FedPer, and (i-1) FedProx.

Across all strategies and aggregation combinations, a synthesis of convergence dynamics reveals
critical insights into the interplay between aggregation robustness, update regularization, and client
heterogeneity. Fed Avg configurations converge rapidly but exhibit volatility when paired with non-
robust aggregators such as Vanilla and KRUM, with L2-norm fluctuations persisting even beyond
the 50th round. This behavior indicates potential overfitting driven by the direct averaging of
divergent local updates, especially from structurally heterogeneous WAAM clients. In contrast,
FedPer’s incorporation of personalized model heads attenuates these oscillations by decoupling
client-specific representations, allowing the global backbone to converge smoothly while local
disparities are absorbed independently. The plots for FedPer-Multi-KRUM and FedPer-Trimmed
Mean showcase this effect, with convergence curves steadily flattening after round 30, suggesting
that personalization buffers against over-pruning while still benefiting from robust outlier filtering.
FedProx introduces a different mechanism, proximal anchoring, evident from its tighter L2-norm
profiles, particularly under Multi-KRUM, where stable suppression of local gradient drift facilitates
uniform descent. However, the use of overly conservative filters such as Trimmed Mean in FedProx
often leads to premature flattening of convergence curves, indicating underfitting due to excessive
loss of gradient diversity. Thus, optimal convergence in federated WAAM scenarios hinges on
aligning strategy-specific update dynamics with aggregation schemes that strike a balance between
noise suppression and representational diversity.

5.5. Reversible Data Hiding Evaluation

To assess the integrity-preserving capability of the reversible data hiding in the encrypted
domain (RDHE) framework applied to WAAM image streams, we performed both quantitative
distortion analysis and visual perceptual validation under varying embedding rates. The primary
quantitative metric, Peak Signal-to-Noise Ratio (PSNR), consistently exceeded 90 dB at ultra-low
embedding rates such as 0.0001 bpp, indicating near-lossless visual fidelity. As shown in the PSNR
vs. embedding rate plots for the test image 1 (during experiment) and 2 (after experiment), shown in
Figure 10, PSNR gradually declined with increasing payload, reaching 79.1 dB at 0.0043 bpp for
Image 1 and 78.9 dB at 0.0025 bpp for Image 2. This inverse relationship was smooth and monotonic,
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highlighting the controlled distortion behavior of the RDHE encoder. The high-fidelity nature of the
embedded images is visually substantiated through side-by-side comparisons of original and
encoded frames in both pre-deposition and post-deposition welding scenes depicted in Figure 11,
where no visible structural degradations were observed. Moreover, the channel-wise pixel index
plots for the red, green, and blue distributions, as demonstrated in Figure 12, show near-identical
spatial-spectral traces across 10,000 sampled pixels, further confirming sub-perceptual embedding.
Image 1, taken during active deposition and encoded at 0.0007 bpp, yielded a PSNR of 91.6 dB and
MSE of 0.35, while Image 2, captured post-deposition with richer chromatic content, achieved 92.5
dB and MSE of 0.31 at a lower rate of 0.0004 bpp. Despite spectral and contextual differences, both
cases validate RDHE’s ability to preserve pixel-level integrity necessary for subsequent DNN-based
semantic segmentation or anomaly localization pipelines.

92 4

92

90

88 1 88

@
o

86

PSNR (dB)
PSNR (dB)

3
b

844

821

82 4
80 4

80 4

0.000 0.001 0.002 0.003 0.0000 0.0005 0.0010 0.0015 0.0020
Embedding Rate (bpp) Embedding Rate (bpp)

(a) (b)

Figure 10. PSNR vs. embedding rate for (a) test image 1, before embedding, and (b) test image 2, after
embedding.
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Figure 11. Condition of test images before and after embedding for (a) test image 1, and (b) test image 2.

Beyond minimizing distortion, the RDHE mechanism facilitates secure and efficient embedding
of process parameters directly within high-resolution visual frames, offering operational advantages
in privacy-preserving federated WAAM. This capability becomes particularly relevant when raw
numerical signals such as arc current, voltage, or bead geometry cannot be transmitted independently
due to bandwidth or regulatory constraints. Embedding encrypted payloads within weld image
structures enables out-of-band data exchange for scenarios like cross-client calibration, asynchronous
aggregation, or offline defect labeling while circumventing plaintext exposure. The pixel-domain
invariance confirms that convolutional features essential for feature extraction pipelines remain
unaltered post-embedding, ensuring model compatibility. Furthermore, Image 2 achieved a capacity
of 4,556.25 kbits at 0.0004 bpp, while Image 1 supported 2,700 kbits at 0.0007 bpp, both of which are
sufficient to encode multichannel sensor streams with timestamps. Critically, RDHE ensured
complete reversibility, with all decoded images matching the originals bit-for-bit and maintaining
consistent PSNR-MSE parity. Although FL mitigates centralized data risks by default, RDHE
strengthens the security envelope for image-based transmission in cases of client dropout or hybrid
communication protocols. As such, it offers a complementary confidentiality-preserving layer with
minimal computational overhead and no compromise to downstream analytics.
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Figure 12. Pixel distribution of (a, b) test image 1, and (b, c) test image 2, before and after embedding.

5.6. Optimal Configuration Synthesis

A comprehensive analysis of the assessed configurations reveals that the most optimal setup for
federated anomaly detection in WAAM is the combination of FedPer with Trimmed Mean
aggregation. This conclusion is drawn by integrating performance across multiple evaluation layers,
global metrics, client-level consistency, convergence patterns, and confusion matrix statistics. As
shown in Section 5.1, FedPer-Trimmed Mean achieved the highest global F1-score and ROC AUC
among all configurations, indicating strong discriminative ability across both normal and abnormal
classes. At the client level, as discussed in Section 5.2, this configuration delivered consistently high
accuracy around 95% and smooth loss decay across nearly all clients, including those with geometric
and temporal noise such as Client 4 and Client 7. Additionally, in Section 5.3, the confusion matrices
confirmed that FedPer-Trimmed Mean minimized false positives and false negatives while
maintaining ideal classification for structured clients like Client 1 and Client 8. When combined with
the stable convergence behavior noted in Section 5.4, this configuration effectively balances early-
stage learning speed with long-term stability. The personalization provided by FedPer enables client-
specific adaptation, while Trimmed Mean suppresses gradient anomalies without excessively
discarding informative updates. These features jointly facilitate generalization across non-IID client
distributions, making FedPer-Trimmed Mean the most suitable solution for decentralized WAAM
deployment.

Despite the superior performance of FedPer-Trimmed Mean, it is important to contextualize this
configuration within the broader space of strategy—aggregator trade-offs observed throughout the
evaluation. Certain alternatives, such as FedProx-Multi-KRUM, demonstrated convergence stability
and effective variance suppression in clients with high temporal regularity, as discussed in Section
5.4. However, its performance deteriorated when faced with geometrically noisy or structurally
irregular data, such as that from Client 4, where both classification accuracy and loss convergence
lagged behind FedPer-based setups. Likewise, FedAvg-KRUM, while theoretically robust to
adversarial updates, exhibited unstable learning trajectories and poor recall, especially in Clients 5
and 7, due to its over-pruning effect on valid but noisy updates. These observations highlight critical
trade-offs between personalization and generalization and between robustness and inclusivity.
Personalization through FedPer allows each client to retain local specificity, crucial for WAAM’s
sensor-diverse landscape, while Trimmed Mean enables robust aggregation without marginalizing
clients with atypical data distributions. This strategic alignment is essential in real-world
deployments where asynchronous sampling, cross-sensor drift, and environmental variance are
common. Therefore, FedPer-Trimmed Mean can be recommended as the deployment baseline for
federated WAAM systems.

6. Conclusions

The proposed framework establishes an FL-based anomaly detection system tailored for WAAM
by integrating privacy-preserving transmission and multi-sensor process feature fusion. The system
is constructed to address the inherent challenge of enabling secure model collaboration across
decentralized WAAM units, where each unit operates under heterogeneous sensing conditions and
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localized process dynamics. Through the deployment of reversible data hiding in high-resolution
weld images, sensitive process variables, as voltage, current, arc geometry, and travel speed, are
securely transmitted without exposing raw process logs. These encrypted images are decoded at each
client and locally used to train temporal and spatial models on fused signals derived from image
processing, signal streams, and estimated geometric profiles. Clients represent distinct input
dimensions and characteristics, yet the global model, updated through aggregation strategies such
as FedAvg, FedProx, and FedPer, exhibits strong generalization despite significant non-IID
fragmentation. Empirical evaluations across 100 communication rounds reveal that the proposed
configuration achieves a maximum classification accuracy of around 95%, with corresponding
improvements in Fl-score, convergence stability, and ROC AUC over baseline FedPer- Trimmed
Mean combination. These results confirm the framework’s ability to retain client privacy while
facilitating accurate anomaly detection, thereby fulfilling the original objective of secure and
collaborative learning in WAAM-based SM ecosystems.

Building on this foundation, future research will focus on expanding the framework’s
adaptability and semantic depth to align with the evolving demands of decentralized manufacturing
systems. A key advancement lies in the incorporation of domain-generalized federated transfer
learning, where personalized heads or latent representations adaptively align client-specific process
domains with a globally shared feature space. This would enhance anomaly detection accuracy in
emerging conditions; such as novel tool wear patterns or substrate compositions; not encountered
during initial training. Additionally, integrating transformer-based encoders or modality-specific
attention layers can enable semantic-level feature fusion across image descriptors, geometric
estimations, and dynamic signal profiles. Such architectures would enable the federated pipeline to
learn rich cross-stream dependencies, even with limited data per client. To ensure secure
collaboration, incorporating blockchain-backed aggregation or trusted execution environments can
mitigate the risk of adversarial updates and provide traceable audit trails. Furthermore, embedding
adaptive client selection strategies, based on contribution entropy or task-specific gradients, can
reduce communication overhead and accelerate convergence in highly diverse WAAM networks.
Collectively, these directions offer a plan for next-generation secure and generalizable federated
systems, laying the groundwork for autonomous anomaly-aware cyber-physical infrastructures in
metal additive manufacturing.
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