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Abstract 

The main aim of this paper is to introduce a theory of causation rigorously derived from physical 
principles and applied to multiscale biological systems. The relationship between causation and 
information is extensively debated in neuroscience, where causation is involved dually. The first 
issue concerns how neural activity in the brain causally generates conscious experience. The second 
issue speculates on how consciousness itself could possess mental power to control the brain. Given 
the emergent and informational nature of consciousness, mental causation could be admissible under 
two conditions: downward causation is possible, and information has causal power beyond that 
provided by matter. Based on the causal set approach in physics, the Causal Equivalence Principle 
(CEP) allows to evade both of these problems. The CEP is then generalized in terms of the continuity 
equation in fluid dynamics as the law of conservation of causation, which states that the flow of 
causation in the universe is conserved across scales. Its corollaries are: (i) there is no preferred scale 
of observation for causal analysis, (ii) endogenous coarse-graining of biological systems is causally 
legitimate, and (iii) within the spatial span of the systems, each scale has its own causal structure that 
cannot be derived from the causal structure at another scale. Which scale tells us the truth about what 
happens in the universe? The CEP provides an ontological foundation for multilevel selection in 
evolutionary biology. More broadly, the CEP argues for the stratification of sciences, each operating 
at its own scale and not reducible to a lower one. 

Keywords: causal chain; partial information decomposition; modular hierarchy; scale transition; 
multilevel selection 
 

1. Introduction 

Causal analysis is of great importance in neuroscience and in biology. Downward or top-down 
causation is a controversial idea, assuming that higher levels of organization can causally influence 
behavior at lower levels. In neuroscience, downward causation is often related to mental causation 
or free will, discussed in the context of the mind-body problem. So, Roger Sperry (1980), the Nobel 
laureate in physiology and medicine for his work with split-brain patients argues: 

Conscious phenomena as emergent functional properties of brain processing exert an active 
control role as causal detents in shaping the flow patterns of cerebral excitation. Once generated from 
neural events, the higher order mental patterns and programs have their own subjective qualities and 
progress, operate and interact by their own causal laws and principles which are different from and 
cannot be reduced to those of neurophysiology. 

Can consciousness, as a global product of neural activity, exert causal control over the brain? Or 
is consciousness a passive emergent phenomenon without causal power? If so, does this mean that 
consciousness cannot utilize downward causation, or is the concept fundamentally flawed? If the 
latter is true, what makes this idea so appealing in neuroscience, psychology, and evolutionary 
biology? 

Downward causation is closely linked to various philosophical concepts from complex systems, 
nonlinear dynamics, and network science, such as emergence, self-organization, and synergy, often 
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discussed in terms of broken symmetry, criticality, and scale-invariance (Turkheimer et al. 2022; Kesić 
2024; Yuan et al. 2024). Synergy is an umbrella term that means an emergent property of complex 
multiscale systems to spontaneously become self-organized, as encapsulated in the slogan “the whole 
is greater than the sum of its parts.” Examples include flocks of birds, swarms of bees, and ant 
colonies, which are self-organizing complex systems, demonstrating emergent synergy from 
interactions of a large number of individual elements (Haken 1983; Kauffman 1993). Downward 
causation is proposed to explain how a system (the whole) can influence its individual components 
(parts). 

Accordingly, the “strong” version of emergence, associated with downward causation 
(O’Connor 1994; Bedau 1997), can be linked to higher-order cognitive functions that process the 
synergistic information and interact by laws and principles that cannot be simply reduced to the 
underlying neurophysiology (Vohryzek et al. 2022). Regarding the causal role of consciousness, 
downward causation is implicitly involved in the free will problem, presented in the form of 
‘synergistic core’ (Luppi et al. 2023; Mediano et al. 2022) that could spontaneously emerge in the 
brain, and govern the underlying neural activity by downward causation over hierarchical levels. 

The physics of free will is heavily hinged on the notion of indeterminism. This starts with the 
question: how could deterministic brain dynamics generate conscious states, which were not 
predetermined from the past? Different quantum phenomena are suggested as a viable option to 
account for human (and animal) freedom to decide (Jedlicka 2017; Hunt and Schooler 2019; 
Yurchenko 2022). In contrast, the neuroscience of free will focuses primarily on Libet-type 
experiments, which involve comparing two distinctive things: neural activity and subjective 
experience. Two temporal measures were proposed to compare these variables, known as the 
readiness potential, detected from the supplementary motor area, and the awareness of wanting to 
move, reported with the clock. Since the initial experiments conducted by Libet et al.’s (1983), 
numerous studies have identified a delay between the neural motor predictors and conscious 
intentions to move around several hundred milliseconds (Schurger et al. 2012; Salvaris and Haggard 
2014; Schultze-Kraft et al. 2016). The common conclusion drawn from these experiments is that 
experiencing free will may be illusory. 

A long-standing controversy regarding this conclusion is that readiness potentials and conscious 
intentions belong to two different and hardly compatible domains: biophysical and psychological 
(Triggiani et al. 2023). The former operates exclusively on concepts and tools from dynamical models 
and network science, whereas the latter appeals to subjective and elusive notions such as attention, 
self-awareness, meta-cognition, and personality. Thus, all these experiments have already been 
distorted by the mind-brain duality, which has little relevance to the question of whether or not 
neural activity in the supplementary motor area, or anywhere else in the brain, precedes the 
emergence of a particular conscious state at a given time. In this sense, if Cartesian dualism is covertly 
admitted, Libet-type experiments do not threaten the existence of free will at all (Mudrik et al. 2022). 

Nonetheless, assuming Cartesian dualism is not sufficient to explain how consciousness might 
have causal power over the brain. What processes or mechanisms could allow emergent conscious 
states to influence underlying neural activity? Downward causation has been proposed as a viable 
candidate for free will. Downward causation is typically characterized as a way, mediated by 
information flow, that enables a higher level to causally influence a lower level within a system 
(Farnsworth 2025). In biological sciences, thus, the mind-brain problem acquires a generalized form 
of neo-Cartesian dualism between information and matter by assuming that in biological (learning) 
systems information can have causal power beyond that provided by ordinary physical processes. 
More broadly, it is suggested that the emergence of life may correspond to a physical transition 
associated with a shift in the causal structure, where information gains direct and context-dependent 
causal efficacy over the matter in which it is instantiated (Walker and Davies 2013). 

Meanwhile, many modern theories of consciousness directly associate consciousness with 
information that could, in principle, be processed by artificial systems capable of generating machine 
consciousness (Dehaene et al. 2017). On the other hand, even if the emergence of consciousness is 
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associated with information processed by the brain (let alone other natural or artificial systems that 
are not commonly considered conscious), it does not endow consciousness with causal power in the 
brain. To account for mental causation or free will, these theories implicitly conflate information with 
causation, and adopt downward causation. In this sense, they can all be classified as theories of strong 
emergence (Turkheimer et al. 2019). Thus, the age-old problem of free will in the philosophy of mind 
transforms into the problem of downward causation in neuroscience, which takes the form of neo-
Cartesian dualism in biology, where informational terms are all-pervasive (Maynard Smith 2000; 
Godfrey-Smith 2007). 

The purpose of this paper is to disprove downward causation, unless the word “downward” is 
biased by referring to a spurious, scientifically illegitimate axis in spacetime. The paper is structured 
as follows: it begins with an examination of causation in various scientific fields, with emphasis on 
linear causal chains in physics. The relationship between physical causation and information-based 
measures of causation is then explored. After discussing the concepts of synergy and downward 
causation, the Causal Equivalence Principle (CEP) is introduced and generalized in terms of the 
continuity equation as the law of conservation of causation that forbids cross-scale causation in 
multiscale dynamical systems. The law is then specified in terms of causal scope, scale transitions, 
and spatial span. Two types of hierarchies (flat and multiscale) are outlined mathematically, showing 
that information can indeed be synergistic and flow across scales through modular ⊂-chains but it 
cannot have causal power beyond that provided by matter. The ensuing discussion shows that the 
CEP implicitly underlies the renormalization group formalism in physics and provides an ontological 
foundation for multilevel selection in evolutionary biology. There is no cross-scale causation, but 
selection operates simultaneously at all spatial scales, each exhibiting its own causal structure, not 
reducible to a lower one. 

2. Causation 

Causation is a vague notion. In the philosophical literature, it is often suggested to make a 
distinction between causation, defined as the production of one particular event by another, and 
causality, which is regarded as the law-like relation between causes and effects (Hulswit 2002). This 
distinction is linked to Peirce’s view that cause and effect are facts within an epistemological context 
(in terms of causality), while they are actual events within an ontological context (in terms of 
causation). In this paper, we will use the word “causation” uniformly to mean the causal analysis of 
actual events as they unfold in spacetime from the dynamics of physical and biological systems, 
governed by the laws of nature regardless of observability. 

Additionally, the concept of cause is often confused with the concept of reason. A cause is a 
physical event, associated with the state of a system of interest, which is dynamically followed by 
another event. Events can be observed at different scales. Causation is evident in the form of canonical 
cause-effect relationships. Therefore, space, time, and scale are fundamental in understanding 
causation. In contrast, reason is a cause-like explanation for why something occurred, focusing on 
logic and neglecting space, time, and scale. 

The confusion between cause and reason can be traced back to Aristotle, who defined four 
classes of causes (aitia) that Hofmeyr (2018) called “becauses” or explanatory factors: material, 
efficient, formal, and final causes, all applied to a thing that should somehow be designed and made 
of something. Although scientists do not normally think of causation in terms of Aristotelian 
classification (but see (Ellis 2023)), they still confuse cause with reason, as they are more interested in 
explaining observable phenomena than in how causation is carried out in time and over spatial scales. 
For example, a typical formulation in statistics that X (e.g., smoking) can cause Y (e.g., lung cancer) 
is concerned with a reason, not a cause. Smoking is a bad habit; cancer is a permanent state of health. 
Neither of these can be regarded as a particular physical event. Another archetypical example of 
confusing cause with reason is the famous ‘chicken-egg problem’, where each entity is a reason (not 
a cause) of the other. 
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On a strict account, causation should be concerned exclusively with relationships between 
transient events that can be observed at various spatial scales, such as a sunrise on Earth, a car crash 
on the road, a fired neuron in the brain, or the detection of a particle in a physical lab. 

2.1. Physical Causation 

Let us start with the formal definition of an event. 

Definition 1. An event is an instantaneous state of a system of interest. 

Note that the definition does not specify the scale of observation, as the systems of interest can 
vary in practice. The observation of events depends on two factors: (i) the spatial scale of observation, 
and (ii) the temporal resolution of observation. Now put aside the traditional view of the world as 
being full of different things with various physical properties such as position, momentum, size, 
shape, and so on. Instead, consider linear causal chains that pervade spacetime. From this 
perspective, there are no things, only instantaneous events that represent their dynamics. 

Causal analysis becomes much more rigorous when causation is represented by linear causal 
chains, as conceptualized by the Causal Set Approach based on Lorentzian geometries of spacetime 
(Bombelli et al. 1987). This approach follows the principles of relativity theory, which specify that the 
speed of causal action cannot be faster than the speed of light. The finite speed of causation entails 
three consequences: (i) the cause must necessarily precede the effect, (ii) simultaneous events are 
mutually causally independent within a fixed frame of observation, and (iii) linear causal chains must 
satisfy the Markov property. 

The linearity here means that any causal chain evolves only at the same scale and can be 
graphically depicted as a worldline in Minkowski space (𝑀𝑀,𝑔𝑔). Formally, if linear causal chains are 
defined on a vector space 𝑉𝑉 where the link between two nearest events is a vector symbolizing their 
cause-effect relation, then the linearity is defined traditionally via a linear map 𝑉𝑉 → 𝑊𝑊 preserving 
additivity and homogeneity. These yield the so-called superposition property, which states that the 
effect caused by two or more events is the sum of the effects caused by each event separately. An 
immediate consequence of this is that every macroevent, observed at the macroscale, can be 
decomposed into the “sum” of simultaneous and, therefore, mutually causally independent 
microevents at the microscale. 

A causal set is presented by a partially ordered set ℒ =  (𝑀𝑀,≺ ), with a binary relation ≺, which 
symbolizes causal order in physical spacetime and corresponds in relativity theory to a timelike 
interval between two events in Minkowski space (𝑀𝑀,𝑔𝑔) (Sorkin 2009). 

Definition 2. A causal set ℒ is a set of elements (events) that satisfies the following conditions: 

irreflexivity: (∀𝑥𝑥 ∈  𝑀𝑀)(𝑥𝑥 ⊀  𝑥𝑥);     (1.1) 
transitivity: (∀𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈  𝑀𝑀) 𝑥𝑥 ≺  𝑦𝑦 & 𝑦𝑦 ≺  𝑧𝑧 ⇒  𝑥𝑥 ≺  𝑧𝑧.  (1.2) 

Condition (1.1) states that no event can be a cause of itself. Together with condition (1.2) they 
imply that linear causal chains in ℒ cannot contain closed loops. Intuitively, this follows from the 
uniqueness of events in spacetime. We can observe the same event repeatedly, but each occurrence 
is unique in time. If a unique event 𝑥𝑥 causes two independent (simultaneous and unique) events 𝑦𝑦 
and 𝑧𝑧, then the linear chain, containing 𝑥𝑥, splits into two linear chains, one containing 𝑦𝑦 and the 
other containing 𝑧𝑧. Conversely, two linear chains, containing events 𝑥𝑥 and 𝑦𝑦 separately, converge 
at event 𝑧𝑧 if 𝑧𝑧 is caused by both 𝑥𝑥 and 𝑦𝑦. 

The causal chains can be divided into “one-body” linear chains concerned with only one body 
(e.g., a simple pendulum) and “multi-body” linear chains involving many bodies (e.g., Newton’s 
cradle). In the former case, a linear causal chain can be described as a Markovian process by the 
temporal evolution of a system whose instantaneous states are events, each causally dependent on 
the previous one. In the latter case, when two (or more) systems interact, the resulting state of each 
of them is caused by both its own previous state and the state of the other system before the 
interaction. For example, a collision between two solid bodies, each with its own causal history, is an 
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event that impacts the subsequent states of both bodies (including their energy and momentum in 
spacetime). Thus, linear one-body causal chains can converge and split at different events, generating 
multi-body linear causal chains. Both types of chains pervade spacetime as the global causal set ℒ. 
Furthermore, since events are observable at various scales and due to the linearity of causal chains, 
ℒ is not confined to a single preferred scale but should pervade spacetime at all scales. 

Consider the murmuration of starlings, often presented as an example of emergent synergy. The 
flock of starlings contracts, expands, and even splits, continuously changing its density and structure 
as if it has a ‘life of its own,’ distinct from the thousands of individual birds which constitute the flock. 
Numerical 3D-simulations of a flock demonstrate that each bird should interact on average with a 
fixed group of neighbors from six to seven by relatively simple rules to exhibit typical emergent 
phenomena (Ballerini et al. 2008). In dynamics, the instantaneous states of birds are the microevents 
that causally impact each other, impelling neighbors to change their flight path in response to their 
actions. The feedback, repeated over time, generates reciprocal causal loops which are not, however, 
temporally closed in ℒ. Instead, there is a set of entangled linear multi-body causal chains at the scale 
of individual birds, involving avalanches across scales (Cavagna et al. 2010) and other features, 
indicative of self-organized criticality on the edge of chaos and order (Adami 1995). These 
macroscopic features manifest themselves only at the scale of the flock, whose instantaneous states 
we observe as macroevents that unfold in spacetime as a linear one-body causal chain from which 
synergistic phenomena emerge. Thus, one-body and multi-body causal chains not only can co-exist 
within a dynamical system but also pervade it at different scales. 

2.2. Causal Reasoning in Statistics 

The causal set ℒ can be locally represented by a directed acyclic graph 𝐺𝐺 =  (𝑁𝑁,𝐸𝐸), where 𝑁𝑁 is 
a set of nodes, with 𝐸𝐸 ⊆  𝑁𝑁 × 𝑁𝑁 being the set of edges between nodes. Intuitively, if nodes in 𝐺𝐺 are 
associated with physical events, Bayesian networks for counterfactual causal modeling can then be 
imposed upon the linear causal chains in ℒ by ascribing random variables to nodes, with edges 
representing the conditional probability for the variables (Pearl 2000). This makes it possible to use 
“causal loops” in data analysis, where nodes are associated not with actual physical events but with 
phenomena (e.g., homeostasis) or categorial abstractions (e.g., age-Alzheimer’s disease) taken as the 
variables of the graph to detect statistical dependencies between them. In fact, Pearlian causal 
modeling is more concerned with reasonable explanations of regularities than with actual causal 
chains as they unfold in spacetime on their own by the laws of nature regardless of whether or not 
we can observe them. While the passage of time is coarsely grained in data obtaining, the scale and 
causal order are generally neglected in the probabilistic analysis of the data. Thus, there is a 
principled paradigm shift from explaining actual observer-independent linear causal chains to 
obtaining reasonable explanations of observable dependencies (Woodward 2003). 

In neuroscience, an injection of propofol or the administration of a drug at a molecular scale are 
said to cause loss of consciousness or promote mental health respectively, both defined as examples 
of upward causation. In the same mode of counterfactual reasoning, a high body temperature, which 
is a weakly emergent property of a system, resulting from Brownian fluctuations of cell components 
in an organism, can be called a cause of mortality among patients. Although these examples propose 
verifiable cause-like explanations, they abandon the domain of physical causation, applicable 
exclusively to transient states of a system of interest at different moments of time, depending on a 
temporal resolution provided by observation. What is important here is that confusing cause with 
reason can make downward causation admissible as well, e.g., by saying that the environment exerts 
large-scale constraints on organisms through downward causation (Noble et al. 2019; Ellis and Kopel 
2019). Somewhat ironically, counterfactual reasoning allows to turn the above examples of upward 
causation into downward causation by merely shifting the scale of observation in the so-called “fat-
handed” interventions (Romero 2015), e.g., if an injection of propofol and the administration of a 
drug are defined as environmental constraints, imposed upon the patient’s brain by a clinician in a 
lab. 
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2.3. Causation and Prediction 

We can observe a similar shift from actual causation to cause-like explanations in most famous 
causation measures such as Granger causality or Transfer entropy, which are formulated in terms of 
predictive power. Clearly, if it can be predicted that the occurrence of event X always entails the 
occurrence of event Y, then there is likely a linear multi-body causal chain between them. However, 
drawing this conclusion in the context of reason, may confuse or even ignore the scales of description 
between the variables of interest. Although these measures respect causal order, fine temporal and 
spatial resolution is limited in practical applications. Coarse-grained causal modeling is scientifically 
legitimate when applied correctly, but mixing different scales can create a loophole for downward 
causation. Some proponents of strong emergence directly equate coarse-graining with downward 
causation (Hoel 2017; Grasso et al. 2021). The following section will explain how this scientific bias 
arises from conflating causation and information in the context of linear causal chains. 

3. Information and Causation 

What makes information theory a useful analytical tool in neuroscience is its model 
independence, which is applicable to any mixture of multivariate data, with linear and non-linear 
processes (Wibral et al. 2015; Timme and Lapish 2018; Piasini and Panzeri 2019). However, its 
applicability to causal analysis must be taken with caution. Information theory was originally 
developed by Shannon (1948) for the reliable transmission of a signal from a source to a receiver over 
noisy communication channels. It was demonstrated that the maximal capacity 𝐶𝐶  of a discrete 
memoryless channel with input 𝑋𝑋 and output 𝑌𝑌 is given by mutual information: 

    𝐶𝐶 =  𝐼𝐼(𝑋𝑋;𝑌𝑌) = 𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌),     (2) 
where 𝐻𝐻 = −∑ 𝑝𝑝(𝑥𝑥𝑖𝑖) log𝑝𝑝(𝑥𝑥𝑖𝑖)𝑁𝑁

𝑖𝑖=1  is Shannon entropy. 
Since the physical nature of a signal, the length of a channel, and time for transmitting 

information are not conditioned, coarse-graining is explicitly embedded in the definition of entropy: 
𝐻𝐻 is independent of the nature of signal and of how the process of transmitting is divided into parts, 
or, in Shannon’s (1948) own words: “if a choice be broken down into two successive choices, the 
original 𝐻𝐻 should be the weighted sum of the individual values of 𝐻𝐻.” More formally, Shannon 
entropy is an additive measure: 𝐻𝐻(𝑋𝑋,𝑌𝑌) = 𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌). 

3.1. Information-Based Measures of Causation in Neuroscience 

How can all of these elements, concepts, and information-theoretic measures be interpreted in 
the causal analysis of neural networks? First, the channel can be conceptualized as a tube that is 
maximally isolated from the environment for transmitting a linear one-body causal chain at an 
appropriate spatial scale. Reducing temporal resolution also allows us to “compress” the causal chain 
into a single pair, where the cause is an input 𝑋𝑋  and the effect is an output 𝑌𝑌 , omitting all 
intermediate events (“choices”) between them. Second, in neural networks, neurons can take the 
place of both the source and the receiver, while their instantaneous states represent events. 
Accordingly, synaptic connections provide the communication channels for a single causal pair 
between two neurons, which are the input 𝑋𝑋 and the output 𝑌𝑌 respectively (Figure 1a). 

In neuroscientific studies, the temporal and spatial resolution, provided by various 
neuroimaging techniques, is reduced by ascribing input/output locations not to single neurons but 
rather to brain regions. Mutual information 𝐼𝐼(𝑋𝑋;𝑌𝑌) is a coarse-grained measure that tells us how 
much our ignorance about one part of a system is reduced by knowing something about a different 
part of the system. Its value is zero when 𝑋𝑋 and 𝑌𝑌 are causally independent (there is no synaptic 
link between them) so that observing one tells us nothing about the other. Mutual information is 
symmetrical and upper-bounded by Shannon entropy: 

   𝐼𝐼(𝑋𝑋;𝑌𝑌) = 𝐼𝐼(𝑌𝑌;𝑋𝑋), 0 ≤ 𝐼𝐼(𝑋𝑋;𝑌𝑌) ≤ 𝐻𝐻(𝑋𝑋).    (3) 
The symmetry property makes this measure less appropriate for causal analysis since it does not 

discriminate the causal direction from an input (source) to an output (receiver). Although in 
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engineering communications, the source and receiver are known so that the causal order between 
events is naturally preserved, one of the main goals of causal analysis in neuroscience is to unravel 
the causal structure of fine-grained synaptic circuitry in the brain. Contextually, mutual information 
is a measure of functional coarse-grained connectivity between large-scale neural networks, derived 
from statistical correlations. 

 

Figure 1. (a) In engineering, communication channels act as physical transporters of linear causal chains. 
Examples of these channels in biology include blood vessels or white-matter fibers. Mutual information can be 
applied to these causal chains. (b) Transfer entropy between two multi-body (top) or one-body (bottom) causal 
chains allows to statistically measure the presence of a causal link. (c) Partial information decomposition (PID) 
allows to decompose mutual information two (or more) sources provide about a target into redundant, unique 
and synergistic components, making the whole greater than its parts. 

In contrast, a more advanced measure, known as transfer entropy, can detect effective 
connectivity in a verifiable manner (Ursino et al. 2020). Transfer entropy (TE) is a measure of directed 
information transfer between two (or more) processes in terms of predictive information by 
observing how uncertainty on the present measurement of 𝑌𝑌𝑡𝑡 is reduced if knowledge of the past of 
𝑋𝑋𝑡𝑡−1 is added to knowledge of the past of 𝑌𝑌𝑡𝑡−1: 

𝑇𝑇𝑇𝑇(𝑋𝑋 → 𝑌𝑌) = 𝐼𝐼(𝑌𝑌𝑡𝑡;𝑋𝑋𝑡𝑡−1|𝑌𝑌𝑡𝑡−1)  

   = 𝐻𝐻(𝑌𝑌𝑡𝑡|𝑌𝑌𝑡𝑡−1) −𝐻𝐻(𝑌𝑌𝑡𝑡|𝑌𝑌𝑡𝑡−1,𝑋𝑋𝑡𝑡−1).   (4) 
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TE is asymmetric and upper-bounded by mutual information (Figure 1b). This is then expressed 
in terms of causation: if a signal A has a causal influence on a signal B, then the probability of B, 
conditioned on its past, is different from the probability of B, conditioned on both its past and the 
past of A, which shows a close analogy to Granger causality (Barnett et al. 2009). Since deriving a 
causal structure from complex systems such as the brain is challenging, many studies suggest that 
estimating directed information through TE can be an effective diagnostic tool for inferring causal 
relationships (Wibral et al. 2015). TE can capture causal order but only by virtue of preserving 
temporal order. There is evidence that this measure can sometimes fail to detect a causal link when 
it exists, and sometimes can suggest a spurious link (Lizier and Prokopenko 2010; James et al. 2016; 
Tehrani-Saleh and Adami 2018). In fact, TE measures correlations that can result from a direct causal 
effect via an edge between two nodes 𝑋𝑋 and 𝑌𝑌 in neural networks, indicating a causal link between 
two events in two separate linear causal chains in the brain. On the other hand, long-range 
correlations can also appear due to a common cause 𝑍𝑍 of events in the past without a causal link 
between them (Figure 1b). 

3.2. Synergistic Information from Multiple Resources 

Since Shannon entropy is additive, mutual information underestimates the synergistic 
properties of information that can emerge from multiple inputs, such as stereoscopic vision in 3D 
space provided by the two eyes. More generally, a system exhibits synergistic phenomena, if some 
information about the target variable 𝑍𝑍 is disclosed by the joint state of two (or more) source variables 
that is not disclosed by any individual variable 𝑋𝑋 or 𝑌𝑌. Williams and Beer (2010) had proposed 
Partial Information Decomposition (PID) which allows for the division of 𝐼𝐼(𝑋𝑋,𝑌𝑌;𝑍𝑍) into information 
“atoms” as follows: 

𝐼𝐼(𝑋𝑋,𝑌𝑌;𝑍𝑍) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝑌𝑌;𝑍𝑍) +  𝑈𝑈𝑈𝑈𝑈𝑈(𝑋𝑋;𝑍𝑍) 
+ 𝑈𝑈𝑈𝑈𝑈𝑈(𝑌𝑌;𝑍𝑍) +  𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌;𝑍𝑍),     (5) 

where 𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝑌𝑌;𝑍𝑍)  represents the redundant information about 𝑍𝑍  contained in both 𝑋𝑋  and 𝑌𝑌 , 
𝑈𝑈𝑈𝑈𝑈𝑈(𝑋𝑋;𝑍𝑍) and 𝑈𝑈𝑈𝑈𝑈𝑈(𝑌𝑌;𝑍𝑍) correspond to the unique information provided by 𝑋𝑋 and 𝑌𝑌 separately, 
and 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌;𝑍𝑍) refers to the synergistic information that can be derived from 𝑋𝑋 and 𝑌𝑌 together 
but not from each of them alone. 

The simplest example of a synergistic network in engineering is one in which 𝑋𝑋 and 𝑌𝑌 are 
independent binary variables, and 𝑍𝑍 is determined by the XOR function, 𝑍𝑍 = 𝑋𝑋 ⊕ 𝑌𝑌 (where ⊕ is 
the XOR operator). It can be shown that the mutual information between the source variables and 
target variable vanishes, 𝐼𝐼(𝑋𝑋;𝑍𝑍)  =  𝐼𝐼(𝑌𝑌;𝑍𝑍)  =  0, which implies that neither of them alone provide 
information about 𝑍𝑍 . However, together they completely determine its state. The relationship 
between 𝑍𝑍 with 𝑋𝑋 and 𝑌𝑌 is called “pure synergy” since the value of 𝑍𝑍 can be computed only when 
both 𝑋𝑋 and 𝑌𝑌 are known (Figure 1c). Although this technical example helps our intuition, it does 
not capture the essence of synergy as extra information (non-additive bonus) beyond the information, 
provided by the sources separately. Especially, the XOR gate has nothing to do with the large-scale 
patterns of synergy, such as the spontaneous self-organization of complex systems in the absence of 
external guidance (Haken and Portugali 2016). Instead, this example shows how transfer entropy can 
be blind to direct causal links. Because mutual information between source variables and target 
variable in XOR networks is zero, transfer entropy vanishes too, 𝑇𝑇𝑇𝑇(𝑋𝑋 → 𝑍𝑍) = 𝑇𝑇𝑇𝑇(𝑌𝑌 → 𝑍𝑍) = 0 , 
despite the obvious fact that they both causally affect the state of 𝑍𝑍. 

Synergy could be better described in the cryptographic context, where access to a secret is 
distributed among the participants, each of which holds some unique information about the secret. 
Thus, it should explain how a synergistic (non-additive) component, provided jointly by two or more 
sources, can make mutual information greater than the sum of the individual information 
contributions provided by the sources (Gutknecht et al. 2021): 

𝐼𝐼(𝑋𝑋,𝑌𝑌;𝑍𝑍) ≥ 𝐼𝐼(𝑋𝑋;𝑍𝑍) + 𝐼𝐼(𝑌𝑌;𝑍𝑍).    (6) 
In particular, since synergistic information is inherently non-additive, its PID-representation via 

Venn diagram is apparently inconsistent in set-theoretic terms: the whole 𝐼𝐼(𝑋𝑋,𝑌𝑌;𝑍𝑍) is greater than 
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the sum of its parts 𝐼𝐼(𝑋𝑋;𝑍𝑍) and 𝐼𝐼(𝑌𝑌;𝑍𝑍) as if 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌;𝑍𝑍) would arise ex nihilo like magic (Figure 1c). 
An explanation comes from the fact that unlike the other three “atoms” in Equation (5), the synergy 
component emerges at a larger scale on the network of sources. Indeed, redundant information can 
be completely retrieved from any one source at a corresponding scale. Unique information is also 
provided at the same scale by each source alone. In contrast, synergistic information can only be 
retrieved from all the sources at a larger scale, corresponding to their union. Missing even one portion 
of that extra-information from a single source could destroy synergistic information. 

To generalize aforesaid, consider a dynamical system 𝑿𝑿𝒕𝒕 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛) of 𝑛𝑛 variables, evolving 
over a discrete (Markovian) stochastic process by a time lag 1 in a state-space 𝒳𝒳. At first sight, the 
amount of synergistic information, provided by the system 𝑿𝑿𝒕𝒕 should be represented by the sum of 
the portions within 𝐼𝐼(𝑋𝑋𝑡𝑡𝑖𝑖;𝑍𝑍𝑡𝑡) that are provided by each source 𝑋𝑋𝑖𝑖 about 𝑍𝑍 at time 𝑡𝑡. On the other 
hand, each portion of this extra information should initially reside within 𝑈𝑈𝑈𝑈𝑈𝑈(𝑋𝑋𝑡𝑡𝑖𝑖;𝑍𝑍𝑡𝑡) at the scale of 
each 𝑋𝑋𝑖𝑖  but emerge only at the scale of their union at time 𝑡𝑡 + 1 . As stated, Shannon mutual 
information does not respect the causal order between inputs and outputs (unless explicitly given). 
It also does not discriminate between scales. Nonetheless, temporal order can still be imposed on 
information-theoretic measures such as time-delayed mutual information or transfer entropy by 
taking into account that transmitting information across scales requires time. 

Let us return to stereoscopic vision, and perform a simple thought experiment. If we close one 
eye, we will only receive mutual information between a target and a source (the second eye), losing 
all PID-components in Equation (5). Now if we have both eyes open at time 𝑡𝑡, do we (our brains) 
receive synergistic and unique information simultaneously or does the synergistic (stereoscopic) 
effect occur shortly after? If the latter is true, we could explain Equation (6) (and the set-theoretic 
inconsistency of synergy in Figure 1c) via time-delayed mutual information as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑿𝑿𝑡𝑡+1;𝑍𝑍𝑡𝑡+1) = ∑ 𝑈𝑈𝑈𝑈𝑈𝑈(𝑋𝑋𝑡𝑡𝑖𝑖;𝑍𝑍𝑡𝑡+1)𝑛𝑛
𝑖𝑖=1 .    (7) 

In this sense, Equation (5), presented in a timeless form, is not entirely correct: the components 
𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝑌𝑌;𝑍𝑍)  and 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌;𝑍𝑍)  do not occur simultaneously but decompose mutual information 
𝐼𝐼(𝑋𝑋,𝑌𝑌;𝑍𝑍) by a time lag 1. Informally, synergistic information is mutual information that emerges at 
the macroscale of a system from its unique information components provided by the system at the 
microscale, but with a time delay. This makes synergy a function of both time and scale. We can now 
interpret this component in the context of Equation (7). To bolster intuition, consider a 
thermodynamic process of the growth of a crystal in a supersaturated metastable solvent. In this 
physics-inspired scenario, the redundant information 𝑅𝑅𝑅𝑅𝑅𝑅(𝑿𝑿𝑡𝑡;𝑍𝑍𝑡𝑡) is like a seed crystal within the 
solvent. This seed is necessary for triggering the growth of a crystal lattice, i.e., 𝑆𝑆𝑆𝑆𝑆𝑆(𝑿𝑿𝑡𝑡+1;𝑍𝑍𝑡𝑡+1), 
composed of the unique components 𝑈𝑈𝑈𝑈𝑈𝑈(𝑋𝑋𝑡𝑡𝑖𝑖;𝑍𝑍𝑡𝑡+1)  that are dispersed throughout the solvent 
(Yurchenko 2024). Thus, the spontaneous growth of a large-scale crystal in a supersaturated solvent 
gives us an example of self-organized synergy, where causal processes are unambiguously presented 
by physical interactions. 

The question we will be most interested in the next section is this: How are macroscopic 
emergent phenomena carried out by linear causal chains across scales? Could downward causation 
be possible due to synergy? 

4. Synergy and Downward Causation 

The PID was not initially developed by Williams and Beer to address causation. It was later 
suggested that the synergistic component 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌;𝑍𝑍) could account for downward causation in 
stochastic dynamical systems, thereby reconciling the strong and weak forms of emergence (Varley 
and Hoel 2022). The proof utilizes time-delayed mutual information, interpreted in terms of 
predictive power, and places it in the context of Integrated Information Theory, which baggage is 
implicitly based on an assumption that conscious experience is identical to the maxima of integrated 
information 𝛷𝛷, and can have free will to causally affect the brain, intrinsically overcoming its own 
neural correlates (Tononi et al. 2022). 
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By replacing the PID-framework with the 𝛷𝛷ID-framework, Rosas et al. (2020) transform the 
predictive power of a supervenient feature (macroscopic variable) 𝑉𝑉𝑡𝑡 into the causal power of 𝑉𝑉𝑡𝑡 
over the underlying dynamical system 𝑿𝑿𝑡𝑡 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛), presented as above. Thus, the temporal 
evolution of the system is described by a linear one-body causal chain at a macroscale, where 𝑿𝑿𝑡𝑡 and 
𝑿𝑿𝑡𝑡+1 serve as the source and target states, respectively. The system is said to have causally emergent 
feature 𝑉𝑉𝑡𝑡 if and only if 𝑆𝑆𝑆𝑆𝑆𝑆(𝑿𝑿𝑡𝑡;𝑿𝑿𝑡𝑡+1) > 0. Now, if 𝑉𝑉𝑡𝑡 is associated with particular conscious states, 
emerging over time from the 𝛷𝛷-structure, while 𝑿𝑿𝒕𝒕 represents the corresponding states of the neural 
network, this leads to mental (downward) causation defined formally by the following condition 
(Rosas et al. 2020): 

𝑈𝑈𝑈𝑈𝑈𝑈(𝑉𝑉𝑡𝑡;𝑿𝑿𝑡𝑡+1|𝑿𝑿𝑡𝑡) > 0.      (8) 
In other words, downward causation occurs when an emergent feature 𝑉𝑉𝑡𝑡  has both unique 

predictive power and irreducible causal power over specific parts of the underlying system. In 
addition, causal decoupling is proposed when 𝑉𝑉𝑡𝑡 has also predictive and causal properties not only 
over any specific part but also over the system as a whole (Mediano et al. 2022): 

𝑈𝑈𝑈𝑈𝑈𝑈(𝑉𝑉𝑡𝑡;𝑉𝑉𝑡𝑡+1|𝑿𝑿𝑡𝑡,𝑿𝑿𝑡𝑡+1) > 0.      (9) 
In fact, what Equation 8 and 9 have shown is that downward causation could be possible if the 

predictive power of information-based measures about a system, derived from observations, not only 
reflects causal processes that unfold in spacetime by physical principles, but also, if the system itself 
is information-processing, becomes equivalent to the causal power of the system itself as expressed 
in terms of the 𝛷𝛷 -ontology. This assumption can be seen as a specific part of a more general 
hypothesis, called “the hard problem of life” by Walker and Davies (2017), which suggest that a full 
resolution of the problem of how information, intrinsically processed by living systems, can causally 
affect matter, will not ultimately be reducible to known physical principles. 

Now, consider the dynamical system 𝑿𝑿𝒕𝒕 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛) in terms of the center of mass, which is 
the mean location of a body’s mass distribution in space. In the case of a system consisting of many 
bodies, the center of mass is calculated as the average of their masses factored by the distances from 
a reference point. The center of mass can then be associated with a supervenient variable 𝑉𝑉𝑡𝑡 in Eqs. 
9 and 10. Indeed, Rosas et al. (2020) have shown that the center of mass of flocking birds in a 2D 
computational model predicts its own dynamics via mutual information 𝐼𝐼(𝑉𝑉𝑡𝑡;𝑉𝑉𝑡𝑡+1) better than it can 
be explained from the behavior of individual birds, i.e., via ∑ 𝐼𝐼(𝑋𝑋𝑡𝑡𝑖𝑖𝑖𝑖 ;𝑉𝑉𝑡𝑡+1). The authors propose this 
result as an illustration of their theory of causal emergence. The center of mass emerges from the 
system’s dynamics as a gravitational pole that does not physically exist. This point-like center, though 
computationally powerful, may occupy empty space, having, by definition, no causal power since no 
observable events might occur there. 

Analogously, in thermodynamics, temperature, as the average kinetic energy of particles in a 
system, is a coarse-grained variable that represents the behavior of all the particles. This supervenient 
variable allows to predict the system’s future state better than it could be made by measuring the 
speed of individual particles. The predictive value of macroscopic observations is undeniable: the 
second law of thermodynamics could not even be inferred from observations of microscopic 
reversible processes in statistical mechanics. However, it does not endow temperature with causal 
power (even though temperature is conventionally involved in the mechanical work done by a heated 
system). 

Similarly, knowing someone’s conscious (supervenient) state at the present moment allows to 
more accurately predict their future state than knowing their brain’s neurodynamics. For example, if 
someone (say Alice) is asked to choose between an apple and an orange, it can be predicted that 
Alice’s next state 𝑉𝑉𝑡𝑡+1  will include either “apple” or “orange” with an equal probability. With 
additional knowledge about Alice’s desires and beliefs, a psychologist might make more precise 
predictions about her choice, whereas a neuroscientist would hardly reach this level of predicting the 
future state 𝑿𝑿𝒕𝒕+𝟏𝟏 of Alice’s brain from the previous state 𝑿𝑿𝒕𝒕, both determined by a configuration of 
activated neurons (leaving aside the problem of decoding brain states into mental states). Note also 
that “desires and beliefs” are concepts of folk psychology, which can suggest a plausible reason 
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(explanation) for Alice’s choice; however, these concepts could not even be formulated in terms of 
physical causation, defined on a dynamical system 𝑿𝑿𝒕𝒕 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛) in a state-space 𝒳𝒳. 

Yet, the choice made by Alice is typically associated with her free will. One could then compute 
something like a synergistic core in Alice’s brain, and identify this statistically well-informed and 
powerful entity with her Self or conscious “I” capable of exerting mental downward causation on the 
executive motor modules in Alice’s brain (Figure 2). 

 

Figure 2. Although both the center of mass and the Self can be physically abstract, these concepts provide a 
useful coarse-grained approximation when applied to systems of interest at larger scales. The former has many 
applications in mechanics, engineering, and astronomy, while the latter is commonly used in population 
dynamics, game theory, social sciences, and economics where conscious individuals are modeled as self-
interested “black-boxes” interacting freely with each other according to a set of rules. 

The Causal Equivalence Principle, discussed in the next section, will disprove this possibility. 
The aim is to show that consciousness has no more causal power in the brain than temperature does 
in an ordinary physical system. 

5. Causal Equivalence Principle 

Downward causation requires the strong form of emergence, which is incompatible with 
reductionism. Reductionism argues that causation is valid only at the smallest scale of physical 
analysis. This requires a preferred scale for linear causal chains, whereas a common practice in 
modern science tells us that every science analyzes causal processes at a scale that is most appropriate 
for the systems of its interest. It would be very difficult or even practically impossible to explain 
cognitive brain functions at the atomic scale or to develop a sociological theory from a perspective of 
neural interactions. Reductionists see it as a matter of tradeoff between reasonable simplicity and the 
scope of detail, especially when fine-grained models may incur prohibitive computational costs, 
compared to low-dimensional coarse-grained models. This view dominates in physics despite the 
fact that fundamental physical laws (Newton laws or conservation laws) are scale-independent. 
Historically, Newton formulated his laws of motion without any knowledge about atoms. Likewise, 
a neuroscientist can study neural processes at different scales by means of appropriate models such 
as the Hodgkin-Huxley model, Wilson-Cowan neural mass equations, or Kuramoto coupled 
oscillators model, with no reference to the atomic scale. 

The concept of causation is derived by us from the observation of events. Although each 
particular event occurs at a corresponding scale, the concept of an event is scale-independent, and no 
preferred scale can be assigned to it. As indicated above, we refer to completely different things as 
“events” whether it be a sunrise on Earth, a car accident on the road, a firing neuron in the brain, or 
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the result of a quantum measurement in a physical lab. Since these systems can be studied at various 
spatial scales from atoms to whole organisms and large-scale environments, the events they produce 
occur at corresponding scales. However, it makes no sense to say that the same event will manifest 
itself at multiple scales, since a microevent cannot in principle be observed at the macroscale, and a 
macroevent cannot appear at the microscale. On the other hand, changing the scale of observation 
does not change physical reality, which exists independently of observations. 

The scale-independence of causation can be formulated by analogy with the equivalence of all 
inertial frames of reference in relativity theory, which postulates that the laws of nature are invariant 
in all inertial frames of reference. Because of this equivalence, observations in one inertial frame can 
be converted into observations in another frame by the Lorentz transformation with respect to the 
speed of light. Likewise, one can assert that the dynamics of a system, governed by the laws of nature, 
cannot depend on the scale of observation. 

The causal equivalence principle (CEP). Coarse-grained and fine-grained variables must yield the 
same dynamics and/or make consistent predictions on the temporal evolution of a system of interest, except for 
the scope of detail. 

The CEP is not a rule extracted ad hoc from observations, but follows from the inherent 
properties of spacetime. Its detailed derivation from the causal set ℒ =  (𝑀𝑀,≺ ) in Minkowski space 
(𝑀𝑀,𝑔𝑔) can be found in (Yurchenko 2023a). The proof starts with the microscale and demonstrates 
how the ‘amount’ of all linear causal chains available there can be conserved by compressing them 
in space and time. In relativistic spacetime, spatial compression is consistently provided by mapping 
all simultaneous and, hence, mutually independent microevents onto their temporal slices, each 
defined as an equivalence class on a spacelike surface. Accordingly, temporal compression occurs 
along all timelike worldlines, where each linear causal chain of microevents is condensed into a single 
pair of microevents, typically based on the temporal resolution of observation provided there. As a 
result, spatial temporal compression both transform all microevents possible in spacetime into 
macroevents regardless of their location. 

Although the CEP was derived in (Yurchenko 2023a) from the idea of spacetime compression, 
no event might be observed in empty space. There should be physical systems to produce events as 
their instantaneous states, which are causally connected in spacetime. Therefore, the “compression” 
should apply not to spacetime but, rather, to the universe as the largest dynamical system occupying 
spacetime. In this case, the CEP represents a metaphysical realism: The existence of the universe is 
observer-independent. But how does the universe exist? Is it an atomic (quantum) universe as 
reductionism claims? We know that organisms consist of atoms, but there are no living entities at the 
atomic scale. Life is a large-scale emergent phenomenon. In this sense, from a reductionist 
perspective, the existence of living systems may be viewed as illusory in the atomic (quantum) 
universe. If so, how do living entities such as bacteria and humans exist? More broadly, how do 
multiscale dynamical systems like organisms, ecosystems, and planets exist? To answer these 
questions, we must extend the above postulate to the statement: The universe, with all its components, 
exists at all spatial scales simultaneously, regardless of whether or not they are accessible for observation. 

In this context, the CEP can then be generalized as the law of conservation of causation, 
expressed in the formalism of Liouville’s theorem (Yurchenko, 2025). This theorem states that the 
density of representative points of a dynamical system in phase space does not change with time. Its 
consequence is that the entropy of the system, defined as the logarithm of the volume in phase space, 
𝐻𝐻 = log𝑉𝑉𝛤𝛤, remains constant for a perfect observer capable of distinguishing all causal chains within 
a system. However, for causal analysis, it is more appropriate to consider the theorem in terms of the 
continuity equation in fluid dynamics. This equation represents the idea that matter is conserved as 
it flows in spacetime: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛁𝛁(𝜌𝜌𝐮𝐮) = 0.     (10) 
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Here 𝛁𝛁 is the divergence operator, 𝜌𝜌 is the flow density, and 𝐮𝐮(𝒙𝒙, 𝑡𝑡) is the flow velocity in a 
vector field. For an incompressible fluid, the density 𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, so that the divergence of the flow 
velocity is zero everywhere, 𝛁𝛁 ∙ 𝐮𝐮 = 0. Informally, the equation implies that the control volume of a 
flow remains constant over time (Figure 3a). 

Now, let us consider a multiscale dynamical system 𝑿𝑿𝒕𝒕 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛) of 𝑛𝑛 variables. Its 
macrostate 𝑿𝑿(𝑡𝑡0) can be observed as a macroevent 𝐸𝐸  which, by definition, is the “sum” of all 
simultaneous and causally independent microevents 𝑒𝑒𝑖𝑖  at a moment 𝑡𝑡0 , each associated with a 
corresponding state of the system component 𝑋𝑋𝑡𝑡𝑖𝑖 . Suppose there is a linear causal chain of such 
microevents 𝑒𝑒𝑖𝑖1 → 𝑒𝑒𝑖𝑖2 → 𝑒𝑒𝑖𝑖3 → ⋯ → 𝑒𝑒𝑖𝑖𝑖𝑖  per unite time ∆𝑡𝑡 = 𝑡𝑡 − 𝑡𝑡0 . The causal order will still be 
preserved in a chain of macroevents 𝐸𝐸1 → 𝐸𝐸2 by reducing the temporal resolution of observations to 
the lag 1 =  ∆𝑡𝑡 . Therefore, the transition across spatial scales does not change the “quantity” of 
causation within a multiscale dynamical system for a perfect observer (Figure 3b). All scales are 
causally closed. 

Another explanation comes from the principle of locality in physics, which states that an object 
can be causally affected only by its immediate surroundings and not by distant objects, also known 
in relativity theory as the dictum “No instantaneous action at a distance,” which implies that an action 
between events is limited by the speed of light. When applied to scale analysis, the principle of 
locality entails another fundamental property of causation. It states that a microevent 𝑒𝑒 
(representing the state of an object at time 𝑡𝑡) at a given scale can be influenced simultaneously by 
two or more neighboring events (objects), but not by numerous distant events at that same scale. If 
that were the case, the combined (non-local) effect of these distant events could be regarded as a 
macroevent 𝐸𝐸 that exerts downward causation on the microevent 𝑒𝑒. Thus, the principle of locality 
forbids the whole from influencing its individual parts. Causally, the whole cannot be greater than 
the “sum” of its parts. 

 

Figure 3. (a) The continuity equation states that the control volume 𝑉𝑉 (colored in blue) of an incompressible 
quantity moving through a pipe remains constant over time. Therefore, as the flow area 𝐴𝐴 reduces, the velocity 
𝐮𝐮(𝐱𝐱, 𝑡𝑡) increases. It follows immediately that the volume does not depend on how it is measured, i.e., 𝑉𝑉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
regardless of the units of observation. (b) Here, the control volume is schematically represented by 𝑛𝑛 linear 
causal chains passing through spacetime occupied by the dynamical system 𝑿𝑿𝒕𝒕 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛). Accordingly, all 
simultaneous microevents (a vertical bar) indicate the flow density, i.e., the number of causally independent 
microevents 𝑒𝑒  per unit volume, whereas each row of causally connected events (a horizontal row) at the 
microscale corresponds to the flow velocity vector, i.e., the average number of microevents 𝑒𝑒 per unit time in 
the linear one-body causal chains. For a perfect observer, the quantity of causation within a control volume of 
spacetime remains constant across scales. No cause can appear ex nihilo at a particular scale in order to intervene 
in linear causal chains with their own past. 
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The law of conservation of causation. The flow of causation in the universe is conserved across scales. 

In the context of Noether’s theorem, for every continuous symmetry in the laws of nature, there 
exists a corresponding conservation law. Accordingly, conservation of causation can be inferred from 
the invariance of the laws of nature under scale transitions. In effect, this law states that the choice of 
units of observation in spacetime does not affect the flow of causation. No linear causal chain at a 
fixed scale can intervene in linear causal chains at other scales. The law rules out both upward and 
downward causation, which can only appear as artifacts of imperfect observation when different 
scales of causal analysis are mixed. On the other hand, according to the law, the Markov property 
remains invariant across scales due to the linearity of causal chains. 

6. Corollaries of the CEP 

The CEP has corollaries that are directly relevant to the relationship between causation, 
information, and synergy in biological systems discussed in the previous sections. 

Corollary 1. There is no causally preferred spatial scale. 

Thus, the CEP is not a reductionist principle. In physicalist terms, reductionism is based on two 
premises: (i) micro-causal closure and (ii) macro-causal exclusion (Kim 2006). In contrast, the law of 
conservation of causation states that not only the microscale is causally closed, but every scale is 
causally closed. 

Formally, the CEP is similar to the Principle of Biological Relativity of Noble et al. (2019) which 
states that there is, a priori, no preferred level of causation across the multiple scales of networks that 
define the organism. However, there is a principled distinction between them. Biological relativity 
has no relevance to relativity theory, and typically conflates the notion of reason (as a logical cause-
like explanation) with the rigorous concept of cause (as a physical event in spacetime, linked to an 
instantaneous state of a system of interest). As a result, this admits cross-scale causation. Upward 
causation is defined by the mechanics that describe how lower elements in a system interact and 
produce changes at higher levels. Downward causation is represented by the set of constraints 
imposed by environmental (large-scale) conditions on the system’s dynamics at lower levels. 

In contrast, the CEP forbids both kinds of cross-scale causation. Corollary 1 is compatible with 
Rolls’ approach to causation, which argues that (linear) causal chains operate within scales but not 
across scales. He regards downward causation as a philosophical “confabulation” aimed at 
disproving reductionism (Rolls 2021). 

Corollary 2. Mixing two (or more) causally closed scales leads to the double causation fallacy or 
overdetermination. 

Note that “overdetermination” here must not be confused with a case when two or more 
simultaneous events cause another event, all occurring at the same scale. Such collisions (and 
bifurcations) between different linear causal chains can be ubiquitous in the causal set ℒ. Corollary 2 
permits linear causal chains to intersect at any one scale but not across scales. The double causation 
fallacy arises when both macroscopic and microscopic variables are supposed to causally affect the 
same event (Figure 4a) despite the fact that microevents cannot in principle be observable at the 
macroscale, and vice versa. 

In the classic example of overdetermination, as suggested by Kim (2006), there are two emergent 
mental states M and M* that supervene on physical states Q and Q* of a system S respectively. Now, 
if we agree that M causes M*, then we must also agree that Q is causal for M*. If both M and Q explain 
M*, then the explanation is overdetermined. This example, however, is more concerned with the 
mind-body problem than with downward causation. As stated, assuming downward causation alone 
is not sufficient to solve the mind-body problem. To account for mental causation, neo-Cartesian 
dualism is necessary to conflate causation with information. 
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Figure 4. (a) Coarse-graining allows to reduce data from a high-dimensional space to a low-dimensional space 
by aggregating many microscopic variables into a single macroscopic variable. This is modeled by Markov 
chains, which are implicitly derived from observations of events in linear causal chains. Thus, coarse-graining 
‘compresses’ many causal chains 𝑋𝑋𝑡𝑡1  at the microscale into a single causal chain 𝑿𝑿𝑡𝑡 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛)  at the 
macroscale. Causal chains evolve at a corresponding scale through their own cause-effect relations (shown via 
green arrows). The CEP ensures that causal chains only intersect at the same scale and not across scales. The 
double causation fallacy arises if the temporal evolution of a chain at one scale is assumed to be affected by a 
chain from another scale (indicated by red arrows). (b) Here, the stream of conscious states, represented by a 
supervenient variable 𝑉𝑉𝑡𝑡, emerges from the brain temporal evolution. Neural causal chains pervade the brain at 
the microscale, whereas brain dynamics are represented by macrostates 𝑿𝑿(𝑡𝑡). Now, if information is conflated 
with causation, downward causation turns into mental causation, affecting neural causal chains. Accordingly, 
at the macroscale, mental causation takes the form of free will, influencing one’s conscious states (which are 
ultimately responsible for one’s behavior in the environment). 

To specify the problem, we translate the above example into the formalism of multiscale 
dynamical systems. Let large-scale supervenient variables 𝑉𝑉𝑡𝑡  and 𝑉𝑉𝑡𝑡+1 represent mental states M 
and M* of a multiscale dynamical system 𝑿𝑿𝑡𝑡 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛) such as the brain. The temporal evolution 
of each its part 𝑋𝑋𝑡𝑡𝑖𝑖 can be represented by a linear causal chain at a corresponding scale less than the 
scale of the system. In dynamics over time, the state 𝑋𝑋𝑡𝑡+1𝑖𝑖  of each part is determined by its previous 
state 𝑋𝑋𝑡𝑡𝑖𝑖 (though other parts can intervene in the chain). Double causation arises when 𝑋𝑋𝑡𝑡+1𝑖𝑖  is also 
affected across scales by 𝑉𝑉𝑡𝑡. Thus, mental causation would be possible if the conditions of Equation 
(8) were satisfied (Figure 4b). But this is not the case for the CEP. 

Ultimately, the CEP rejects the strong version of emergence (including downward and mental 
causation) but adopts its weak version. The CEP may maintain a conventional form of free will on 
the condition that brain dynamics could not be completely predetermined from the past. Let 𝑿𝑿𝑡𝑡 and 
𝑿𝑿𝑡𝑡+1 be two brain states of a corresponding one-body linear causal chain at the macroscale. We say 
that 𝑿𝑿𝑡𝑡+𝟏𝟏 is caused by 𝑿𝑿𝑡𝑡. Now let 𝑉𝑉𝑡𝑡 symbolize this linear chain that can be described as a discrete 
stream of conscious states emerging in critical points of Langevin dynamics (Yurchenko 2023b). 
According to the CEP, all scales are causally closed so that mental (downward) causation from 𝑉𝑉𝑡𝑡 to 
𝑿𝑿𝑡𝑡+1 is precluded. Instead, conscious states passively emerge from brain macrostates. This can be 
formally provided by mapping the brain states 𝑿𝑿𝑡𝑡 to the corresponding conscious states 𝑉𝑉𝑡𝑡 in the 
stream. Thus, the causal relationship between 𝑿𝑿𝑡𝑡 and 𝑿𝑿𝑡𝑡+1 is spontaneously transformed via the 
mapping into the mental relationship between 𝑉𝑉𝑡𝑡 and 𝑉𝑉𝑡𝑡+1 as if the former caused the latter (Figure 
5). 
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Figure 5. The CEP allows us to account for the conventional form of free will by converting a physical cause-
effect relationship between two nearest states of the brain into a mental relationship between two corresponding 
psychological states. Although this formal mapping between physical brain states and subjective conscious 
experience does not solve the mystery of their relation, this can explain the illusion of free will, while preserving 
the ability of the brain or, more generally, conscious organisms to act freely. 

Corollary 3. Endogenous coarse-graining is causally legitimate. 

Here, coarse-graining is not related to dimensionality reduction in statistical analysis such as 
principal component analysis or data compression. Instead, it concerns actual events as they occur 
according to natural laws, forming a lattice of causal chains in spacetime. Coarse-graining depends 
on the spatial and temporal resolution of observations as if spacetime itself was compressed, making 
only macroevents observable. Examples of coarse-graining include temperature in thermodynamics, 
the center of mass in mechanics, condensed nodes in network analysis, and phase-space models that 
reduce population size to a single variable in population dynamics. These examples illustrate weak 
emergence, where “the map is better than the territory” (Hoel 2017), rather than strong emergence, 
where “the macro beats the micro” (Hoel et al. 2013). 

Flack (2017) suggests to distinguish this kind of coarse-graining, imposed by scientists on a 
system of interest to find compact descriptions of its behavior for making good predictions, and 
endogenous coarse-graining, imposed by nature itself upon matter. Endogenous coarse-graining is 
what allows us to distinguish between a physical body and its environment. A physical body is by 
definition a system of components that are more causally connected to each other than to the 
components of the environment. In the case of an atom, its electrons are more causally connected to 
each other and to the atom’s nucleus than to the electrons and nuclei of surrounding atoms. Similarly, 
a molecule consists of atoms that are chemically coupled with each other either directly or through 
causal linear chains to a degree that exceeds their coupling with the atoms of other molecules. At a 
larger scale, the surface of a biological cell is a boundary between the causal strength of internal 
(atomic and molecular) interactions within the cell and its interactions with the environment. 

Endogenous coarse-graining is evident in the multiscale organization of matter from atoms to 
planets, and, especially, in biological systems, organized across scales from genes to cells to 
organisms. Although linear causal chains pervade spacetime uniformly, physical bodies and living 
organisms are more internally connected than externally. This makes them partially autonomous 
from their environment. In fact, internal causal connectedness (or causal closure) is fundamental to 
our understanding of physical existence. For example, when we see a stone rolling down a hill, we 
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perceive the stone as a distinct physical body separate from the parts the hill consists of. Also, through 
observations we can distinguish a leaf on a tree and a tree in a garden across different spatial scales. 
Why are we sure that these are real physical entities and not illusions created by the sophisticated 
computational power of the brain, which transforms the beam of photons hitting one’s retina into a 
series of visual images? 

This problem can be traced back to the words of the French philosopher Hippolyte Taine: 
“Instead of saying that a hallucination is a false exterior percept, one should say that the external 
percept is a true hallucination” (Corlett et al., 2019). In this context, our observations of hills, stones, 
gardens, trees, and leaves are true epistemologically because they all exist as endogenously coarse-
grained entities. The brain, as a predictive system, could not obtain the information necessary to 
discern them if they were not internally more causally connected than externally. Endogenous coarse-
graining here means that these entities exist ontologically due to their internal causal connectedness, 
not just as artifacts of our observation. In fact, internal causal connectedness is the primary, if not the 
only, intrinsic property of physical entities that enables us (our brain) to distinguish them and their 
parts from one another and from their environments. 

Endogenous coarse-graining is closely related to the concept of individuality in biology, which 
is typically divided into four kinds: metabolic, immunological, evolutionary, and ecological 
individuality (DiFrisco 2019; Kranke 2024). Since information is physically instantiated in the 
organizational structure of matter and conveyed through spacetime causally (Figure 1a), the 
relationship between endogenous coarse-graining, based on internal causal connectedness, and 
biological individuality can be statistically inferred in terms of time-delayed mutual information or 
transfer entropy from the definition: “If the information transmitted within a system forward in time 
is close to maximal, it is evidence for its individuality” (Krakauer et al. 2020). A similar measure, 
based on the concept of non-trivial information closure (Bertschinger et al. 2008), is proposed in 
neuroscience to explain the large-scale emergence of consciousness (psychological individuality) 
from neural activity in the brain (Chang et al. 2020). Thus, endogenous coarse-graining, as an intrinsic 
property of matter organization across scales, underlies a set of interdependent concepts in biology 
and complex systems such as emergence, synergy, self-organization, information closure, autonomy, 
biological individuality, autopoiesis, cognition, and subjective experience. 

Although the law of conservation of causation explains why different levels of description of the 
same system can co-exist and be causally valid, the question we are interested in now is how the 
scales are related to each other within the spatial span of endogenously coarse-grained dynamical 
systems. 

7. Causal Scope, Scale Transition, and Spatial Span 

In practice, scientists are naturally constrained to choose an elementary basis for the lowest 
boundary of observation and causal analysis at a scale that is most suitable for the size and dynamics 
of a system of interest (e.g., the solar system versus a cell). The basis can be chosen explicitly or 
implicitly, but it will always be embedded in the framework of research. All scales below the basis 
are ignored (e.g., quantum, atomic, molecular). There will also appear the upper boundary of 
observation for causal analysis over the spatial (and temporal) span of the system of interest. Again, 
all scales above the upper boundary are ignored and commonly related to the environment (e.g., 
populational, ecological, planetary). Within this span, three scales are typically proposed: the 
microscale for the elementary basis, the macroscale for the system itself, and a mesoscale between 
them. 

At first sight, graph theory provides the best representation of causal chains that occur and are 
valid only at the same scale of spatial resolution. However, the graph, defined on a set of nodes, does 
not discriminate between scales: one node is taken to be of the same size as another node. Although 
the graph can then be coarse-grained by condensing local networks of strongly interconnected nodes 
into single large-scale nodes (modules), such transformations would change the scales of description 
but preserve one-scale representation. According to the CEP, the graph-theoretic representations 
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could indeed be best for dynamical causal modeling, but only on the condition that all the nodes were 
physically related to the elementary basis of a system of interest. In the case of the mind-brain 
relation, the elementary basis should be related to the scale of single neurons, while communication 
channels for linear causal chains between neurons should naturally be provided by structural 
(anatomical) connectivity via white-matter fibers. Unfortunately, graph-theoretic representations can 
roughly mix different spatiotemporal scales, as it occurs by detecting statistical correlations of 
functional connectivity between different regions of the brain with the help of various neuroimaging 
techniques. Spurious causation can arise there (Reid et al. 2019; Weichwald and Peters 2021; Barack 
et al. 2022). 

Overall, the CEP argues that observers should keep the scales of causal analysis isolated. 
Theoretically, we should denote the elementary basis 𝑁𝑁 of a system of interest as scale 1. The sets 𝑆𝑆 
of 𝑛𝑛 elements, 𝑆𝑆 ⊆ 𝑁𝑁, over the basis, should spontaneously produce the class of equivalence by their 
cardinality, assigned then to scale 𝑛𝑛. Each new scale 𝑛𝑛 + 1 would occur by adding a new element to 
each of the sets. Scales would be additive, in the sense that a set of interdependent components might 
be replaced by a single component whose scale is equal to the sum of the scales of the individual 
components (Allen et al. 2017). In practice, however, the distinction between scales cannot be so 
simple. For example, where should we place the boundary between the microscale and a mesoscale 
in our observations? More broadly, how should the molecular scale transition spontaneously into the 
cellular scale, and how should the scale of single neurons consistently turn into the scale of neural 
functional modules? 

This problem is very similar to the so-called “heap paradox” in philosophy, which argues that if 
a grain of sand is not a heap, and adding a single grain of sand to something that is not a heap does 
not produce a heap, then a heap is physically impossible despite the fact that it emerges in the eye of 
an observer. Does the heap of sand really exist? The answer must start with the remark that every 
grain of sand is already a “heap” of atoms more causally connected with each other than with atoms 
of other grains. So, a heap of sand arises at a larger scale analogously when a number of grains become 
causally coupled with each other stronger than with the environment. Therefore, intervention on any 
part of the heap will causally affect other parts rather than distant objects outside the heap, for 
example, to bring about an avalanche. 

What follows from this dilemma is that the boundaries between scales cannot be defined 
rigorously but only in terms of neighborhoods, by analogy with topological spaces, in which 
closeness (or limit) is described in terms of open subsets rather than metric distance. In the topological 
presentation, the number of interacting individuals must be fixed, whereas in the metric presentation, 
the number can vary with density per unit volume. In a graph 𝐺𝐺 = (𝑁𝑁,𝐸𝐸), let each unit scale 𝑢𝑢𝑖𝑖, 
defined as the equivalence class by cardinality |𝑘𝑘|, be assigned to the neighborhood 𝑂𝑂 such that 1 ≤
𝑘𝑘 ≤ 𝑂𝑂, where 𝑘𝑘 is the causal scope (similar to the degree of a node or branching factor in graph 
theory), which is specific to a particular class of systems, and 𝑂𝑂 determines the topological scale 
parameter, imposed by the principle of locality that is fundamental to causal analysis. 

Now, the CEP allows an event to cause 𝑘𝑘 consequent events or, equivalently, to be caused by 𝑘𝑘 
previous events at the same scale of observation. However, the principle of locality forbids 𝑘𝑘 to be 
larger than the neighborhood 𝑂𝑂 of the given scale. The nearest upper scale is defined as 𝑢𝑢𝑖𝑖+1 ≝ |𝑢𝑢𝑖𝑖𝑘𝑘|. 
Thus, the progression of scales will grow exponentially, starting with the initial unit scale 𝑢𝑢1 = 𝑘𝑘 in 
the elementary basis of 𝐺𝐺 = (𝑁𝑁,𝐸𝐸) (Figure 6a): 

     (∀𝑖𝑖)𝑢𝑢𝑖𝑖 ≝ 𝑘𝑘𝑖𝑖 .      (11) 
It is important to note that Equation (11) must be interpreted correctly. The causal scope does 

not imply that a system is divided into groups of 𝑘𝑘 elements, each forming a clique isolated from the 
rest of the system. If that were the case, scale transitions would only increase the size of cliques 
(Figure 6b). Instead, while the groups are defined numerically by the equivalence class, their 
neighborhoods 𝑂𝑂 topologically cover the system entirely at every scale by involving intersections 
between nearest groups with each other, rather than partitioning it into isolated groups of 
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exponentially growing size. Therefore, scale transitions increase the coherence of the system as a 
whole without making it a clique of completely interconnected elements. 

 
Figure 6. (a) Although the concept of “scale” is fundamental in science, it is impossible to define each scale 
rigorously. Causal analysis can hardly be based on a metric scale length when dealing with multiscale systems. 
In that case, scales can be defined topologically by neighborhoods 𝑂𝑂 of limited size, each of which determines 
a characteristic scale parameter. (b) The causal scope of two elements defined numerically by an equivalence 
class |𝑘𝑘|, does not coincide topologically so that their neighborhoods 𝑂𝑂 do not form cliques of exponentially 
growing size across scales. (c) At every scale, these neighborhoods cover the whole system by intersecting with 
each other. So, nodes (events) 2 and 3 may be in the neighborhood of node 1, but their own neighborhoods do 
not coincide. Coherence of a dynamical system 𝑿𝑿𝑡𝑡 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛), represented by a graph 𝐺𝐺 = (𝑁𝑁,𝐸𝐸), means that 
there is a linear multi-body causal chain of finite length 𝐿𝐿 connecting any two variables 𝑋𝑋𝑡𝑡𝑖𝑖 and 𝑋𝑋𝑡𝑡

𝑗𝑗 over time. 

Coherence here refers to the so-called small-world property of a graph, also known as the six 
degrees of separation in social networks. This property is characterized by a high degree of local 
clustering and a relatively short path length. The latter is the average number of edges in the shortest 
path between two nodes in the graph 𝐺𝐺 = (𝑁𝑁,𝐸𝐸), defined as 𝐿𝐿 = ln𝑁𝑁 ln 𝑘𝑘⁄  (Watts and Strogatz 1998). 
In other words, the internal causal connectedness of an endogenously coarse-grained system 𝑿𝑿𝑡𝑡 =
(𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛) guarantees that although the principle of locality forbids its two elements at a distance to 
have a direct causal link, they can still correlate over time via a multi-body causal chain of finite 
length of mutually causally connected neighbors within the system (Figure 6c). We can thus be certain 
that such a causal chain exists or is intrinsically feasible between any two organelles in a cell, two 
neurons in a brain, or two organs in an organism.1 

Now, let us consider the multiscale nonlinear phenomena of coherence, such as the spontaneous 
growth of a crystal in a supersaturated solvent or an avalanche that can occur in a heap of sand, a 
flock of starlings, or a neural network in the brain. These phenomena are triggered by a single element 
such as a seed crystal, a grain of sand, a single bird, or a neuron. One might argue that these dynamics 
exemplify upward causation, enabling a part to causally affect the whole across scales. Another 

 
1 In particular, this raises an interesting question about biological individuality in the context of social small-

world networks with their six degrees of separation. If each degree of separation can be viewed as a causal link 

provided via a communication channel between two people, then the chain of acquaintances represents the 

shortest path length 𝐿𝐿 ≅ 6 that “causally” connects any two humans on Earth. Does this mean that humanity 

can be regarded not only as a taxonomic species, but also as a single biological individual, i.e., a genuine 

superorganism? Or, is this a case of confusing causation with information? Putting it in the context of folk 

psychology, should we agree that a word spoken by one person to another person has causal power over the 

latter similar to that between two organelles in a cell or two neurons in the brain? 
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famous example of upward causation is the butterfly effect, a metaphor in chaos theory, where a 
microevent, the flap of a butterfly’s wings, can ultimately cause a series of macroevents, like a 
hurricane. But is there upward causation? 

In a dynamical system of 𝑁𝑁 elements, each element can only causally affect up to 𝑘𝑘 elements at 
time 𝑡𝑡 , but it cannot simultaneously influence an unlimited number of elements beyond its 
neighborhood 𝑂𝑂 as dictated by the principle of locality. For example, for a starling flock, the causal 
scope 𝑘𝑘 ≅ 7 (Ballerini et al. 2008), whereas for the rat barrel cortex, 𝑘𝑘 ≅ 28 (London et al. 2010). 
According to the law of conservation of causation, when the scope of elements exceeds 𝑂𝑂, the scale 
of observation must be changed (Figure 6a). This marks the boundary between the two closest scales 
over which the avalanche progresses, making a system more coherent over time. Instead of upward 
causation, there is a great number of linear multi-body chains with a common cause in the distant 
past that triggered the avalanche. There are statistical (functional) correlations among all elements of 
the avalanche due to the common cause, but there is no immediate causal link between them. If there 
were, we would have a brain where all neurons form a clique completely interconnected by white-
matter fibers. Thus, this is not the case. 

Remarkably, assuming upward causation in the above scenario would make downward 
causation possible as well. If one element was capable of affecting an unlimited number of elements 
simultaneously, then the opposite process should occur spontaneously. Eventually, there would be a 
moment when a large number of elements simultaneously affect one element, as if the whole could 
causally impact its parts. This scenario implies that the brain should again be a clique of neurons 
completely interconnected via synaptic communication channels despite neurobiological evidence 
indicating that in the brain, each neuron has, on average, several thousand synaptic connections with 
other neurons, and only a few can be activated simultaneously. This evidence also demonstrates how 
the principle of locality is instantiated in the anatomical connectivity of the brain. 

The spatial span of an endogenously coarse-grained system can now be defined not as the metric 
volume in space occupied by the system, but as the number of spatial scales causally covered by its 
dynamics. According to Equation (11), the spatial span 𝑆𝑆(𝐺𝐺)  of a network 𝐺𝐺 = (𝑁𝑁,𝐸𝐸)  can be 
calculated logarithmically by its elementary basis 𝑁𝑁  as log𝑘𝑘 𝑁𝑁 . For example, if we consider the 
human brain, which contains approximately 86 billion neurons, and assume that the causal scope of 
a neuron, as detected experimentally by single-cell stimulations (Kwan and Dan 2012), is 17 ≤ 𝑘𝑘 ≤
23, then the spatial span of the human brain can encompass 7 or 8 scales, beginning with individual 
neurons in the elementary basis. For a flock of starlings, assuming it consists of about 10 thousand 
birds, with 6 ≤ 𝑘𝑘 ≤ 7 (Ballerini et al. 2008), its spatial span would range between 4 and 5 scales 
(Figure 7a). Of course, in both cases, the number of scales would increase significantly by shifting the 
elementary basis to the atomic scale. Note also that the value of 𝑘𝑘 may vary across scales even within 
the same system. At the molecular scale, the causal scope, influenced by the topological scale 
parameter 𝑂𝑂, is likely to differ from that at the neural scale. 
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Figure 7. (a) The spatial span 𝑆𝑆(𝐺𝐺) of the human brain and the starling flock, both represented by a network 
𝐺𝐺 = (𝑁𝑁,𝐸𝐸). (b) Top: Circular causation is typically depicted in Boolean networks by closed loops connecting two 
or more nodes. The temporal dynamics are missed in such representations, using classical timeless logic. Bottom: 
In contrast, time is implicitly embedded in linear causal chains of dynamical systems. Circular causation occurs 
when a multi-body chain (a red polygonal chain) intersects a fixed one-body chain (a black straight line) many 
times. If these intersections repeat regularly, causation becomes cyclic. Circular causation can arise 
independently at different scales. 

Another important feature of scale transitions is that they can essentially change the causal 
structure of a system at each scale. For a dynamical system 𝑿𝑿𝑡𝑡 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛), the causal scope means 
that a variable 𝑋𝑋𝑡𝑡𝑖𝑖 , associated with a microevent at time 𝑡𝑡 , can simultaneously affect 𝑘𝑘  other 
variables, generating multi-body causal chains. Circular causation arises when one (or more) of the 
affected variables causally impact 𝑋𝑋𝑡𝑡𝑖𝑖 at time 𝑡𝑡 + ∆𝑡𝑡 (Figure 7b). However, circular causation at a 
smaller scale may not be observable at a larger scale, and vice versa. Macroscopic systems can, thus, 
exhibit nontrivial complex behavior that could not be inferred from their microscopic components. 
The CEP can explain how complex nonlinear phenomena can emerge on multiscale networks from 
linear causal chains solely due to scale transitions, e.g., when a system constrains itself to move 
through a cyclic attractor in phase space. In this context, the CEP underlies the renormalization group 
formalism in condensed matter physics, in terms of critical phenomena on Ising models that are 
typically characterized by spontaneous avalanches across scales (di Santo et al. 2018; Lombardi et al. 
2021). 

As stated, the CEP is not a reductionist principle. From the reductionist perspective, we should 
ultimately agree that all endogenously coarse-grained systems, including ourselves, have no 
biological individuality because only atoms (or quanta) genuinely exist, and have causal power. In 
contrast, the CEP asserts that all scales are ontologically valid and causally closed. According to the 
law of conservation of causation, scale transitions preserve the quantity of causation invariant in 
dynamics when a system passes from one state to another regardless of the scale of observation. 
However, observations of the system’s causal structure at the macroscale do not allow one to uncover 
its causal structure at the microscale, and vice versa, so reduction is precluded (Figure 8). 
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Figure 8. The schematic illustrates a comparison between the dynamics of a classical pendulum and the brain, 
both presented as internally causally connected systems. The pendulum is depicted as a ball 𝐵𝐵(𝑡𝑡), that swings 
back and forth around the equilibrium position. Given its structure at the atomic scale, all atoms in its crystal 
lattice move regularly, producing the same one-body linear causal chains in dynamics without intersections 
between two arbitrary chains (shown as red and yellow lines). In contrast, the brain, depicted by the macroscopic 
variable 𝑿𝑿(𝑡𝑡), has a highly complex structure, composed of networks at the neural scale. Neurons interact in 
dynamics, producing multi-body branching and circular linear causal chains that are entangled with each other. 
Although in macroscopic dynamics the difference between 𝐵𝐵(𝑡𝑡) and 𝑿𝑿(𝑡𝑡) is obscured by endogenous coarse-
graining that yields a simple one-body causal chain, going from one state of a system at time 𝑡𝑡 to its next state 
at time 𝑡𝑡 + ∆𝑡𝑡, these consolidated linear chains are very distinct at their characteristic microscale. In fact, every 
linear one-body causal chain associated with the successive states of a dynamical system 𝑿𝑿𝑡𝑡 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛) can 
contain various multi-body causal chains resulting from interactions between the system’s components 𝑋𝑋𝑡𝑡𝑖𝑖 . 
Thus, the complex behavior of endogenously coarse-grained systems can increase exclusively due to their 
multiscale organization. The significance of entanglement and circularity via synaptic fibers becomes especially 
notable if all neurons in the brain were completely disconnected. In that case, brain dynamics would resemble a 
causal picture of the pendulum ball. 

On the other hand, the CEP can explain the problem of indeterminism for living organisms in 
the context of their biological freedom to respond to external stimuli without resorting to mental 
downward causation (Figure 5). First, causation is not synonymous with determinism which heavily 
relies on the idea of predictability as seen from the perspective of a perfect observer like an omniscient 
Laplacian demon. Every event is said to be completely predetermined from the past so that 
randomness (stochasticity) only appears to an observer lacking perfect knowledge. In contrast, 
causation requires only irreflexivity and transitivity by Equations (1.1) and (1.2). No event can be a 
cause of itself as every event, associated with the state of a system, is necessarily preceded by other 
events, including its previous state. Even if the dynamics of organisms are entirely deterministic at 
the atomic scale, their macroscopic behavior can still have its own causal structure that may not be 
derived from the causal structure at the microscale. Meanwhile, the law of conservation of causation 
tells us that there is nothing new added to the “quantity” of causation at the scale of organisms 
compared to the “quantity” of causation they possess at the atomic scale within their spatial span 
(Figure 7a). Since their behavioral response to external stimuli is not reducible to atomic interactions, 
it cannot in principle be proven (or disproven) that the response has been predetermined from the 
past. According to the CEP, all causal structures within the system’s spatial span are consistent so 
that our free will can be preserved without involving mental downward causation or quantum 
indeterminism. 
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So, we may be puzzled when observing systems as different as a simple pendulum and the 
human brain. The dynamics of both are summed up at the macroscale to a consolidated one-body 
causal chain despite a huge difference in the complexity of their causal structures at lower scales. 
(Figure 8). Thus, multiscale hierarchical organization provides not only the biological individuality 
of organisms based on their internal causal connectedness but also their biological freedom to adapt 
to the environment. Their ability to adapt is selectively encoded over evolutionary time-scales in the 
entangled and circular multi-body causal chains pervading their spatial span at all scales (Figure 7b), 
while atoms, the organisms consist of, do not adapt but follow their deterministic ways. 

The following sections will present a mathematical demonstration of how the CEP can be 
applied to multiscale, hierarchically organized networks. 

8. Hierarchical organization of Complex Systems 

Hierarchy is a universal feature of complex systems in social sciences, biology, and neuroscience 
(Mihm et al. 2010; Kaiser et al. 2010; Deco and Kringelbach 2017; Hilgetag and Goulas 2020). In causal 
analysis, however, this term must be taken with caution since there are two very distinctive types of 
hierarchy. It follows from the fact that “hierarchy” can be conceptualized in two relevant but 
mathematically different ways. 

8.1. Flat Hierarchy 

In literature, hierarchy is typically defined as a set of elements (nodes) arranged into ranks or 
layers. In its most general mathematical formulation, a hierarchy is an acyclic directed graph 𝐺𝐺 =
(𝑁𝑁,𝐸𝐸), also represented as an upper semilattice ℋ = (𝑁𝑁,≤), where ≤ symbolizes subordination in 
the usual mathematical sense of order. A canonical example is a power hierarchy, which consists of 
a central authority that is transferred down across subordinated ranks to exert the chains of command 
and control. The order arises spontaneously within the hierarchy across ranks. In general, given a set 
𝑁𝑁, the number of ranks (the height of the hierarchy) is determined by the degree of branching, i.e., by 
the number of subordinates each node has on average. The ℋ can be decomposed by linear chains, 
consisting of subordinated nodes over all ranks in the hierarchy. But such a representation produces 
great confusion that is responsible for assuming downward causation in complex hierarchical 
systems. 

First, this definition only characterizes the simplest form of a hierarchy where all layers are 
presented at the same scale. A much more complex example is a nested hierarchy which is composed 
of subsystems that, in turn, have their own subsystems, and so on. The nested hierarchy is a 
multiscale modular structure that is nearly decomposable (Simon 1969). Simon argued that near-
decomposability (modularity) is a pervasive feature of natural complex systems because it provides 
the emergence of complexity from simple systems through stable intermediate functional modules 
that allow the system to adapt one module without risking the loss of function in other modules 
(Meunier et al. 2009). Importantly, unlike a one-scale (or flat) power hierarchy where nodes 
(elements) are distributed across layers with one node at the top, which is superior to all others, and 
those at the bottom, which are inferior to all others, in a multiscale hierarchy all nodes are uniformly 
placed in the lowest layer (scale) as the elementary basis above which modules unfold. 

8.2. Multiscale Modular Hierarchy 

The multiscale hierarchy is a power-set 𝒫𝒫(𝑁𝑁) = {𝐴𝐴|𝐴𝐴 ⊆ 𝑁𝑁} that can be mapped onto an upper 
semilattice ℋ = (𝑁𝑁,≤) by condensing all subsets (including one-element subsets) of 𝑁𝑁 as nodes 
with no interior content at a given scale: 𝐴𝐴 ⊆ 𝐵𝐵 → {𝐴𝐴} ≤ {𝐵𝐵}. Mathematically, the multiscale hierarchy 
can be defined as an ideal ∆, a structure on the elementary basis 𝑁𝑁, all subsets of which satisfy the 
following conditions: 

�𝐴𝐴,𝐵𝐵 ∈ ∆ ⇒  𝐴𝐴 ∪ 𝐵𝐵 ∈ ∆; 
𝐴𝐴 ∈ ∆  𝐵𝐵 ⊆ 𝐴𝐴 ⇒  𝐵𝐵 ∈ ∆.       (12) 
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In the biological context, the closure of the hierarchy ∆ from above by the conditions (12) 
establishes the boundary between an endogenously coarse-grained system and its environment as a 
necessary prerequisite for its self-organization and autonomy. In the neuroscientific context, the 
closure is also a prerequisite for the existence of the global workspace (Dehaene and Naccache 2001) 
and non-trivial information closure (Chang et al. 2020), both associated with the emergence of 
consciousness in the brain. It is important to note that closure is a universal property of ∆ 
independent of the size of its elementary basis, such as the number of neurons in a neural hierarchy: 
both the human brain and the mouse brain are hierarchies closed from above. Thus, this property 
must be present across species (whereas cultures of neurons or slices of cortex from in vitro 
experiments lack it). 

Another universal property of Δ is its self-similar (fractal) architecture or scale-invariance, 
viewed as one of the fundamental features of hierarchy. Mathematically, any closed subset 𝐴𝐴 ⊂ 𝑁𝑁 in 
the elementary basis of a hierarchy ∆ can spontaneously generate its own sub-ideal, ∆𝐴𝐴⊂ ∆. This 
makes hierarchy a universal scale-independent phenomenon of nature that can spontaneously 
emerge over any set of physical units that are causally (and informationally) connected. Thus, both 
closure from above and self-similarity of hierarchy are natural prerequisites for concepts such as 
biological individuality (Krakauer et al. 2020), which can evolve at any level of organization and be 
nested across scales. 

In network science, a variety of different measures are suggested to detect connected 
populations in networks (Rubinov and Sporns 2010; Lynn and Bassett 2019). Unfortunately, the 
words “level”, “layer” and “scale” are often used interchangeably in the literature. This terminology 
confuses causal analysis of complex systems. Here and below, these terms will be strictly separated. 
While “scale” will obviously mean spatial (or temporal) scales arranged logarithmically according to 
Equation (11), the term “layer” will exclusively refer to the structural organization of a system, 
studied at the same scale of observation. So, the power hierarchy, the cortical hierarchy of pyramidal 
cells, or an artificial input-output neural network will all be called multilayer as they consist of many 
functionally subordinated layers, located, however, at the same spatial scale (Figure 9a). In contrast, 
a hierarchy starting from gene and protein networks to neuronal modules to the whole brain network 
will be classified as multiscale (Figure 9b). 

Finally, the term “level” is often used in philosophy to articulate scale-dependent concepts such 
as mechanistic constitution between parts and wholes, levels of selection, levels of biological 
individuality, upper-level autonomy, and downward causation (Brooks et al. 2021). On the other 
hand, in network science, this term implies different conceptual representations of the same system, 
without reference to scale or layer. A typical example is a multilevel hierarchy formalized as an edge-
labeled multigraph (Kivelä et al. 2014; Gysi and Nowick 2020) where all the levels represent the same 
elementary basis while elements (nodes) in each level are connected by various features of interest 
(e.g., shape, color, age, gender, family ties, affiliation, skills, and other categories). Another familiar 
example of different types of interactions is the relation between structural (causal) and functional 
(statistical) connectivity, which can be represented by two interdependent levels (Signorelli et al. 
2022). In other words, the term “level” should be reserved for categorical analysis of qualitative data, 
such as classifications based on shared characteristics, but avoided in multiscale analysis. Although 
multilevel decomposition can provide powerful mathematical tools for investigating relationships 
between elements of networks organized into groups by different kinds (e.g., species in biology), 
these levels cannot be ordered by scales or even by subordinated layers. Strictly speaking, multilevel 
networks should not be called hierarchical at all. 
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Figure 9. (a) Top: This schematic illustrates predictive processing in a flat hierarchy by linear one-scale causal 
chains, where prediction error (blue circles for superficial pyramidal cells) updates (blue arrows) expectations 
(teal circles for deep pyramidal cells) at higher layers. Bottom: These posterior expectations then generate 
predictions of the representations in lower layers via descending predictions (teal arrows). (b) Top: By contrast, 
the nested brain hierarchy unfolds from individual neurons in the elementary basis to neuronal networks 
(modules) to the global workspace. Bottom: Causal one-scale chains (blue line) are placed in the elementary basis 
and provide information flow across the spatial span of the hierarchy via modular ⊂-chains (bold red lines). 

Moreover, if the concept of hierarchy is coined to mean multiscale architecture of networks that 
are nested one within another, even subordinated multilayer structures are not properly hierarchical. 
The distinction between multilayer (flat) and multiscale (modular) hierarchies becomes especially 
noticeable in how the two hierarchies can be decomposed by chains. A chain of nodes, all located at 
the same scale of the flat hierarchy ℋ, is similar to a linear causal chain in the causal set ℒ (Eqs. 1.1. 
and 1.2). Conversely, a chain in the modular hierarchy ∆  is spatially extended: each “layer” 
corresponds to a separate scale, not to its position in the subordinated hierarchy as seen in cortical 
layers in the brain (Figure 9a). In a modular ⊂-chains, nodes are nested one within another like 
“matryoshka” dolls (Figure 9b), with symbolic edges representing information flow that can be 
transmitted across the spatial span of a system. The distinction between these two kinds of chains is 
important because downward causation is believed to occur along modular ⊂-chains. Therefore, 
causal analysis must differentiate between flat (subordinated) and modular (spatially nested) 
hierarchies. 

9. Causation and Information in Brain Hierarchy 

There are now a great number of various theories of consciousness (Evers et al. 2024; Seth and 
Bayne 2022). Despite discrepancies, many of them converge on the general idea that the brain is an 
information-processing system, and consciousness is information computed by the brain. In other 
words, the stream of conscious state, each experienced at a particular moment 𝑡𝑡, is the synergistic 
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information encoded in the neural structure of the brain at that time. This idea had been encapsulated 
by Norbert Wiener in his famous statement: “The mechanical brain does not secrete thought “as the 
liver does bile,” as the earlier materialists claimed, nor does it put it out in the form of energy, as the 
muscle puts out its activity. Information is information, not matter or energy. No materialism which 
does not admit this can survive at the present day” (Wiener 1962). Another point of convergence 
among neuroscientists is that conscious experience is a large-scale emergent phenomenon generated 
by the hierarchical organization of the brain when all modules function as a whole. The modules 
provide a topological landscape for functionally segregated and differentially integrated neural 
processing of cognitive and behavioral mechanisms. 

The idea that the brain uses hierarchical inference is well-established in neuroscience and 
provides an explanation for the multilayer anatomical organization of cortical systems (Rao and 
Ballard 1999). For example, in predictive (Bayesian) processing theory (Friston et al. 2013), neural 
activity is represented by the cortical hierarchy of ascending prediction errors and descending 
predictions. In this hierarchy, the sources of forward connections are the superficial pyramidal cell 
population, and the sources of backward connections are the deep pyramidal cell population 
(Badcock et al. 2019; Hohwy and Seth 2020). Prediction error is the difference between bottom-up 
sensory input and top-down predictions of that input. The minimization relies on recurrent neural 
interactions across different anatomical layers of the cortical hierarchy in which bottom-up signals 
relay prediction error to higher layers to optimize the posteriors through these feedback mechanisms. 
Some authors suggest that multilayer predictive processing can unfold within a multiscale synergistic 
global workspace to broadcast information to local modules (Safron 2020; VanRullen and Kanai 
2021). 

The issue of our most interest is this. Can this hierarchically organized global workspace 
generate a synergistic core to exert downward causation over modular ⊂-chains? The negative 
answer follows immediately from the CEP. 

The rationale is based on two premises: 

1. Causation can create (and destroy) information, but it cannot move across the spatial span of a modular 
hierarchy without involving double causation; 

2. Information can flow across scales and be synergistic (i.e., non-additive) in a modular hierarchy, but it 
cannot generate causation unless neo-Cartesian dualism is covertly admitted. 

At first glance, it may seem that downward causation could still occur via linear chains of 
subordinated flat hierarchies. Upon closer examination, however, predictive processing is completely 
based on a flat hierarchy. This means that the terms “bottom-up” and “top-down” can be misleading 
as they only refer to the anatomical laminar structure of the cortex. All causal chains involved are of 
the same scale (Figure 9a). Can this type of causation be legitimately labeled as “downward” if the 
neural network is artificially designed to represent information flow rather than causal chains? 
Strictly speaking, even information cannot be classified as downward within linear chains of these 
hierarchies. Although both the flat hierarchy ℋ  and the modular hierarchy ∆  can both be 
represented by a semilattice, these two are topologically ‘orthogonal’ to each other. 

The causation-information dichotomy can be better understood through the duality of structural 
and functional connectivity, which is extensively studied in neuroscience. Structural connectivity or 
the connectome (Sporns et al. 2005; Bennett et al. 2018) refers to direct anatomical links between 
neurons that give rise to patterns of statistical correlations detected by various neuroimaging 
techniques, which are then related to functional connectivity (Bullmore and Sporns 2009; Messé et al. 
2014; Fukushima et al. 2018). The latter should reflect how neurons contribute to different functional 
modules involved in perception, cognition, and action. Structural connectivity provides synaptic 
communication channels for linear causal chains, transmitting information between neurons (Figure 
1a), while functional connectivity provides information flow between brain regions. The former 
constrains the latter, but the reverse is not true as it is encapsulated in the famous dictum “correlation 
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does not imply causation.” This dichotomy becomes more comprehensive in the hierarchical 
framework. 

The multiscale hierarchy ∆ is, by definition, a system composed of modules nested within each 
other. Modular ⊂-chains unfold across many spatial scales from the microscale to the macroscale, 
representing the hierarchy as a whole. Multiple realizability allows for the transmission of 
information across spatial scales via different ⊂-chains that reach the same macrostate at the global 
level (Figure 10a). In causal analysis, multiple realizability is possible due to the causal scope 𝑘𝑘 of 
individual neurons to bring about neural avalanches via scale transitions (Figure 6a). Thus, not only 
can a single neuron trigger a behavioral output at the macroscale but initiations caused by different 
neurons can lead to the same global output. 

The multiscale modular organization reflects functional connectivity. Functional connectivity is 
studied at the mesoscale, while structural connectivity refers exclusively to white-matter fibers at the 
microscale, where the most significant causal chains determine brain activity. Accordingly, structural 
connectivity depends on interactions between single neurons in the elementary basis, while 
functional connectivity results from statistical correlations at the mesoscale of brain activity. 
Ultimately, conscious states emerge from the consolidated causal chain of brain dynamics at the 
macroscale, where information from modules becomes synergistically integrated (Figure 10b). 

 
Figure 10. (a) In a flat hierarchy such as power hierarchy or pyramidal cells in the cortex, neural causal chains 
evolve over subordinated layers, not across scales. In a multiscale hierarchy such as the whole brain, downward 
causation is physically impossible, thus prohibiting the causal emergence. Instead, the connectome is divided 
into three scale-dependent levels: hard, soft, and psyche levels for neuronal (physical), cognitive 
(computational), and behavioral (psychic) explanation of emergent conscious experience. (b) According to the 
CEP, causal chains in brain dynamics are equally driven by each scale separately. Mental cause-like relationships 
between conscious states provide the coherence of the stream of consciousness exposed to the psyche level by 
the brain, engaged in Bayesian predictive processing via updating its priors (the generative model of the world) 
to posteriors based on sensory inputs. These conscious states (information contents) are then presented by 
supervenient variables 𝑉𝑉𝑡𝑡 , which emerge from the corresponding brain macrostates 𝑿𝑿𝑡𝑡  due to synergistic 
information accumulated in the global workspace. 
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10. Discussion 

Downward causation is often discussed in the context of emergent phenomena. In neuroscience, 
emergence is directly related to the mind-brain problem, whereas downward causation is suggested 
to account for the causal power of consciousness. Some authors argue that standard reductionist 
notions of causation in physics are not wrong but simply impoverished (Noble et al. 2019; Ellis and 
Kopel 2019). In their opinion, a satisfactory understanding of emergent phenomena will ultimately 
lie in the concepts of downward causation within complex information-processing systems. 

Recently, a series of papers have suggested the formal theory of causal emergence, which argues 
that downward causation can occur due to synergistic effects. The theory is based on the PID 
formalism (Rosas et al. 2020; Luppi et al. 2021; Mediano et al. 2022), where downward causation is 
formalized in Equation (8) as an emergent feature of a dynamical system represented by a 
supervenient variable 𝑉𝑉𝑡𝑡 which has unique predictive power over specific parts of the system that is 
equated to causal power (Figure 4b). In addition, causal decoupling takes place in Equation (9) when 
𝑉𝑉𝑡𝑡  is supposed to have the same causal power over the collective properties of the system itself 
(Figure 2). Causal emergence is then conceptualized as a symbolic sum of Equations (8) and (9): 

causal emergence = causal decoupling + downward causation. 
This seems to open a loophole for active consciousness, where conscious states emerging at the 

macroscale could causally influence brain dynamics driven by neural activity at the microscale. Let 
us consider this controversial idea in terms of modular hierarchy. Information is physical in origin 
(Landauer 1961) and can even be equated with the mass-energy equivalence principle (Vopson 2019), 
but it does not possess its own physical substance to generate the canonical cause-effect relationships 
beyond those provided by the matter in which it is instantiated. Information physically “resides” in 
events (represented statistically in state space) and is transmitted by linear causal chains in spacetime, 
including natural, biological, or manmade channels of communication as a special case. While 
causation can produce information, the reverse is not true. Information, even if merged in synergy, 
can flow over many spatial scales via modular ⊂-chains; however, it does not produce causation. 

Granting causal power to consciousness in the above scenario involves not only downward 
causation, which is dismissed by the CEP, but also neo-Cartesian dualism under the condition that 
information, placed on an equal footing with matter and energy by Wiener (1962), can have its own 
causal power in biological systems. Assigning a fictional ontological status to information (Levy 2011; 
Cardenas-Garcia 2023) is, thus, a prerequisite for mental causation. Remarkably, causal decoupling 
is compatible with the CEP, which argues that all scales are causally closed (Corollary 1). At the same 
time, this is precisely why downward causation is forbidden (Corollary 2). Ultimately, the CEP allows 
preserving the conventional form of free will of consciousness, acting on “behalf” of the brain (Figure 
5), but it eliminates the possibility of mental downward causation (Figure 10b). 

The theory of causal emergence was in turn inspired by the measure of effective information, 
conditioned on the concept of integrated information Φ, generated by a system of binary elements 
or logic gates (Hoel et al. 2013). Their approach is based on Pearl’s causation, presented in terms of 
counterfactual interventions. Coarse-graining is assumed to increase effective information, which 
quantifies how much knowing the system’s past reduces uncertainty about its future when all past 
states are equally likely. Overall, the macro beats the micro by grouping together redundant or noisy 
elements to increase their cause-effect power. The calculations then show that the information, given 
by “determinism coefficients” above the maximum entropy distribution, can be higher at the 
macroscale than at the microscale, as if the former were doing the main causal work within a system. 

In fact, the only thing shown there is that a system can appear more ordered “from above” than 
“from below” because all multi-body circular chains at the microscale become redundant at the 
macroscale, exhibiting its own consolidated causal structure (Figure 4b). These information-based 
calculations confirm an intuitively obvious truth about the contextuality of statistical analysis. At 
each lower (fine-grained) scale of observation, a new set of accessible (counterfactual) states appears, 
with corresponding probability distributions, altering the orderliness and complexity of the entire 
system. The consolidation of many linear causal chains at the microscale into a single one-body causal 
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chain at the macroscale (Figure 8) reduces causal degeneracy of a system. In endogenously coarse-
grained systems, the reduction of degeneracy stems from multiple realizability of the same state, the 
ability of different groups of elements in the elementary basis of a multiscale modular hierarchy to 
initiate performing the same function or yielding the same output. In this way, information, 
transmitted by linear causal chains, can flow across scales via modular ⊂ -chains and become 
synergistic at the global level (Figure 9b). 

The main merit of Hoel et al.’s approach is that it captures the nature of autonomy and self-
organization that emerge spontaneously in the modular hierarchy of biological systems. No 
individual (whether a molecule, neuron, bird, or human) within the elementary basis of a multiscale 
hierarchy is autonomous since their behavior is causally dependent on the behavior of their 
neighbors. Their dynamics are interdependent, so the multi-body causal chains of such interactions 
are highly entangled and circular at the microscale. However, at the macroscale, these interactions 
result in a consolidated one-body causal chain that goes from one state of a system 𝑿𝑿𝑡𝑡 = (𝑋𝑋𝑡𝑡1, … ,𝑋𝑋𝑡𝑡𝑛𝑛) 
at time 𝑡𝑡  to its next state at time 𝑡𝑡 + ∆𝑡𝑡  (Figure 8). Meanwhile, as follows from the law of 
conservation of causation, the Markov property is preserved across the spatial span of a system. Now, 
if 𝑿𝑿(𝑡𝑡 + ∆𝑡𝑡) can be predicted from 𝑿𝑿(𝑡𝑡), all the information about microscopic dynamics becomes 
redundant. Therefore, while a microscopic variable 𝑋𝑋𝑡𝑡1 has predictive power over its own future 
state due to the scale-invariance of the Markov property, it cannot predict the evolution of a large 
number of similar variables in the elementary basis. This property is sometimes referred to as 
‘horizontality’ (Rosas et al. 2018). Thus, in the case of complex self-organizing systems, their “map” 
can indeed be more informative (but not more causal) than their “territory” which is blind to higher-
order phenomena (Hoel 2017). Coarse-graining provides macroscopic variables with more predictive 
power due to multiple consolidated contributions, making a system, as stated, more ordered from 
above than from below. 

Still, one must distinguish between an epistemological coarse-graining imposed upon a system 
by observation ad hoc, and an endogenous (ontological) coarse-graining that is intrinsic to the system 
itself. For example, Barnett and Seth (2023) introduce the concept of dynamical independence between 
microscale and macroscale, conditioned on transfer entropy. Their approach is reminiscent of the 
notions of information closure or autonomy in (Bertschinger et al. 2008). Dynamical independence is 
defined in predictive terms: a macroscopic variable is defined to be dynamically-independent if 
knowledge of the microscopic process adds nothing to prediction of the macroscopic process beyond 
what the macroscopic process already self-predicts. The authors view dynamical independence as 
epistemological from a reductionist perspective and conclude that if a macroscopic process appears 
to emerge as a process in its own right, this apparent autonomy is in the eye of an observer blind to 
the microscopic dynamics (Barnett and Seth 2023). 

Their conclusion, however, cannot be supported by the CEP. According to Corollaries 1, 2, and 
3, self-organization and autonomy can emerge at the macroscale of hierarchically organized systems 
independently of their elementary basis at the microscale, where numerous causal chains are 
interdependent and highly entangled. The change in the scale of observation does not multiply 
causation, and downward causation is precluded. Nonetheless, if the change in scale, imposed by 
observation, is naturally accompanied by endogenous coarse-graining of multiscale hierarchical 
systems, it reduces a great number of entangled causal chains at the microscale to a consolidated 
causal chain at the macroscale (Figure 8). This means that large-scale emergent phenomena, firstly, 
living organisms, are more than just artifacts of macroscopic observations. In particular, the 
predictive power of macroscopic variables in providing effective information for causal emergence by 
reducing degeneracy at the microscale (Hoel et al. 2013) is a direct consequence of this consolidation, 
acting like an “information squeezer” (Zhang and Liu 2023), when a system is endogenously coarse-
grained. 

Finally, the CEP provides an ontological foundation for multilevel selection in evolutionary 
biology, which raises various philosophical questions, including causal ones (Watson et al. 2022; 
Okasha 2022). In general, the assumption that natural selection operates not only at the gene level but 
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also at the levels of organisms and their populations necessarily implies that linear causal chains must 
be evolutionarily effective at all spatial scales under selection pressure. Yet, since Schrödinger’s time, 
it has been widely accepted that organisms should resist the second law of thermodynamics as the 
natural enemy of life. From this perspective, the evolution of life is the evolution of biological 
networks that are able to evade decay to thermodynamical equilibrium (i.e., organic death) on short 
ontogenetic time scales. Natural selection is the selection of networks that are causally effective for 
the survival of species over long phylogenetic time scales. There is no upward or downward 
causation, but selection operates simultaneously at all spatial scales, each exhibiting its own causal 
structure. Physically, this means that life is necessarily a large-scale phenomenon (starting at the 
molecular scale due to stable chemical bonds), and all major evolutionary transitions from RNA to 
human societies (Maynard Smith and Szathmary 1995; Schuster 2016) are driven by scale transitions 
advancing information integration across hierarchically organized causal structures at each scale. 

The CEP (Corollaries 1 and 3) implicitly underlies the renormalizability of dynamical systems, 
which has been proposed by Vanchurin et al. (2022) as one of the fundamental principles of evolution: 
Across the entire range of hierarchical organization of evolving systems, a statistical description of 
faster-changing microscopic variables is feasible through the slower-changing macroscopic variables, 
making learning valuable at any scale of observation. The authors argue that in a universe without 
this principle (as opposed to reductionism), it would be impossible for living systems to survive 
without first discovering fundamental physical laws, whereas complex organisms on our planet have 
evolved for billions of years before starting to study quantum physics (Vanchurin et al. 2022). In other 
words, the law of conservation of causation becomes a necessary prerequisite for biological systems 
to learn, extracting information about the environment from causal relationships at different scales. 

The CEP, however, disagrees with the Bayesian models of natural selection (Czégel et al. 2019) 
if those are ontologically based on Noble’s relativity (Noble et al. 2019). Since Bayesian models often 
equate information flow with causation by associating a reason with a cause, it is not surprising that 
they admit cross-scale causation, which is forbidden by the CEP. For example, the model of 
evolutionary synthesis (Friston et al. 2023) assumes that evolution can be described with two random 
dynamical systems, describing phylogenetic and phenotypic processes coupled over evolutionary 
timescales via renormalization. The mapping relies on a coarse-graining between slow phylogenetic 
processes at the population level and fast phenotypic processes at the organism level. Although 
similar to Vanchurin et al.’s model of evolution as multilevel learning, Friston et al.’s approach 
generalizes ontogeny (action selection) and phylogeny (model selection) as an interplay between 
upward and downward causation in cyclical evolutionary processes. 

11. Conclusions 

The CEP is an extension of the relativity postulate in relativity theory. It asserts that not only are 
all inertial reference frames Lorenz invariant with respect to causal chains by preserving the 
spacetime interval between two events, but all scales in any reference frame (for any observer) are 
also causally equivalent. The CEP can be generalized as the law of conservation of causation in terms 
of the continuity equation. This states that the flow of causation in the universe is conserved across 
scales. 

In causal analysis, the distinction between life and non-life is a matter of multiscale organization. 
However, even if causal analysis can explain how to construct a living system from atoms, the mystery 
still remains as to why life and consciousness would spontaneously emerge from atomic interactions, 
though, according to the CEP, no “quantity” of causation was added there. While we humans, who 
are conscious and sentient, capable of learning and creating, are born one day, live our lives, and then 
inevitably die, nothing of the sort happens at the atomic scale. The atoms we are composed of neither 
are born nor die. So, which scale tells us the truth about what happens in the universe? 

Philosophically, the CEP argues for the stratification of sciences where psychology is not 
reducible to biology, biology is not reducible to chemistry, and chemistry is not reducible to physics. 
The classical world emerges from the quantum world at all scales simultaneously, each with its own 
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causal structure that cannot be derived from the causal structure at another scale. When examining 
an endogenously coarse-grained system of interest, different scales of observation across its spatial 
span may offer different causal explanations for its dynamics, but all of them will be valid. 

A unified “theory of everything” capable of describing all emergent phenomena across scales at 
a preferred scale is impossible. Even within biology, multilevel selection can operate consistently at 
different scales, not reducible to a single scale. It is impossible to explain at the genetic scale why 
evolution has causally favored one phenotypic trait over another at the organism or population scale. 
It is an even more unsolvable problem to explain the nature of free will at the atomic scale, i.e., why 
a conscious being has psychologically chosen one action over another. We might not be able to do so 
not because of big data involving a computationally intractable number of microevents in 
observation, but because there is no conscious being at the atomic scale. The universe exists at all 
spatial scales simultaneously, and we, humans, do not share the same universe with atoms; we 
inhabit another causal universe. 
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