
Article Not peer-reviewed version

Federated Learning-Enabled Secure

Multi-Modal Anomaly Detection for Wire

Arc Additive Manufacturing

Mohammad Mahruf Mahdi , Md Abdul Goni Raju , Kyung-Chang Lee * , Duck Bong Kim *

Posted Date: 30 July 2025

doi: 10.20944/preprints202507.2394.v1

Keywords: wire arc additive manufacturing; federated learning; process monitoring; reversible data hiding;

anomaly detection

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3753466
https://sciprofiles.com/profile/4631646
https://sciprofiles.com/profile/351706
https://sciprofiles.com/profile/1749729


 

 

Article 

Federated Learning-Enabled Secure Multi-Modal 
Anomaly Detection for Wire Arc Additive 
Manufacturing 
Mohammad Mahruf Mahdi 1, Md Abdul Goni Raju 2, Kyung-Chang Lee 3,*  
and Duck Bong Kim 4,5,* 

1 Department of Electrical and Computer Engineering, Tennessee Technological University, TN 38505, USA 
2 Department of Mechanical Engineering, Tennessee Technological University, TN 38505, USA 
3 Department of Intelligent Robot Engineering, Pukyong National Univ, Pusan, Republic of Korea 
4 Department of Manufacturing and Engineering Technology, Tennessee Technological University, TN 38505, 

USA 
5 School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, 

GA 30602, USA 
* Correspondence: gclee@pknu.ac.kr (K. L.); dkim@tntech.edu (D. B. K.) 

Abstract 

This paper presents a federated learning (FL) architecture tailored for anomaly detection in wire arc 
additive manufacturing (WAAM) that preserves data privacy while enabling secure and distributed 
model training across heterogeneous process units. WAAM’s inherent process complexity, 
characterized by high-dimensional and asynchronous sensor streams, including current, voltage, 
travel speed, and visual bead profiles, necessitates a decentralized learning paradigm capable of 
handling non-identical client distributions without raw data pooling. To this end, the proposed 
framework integrates reversible data hiding in the encrypted domain (RDHE) for the secure 
embedding of sensor-derived features into weld images, enabling confidential parameter 
transmission and tamper-evident federation. Each client node employs a domain-specific long short-
term memory (LSTM)-based classifier trained on locally curated time-series or vision-derived 
features, with model updates embedded and transmitted securely to a central aggregator. Three FL 
strategies, FedAvg, FedProx, and FedPer, are systematically evaluated against four robust 
aggregation techniques, including KRUM, Multi-KRUM, and Trimmed Mean, across 100 
communication rounds using eight non-independent and identically distributed (non-IID) WAAM 
clients. Experimental results reveal that FedPer coupled with Trimmed Mean delivers the optimal 
configuration, achieving maximum F1-score (0.912), area under the curve (AUC) (0.939), and client-
wise generalization stability under both geometric and temporal noise. The proposed approach 
demonstrates near-lossless RDHE encoding (PSNR > 90 dB) and robust convergence across 
adversarial conditions. By embedding encrypted intelligence within weld imagery and tailoring FL 
to WAAM-specific signal variability, this study introduces a scalable, secure, and generalizable 
framework for process monitoring. These findings establish a baseline for federated anomaly 
detection in metal additive manufacturing, with implications for deploying privacy-preserving 
intelligence across smart manufacturing networks. 

Keywords: wire arc additive manufacturing; federated learning; process monitoring; reversible data 
hiding; anomaly detection 
 

1. Introduction 

Additive Manufacturing (AM) has emerged as a transformative approach in modern 
manufacturing due to its ability to fabricate geometrically complex components with reduced 
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material waste and customization across industries [1,2]. Among the various metal AM techniques, 
wire arc additive manufacturing (WAAM) has gained significant attention for its capability to 
produce large-scale metallic structures using an arc-welding-based deposition mechanism with 
comparatively low operational cost [3,4]. WAAM is particularly suited for structural applications in 
sectors like maritime engineering, defence, and aerospace due to its high deposition rate and 
compatibility with widely available wire feedstock [5–7]. However, the process involves complex 
thermal-fluid relations, including abrupt thermal gradients, dynamic molten pool behavior, and arc-
induced disturbance, which contribute to unpredictable variations in bead geometry and 
microstructural inhomogeneity [8]. These complexities require the deployment of advanced 
monitoring and control mechanisms to ensure geometric consistency, integrity, and overall process 
stability [9]. Addressing these challenges requires sensor-driven and data-centric strategies that can 
interpret high-dimensional and time-dependent process signatures in real-time and across diverse 
operational rules. 

To address the inherent complexity of WAAM, recent developments in process monitoring have 
increasingly favored data-driven methodologies that utilize real-time sensor streams to infer thermal, 
geometric, and electrical process states [10]. These monitoring systems integrate high-frequency 
process signatures, producing asynchronous and high-dimensional datasets that are difficult to 
interpret through conventional rule-based methods [11]. Machine learning, particularly deep 
architectures such as convolutional and recurrent neural networks, has demonstrated the ability to 
learn nonlinear correlations and to detect subtle anomalies that precede physical defects from these 
heterogeneous signals [12,13]. However, implementing these models through centralized learning 
paradigms dictates the pooling of raw process data from different WAAM stations, which raises 
critical concerns around intellectual property exposure, operational confidentiality, and compliance 
with industrial data governance policies [14]. Moreover, process parameter distributions and sensor 
modalities differ significantly across WAAM installations, resulting in highly non-independent and 
identically distributed (non-IID) data that violates the assumptions of uniform training routines [15]. 
These constraints need a distributed and privacy-preserving learning framework capable of 
maintaining both local customization and global generalization. 

Federated Learning (FL) has emerged as a decentralized machine learning paradigm that 
enables multiple clients to collaboratively train a shared model without exposing their raw local 
datasets [16]. In a typical FL workflow, each client performs localized training on its process data and 
transmits model weight updates or gradients to a central server, which then performs global 
aggregation while maintaining data privacy [17]. This makes FL particularly well-suited for industrial 
environments, such as WAAM, where different workstations operate under distinct process 
dynamics but share the same underlying goal of real-time anomaly detection or quality assurance. 
Furthermore, FL architectures are inherently capable of addressing statistical heterogeneity across 
clients by supporting personalized models and employing aggregation strategies, which improve 
generalization across non-IID conditions [18]. Importantly, since FL retains sensitive process 
information in local computational nodes, it aligns with the stringent data governance requirements 
of manufacturing ecosystems [19]. Despite these benefits, the application of FL to WAAM-specific 
anomaly detection remains largely unaddressed, especially in contexts involving encrypted visual-
signal fusion and process-aware client specialization. 

While FL has gained attention in SM for applications such as predictive maintenance, fault 
classification, and process health monitoring in domains like laser powder bed fusion or injection 
molding, its potential in WAAM systems remains largely unexplored [20,21]. In particular, to our 
knowledge, no existing study has implemented a federated architecture designed explicitly for 
WAAM, which presents distinct challenges due to its high deposition rates and varied sensor 
configurations. Moreover, current FL implementations often focus on unimodal inputs and do not 
accommodate the secure fusion of electrical signatures, positional telemetry, and geometric features 
extracted from vision systems under a unified learning framework. These approaches typically 
assume trusted aggregators and overlook the risks posed by adversarial updates or tampered 
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communications, limiting their applicability in sensitive industrial settings. Aforementioned critical 
gaps motivate the need for an FL system that is both WAAM-specific and resilient, enabling secure, 
multi-source anomaly detection across distributed process units. 

To this extent, this study proposes an FL-based architecture for secure and distributed anomaly 
detection in WAAM. The architecture introduces client-specific models trained on process signals 
such as current, voltage, speed, position, and arc-related geometry, which are securely embedded 
into high dynamic range (HDR) weld images using reversible data hiding. It integrates local model 
customization with centralized aggregation strategies, including FedAvg, FedProx, and FedPer, to 
accommodate statistical heterogeneity across WAAM units. The proposed architecture is validated 
through a multi-client simulation framework that emulates eight distributed cells under replicated 
non-IID conditions. The remainder of the paper is structured as follows: Section 2 presents a review 
of FL in SM, AM, and secure communication; Section 3 outlines the proposed framework with secure 
transmission; Section 4 details the system-level deployment and proof of concept; Section 5 analyzes 
the experimental results and compares aggregation strategies; and Section 6 concludes the study and 
suggests future research directions. 

2. Related Works 

In this section, we detail some recent literature concerning FL, where we investigate FL based 
on additive manufacturing in particular and SM in general. FL is also explored for its security and 
data encryption, and significant research gaps are outlined. 

2.1. Federated Learning in Additive Manufacturing 

FL has recently been explored in the context of AM due to its ability to enable collaborative 
model training across multiple sites without sharing sensitive data. This decentralized approach is 
particularly beneficial for AM, where diverse datasets are often distributed across various 
organizations, each with unique process parameters and machine settings. For instance, Mehta et al. 
implemented an FL-based semantic segmentation approach using a U-Net architecture for defect 
detection in laser powder bed fusion processes. Their method demonstrates that FL achieves defect 
detection performance comparable to centralized learning while preserving data privacy and 
significantly outperforms individual learning, with improvements seen from data diversity and 
transfer learning for generalizability [22]. 

Moreover, Shi et al. developed a knowledge distillation-based information sharing (KD-IS) 
framework that enhances monitoring performance for data-poor units in decentralized 
manufacturing by leveraging distilled knowledge from data-rich units. Their method achieved 
comparable accuracy and F-score to models trained with six times more data, while reducing training 
time by 25% and effectively preserving data privacy [23]. On the other hand, Russell et al. detailed an 
approach combining Self-Supervised Learning (SSL) with Barlow Twins and FL to improve fault 
detection in manufacturing. Their results show that integrating FL boosts accuracy from 67.6% to 
73.7% for supervised models and from 82.4% to 83.7% for SSL models, demonstrating enhanced 
generalization and fault discriminability in decentralized settings [24]. 

The studies have applied FL to additive manufacturing processes, particularly in laser powder 
bed fusion (LPBF), fused deposition modeling (FDM), and extrusion-based setups. These works 
typically explore quality prediction, thermal monitoring, or control optimization while preserving 
data privacy across distributed manufacturing units. However, none of these implementations 
extend to WAAM, which operates under fundamentally different physical conditions involving high-
temperature electric arcs, dynamic melt pool behavior, and continuously evolving deposition 
geometry. Moreover, the existing frameworks often rely on single-channel data inputs such as force 
feedback or thermal signatures, whereas WAAM requires the integration of multiple process 
parameters, including voltage, current, wire feed rate, arc length, speed, and bead geometry. These 
parameters vary in temporal resolution, demanding a more advanced learning approach. In addition, 
current federated models assume uniform architectures across clients and do not support local 
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personalization, making them unsuitable for systems where each client observes different signal 
domains. 

2.2. Federated Learning in Smart Manufacturing 

FL plays a critical role in enhancing predictive maintenance, anomaly detection, and process 
optimization while maintaining data security. The nature of SM systems [25], which often involve 
interconnected devices and sensors across multiple locations, makes FL an ideal solution for 
decentralized data analysis and model training. 

For example, at a smart factory/enterprise level, Aggour et al. propose a federated multimodal 
Big Data storage and analytics platform that integrates diverse datasets from the additive 
manufacturing lifecycle, including material properties, design models, process parameters, sensor 
data, and inspection results, enabling scalable, unified access for advanced analytics and 
visualization to optimize manufacturing processes and accelerate technology maturation [26]. Then 
again, Huong et al. proposed FedeX, an FL-based explainable anomaly detection architecture for 
industrial control systems, which integrates Variational Autoencoders, Support Vector Data 
Description, and Explainable AI. FedeX achieves exceptional performance with up to 1 Recall and 
0.9857 F1-score on SWaT data, outperforms 14 existing methods, and is both fast and lightweight for 
real-time edge deployment [27]. Also, Dib et al. developed an FL methodology to predict defects in 
sheet metal forming by training machine learning models locally on client data and aggregating 
model weights using federated averaging, achieving similar accuracy to centralized neural networks, 
demonstrating its reliability and potential for preserving data privacy while enhancing collaboration 
in SM environments [28]. Chen et al. implemented a federated Markov chain Monte Carlo method 
with delayed rejection (FMCMC-DR) for digital twin-assisted federated analytics, achieving superior 
global distribution estimation with 50% and 95% contour accuracy and faster convergence compared 
to the Metropolis-Hastings and random walk MCMC algorithms, enhancing distributed data privacy 
and resource utilization in SM [29]. 

Moreover, for, IIoT implementation, Kanagavelu et al. proposed a Two-Phase MPC-enabled FL 
framework that reduces communication costs and enhances scalability by electing a committee for 
privacy-preserving model aggregation, integrated into an IIoT platform for SM, demonstrating 
superior model accuracy and execution efficiency compared to traditional peer-to-peer frameworks 
[30]. In addition, Gao et al. detailed RaFed, a resource allocation scheme for FL in IIoT systems, which 
uses a heuristic algorithm to reduce training latency by 29.9% compared to state-of-the-art methods, 
achieving a balance between interference and convergence time through optimal device and resource 
allocation in static wireless networks [31]. 

Furthermore, applications in Industry 4.0 are demonstrated by Brik et al. developed a federated 
deep learning-based monitoring tool that predicts disruptions due to resource localization errors in 
real-time using Fog computing, achieving low latency, high prediction accuracy, and efficient task 
rescheduling via Tabu search, outperforming traditional methods in terms of QoS, total tardiness, 
and makespan [32]. Similarly, Kusiak et al. proposed the XRule algorithm for generating user-defined 
explicit rules and introduced federated explainable AI (fXAI) to enhance model transparency and 
insight. Their approach allows for user control over rule characteristics and leverages fXAI to 
discover new model parameters and insights, supported by numerical examples and industrial 
applications [33]. Likewise, Putra et al. detailed a FL-enabled digital twin architecture for smart 
additive manufacturing, particularly 3D printing, using a CNN-based model for fault detection. The 
model achieved an 8% increase in accuracy compared to other deep learning models while 
maintaining low training times, and demonstrated low latency, averaging 1026.16 ms between the 
physical printer and the digital twin platform [34]. Additionally, Verma et al. detailed a FL-enabled 
deep intrusion detection framework for SM, utilizing a hybrid CNN+LSTM+MLP model for detecting 
cyber threats. The framework achieved high accuracy (up to 99.447%) and ensured data privacy using 
Paillier encryption for secure communication, outperforming other state-of-the-art methods while 
addressing FL-based attack concerns [35]. 
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The federated approach also included by Sun et al. implemented the Sustainable Production 
concerned with External Demands (SP-ED) method, integrating FL and blockchain to enhance energy 
production and distribution. Their approach achieves an 11.48% improvement in sustainability, 
14.65% better flaw detection, and reductions in modifications and detection time, compared to 
DDSIM, demonstrating effective validation and optimization of energy supply-demand processes 
[36]. Yang et al. developed a client selection method for FL that uses model parameter variations and 
graph theory to filter participants, reducing the impact of data heterogeneity. Their approach 
improved accuracy by 0.93% to 2.65% compared to baseline methods and mitigated the effects of 
heterogeneity, demonstrating enhanced training efficiency in SM scenarios [37]. Zhang et al. 
developed DetectPMFL, a privacy-preserving FL approach that uses Cheon-Kim-Kim-Song 
homomorphic encryption to protect data and a detection method to handle unreliable agents. 
Evaluated on F-MNIST and CASE WESTERN datasets, DetectPMFL shows superior robustness and 
accuracy compared to traditional methods, with improved performance in the presence of unreliable 
agents [38]. 

Discussion above showed, FL being applied in various SM systems to support decentralized 
fault detection, equipment health monitoring, and distributed control optimization. While these 
frameworks offer privacy-preserving analytics across factory networks, they often rely on generic 
architectures that do not incorporate domain-specific process behaviors. Additionally, most 
implementations do not analyze round-wise convergence metrics like global loss trends or client 
divergence, making it difficult to evaluate training stability during deployment. Aggregation 
strategies also remain static, ignoring variability in process conditions, signal quality, or operational 
complexity across clients. This limits the adaptability of the global model to high-variance systems 
such as WAAM. 

2.3. Federated Learning in Secure Comminucation 

Security is a critical concern in FL, especially when applied in industrial settings like AM and 
SM, where data privacy and integrity are paramount. FL’s decentralized nature introduces unique 
challenges and opportunities in ensuring secure model training and data protection. Such as, 
Ranathunga et al. developed a Blockchain-based decentralized FL framework with a hierarchical 
network of aggregators to handle low-quality model updates, ensuring security through additive 
homomorphic encryption and off-chain credibility verification using trusted execution 
environments, thus minimizing convergence time and latency, and maximizing accuracy and fairness 
across predictive maintenance and product inspection use cases [39]. Again, Kuo et al. developed a 
privacy-preserving FL framework using Fully Homomorphic Encryption (FHE) to perform 
computations on encrypted data, ensuring data privacy across segregated data ownership scenarios 
in SM. Their approach demonstrates superior performance in protecting against cyber-attacks while 
maintaining predictive model accuracy, as validated through real-world case studies [40]. 

In addition, Li et al. detailed a privacy-preserving and Byzantine-robust FL scheme (PBFL) 
designed for Industry 4.0, leveraging agglomerative hierarchical clustering for robust aggregation 
and 2-party computation (2PC) protocols to enhance security and efficiency. Their approach achieves 
significant runtime reductions while maintaining accuracy, even with up to 49% malicious 
participants, ensuring effective protection against Byzantine attacks [41]. Zhang et al. proposed a joint 
optimization framework for FL in industrial internet of things (IIoT) systems, balancing learning 
speed and cost by optimizing edge association, resource allocation, and transmit power. Their 
method, which involves decomposing the problem into three subproblems and using an alternating 
optimization algorithm, demonstrates improved learning performance and efficiency, effectively 
managing the tradeoff between speed and cost [42]. 

Secure FL, as deliberated above, has been widely adopted in domains where data privacy is 
critical, including healthcare diagnostics, industrial IoT, and sensor-based monitoring. These systems 
commonly rely on encryption protocols, differential privacy, or trusted execution environments to 
protect information during model transmission and aggregation. However, existing methods rarely 
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incorporate embedded security mechanisms such as reversible data hiding or image-based parameter 
encoding into the training pipeline itself. This limits their ability to verify integrity or support tamper-
evident learning in sensitive industrial environments. Furthermore, most aggregation strategies 
assume idealized or balanced data distributions and are not resilient to adversarial updates that can 
arise under non-IID conditions typical in manufacturing. Without mechanisms like outlier 
suppression or similarity-based filtering, a single corrupted client can distort the global model. 
Additionally, current frameworks depend heavily on trusted aggregators and lack tamper-proof 
audit trails to verify the source and structure of incoming updates. 

3. Proposed Methodology 

In order to address the limitation in the existing literature, the proposed methodology is 
designed to meet the critical need for secure learning across distributed WAAM setups, where each 
unit operates under unique conditions and generates heterogeneous process data. These datasets, 
which include time-dependent electrical signals, geometrical bead representations, and high-frame-
rate visual sequences, cannot be pooled due to confidentiality and data ownership constraints. 
Therefore, this architecture adopts an FL framework that allows each WAAM client to independently 
train local models using its own process data while contributing to a shared anomaly detection model 
through periodic encrypted updates. The approach ensures that no raw data leaves the local 
boundary and that every site maintains control over its data assets. As shown in Figure 1, the 
architecture initiates with individual data acquisition and training at the client nodes, followed by 
secure transmission of encoded model parameters, iterative model fusion under privacy-preserving 
protocols, and redistribution of the aggregated model for continued local refinement. 

 

Figure 1. Proposed framework of the FL model. 
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 Local Data Collection and Preprocessing: Each WAAM client acquires structured and 
unstructured process data, which are filtered, normalized, and aligned temporally to construct 
feature matrices suitable for model training. 

 Local Model Training: Clients train sensor-specific models on preprocessed data to learn 
localized anomaly patterns without transmitting raw information externally. 

 Model Aggregation via FL: Encrypted local model parameters are securely transmitted and 
aggregated into a global model using privacy-preserving fusion techniques. 

 Global Model Update: The aggregated model updates are redistributed to clients, enabling them 
to enhance their local inference capabilities based on collective knowledge. 

 Iteration and Model Convergence: The training-aggregation-update cycle repeats multiple times 
until the model achieves convergence across all validation criteria. 

 Security and Privacy Mechanisms: A dual-layered protection scheme combining reversible 
encryption and differential privacy ensures confidentiality and resistance to inference attacks. 

 Model Deployment and Inference: Once converged, the global model is deployed locally at each 
client for real-time anomaly detection and process monitoring. 

The architectural design starts at the client level, where each WAAM unit functions 
autonomously as an isolated training node equipped with domain-specific sensing equipment. 
Depending on the physical configuration and instrumentation, clients acquire distinct classes of data, 
ranging from high-frequency current-voltage signals and travel speed signals to HDR imaging for 
bead geometry and arc characterization. These sources present variations not only in temporal 
samples and statistical structure but also in signal integrity and failure patterns. To accommodate 
this diversity, each client implements a tailored data curation pipeline involving time-based 
resampling, filtering, and segmentation. For time-series data, statistical features such as root mean 
square, kurtosis, and spectral entropy are computed over sliding windows. At the same time, image 
streams undergo contrast enhancement, region-of-interest isolation, and dimensionality reduction 
via pretrained encoders. The resulting feature matrices are fed into neural network architectures 
tailored to the data type, including convolutional encoders for visual patterns, long short-term 
memory (LSTM) blocks, or gated recurrent unit (GRU) blocks for sequential signals. This design 
ensures each client captures anomalies specific to its operational domain while preserving 
heterogeneity within the federation. 

Following local training, each client generates model parameter updates encoded in a secure 
format to ensure privacy during transmission. Before dispatch, the gradient tensors undergo 
differential excitation using calibrated Laplacian noise, hiding sensitive training signatures while 
retaining representational fidelity. These excited tensors are then embedded using reversible data 
hiding techniques, which allow precise restoration of the original model update post-decoding 
without information loss. Once encoded, the parameter sets are exchanged through a secure channel 
using integrity-preserving communication protocols. At the aggregation layer, the encrypted updates 
are decoded, verified for consistency, and fused into a global model through federated averaging 
weighted by client-specific data contributions. This aggregated model is redistributed to the clients, 
serving as a refined beginning for subsequent local updates. The process iterates until convergence 
is detected through global stability in loss metrics and local validation scores. Such iterative 
synchronization across non-identical clients requires a rigorous and sensor-aware data processing 
framework at the client level, which is presented in detail in the following. 

3.1. Multi-Source Data Collection and Processing 

The WAAM process generates diverse sensor data, including high-frequency current and 
voltage signals, slower travel speed and wire feed rate readings, and vision-based bead and arc 
imagery, that differ in sampling rates, resolution, and statistical properties. To harmonize this 
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heterogeneous data for federated training, each client builds a custom preprocessing pipeline. 
Structured signals are filtered, normalized, and resampled onto a unified temporal grid, then 
segmented into overlapping windows from which descriptive features (e.g., root mean square (RMS), 
kurtosis, spectral entropy) are extracted. These features capture steady-state behavior and transient 
anomalies, ensuring that input data fed into local models is consistent, representative, and aligned in 
time. 

For clients with visual data, image frames are processed using grayscale conversion, contrast 
enhancement, and region-of-interest isolation to highlight weld features, such as bead width and arc 
boundaries. Pretrained convolutional encoders then extract fixed-length feature vectors, which are 
synchronized with structured sensor data via timestamp matching. The resulting fused feature 
matrices are semantically rich and temporally coherent, enabling effective anomaly learning. This 
dual-channel preparation, combining signal-based and vision-based approaches, ensures that each 
client independently constructs a reliable training set tailored to its sensor configuration, laying the 
groundwork for stable federated learning across non-identical WAAM environments. 

3.2. Federated Secure Channel 

Once local training is complete, each WAAM client must transmit its model updates to the 
federation without exposing sensitive information. However, sharing model parameters introduces 
several integrity risks that can compromise the entire learning process. One major concern is model 
inversion, where adversaries attempt to reconstruct the client’s training data by analyzing gradients. 
Gradient leakage is also a threat, particularly when signals like current or voltage are sparse and 
contain identifiable operational patterns. Moreover, adversarial clients may inject poisoned updates 
that degrade the global model or distort anomaly boundaries. These vulnerabilities are exacerbated 
by the uneven data distributions across WAAM sites, which increase the likelihood that unique client 
patterns become identifiable during aggregation. Therefore, the transmission pipeline must protect 
against unauthorized access, preserve the fidelity of model updates, and prevent any attempt to infer 
client data or interfere with training. To meet these challenges, the system employs a dual-layer 
security framework that combines reversible encryption and privacy-preserving perturbation. This 
ensures that model updates remain protected during transfer and that any tampering or 
manipulation can be detected and corrected before aggregation. These safeguards are critical in 
maintaining trust and consistency throughout the FL process. 

To ensure secure and reversible transmission of model updates, each client applies a two-stage 
encoding process that combines differential privacy and reversible data hiding. The first stage 
involves agitating the local model gradients or weight tensors using calibrated Laplacian noise, which 
masks the contribution of individual training samples. This step provides formal privacy guarantees 
by ensuring that even if an update is intercepted, it cannot be traced back to specific input patterns 
or process states. In the second stage, the noise-added tensors are embedded into image-like 
structures using reversible data-hiding techniques. These methods encode the encrypted tensors into 
the least significant bits of pixel matrices, allowing for the full restoration of the original model 
parameters after decoding without any loss of precision. This is especially useful for maintaining the 
floating-point resolution required for aggregation. Additionally, a watermarking signature is 
embedded within the payload as a tamper-detection mechanism, which enables clients and 
aggregators to verify the authenticity of received updates. The advantage of this approach is that it 
enables high-capacity, low-distortion embedding that is both reversible and secure. As a result, the 
shared updates are protected from both passive inference and active manipulation, allowing only 
valid and untampered updates to enter the aggregation cycle. 

Beyond protecting the content of model updates, the transmission setup must also ensure that 
communication occurs through secure and verifiable channels. To enforce this, each client operates 
under a network security framework that monitors outbound and inbound parameter flows for 
unusual patterns. Packet inspection routines are configured to detect anomalous payload sizes, 
irregular transmission intervals, or unauthorized access attempts, all of which may indicate 
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tampering or injection attacks. Each outgoing model update is tagged with a cryptographic signature 
and a timestamp to enable verification upon arrival. These signatures are checked before any 
aggregation occurs, ensuring that only authenticated updates contribute to the global model. In 
addition, all update histories are logged in an append-only local registry, which serves as a trail in 
case of disputed behavior or rollback attempts. This logging also supports traceability for update 
provenance and client accountability. Together, the layered protection scheme, which encompasses 
noise-based privacy, reversible embedding, and network validation, ensures that the federated 
system can operate reliably across distributed WAAM environments. With secure exchange 
mechanisms in place, the next challenge lies in tailoring local models that can effectively learn from 
the prepared data streams while remaining compatible with the global aggregation process. 

3.3. Local Client Model Development 

Each WAAM client deals with unique data modalities, such as high-frequency time-series 
signals (e.g., current, voltage, speed) or image-based features (e.g., bead geometry, arc profiles), 
which demand tailored neural network models. Clients with visual data use convolutional encoders 
to extract spatial patterns, while those processing sequential signals rely on LSTM or GRU 
architectures to capture temporal dependencies. For clients handling both data types, feature vectors 
are fused and passed through fully connected layers. To ensure stable training and prevent 
overfitting, standard techniques such as dropout, batch normalization, and gradient clipping are 
applied. Validation is monitored in real time to stop training once loss and accuracy stabilize. This 
design guarantees that models are lightweight, architecture-compatible with FL, and sensitive to each 
client’s unique operational domain. 

To support secure federation, each client maps its model outputs into a shared representation 
space via dimensionality-matching layers. Before transmission, model parameters are perturbed with 
calibrated Laplacian noise to ensure privacy and embedded into image-like structures using 
reversible data hiding, thereby preserving both precision and security. Cryptographic signatures and 
local logging ensure the authenticity and traceability of each update. These encoded updates, once 
transmitted through secure channels, enable consistent and interpretable aggregation at the server 
side. This localized yet interoperable approach ensures that every client contributes meaningfully to 
the global model while preserving privacy, architectural flexibility, and robustness in WAAM-
specific anomaly detection. 

3.4. Global Server Model Aggregation 

Aggregating updates from heterogeneous WAAM clients poses challenges due to varying data 
types, sample sizes, and model dynamics. Simple averaging can bias the global model toward clients 
with more data or dominant feature patterns, reducing the system’s ability to generalize. To address 
this, the server initiates a selective aggregation process that assesses the alignment of each client 
update with the federation’s latent space using similarity metrics such as gradient direction and 
statistical distribution. Outliers or inconsistent updates are down-weighted or excluded to enhance 
robustness. Updates are decoded from their reversible data-hiding format, verified for authenticity 
via cryptographic signatures, and then projected into a common latent space to reconcile architectural 
differences. The server calculates update weights based on historical reliability and consistency, 
aggregating the remaining updates using a strategy that emphasizes diversity and stability. To 
support local adaptation, client-specific personalization layers are added before redistributing the 
refined global model. 

Throughout training, the server monitors convergence by tracking validation metrics and loss 
stabilization across rounds. If progress plateaus, aggregation is halted to conserve resources and 
prevent overfitting. The system dynamically adjusts communication schedules based on client 
availability and data shifts, incorporating explainability tools such as feature attribution to enhance 
transparency and operator trust. Final global models are securely redistributed with privacy-
preserving guarantees intact. Overall, this aggregation strategy ensures a secure, adaptive, and 
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generalizable federated learning cycle, enabling effective anomaly detection in distributed WAAM 
systems under non-IID conditions. 

4. System Development Architecture 

To validate the proposed FL framework outlined in Section 3, a scaled implementation was 
developed to serve as a system-level proof of concept. This implementation demonstrates the end-to-
end realization of a secure, distributed anomaly detection pipeline tailored for WAAM environments. 
Each component of the architecture, from sensor-based data acquisition and preprocessing to 
reversible data embedding, client-specific model training, and federated coordination, was 
constructed and tested using real process data captured under controlled deposition scenarios. The 
setup simulates an eight-client federated ecosystem, where each client represents a distinct subset of 
process signatures and sensor capabilities, reflecting the variations encountered in practical WAAM 
systems. By recreating the logical sequence of the methodology in an experimental setting, this 
section validates the functional interoperability of each module. The following will describe the 
development pipeline in chronological order, beginning with synchronized data collection and 
temporal alignment, followed by the implementation of reversible data hiding, local model 
configuration and training per client, and concluding with the design and operation of the FL 
framework. 

4.1. Data Collection and Preprocessing 

To train federated client models effectively, a well-structured and synchronized dataset is critical 
for achieving meaningful convergence across distributed nodes. In this study, a GTAW-based 
WAAM system was used to collect electrical signals and HDR video of the deposition process. Using 
computer vision techniques, additional process features, such as torch speed, feed angle, and arc 
length, were extracted from the video. All data were timestamped and temporally aligned to support 
LSTM-based time-dependent modeling. The experimental setup consisted of a six-axis Fanuc 
ArcMate 120iC robot with an R-30iA controller and a Miller Dynasty 400 GTAW power source, 
allowing for precise control of deposition parameters [43]. A Weldvis HDR camera captured the weld 
pool and feed wire under varying lighting conditions. Low-carbon steel was used as the feedstock, 
and consistent wire feeding was maintained across trials. Two controlled experiments simulated 
normal and abnormal conditions: one with stable parameters (160 A, 20 cm/min travel speed, 160 
cm/min feed rate), and another with altered settings (140 A, 40 cm/min, 180 cm/min) to induce defects. 
These trials provided the basis for binary labeling of the dataset. All sensor data were continuously 
and synchronously recorded, providing temporally and spatially rich inputs for federated LSTM-
based anomaly detection. 

First, the electrical data comprising current and voltage signals was collected using a Miller 
Insight ArcAgent Auto sensor, which samples at a temporal resolution of 0.10 seconds, ensuring 
sufficient granularity for capturing dynamic fluctuations during deposition. Raw signal traces often 
contain inconsistent entries due to arc instability at ignition and extinction; therefore, the initial and 
terminal segments of the sequence were cleaned by removing frames with near-zero values using a 
binary thresholding scheme. Furthermore, the recorded timestamps from the current-voltage sensor 
were used as reference markers for synchronizing all other sensor data, including video-based speed 
and geometric parameters. A significant preprocessing step involved detecting and eliminating 
anomalous data points introduced by sensor latency and transient disruptions, such as those 
occurring during rapid parameter transitions or signal dropout. Outliers were identified using 
statistical filters and replaced via interpolation to preserve temporal continuity. These cleaning 
procedures were essential to mitigate noise-induced irregularities that could degrade model 
generalization. The resulting voltage and current time-series data, free of noise and aligned with 
video-derived timestamps, form a reliable and temporally coherent input to the LSTM classifier for 
each respective client model. 
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Second, both normal and abnormal deposition sequences under controlled conditions, as are 
depicted in Figure 2(a). Each video stream was decomposed into individual frames, with the frame 
per second (FPS) extracted to enable time dependency. Following frame extraction, grayscale 
conversion was applied to reduce computational overhead, and binary thresholding was used to 
isolate high-intensity regions corresponding to the welding arc. Contour detection was performed on 
each thresholded frame, and the largest contour, typically representing the arc plasma, was selected 
for centroid computation. Spatial moments of the contour were used to determine the centroid 
position ሺ𝑥௖ ,𝑦௖ሻ per frame, which represents the torch’s instantaneous spatial location. The welding 
speed 𝑣  was then estimated by computing the Euclidean displacement of the centroid between 
consecutive frames and scaling it to physical units using the FPS and a spatial calibration factor α = 0.1 mm/pixel, as in Eq. 1. 𝑣 = ඥሺ𝑥௧ାଵ − 𝑥௧ሻଶ + ሺ𝑦௧ାଵ − 𝑦௧ሻଶ × FPS ×  𝛼  (Eq. 

1) 
where ሺx୲, y୲ሻ and ሺx୲ାଵ, y୲ାଵሻ are the centroid positions at consecutive time steps. The entire process 
of which has been shown in Algorithm 1. These speed values were paired with the corresponding 
centroid coordinates and timestamped at 0.10-second intervals to align with the current-voltage 
measurements. Given that real-world sensor fusion requires time synchronization, the centroidal 
position and derived speed were matched and mapped onto the current-voltage timestamp axis to 
ensure time-based coherence across data types. 

Finally, the detection of part parameters; specifically arc length and feed angle; was conducted 
using computer vision techniques applied to HDR video frames, allowing precise geometric 
characterization of the welding process, as depicted in Figure 2(b). Arc length, denoted as Larc, was 
estimated by measuring the vertical spread of the arc plasma region in the image. First, each frame 
was converted to grayscale, and a fixed binary threshold of intensity 190 was applied to isolate the 
arc region. The vertical extent of the arc was computed by identifying the first and last rows 
containing non-zero pixels in the binary image, and the difference between these rows provided the 
arc height in pixels. Assuming a vertical spatial resolution of 100 pixels per millimeter, the arc length 
was computed as Eq. 2. 𝐿arc = 𝑦max − 𝑦min100  (Eq. 

2) 
where 𝑦max  and 𝑦min  represent the bottommost and topmost positions of the arc segment, 
respectively. For feed angle estimation, a region of interest (ROI) was cropped around the feed wire 
to isolate the visible wire path. The cropped segment was preprocessed with grayscale inversion, 
contrast normalization, and multi-stage Gaussian blurring to enhance edge features while 
suppressing noise. Canny edge detection was applied to extract the wire boundaries, followed by a 
probabilistic Hough Line Transform to detect straight line segments representing the wire 
orientation. The angle of each line was computed using its slope and averaged over all detected lines 
to yield the feed angle 𝜃feed by Eq. 3. 𝜃feed = อ1𝑁෍𝑡𝑎𝑛ିଵ ቆ𝑦ଶ௜ − 𝑦ଵ௜𝑥ଶ௜ − 𝑥ଵ௜ቇே

௜ୀଵ อ (Eq. 
3) 

Each value of 𝐿arc and 𝜃feed was timestamped and interpolated to match the current-voltage time in 
Section 4.2, ensuring multi-data temporal alignment. Heuristics of determining 𝐿arc  and 𝜃feed  was 
shown in Algorithm 2. 
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(a) (b) 

Figure 2. Detection process for (a) speed and centroid position and (b) feed angle and arc length. 
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Following the synchronization and preprocessing of sensor-derived and vision-based process 
features, the next step involved constructing labeled datasets to enable supervised training across 
federated clients. Each deposition video was independently reviewed by two WAAM domain 
experts, who visually identified normal and abnormal deposition sequences based solely on unbiased 
observation of the bead morphology. These annotations were mapped to exact frame timestamps and 
aligned with corresponding multimodal feature sets. The labeled data included temporally 
synchronized current and voltage signals obtained directly from sensors, as well as centroid position 
and welding speed, which; although part of the same labeled dataset; were extracted using a frame-
wise computer vision pipeline. Each instance was assigned a binary class label, with ‘0’ denoting 
normal and ‘1’ representing abnormal deposition. Separately, geometric parameters such as arc 
length and feed angle matched to their respective timestamps and labeled in the same manner. These 
two labeled sources were distributed across eight client models with distinct input combinations, as 
described in Section 4.3. To match non-uniform industrial data availability, clients received varying 
numbers of samples, ranging from 216 in Client 1 to 1692 in Client 3 shown in Table 1, while a 
consistent 75:25 train-test partitioning was applied across all clients. 

Table 1. Train and test data distribution across the clients. 

Client Train Data Test Data 
1 216 72 
2 348 116 
3 1692 564 
4 300 100 
5 348 116 
6 348 116 
7 348 116 
8 348 116 

4.2. Reversible Data Hiding 

The reversible data hiding in the encrypted domain (RDHE) module, illustrated in Figure 3, is 
designed to embed high-resolution, WAAM process parameters (current, voltage, travel speed, arc 
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length, and feed angle) into visual process images without introducing irreversible distortion similar 
to [44]. The process begins with the acquisition of a weld image during the deposition cycle, which is 
spatially divided into 𝑛 × 𝑚  Each sub-block is decomposed into its RGB planes, denoted as 𝐼ோ , 𝐼 , 𝐼஻ ⊂  ℤு×ௐ serving as the embedding substrates. These channels are scanned in a pixel-wise 
raster order, and low-gradient regions, determined via a Sobel and Laplacian filter threshold, are 
identified as candidate embedding zones to avoid perceptual degradation at high-intensity edges 
near the weld pool. The payload 𝒫, which encapsulates the serialized process parameters in 8-bit 
ASCII format, is then converted into a binary stream 𝒃 = 𝑏ଵ, 𝑏ଶ, … , 𝑏௅ , appended with a fixed 
delimiter pattern “=====“ for stream termination. The embedding operation modifies the two least 
significant bits of selected pixel values 𝐼௖ሺ𝑖, 𝑗ሻ usin Eq. 4. 𝐼௖∗ሺ𝑖, 𝑗ሻ = ቞𝐼௖ሺ𝑖, 𝑗ሻ4 ቟ ⋅ 4 + binିଵሺ𝑏ଶ௞ିଵ, 𝑏ଶ௞ሻ (Eq. 

4) 
where, 𝑐 ∈ ሼ𝑅,𝐺,𝐵ሽ  and binିଵ denotes the inverse binary-to-decimal mapping. This substitution 
yields the encoded image 𝐼∗, which visually preserves the structural texture and colorimetry of the 
original image 𝐼, while encapsulating process intelligence at a pixel level. 

 

Figure 3. Reversible data hiding in the encrypted domain scheme. 

Before transmission, a distortion verification stage evaluates the peak signal-to-noise ratio 
(PSNR) and mean squared error (MSE) between 𝐼  and 𝐼∗  to ensure that the embedding-induced 
perturbation remains below a perceptual threshold. In parallel, a digest of the unmodified image is 
embedded within 𝒫 , enabling post-hoc verification of image integrity upon decoding. This 
interfaced mechanism supports both synchronous and asynchronous client-server data retrieval and 
can be used for flexible integration into edge-deployed WAAM control systems and cloud-
aggregated analytics pipelines. 

Decoding is initiated by retrieving the stored image and its associated metadata. The system re-
scans the image in accordance with the spatial and channel-wise offset map, extracting the embedded 
two-bit sequences from 𝐼௖∗ሺ𝑖, 𝑗ሻ using Eq. 5. ሺ𝑏ଶ௞ିଵ, 𝑏ଶ௞ሻ = lsbଶ൫𝐼௖∗ሺ𝑖, 𝑗ሻ൯ (Eq. 

5) 
The aggregated binary stream is parsed until the terminator sequence is identified, at which 

point it is deserialized to recover the original textual parameter payload. Simultaneously, the image 
is restored to its original form by reconstructing the higher-order bits and reinserting preserved LSBs 
from the reversible buffer using Eq. 6. 
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𝐼௖ሺ𝑖, 𝑗ሻ = ቞𝐼௖∗ሺ𝑖, 𝑗ሻ4 ቟ ⋅ 4 + 𝑅௖ሺ𝑖, 𝑗ሻ (Eq. 
6) 

where 𝑅௖ሺ𝑖, 𝑗ሻ, denotes the retained LSB snapshot prior to embedding. This guarantees exact recovery 
of 𝐼, and ensures that all embedded WAAM parameters are faithfully restored. 

The RDHE pipeline can support modular deployment and real-time streaming, enabling 
continuous, in-situ encoding of high-speed weld monitoring feeds in edge-mounted WAAM systems. 
As shown in Figure 3, it decouples the encoding and decoding layers, facilitating scalable client-
server interaction across a federated network of WAAM nodes. The encoded image functions dually 
as a visual object and a secure telemetry carrier, allowing seamless integration with FL workflows. 
This process ensures that WAAM-specific process data are embedded, transported, and recovered 
without compromising confidentiality or signal integrity. 

4.3. Client Models Development 

Each federated client in the WAAM system is configured to train a local sequence-based 
classifier using a shared architectural backbone composed of an LSTM encoder followed by a linear 
classification head. The adopted model, referred to as LSTMClassifier, is designed to process fixed-
length temporal sequences and is parameterized by an input feature dimension of three and a hidden 
state size of 256 as described by Algorithm 3. The recurrent layer is implemented to, capture dynamic 
time dependencies across successive observations within each client’s local sensor stream. The 
hidden layers extracted at the final time step are passed through a fully connected layer with a single 
output neuron, representing the logit for binary classification between normal and abnormal 
deposition states. The input to each model is a tensor of shape ሾ𝑁, 5, 3ሿ, where 𝑁 is the number of 
sequences, 5 is the sequence length, and 3 is the dimensionality of the client-specific feature set. To 
preserve the chronological structure of the input signals, overlapping temporal windows are 
constructed using a sliding frame technique, enabling the model to learn short-term temporal 
variations crucial for identifying anomalous transitions in WAAM. Although the core model 
structure remains identical across all clients, the feature spaces differ, reflecting the heterogeneous 
nature of data distributed across the sensor network. During the federated training phase, only the 
parameters of the shared LSTM layer are uploaded to the federated server, while the final fully 
connected layer is retained locally when using personalization strategies such as FedPer. This ensures 
that each client maintains its specialized decision boundary tuned to its own feature distribution 
while contributing to the globally shared temporal encoder. 

 

The eight clients participating in the FL system are differentiated based on the data types of their 
input features, each reflecting a unique sensor perspective on the WAAM process, to replicate real-
world muti-enterprise WAAM process. Clients 01 to 04 form the first cluster of diversity, each 
focusing on a distinct aspect of process monitoring. Client 01 utilizes average voltage, average 
current, and normalized timestamp as its input features, emphasizing electrical signal dynamics and 
temporal progression during deposition. The timestamp is normalized to [0,1] to maintain scale 
consistency and prevent temporal magnitude from dominating the input. Client 02 incorporates 
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spatial centroids of the arc region, 𝑥  and 𝑦  coordinates, together with arc voltage, linking arc 
geometry with instantaneous electrical behavior. This fusion allows the model to learn 
spatiotemporal correlations between arc spread and voltage fluctuations. Client 03 extends spatial 
tracking by combining welding speed with centroid coordinates, thereby encoding motion-induced 
variations and spatial drift, which are indicative of instability in torch trajectory. In contrast, Client 
04 is entirely geometric and focuses on arc length, feed angle, and timestamp. These features are 
extracted using vision-based analysis of HDR frames and represent structural characteristics of the 
weld bead and wire orientation. Prior to training, Client 04 applies standard scaling normalization to 
arc length and feed angle due to their varying physical scales and to ensure that both features 
contribute equally during gradient updates. For all clients, data is converted into five-step 
overlapping sequences using sliding windows, such that the 𝑖th sequence includes time steps [𝑖, 𝑖 +1, . . . , 𝑖 + 4] with the label taken from the final frame. This setup enables the model to learn not only 
the temporal evolution of the signal but also localized transitions that may signify emerging defects. 

Clients 05 through 08 extend the representational diversity of the federated setup by combining 
hybrid features from both electrical and kinematic modalities, offering complementary perspectives 
for anomaly detection, from diverse enterprises. Client 05 utilizes speed, current, and voltage as its 
feature set, capturing the joint dynamics of mechanical motion and electrical load fluctuations, which 
are especially useful for detecting disruptions caused by arc instability or inconsistent travel. Client 
06 incorporates timestamp, speed, and current, embedding explicit temporal progression into the 
sequence alongside instantaneous physical measurements; this configuration is particularly useful 
for modeling time drift and time-aligned degradation. Client 07 is structurally similar, replacing 
current with voltage, allowing the model to capture high-frequency variations in power delivery 
relative to travel speed and timestamp. In contrast, Client 08 combines current with spatial position 
(centroid_x and centroid_y), enabling a unique fusion of electrical energy and localized arc trajectory. 
For all clients, the extracted feature sequences are sampled at 0.10-second intervals and interpolated 
when necessary to match the reference timestamps derived from the current-voltage signal, ensuring 
multimodal synchronization. The resulting sequence tensor, uniformly shaped as [𝑁, 5, 3], preserves 
the order and spacing necessary for LSTM-based temporal learning. Training data is fed into Data 
Loader objects with a fixed batch size of 32, preserving mini-batch stochasticity while ensuring 
consistent time structure within each sequence. The use of timestamp alignment across all clients 
ensures that each local model operates within a temporally harmonized view of the process, even 
though the input features vary. This deliberate heterogeneity across Clients 05 to 08 introduces 
robustness into the global model by allowing it to encode diverse forms of anomaly indicators, 
ranging from spatial distortion to electrical jitter, thereby strengthening the generalization capability 
of the federated LSTM encoder. 

During local training, each client executes a full optimization cycle using its data-specific 
sequences, leveraging a recurrent learning architecture tuned for temporal classification, described 
by Algorithm 4. The forward pass involves processing each input sequence through the LSTM layer 
to extract temporal features, followed by a projection through the fully connected classification head, 
which produces a scalar logit for binary classification. The loss is computed using the Binary cross-
entropy loss function, which integrates sigmoid activation and cross-entropy into a numerically 
stable formulation suitable for binary output. For optimization, all clients adopt the Adam optimizer 
with a learning rate of 0.001, and gradient norms are clipped to a maximum of 1.0 to prevent 
instability from exploding gradients. When the FedProx strategy is activated, a proximal 
regularization term is added to the loss function to penalize deviation from the received global 
weights, defined as ఓଶ |𝑤 − 𝑤global|ଶ, where 𝜇 = 0.01 acts as the regularization coefficient. This term 
encourages each client’s update to stay within a bounded neighborhood of the global model, thus 
mitigating divergence due to non-IID data. After training, only the LSTM encoder weights are shared 
with the server, while the classifier head remains local when FedPer is used, thereby enabling client-
specific decision boundaries. Evaluation is performed by thresholding the sigmoid-activated outputs 
at 0.5 and computing performance metrics including accuracy, precision, recall, F1-score, and ROC-
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AUC, as described by Algorithm 5. Each client logs its evaluation metrics and confusion matrix for 
each round, enabling fine-grained analysis of local generalization. These logs also contribute to the 
aggregated global metrics stored on the server. Collectively, this federated training and evaluation 
pipeline ensures that each client contributes to a robust global temporal encoder while maintaining 
architectural consistency and data privacy, which are critical for secure, distributed WAAM anomaly 
detection. 

 

 

4.4. Federated Learning Approach 

In the FL approach, each WAAM client performs local training on its own time-series process 
data, which includes sensor-specific modalities. Rather than sharing raw data, each client sends the 
updated weights of its local LSTM model to a central server, which collects these weights, computes 
an aggregated global model, and sends the updated model back to all clients for the next training 
round. 

Each of the eight WAAM clients is designed to handle a unique combination of process 
parameters, reflecting the multi-modal nature of the system. These data include timestamped 
measurements of current, voltage, centroidal position, linear travel speed, feed angle, and arc length; 
each of which carries distinct temporal dynamics relevant to the WAAM deposition process. Prior to 
model training, the raw sensor signals are segmented into overlapping fixed-length sequences of five-
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time steps, which serve as inputs to a client-specific LSTMClassifier. The LSTM model, comprising a 
recurrent layer and a fully connected output layer, learns to map temporal input features to binary 
labels representing normal and anomalous deposition. The model training is performed using a 
binary cross-entropy loss function with logits and optimized using the Adam optimizer with gradient 
clipping to stabilize training. The temporal correlations captured in the hidden states of the LSTM 
are crucial for identifying deviations in process behavior that unfold across consecutive time steps. 

First, after local training, the client prepares its model for participation in the federated round 
by selecting only the base LSTM layer weights for upload. The fully connected classification layer 
remains local, particularly in the case of personalization strategies such as Federated Personalization 
FedPer, which aims to adapt decision boundaries to local data heterogeneity by excluding the final 
layer from global, given by Algorithm 8. The server collects these LSTM weights from all clients and 
constructs a global model by applying one of the defined federated optimization strategies. In this 
study, we employed three distinct strategies to evaluate the effects of optimization under varying 
conditions. Federated Averaging (FedAvg), implemented as Algorithm 6, the baseline, performs a 
weighted average of client models using the number of local data samples as the weight factor. This 
method assumes IID distributions and thus serves as a performance benchmark under relatively 
homogeneous scenarios. Federated Proximal (FedProx), developed as Algorithm 7, introduces an 
additional regularization term μ =  0.01 to the local objective function, penalizing divergence from 
the global model by imposing a proximal constraint. This improves stability when client data are 
non-identically distributed by discouraging large local deviations. Federated Personalization 
(FedPer) is particularly suited for environments where clients have fundamentally distinct data 
distributions, as it maintains shared representations in the encoder while enabling local adaptation 
through private classification layers. 

Second, to ensure robustness against untrustworthy or faulty clients, we employed resilient 
aggregation mechanisms that are selectively triggered after a fixed number of training rounds. 
Specifically, we implemented three robust aggregation strategies, Krum, Multi-Krum, and Trimmed 
Mean, that each mitigates the influence of outliers or poisoned updates. Krum aggregation, shown in 
Algorithm. 9, computes pairwise Euclidean distances between client models and selects the update 
most similar to its nearest neighbors, effectively eliminating aberrant updates that deviate 
significantly from the majority. Multi-Krum generalizes this by selecting multiple such close-to-
majority models and averaging them as given by Algorithm 10, thereby improving resilience while 
allowing greater representation. Trimmed Mean takes a statistical approach as in Algorithm 11 by 
sorting each weight element and removing extreme values before averaging, thus minimizing the 
effect of adversarial noise or anomalous gradients. These mechanisms are activated after a predefined 
threshold round to allow the initial rounds to benefit from unconstrained learning diversity before 
enforcing robustness and are used in combination with each federated optimization strategy to 
evaluate a total of twelve configurations. This exhaustive permutation; comprising FedAvg, FedProx, 
and FedPer, each paired with Vanilla, Krum, Multi-Krum, and Trimmed Mean; allows systematic 
assessment of convergence stability and resilience under varying assumptions of data distribution 
and client reliability. 
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Finally, the central server is responsible for coordinating each training round, managing model 
updates, and evaluating convergence through empirical tracking implemented using Algorithms 12-
14. At each round, the server initializes or updates the global model and distributes its parameters to 
the selected clients. Once the updated models are returned, it computes the L2 norm difference 
between successive global model parameters to quantify the progression of convergence, a metric 
that reflects model stability and learning dynamics over time. The server then aggregates client-
reported evaluation metrics, including loss, accuracy, precision, recall, F1-score, and ROC-AUC, 
using weighted averages based on local validation sample sizes. These global metrics are saved 
systematically for reproducibility and downstream analysis. Additionally, the server stores client-
specific metrics and confusion matrices to support diagnostic performance evaluations. This logging 
infrastructure enables the generation of detailed visualizations, such as round-wise accuracy trends, 
loss curves, and convergence trajectories, offering a transparent understanding of model behavior 
across strategies and clients. Through this structured and modular FL framework, the system is 
capable of addressing data privacy, heterogeneity, and adversarial risk in distributed WAAM 
environments, while enabling comparative benchmarking across multiple learning configurations. 

 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2025 doi:10.20944/preprints202507.2394.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2394.v1
http://creativecommons.org/licenses/by/4.0/


 21 of 36 

 

 

5. Results and Discussion 

The evaluation of the FL framework designed for anomaly detection in WAAM is carried out 
through a series of controlled experiments. The focus of the evaluation is to assess how well different 
federated strategies perform under varying levels of model personalization and aggregation 
robustness. Specifically, the study compares three federated strategies, FedAvg, FedPer, and 
FedProx, each deployed over 100 communication rounds. For every strategy, four aggregation 
techniques are tested: standard federated averaging (Vanilla), KRUM, Multi-KRUM, and Trimmed 
Mean. This combination yields twelve distinct configurations that are evaluated using both global 
metrics and client-specific metrics. The aim is to capture the model behavior not only in terms of 
overall convergence and stability but also in terms of fairness and consistency across data sources. 
These configurations are tested on client-specific datasets extracted from diverse sensor streams. 

For every combination of strategy and aggregator, both global and local classification 
performance is measured using five standard evaluation metrics: Accuracy, F1-score, Precision, 
Recall, and Area Under the Receiver Operating Characteristic Curve (AUC). Additionally, the 
optimization behavior of the global model is captured through the L2-norm of the weight difference 
between consecutive communication rounds, which serves as an indicator of convergence stability. 
Moreover, to ensure secure and verifiable data transmission, the reversible data hiding in encrypted 
domain (RDHE) mechanism is separately evaluated based on Peak Signal-to-Noise Ratio (PSNR), 
Mean Squared Error (MSE), and embedding rate. The local client models across all sites are 
implemented using LSTM networks trained on time-aligned, process-specific data matrices. The 
evaluation results presented in the following aim to uncover the performance boundaries and 
deployment feasibility of FL models in decentralized WAAM environments. 

5.1. Global Performance Across Strategies and Aggregators 

The choice of aggregation strategy significantly influenced global performance across all 
federated configurations, as seen from the final-round metrics and their trajectory in Figures 4-6. 
Figure 4 provides a comprehensive view of the global performance metrics for the FedAvg strategy 
across different aggregation methods. The accuracy trend in Figure 4(a) shows that Trimmed Mean 
and Multi-KRUM achieve higher and more stable accuracy than KRUM, which lags behind 
consistently. In Figure 4(b), the loss curve for KRUM fluctuates heavily, indicating unstable 
convergence, while Trimmed Mean ensures smoother and faster loss reduction. Precision, illustrated 
in Figure 4(c), peaks under Trimmed Mean and Multi-KRUM, whereas KRUM exhibits suppressed 
values. The F1-score plot in Figure 4(d) mirrors these results, with Trimmed Mean achieving over 
0.91 by round 100. Recall, seen in Figure 4(e), follows a similar trend, with KRUM failing to exceed 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2025 doi:10.20944/preprints202507.2394.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2394.v1
http://creativecommons.org/licenses/by/4.0/


 22 of 36 

 

0.88, while other methods stabilize beyond 0.93. Lastly, the ROC AUC in Figure 4(f) highlights the 
early underperformance of KRUM and the consistent superiority of Multi-KRUM and Trimmed 
Mean throughout the communication rounds. 

(a)  (b)  (c)  

(d)  (e) (f)  

Figure 4. Final metrics vs. rounds for FedAvg; (a) accuracy, (b) loss, (c) precision, (d) F1-score, (e) recall, and (f) 
area under curve. 

Figure 5 illustrates the performance of the FedPer strategy, which demonstrates the most rapid 
and robust learning across all metrics. Accuracy, in Figure 5(a), rises quickly and converges above 
0.95 for all aggregation methods except KRUM, which trails behind. In Figure 5(b), the loss under 
Trimmed Mean and Multi-KRUM reduces sharply and remains below 0.2, while KRUM’s loss 
remains elevated. Precision values in Figure 5(c) show that Vanilla, Multi-KRUM, and Trimmed 
Mean offer closely matched performance, with KRUM again being the weakest. Figure 5(d) 
highlights FedPer’s F1-score dominance, Trimmed Mean surpasses 0.91 early and maintains it, 
outperforming other aggregators. Recall scores in Figure 5(e) show that all aggregators perform well 
initially, but KRUM degrades over time. In Figure 5(f), the ROC AUC curve reaches 0.94 by round 
30 under Trimmed Mean, reflecting strong early-stage generalization and robustness in FedPer. 

(a)  (b)  (c)  
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(d)  (e) (f) 

Figure 5. Final metrics vs. rounds for FedPer; (a) accuracy, (b) loss, (c) precision, (d) F1-score, (e) recall, and (f) 
area under curve. 

Figure 6 focuses on the FedProx strategy, which achieves stable but slower improvements across 
all metrics compared to FedAvg and FedPer. Figure 6(a) shows moderate accuracy growth with 
Trimmed Mean and Multi-KRUM outperforming KRUM, although the convergence is slower than 
FedPer. In Figure 6(b), the global loss steadily declines under all methods, but remains above 0.25 for 
KRUM, indicating ineffective learning. Precision (Figure 6(c)) remains balanced and less volatile 
under Trimmed Mean and Vanilla, while KRUM again underperforms. The F1-score in Figure 6(d) 
demonstrates smoother progression, particularly for Trimmed Mean, reaching nearly 0.91 by round 
100. Recall (Figure 6(e)) improves gradually across configurations, but the KRUM curve stagnates 
around 0.86. In Figure 6(f), the ROC AUC values confirm that Trimmed Mean ensures robust and 
steady growth, while KRUM fails to generalize effectively. 

(a) Accuracy (b) Loss (c) Precision 

(d) F1-Score (e) Recall (f) Area Under Curve 

Figure 6. Final metrics vs. rounds for FedProx; (a) accuracy, (b) loss, (c) precision, (d) F1-score, (e) recall, and (f) 
area under curve. 

Among the three strategies, FedPer consistently outperforms both FedAvg and FedProx across 
all global metrics, especially when paired with Trimmed Mean or Multi-KRUM. Its partial 
personalization allows for better adaptation to local data heterogeneity, enabling rapid convergence 
and higher classification accuracy. FedAvg performs reasonably well under robust aggregators but 
is more sensitive to noise and client imbalance, particularly when using KRUM, which often 
undercuts performance. FedProx, while not the fastest learner, shows stable convergence and better 
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resistance to client drift, making it suitable for scenarios where training consistency is prioritized over 
rapid convergence. Overall, FedPer with Trimmed Mean emerges as the most effective and balanced 
combination for secure and generalizable anomaly detection in decentralized WAAM environments. 

5.2. Client-Level Performance Disaggregation 

The client-level performance, visualized in Figure 7, reveals substantial differences in how each 
federated strategy and aggregation method impacts individual WAAM clients under non-identical 
data distributions. The variations across client architectures, input modalities, and process 
complexity result in distinct convergence behaviors, especially when the federated configurations 
interact with heterogeneous data. Under the FedAvg strategy, as shown in Figures 7(a–d), we observe 
sharp inter-client disparities. Clients such as Client 3 (Speed + PosX + PosY) and Client 8 (Current + 
PosX + PosY) maintain accuracy above 90%, whereas Client 4 (Time + Arc Length + Feed Angle) 
stagnates around 80% accuracy with elevated loss. The use of KRUM exacerbates these differences, 
leading to erratic performance in Clients 1 and 5 and delayed improvement for Client 2. In contrast, 
Multi-KRUM and Trimmed Mean yield greater consistency and better accuracy across clients. When 
FedPer is employed, as depicted in Figures 7(e–h), inter-client accuracy trajectories stabilize 
significantly. Most clients converge to over 90% accuracy, particularly under Trimmed Mean and 
Vanilla aggregators. Clients such as Client 2 (Voltage + PosX + PosY) and Client 6 (Time + Speed + 
Current) show strong early acceleration and maintain robust convergence. FedPer’s model 
personalization clearly supports diverse input distributions and mitigates the negative impact of 
outlier data. The FedProx strategy, illustrated in Figures 7(i–l), provides an intermediate level of 
performance. While its convergence is slower than FedPer, it helps clients like Client 5 recover from 
early instability. However, KRUM again introduces oscillatory behavior and suppresses learning for 
several clients. Trimmed Mean remains the most balanced, showing smooth and equitable accuracy 
gains for most clients, indicating its ability to retain representational diversity without sacrificing 
stability. 

Vanilla KRUM  MultiKRUM Trimmed Mean 

(a)  (b)  (c)  (d)  

(e)  (f)  (g)  (h)  

(i)  (j)  (k)  (i)  
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Figure 7. Accuracy vs. rounds for different strategies (Vanilla, KRUM, MultiKRUM, and Trimmed Mean) for (a-
d) FedAvg, (e-h) FedPer, and (i-l) FexProx. 

Complementing these accuracy results, Figure 8 presents the corresponding client-wise loss 
trajectories, further exposing how aggregation strategies influence learning stability under each 
federated scheme. In Figures 8(a–d), loss trends mirror accuracy patterns. KRUM leads to volatility 
and plateauing, especially for Clients 1 and 5. Multi-KRUM and Trimmed Mean again demonstrate 
superior performance, reducing client loss more steadily, though early-stage variability remains a 
concern under Vanilla. Under FedPer, shown in Figures 9(e–h), clients generally achieve lower final 
loss values, with Trimmed Mean resulting in the smoothest and most consistent convergence. Client 
4 and Client 7, which rely on geometric or time-sensitive inputs, still present minor instability, but 
overall loss values remain bounded below 0.25, which is an indicator of strong model generalization 
across the federation. Finally, Figures 8(i–l) show moderate loss decay across clients. While Trimmed 
Mean delivers the most consistent performance, KRUM’s restrictive aggregation again hinders 
certain clients like Client 6 and Client 3. Vanilla performs well for stable clients (e.g., Client 3 and 8) 
but introduces convergence spikes, reinforcing that careful aggregator selection is critical under 
FedProx. 

Vanilla KRUM  MultiKRUM Trimmed Mean 

(a)  (b)  (c)  (d)  

(e)  (f)  (g)  (h)  

(i)  (j)  (k)  (l)  

Figure 8. Loss vs. rounds for different strategies (Vanilla, KRUM, MultiKRUM, and Trimmed Mean) for (a-d) 
FedAvg, (e-h) FedPer, and (i-l) FexProx. 

Overall, the comparison reveals that FedPer with Trimmed Mean offers the best combination for 
equitable performance across clients, enabling rapid and stable learning even for those handling 
noisy, weakly correlated, or visually-derived input features. FedAvg, while occasionally peaking in 
accuracy for well-behaved clients, fails to support convergence robustness in geometrically complex 
domains. FedProx, although slower, provides reliable performance improvements in later rounds, 
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especially under robust aggregation schemes. These trends highlight the importance of aligning 
federated strategy with aggregator design when handling non-IID, multimodal data in distributed 
WAAM environments. 

5.3. Client-Wise Confusion Matrices Analysis 

While the global metrics offered valuable insights into convergence behavior and overall 
classification robustness, a detailed examination of the client-wise confusion matrices, as shown in 
Tables 2–4, reveals the critical role of client-specific data heterogeneity in shaping the final predictive 
outcomes. Clients were configured to capture distinct process signals, including current-voltage 
profiles, bead geometry, travel speed, and part parameters, which resulted in non-uniform data 
distributions and increased task complexity. Under the FedAvg strategy, the Multi-KRUM and 
Trimmed Mean aggregators yielded strong performance consistency across all clients, with accuracy 
exceeding 0.90 for all but Client 5, which still improved significantly from 0.69 under KRUM to 0.98 
under robust aggregation. Notably, Client 4, which encapsulated arc length and feed angle, exhibited 
substantial false positive rates under KRUM (FP = 17, Accuracy = 0.80), indicating its sensitivity to 
process parameter variability and confirming that conservative aggregators suppress local 
discriminability in such cases. FedPer demonstrated even greater robustness for Clients 5 through 7, 
where both Trimmed Mean and Multi-KRUM pushed accuracy above 0.96 and minimized false 
negatives. Notably, the improvement for Client 6, from 0.66 in KRUM to 0.97 in robust aggregators, 
corresponds to reduced misclassification of current-voltage fluctuations, implying that 
personalization enables better local calibration against stochastic electrical noise. FedProx exhibited 
a stabilizing effect, especially for Client 4 and Client 5, where KRUM’s underperformance (Client 5 
Accuracy = 0.93) was notably compensated by Trimmed Mean, which elevated all clients beyond 0.94. 
This behavior is further supported by the consistently low false positives and false negatives 
observed in Clients 1 and 8 across all configurations, indicating that these clients capture linearly 
separable features such as centroid shifts and deposition symmetry. 

Table 2. Client-wise confusion matrices after 100 communication rounds for the FedAvg strategy. 
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Table 3. Client-wise confusion matrices after 100 communication rounds for the FedPer strategy. 
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Table 4. Client-wise confusion matrices after 100 communication rounds for the FedProx strategy. 
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A finer inspection of per-client trade-offs reveals that the impact of federated strategies and 
aggregation robustness varies significantly across clients due to the nature and entropy of the 
captured process signals. Client 1, which models current-voltage-time data, consistently achieved 
perfect classification (Accuracy = 1.00) under all strategies and aggregators, indicating a highly 
separable anomaly distribution and minimal signal ambiguity. In contrast, Client 2, associated with 
bead geometry detection through high-dynamic-range imaging, showed pronounced sensitivity to 
aggregation noise. Under FedPer-KRUM, Client 2’s accuracy dropped to 0.89 with a corresponding 
false positive rate of 6, whereas both FedAvg and FedProx preserved their performance near 0.94 
under Trimmed Mean and Multi-KRUM. This emphasizes the need for robust averaging in vision-
based feature representations where illumination artefacts and geometric distortions may mimic 
anomalous behavior. For Client 3, which handles speed and position data, the classification behavior 
remained invariant across all strategies, stabilizing around 0.91. This invariance suggests that travel 
speed anomalies are sufficiently encoded in the temporal patterns captured by the LSTM classifier, 
and the aggregation strategy plays a minimal role when the feature evolution is strongly time-
dependent. 

Client 4, responsible for arc length and feed angle estimation, remained the most difficult to 
stabilize. The misclassifications, reflected in higher false positive rates under KRUM (FP = 17–19) 
across all strategies, can be attributed to the irregular arc morphology and its erratic gradient 
behavior, which weak aggregators fail to model effectively. Personalization under FedPer and 
regularization under FedProx marginally improved accuracy to 0.87, yet Multi-KRUM remained 
more stable than Vanilla, emphasizing its resilience against local misalignment. Client 5, with 
aggregated parameters from current, speed, and voltage, displayed large accuracy gaps, 0.69 in 
FedAvg-KRUM to 0.98 in FedPer-Trimmed Mean, demonstrating how complex feature couplings 
benefit from both personalization and robust suppression of gradient outliers. Clients 6 and 7, dealing 
with overlapping signal domains, such as voltage-speed and voltage-time, also showed strong 
sensitivity to aggregation. They only approached ideal performance (Accuracy > 0.96) under Multi-
KRUM and Trimmed Mean, further underscoring the requirement for variance-aware aggregation in 
non-IID edge environments. Finally, Client 8, designed to capture centroidal shifts through positional 
tracking, maintained 100% accuracy across all configurations, validating its role as a baseline 
indicator for network stability and robustness in federated deployment. These individual behaviors 
establish the foundation for strategy-adaptive model allocation in WAAM deployments, where 
assigning specific aggregation mechanisms to clients based on sensing modality may enhance overall 
system resilience and fault localization precision. 

5.4. Comparative Convergence Trends 

The convergence behavior of FedAvg across different aggregation rules, as shown in Figure 9, 
reveals clear distinctions in model stability and responsiveness over federated rounds, as evident in 
the plotted L2-norm trends of global model updates. Under the FedAvg-Vanilla configuration, the 
convergence curve exhibits a steep descent in the initial rounds, followed by pronounced oscillations 
before stabilizing near round 60 (Figure 9(a)). This instability in the early rounds can be attributed to 
the aggressive averaging of heterogeneous client updates, which occurs without any gradient 
correction or outlier rejection, leading to overfitting or oscillatory convergence. In contrast, FedAvg-
KRUM (Figure 9(b)) and FedAvg-Multi-KRUM (Figure 9(c)) demonstrate more stable convergence 
trajectories. Specifically, the Multi-KRUM plot maintains a gradual and smooth decline in the L2-
norm, reflecting its robustness to Byzantine gradients and stochastic noise by excluding extreme 
update vectors. The KRUM variant, although initially fluctuating, shows dampened volatility after 
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round 30, indicating resilience against malicious or anomalous client updates. The FedAvg-Trimmed 
Mean configuration (Figure 9(d)), however, shows the slowest convergence, with the norm values 
plateauing prematurely around round 50. This underfitting behavior is likely due to extreme 
elimination of potentially useful updates when client data distributions are non-IID, resulting in a 
loss of learning signal. These observations suggest that while FedAvg achieves fast initial 
convergence, its generalization ability and convergence consistency are strongly influenced by the 
choice of aggregation rule, particularly under client heterogeneity. 

The convergence behavior under the FedPer strategy presents a fundamentally different 
dynamic compared to FedAvg, primarily due to its personalization mechanism which decouples 
local and global representations. In the FedPer-Vanilla configuration, the convergence curve exhibits 
a relatively smooth decline in L2-norm with minor oscillations, as shown in Figure 9(e). This is 
indicative of steady synchronization of shared layers while allowing local heads to diverge, thereby 
reducing the impact of client heterogeneity on global updates. In contrast, FedPer with KRUM 
aggregation, shown in Figure 9(f), introduces more pronounced volatility in the initial rounds, with 
the L2-norm fluctuating sharply up to round 30 before gradually stabilizing. This can be attributed 
to KRUM’s selective filtering of updates, which becomes less effective when most client updates are 
already partially personalized, resulting in a conflict between local retention and global alignment. 
FedPer with Multi-KRUM, depicted in Figure 9(g), offers improved noise suppression, exhibiting a 
monotonic decrease with infrequent spikes, which demonstrates enhanced robustness against erratic 
local gradients. However, in the case of FedPer-Trimmed Mean, Figure 9(h), the convergence 
decelerates significantly after round 40, indicating underfitting due to the aggressive exclusion of 
boundary updates in the presence of already reduced shared model capacity. Overall, FedPer’s 
convergence trends suggest that while personalization facilitates stable updates in heterogeneous 
environments, the choice of aggregator modulates the balance between adaptability and 
synchronization of shared weights. 

When examining the convergence behavior of FedProx, a more nuanced stabilization dynamic 
becomes apparent, particularly in how it manages gradient drift through proximal regularization. As 
observed in Figure 9(i), the FedProx-Vanilla setup demonstrates a consistently decreasing L2-norm 
with relatively minor oscillations, indicating that the addition of the proximal term successfully 
constrains local updates closer to the global direction, thereby mitigating client divergence without 
fully decoupling representations. This controlled descent contrasts with FedAvg’s more erratic early-
stage behavior, confirming that FedProx introduces stability without requiring architectural 
personalization. In the KRUM-based configuration of FedProx shown in Figure 9(j), convergence is 
delayed, and the curve fluctuates significantly in the early rounds before reaching stability, which 
reveals that the aggregation selectively retains updates that are already proximal. Still, its 
effectiveness diminishes when the proximal constraint inherently suppresses inter-client gradient 
variance. FedProx-Multi-KRUM, as in Figure 9(k), maintains a stable and steep convergence slope, 
demonstrating the synergistic effect of robust outlier filtering and proximity-based update anchoring. 
However, in the case of the Trimmed Mean (Figure 9(l)), convergence is slower and plateaus earlier, 
underscoring the effect of excessive exclusion of informative boundary updates when combined with 
already conservative local training. These observations collectively emphasize that FedProx, when 
paired with moderate aggregators, can deliver fast and stable convergence, but becomes sub-optimal 
under aggressive gradient selection, especially in systems with structurally aligned clients. 
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Vanilla KRUM  MultiKRUM Trimmed Mean 

(a)  (b) (c) (d)  

(e) (f) (g)  (h)  

(i) (j) (k) (l) 

Figure 9. Global model convergence vs. rounds for different strategies (Vanilla, KRUM, MultiKRUM, and 
Trimmed Mean global) for (a-d) FedAvg, (e-h) FedPer, and (i-l) FedProx. 

Across all strategies and aggregation combinations, a synthesis of convergence dynamics reveals 
critical insights into the interplay between aggregation robustness, update regularization, and client 
heterogeneity. FedAvg configurations converge rapidly but exhibit volatility when paired with non-
robust aggregators such as Vanilla and KRUM, with L2-norm fluctuations persisting even beyond 
the 50th round. This behavior indicates potential overfitting driven by the direct averaging of 
divergent local updates, especially from structurally heterogeneous WAAM clients. In contrast, 
FedPer’s incorporation of personalized model heads attenuates these oscillations by decoupling 
client-specific representations, allowing the global backbone to converge smoothly while local 
disparities are absorbed independently. The plots for FedPer-Multi-KRUM and FedPer-Trimmed 
Mean showcase this effect, with convergence curves steadily flattening after round 30, suggesting 
that personalization buffers against over-pruning while still benefiting from robust outlier filtering. 
FedProx introduces a different mechanism, proximal anchoring, evident from its tighter L2-norm 
profiles, particularly under Multi-KRUM, where stable suppression of local gradient drift facilitates 
uniform descent. However, the use of overly conservative filters such as Trimmed Mean in FedProx 
often leads to premature flattening of convergence curves, indicating underfitting due to excessive 
loss of gradient diversity. Thus, optimal convergence in federated WAAM scenarios hinges on 
aligning strategy-specific update dynamics with aggregation schemes that strike a balance between 
noise suppression and representational diversity. 

5.5. Reversible Data Hiding Evaluation 

To assess the integrity-preserving capability of the reversible data hiding in the encrypted 
domain (RDHE) framework applied to WAAM image streams, we performed both quantitative 
distortion analysis and visual perceptual validation under varying embedding rates. The primary 
quantitative metric, Peak Signal-to-Noise Ratio (PSNR), consistently exceeded 90 dB at ultra-low 
embedding rates such as 0.0001 bpp, indicating near-lossless visual fidelity. As shown in the PSNR 
vs. embedding rate plots for the test image 1 (during experiment) and 2 (after experiment), shown in 
Figure 10, PSNR gradually declined with increasing payload, reaching 79.1 dB at 0.0043 bpp for 
Image 1 and 78.9 dB at 0.0025 bpp for Image 2. This inverse relationship was smooth and monotonic, 
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highlighting the controlled distortion behavior of the RDHE encoder. The high-fidelity nature of the 
embedded images is visually substantiated through side-by-side comparisons of original and 
encoded frames in both pre-deposition and post-deposition welding scenes depicted in Figure 11, 
where no visible structural degradations were observed. Moreover, the channel-wise pixel index 
plots for the red, green, and blue distributions, as demonstrated in Figure 12, show near-identical 
spatial-spectral traces across 10,000 sampled pixels, further confirming sub-perceptual embedding. 
Image 1, taken during active deposition and encoded at 0.0007 bpp, yielded a PSNR of 91.6 dB and 
MSE of 0.35, while Image 2, captured post-deposition with richer chromatic content, achieved 92.5 
dB and MSE of 0.31 at a lower rate of 0.0004 bpp. Despite spectral and contextual differences, both 
cases validate RDHE’s ability to preserve pixel-level integrity necessary for subsequent DNN-based 
semantic segmentation or anomaly localization pipelines. 

 (a)  (b) 

Figure 10. PSNR vs. embedding rate for (a) test image 1, before embedding, and (b) test image 2, after 
embedding. 

 (a)  

Before embedding After embedding

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2025 doi:10.20944/preprints202507.2394.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2394.v1
http://creativecommons.org/licenses/by/4.0/


 31 of 36 

 

 (b)  

Figure 11. Condition of test images before and after embedding for (a) test image 1, and (b) test image 2. 

Beyond minimizing distortion, the RDHE mechanism facilitates secure and efficient embedding 
of process parameters directly within high-resolution visual frames, offering operational advantages 
in privacy-preserving federated WAAM. This capability becomes particularly relevant when raw 
numerical signals such as arc current, voltage, or bead geometry cannot be transmitted independently 
due to bandwidth or regulatory constraints. Embedding encrypted payloads within weld image 
structures enables out-of-band data exchange for scenarios like cross-client calibration, asynchronous 
aggregation, or offline defect labeling while circumventing plaintext exposure. The pixel-domain 
invariance confirms that convolutional features essential for feature extraction pipelines remain 
unaltered post-embedding, ensuring model compatibility. Furthermore, Image 2 achieved a capacity 
of 4,556.25 kbits at 0.0004 bpp, while Image 1 supported 2,700 kbits at 0.0007 bpp, both of which are 
sufficient to encode multichannel sensor streams with timestamps. Critically, RDHE ensured 
complete reversibility, with all decoded images matching the originals bit-for-bit and maintaining 
consistent PSNR-MSE parity. Although FL mitigates centralized data risks by default, RDHE 
strengthens the security envelope for image-based transmission in cases of client dropout or hybrid 
communication protocols. As such, it offers a complementary confidentiality-preserving layer with 
minimal computational overhead and no compromise to downstream analytics. 

Before Embedding After embedding 

(a)  (b) 

Before embedding After embedding
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(c)  (d) 

Figure 12. Pixel distribution of (a, b) test image 1, and (b, c) test image 2, before and after embedding. 

5.6. Optimal Configuration Synthesis 

A comprehensive analysis of the assessed configurations reveals that the most optimal setup for 
federated anomaly detection in WAAM is the combination of FedPer with Trimmed Mean 
aggregation. This conclusion is drawn by integrating performance across multiple evaluation layers, 
global metrics, client-level consistency, convergence patterns, and confusion matrix statistics. As 
shown in Section 5.1, FedPer–Trimmed Mean achieved the highest global F1-score and ROC AUC 
among all configurations, indicating strong discriminative ability across both normal and abnormal 
classes. At the client level, as discussed in Section 5.2, this configuration delivered consistently high 
accuracy around 95% and smooth loss decay across nearly all clients, including those with geometric 
and temporal noise such as Client 4 and Client 7. Additionally, in Section 5.3, the confusion matrices 
confirmed that FedPer–Trimmed Mean minimized false positives and false negatives while 
maintaining ideal classification for structured clients like Client 1 and Client 8. When combined with 
the stable convergence behavior noted in Section 5.4, this configuration effectively balances early-
stage learning speed with long-term stability. The personalization provided by FedPer enables client-
specific adaptation, while Trimmed Mean suppresses gradient anomalies without excessively 
discarding informative updates. These features jointly facilitate generalization across non-IID client 
distributions, making FedPer–Trimmed Mean the most suitable solution for decentralized WAAM 
deployment. 

Despite the superior performance of FedPer–Trimmed Mean, it is important to contextualize this 
configuration within the broader space of strategy–aggregator trade-offs observed throughout the 
evaluation. Certain alternatives, such as FedProx–Multi-KRUM, demonstrated convergence stability 
and effective variance suppression in clients with high temporal regularity, as discussed in Section 
5.4. However, its performance deteriorated when faced with geometrically noisy or structurally 
irregular data, such as that from Client 4, where both classification accuracy and loss convergence 
lagged behind FedPer-based setups. Likewise, FedAvg–KRUM, while theoretically robust to 
adversarial updates, exhibited unstable learning trajectories and poor recall, especially in Clients 5 
and 7, due to its over-pruning effect on valid but noisy updates. These observations highlight critical 
trade-offs between personalization and generalization and between robustness and inclusivity. 
Personalization through FedPer allows each client to retain local specificity, crucial for WAAM’s 
sensor-diverse landscape, while Trimmed Mean enables robust aggregation without marginalizing 
clients with atypical data distributions. This strategic alignment is essential in real-world 
deployments where asynchronous sampling, cross-sensor drift, and environmental variance are 
common. Therefore, FedPer–Trimmed Mean can be recommended as the deployment baseline for 
federated WAAM systems. 

6. Conclusions 

The proposed framework establishes an FL-based anomaly detection system tailored for WAAM 
by integrating privacy-preserving transmission and multi-sensor process feature fusion. The system 
is constructed to address the inherent challenge of enabling secure model collaboration across 
decentralized WAAM units, where each unit operates under heterogeneous sensing conditions and 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2025 doi:10.20944/preprints202507.2394.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2394.v1
http://creativecommons.org/licenses/by/4.0/


 33 of 36 

 

localized process dynamics. Through the deployment of reversible data hiding in high-resolution 
weld images, sensitive process variables, as voltage, current, arc geometry, and travel speed, are 
securely transmitted without exposing raw process logs. These encrypted images are decoded at each 
client and locally used to train temporal and spatial models on fused signals derived from image 
processing, signal streams, and estimated geometric profiles. Clients represent distinct input 
dimensions and characteristics, yet the global model, updated through aggregation strategies such 
as FedAvg, FedProx, and FedPer, exhibits strong generalization despite significant non-IID 
fragmentation. Empirical evaluations across 100 communication rounds reveal that the proposed 
configuration achieves a maximum classification accuracy of around 95%, with corresponding 
improvements in F1-score, convergence stability, and ROC AUC over baseline FedPer- Trimmed 
Mean combination. These results confirm the framework’s ability to retain client privacy while 
facilitating accurate anomaly detection, thereby fulfilling the original objective of secure and 
collaborative learning in WAAM-based SM ecosystems. 

Building on this foundation, future research will focus on expanding the framework’s 
adaptability and semantic depth to align with the evolving demands of decentralized manufacturing 
systems. A key advancement lies in the incorporation of domain-generalized federated transfer 
learning, where personalized heads or latent representations adaptively align client-specific process 
domains with a globally shared feature space. This would enhance anomaly detection accuracy in 
emerging conditions; such as novel tool wear patterns or substrate compositions; not encountered 
during initial training. Additionally, integrating transformer-based encoders or modality-specific 
attention layers can enable semantic-level feature fusion across image descriptors, geometric 
estimations, and dynamic signal profiles. Such architectures would enable the federated pipeline to 
learn rich cross-stream dependencies, even with limited data per client. To ensure secure 
collaboration, incorporating blockchain-backed aggregation or trusted execution environments can 
mitigate the risk of adversarial updates and provide traceable audit trails. Furthermore, embedding 
adaptive client selection strategies, based on contribution entropy or task-specific gradients, can 
reduce communication overhead and accelerate convergence in highly diverse WAAM networks. 
Collectively, these directions offer a plan for next-generation secure and generalizable federated 
systems, laying the groundwork for autonomous anomaly-aware cyber-physical infrastructures in 
metal additive manufacturing. 
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