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Abstract 

The  shift  from  manual  to  conditionally  automated  driving,  supported  by  Advanced  Driving 

Assistance Systems (ADAS), introduces challenges, particularly increased crash risks due to human 

factors like cognitive overload. Driving simulators provide a safe and controlled setting to study these 

human  factors  under  complex  conditions.  This  study  leverages  Functional  Near‐Infrared 

Spectroscopy (fNIRS) to dynamically assess cognitive load in a realistic driving simulator during a 

challenging nighttime‐rain scenario. Thirty‐eight participants performed an auditory n‐back task (0‐

, 1‐, and 2‐back) while driving, simulating multitasking demands. A sliding window approach was 

applied to the time‐series fNIRS data to capture short‐term fluctuations in brain activation. The data 

were analyzed using EEGNet, a deep learning model, with both overlapping and non‐overlapping 

temporal  segmentation  strategies. Results  revealed  that  classification performance  is  significantly 

influenced by  learning rate and windowing method. Notably, a  learning rate of 0.001 yielded  the 

highest performance, with 100% accuracy using overlapping windows and 97% accuracy with non‐

overlapping windows. These findings highlight the potential of combining fNIRS and deep learning 

for  real‐time  cognitive  load  monitoring  in  simulated  driving  scenarios  and  demonstrate  the 

importance of temporal modeling in physiological signal analysis. 

Keywords: cognitive load; fNIRS; driving simulator; EEGNet; deep learning model 

 

1. Introduction 

Driver  inattention  remains  one  of  the primary  contributing  factors  to  road  traffic  accidents 

worldwide. A  critical  subset  of  inattention  is  driver  distraction, which  specifically  refers  to  the 

diversion of attention  from  tasks essential  for safe driving  to non‐driving‐related activities. These 

distractions can stem from both internal sources (e.g., using infotainment systems, texting, eating, or 

conversing with passengers) and external  sources  (e.g.,  looking at billboards or  roadside events). 

Such distractions compromise the driver’s situational awareness, reaction time, and overall ability to 

maintain safe control of the vehicle. Although the advancement of automated driving technologies is 

expected to significantly reduce road traffic accidents potentially eliminating up to 90% of incidents 

caused by human error driver monitoring remains crucial [1]. Even in partially automated vehicles, 

drivers  are  often  required  to maintain  situational  awareness  and  resume  control  under  certain 
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conditions. Hence, understanding and detecting driver cognitive workload and distraction is vital 

for the design of safer and more adaptive driver‐assistance systems. 

Despite these limitations, driving simulators remain the safest and most controlled method for 

exposing participants to challenging or hazardous driving scenarios without placing them at risk of 

physical  harm,  collisions,  or  property  damage  [2].  Simulators  offer  a  highly  customizable 

environment in which various factors such as traffic density, road geometry, weather conditions, time 

of  day,  and  distraction‐inducing  elements  can  be  manipulated  to  replicate  real‐world  driving 

challenges.  This  enables  researchers  to  systematically  investigate  human  behaviour  and 

physiological responses under controlled but realistic conditions that would otherwise be unsafe or 

impractical  to  study on  actual  roads  [3].  In  this  study,  the  elevated  levels of  cognitive workload 

observed  during  the  experiments  were  intentionally  induced  through  a  combination  of 

environmental stressors  (e.g., nighttime driving and heavy rainfall) and secondary task demands, 

such as the auditory n‐back task. These stressors were designed to replicate real‐world multitasking 

demands  and  increase mental  effort,  thereby  simulating  complex driving  situations  that  require 

increased attention, decision making, and working memory. 

Previous  neuroimaging  studies  utilizing  techniques  such  as  Functional  Near‐Infrared 

Spectroscopy (fNIRS) have extensively investigated the relationship between cognitive workload and 

brain activity, with a particular  focus on  task‐induced activation  in  specific  cortical  regions  [4,5]. 

These  studies  consistently  show  that  increased  cognitive  demands  often  manipulated  through 

working memory  tasks  lead  to  heightened  activation  in  areas  such  as  the  prefrontal  cortex  and 

parietal  lobe,  which  are  key  regions  involved  in  attention,  executive  function,  and  memory 

processing [6]. 

fNIRS‐based studies have frequently reported load‐dependent increases in Oxygenated (HbO2) 

levels  in  the  frontal  cortex  as  n  increases,  typically  showing  a  pattern where  2‐back  tasks  elicit 

stronger activation than 1‐back, which in turn elicit more than 0‐back [7,8]. However, this relationship 

is not always  linear.  In  several studies, a non‐linear activation pattern has been observed, where 

frontal activation may plateau or even decrease at the highest task difficulty, contrary to the expected 

trend [9]. This has been attributed to task disengagement, where participants may mentally give up 

when the cognitive demands exceed their processing capacity. Another explanation is that cortical 

activation may  saturate,  reaching  a  physiological  ceiling  beyond which  no  further  activation  is 

possible, regardless of task difficulty. To analyse the complex neural patterns captured in fNIRS data, 

a wide  range of machine  learning  (ML) and deep  learning  (DL) algorithms have been employed. 

Traditional ML techniques such as Support Vector Machines (SVMs), Linear Discriminant Analysis 

(LDA), k‐Nearest Neighbours (k‐NN), and Random Forests have been widely used for classification 

of workload levels [4,10]. More recently, deep learning approaches including Convolutional Neural 

Networks (CNNs), Long Short‐Term Memory (LSTM) networks, and Gated Recurrent Units (GRUs) 

have gained  traction due  to  their ability  to automatically extract and model  temporal and spatial 

features  from  high‐dimensional  fNIRS  signals  [11,12].  These  models  are  particularly  useful  in 

capturing subtle, non‐linear patterns that traditional models might miss, offering new opportunities 

for robust and real‐time workload classification. 

The primary objective of  this  study  is  to  investigate  the  impact of  cognitive  load on drivers 

within  a  controlled,  high‐fidelity  simulated  driving  environment,  specifically  under  challenging 

conditions such as night‐time driving and heavy rainfall. These environmental stressors were chosen 

to closely replicate real‐world situations where drivers often experience heightened mental demands 

due to reduced visibility,  increased vigilance, and complex decision‐making requirements. Unlike 

many previous studies that have primarily focused on only two levels of cognitive workload typically 

low  and  high,  this  research  introduces  a  three  levels  of workload  paradigm  using  an  auditory‐

modified n‐back  task  (0‐back, 1‐back, and 2‐back). This approach demonstrates how  incremental 

increases in cognitive demand affect driver performance and brain activity. A key aim of this study 

is  also  to  examine  whether  these  increasing  levels  of  cognitive  workload  are  associated  with 

corresponding  changes  in  cerebral  blood  oxygenation,  as measured  by  fNIRS.  Specifically,  we 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 June 2025 doi:10.20944/preprints202506.2162.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2162.v1
http://creativecommons.org/licenses/by/4.0/


  3  of  13 

 

investigate whether higher mental effort correlates with elevated levels of oxygenated HbO2 in the 

prefrontal  cortex  an  area  known  to  be  involved  in working memory,  attention,  and  executive 

function. 

2. Materials and Methods 

A total of 38 drivers participated in this study. To ensure consistency in cognitive performance 

across participants, a set of specific inclusion criteria was established. All participants were required 

to  possess  a  valid  driver’s  license,  confirming  their  eligibility  and  basic  driving  competence. 

Additionally,  individuals  with  any  known  history  of  mental  health  disorders,  neurological 

conditions, or physical impairments that could potentially affect cognitive functioning were excluded 

from the study. This careful selection process was designed to reduce inter‐individual variability in 

cognitive ability, thereby enhancing the reliability and comparability of the results obtained from the 

experimental tasks. By controlling for these factors, the study aimed to isolate the cognitive effects of 

the driving scenarios under investigation more effectively. 

Driving Simulator 

For  this  study, we utilized  a driving  simulator  setup designed  to deliver  a  realistic driving 

experience. At  the  core  of  the  system was  the Next Level Racing Motion  Platform V3,  securely 

mounted on the Traction Plus Platform. This combination was specifically chosen to enhance motion 

feedback, allowing participants to physically perceive vehicle dynamics such as acceleration, braking, 

and road vibrations, thereby improving the overall realism of the simulation. The visual interface of 

the  simulator  comprised  three  large  32‐inch  Samsung  monitors,  arranged  in  a  panoramic 

configuration to provide a wide field of view. This setup was used in simulating peripheral vision 

and  increasing participants’  situational  awareness, both of which  are  critical  for  realistic driving 

behaviour. To further enrich the tactile experience, a Thrust master T300 steering wheel and pedal 

system was  integrated  into  the  simulator. This  system  offered  accurate  force  feedback,  allowing 

participants to experience real‐time steering resistance, road texture, and vehicular control with high 

fidelity. A visual illustration of the complete simulator setup is presented in Figure 1. 

OBELAB Device

Pupil Core glasses

 

Figure 1. Driving simulator setup designed  to  replicate  real‐world vehicle dynamics and driving conditions 

using motion platforms and responsive control hardware. 

To replicate the feel and functionality of a real vehicle, the simulator was configured to mirror 

the driving dynamics and interior layout of a Toyota Fortuner SUV. This vehicle model was selected 
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to maintain  consistency  in  participants’  perception  of  vehicle  handling,  cabin  environment,  and 

spatial awareness. For the driving scenarios, we employed Euro Truck Simulator 2 (ETS2) software, 

recognized  for  its  realistic  driving  physics  and  extensive  environmental  conditions.  ETS2  was 

selected  for  its  capability  to  emulate  a wide  range  of  driving  environments,  including  highway 

cruising, urban traffic navigation, and varying weather scenarios such as rain and fog. These features 

allowed us to construct diverse and cognitively demanding driving tasks representative of real‐world 

conditions. 

Secondary Cognitive Task 

To  simulate  realistic multitasking demands  and  elevate  cognitive  load during  the dual‐task 

driving  condition,  an  auditory‐modified n‐back  task was  employed  in  this  study. This  task was 

specifically designed  to engage working memory and executive  function while participants were 

simultaneously involved in a dynamic driving scenario. The cognitive load manipulation combined 

elements of the traditional n‐back paradigm with a digit‐span task, resulting in three graded levels 

of difficulty: 0‐back, 1‐back, and 2‐back. The 0‐back condition served as the baseline and required 

minimal cognitive effort, as participants simply identified a pre‐specified target digit. In contrast, the 

1‐back and 2‐back  conditions progressively  increased  the memory  load,  requiring participants  to 

continuously monitor and compare the current digit to the one presented one or two steps earlier in 

the  sequence,  respectively.  Among  these,  the  2‐back  task was  designed  to  impose  the  highest 

cognitive demand, thereby enabling assessment of participants’ ability to manage increased mental 

workload while driving. Auditory stimuli consisted of randomly selected spoken digits ranging from 

0 to 9, delivered through the simulator’s speakers in a consistent male voice at fixed time intervals. 

This modality was chosen to prevent visual distraction and allow seamless integration with the visual 

demands  of  the driving  task.  Participants were  instructed  to provide  their  responses using  two 

buttons  red and green strategically mounted on  the steering wheel  for easy access as depicted  in 

Figure 2. Green button  indicated a match between  the current and  the  target digit, while  the  red 

button indicated a non‐match. This hands‐on response method ensured minimal physical distraction 

from the driving task, while maintaining engagement with the cognitive task. 
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Figure 2. Steering wheel interface used during the auditory modified n‐back task. 

The auditory n‐back tasks were developed and implemented using the PsychoPy library [13]. 

PsychoPy was also utilized to capture participant responses via the red and green buttons mounted 

on  the  steering wheel.  To  ensure  a  smooth  and  immersive  dual‐task  experience,  PsychoPy was 

configured  to  operate  in  parallel  with  the  driving  simulator.  This  integration  was  critical  for 

maintaining  the  ecological  validity  of  the  experiment,  as  it  allowed  participants  to  remain  fully 

engaged in the simulated driving environment while concurrently performing the cognitive task. 
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Functional Near‐Infrared Spectroscopy (fNIRS) 

The hemodynamic activity of the prefrontal cortex was recorded using a high‐density functional 

near‐infrared  spectroscopy  (fNIRS)  device, NIRSIT  (OBELAB  Inc.,  South  Korea).  This wearable 

neuroimaging  system  is  equipped  with  24  light  sources  (laser  diodes)  and  32  photodetectors, 

operating at two near‐infrared wavelengths 780 nm and 850 nm to measure changes in cerebral blood 

oxygenation. Data acquisition was performed at a sampling rate of 8.138 Hz, allowing for continuous 

monitoring of brain activity throughout the experimental sessions. The source‐detector pairs were 

arranged to create a dense coverage of the prefrontal region, with a fixed inter optode distance of 1.5 

cm, as illustrated in Figure 3.   

 

Figure 3. Source‐detector  configuration of  the NIRSIT device  (OBELAB  Inc.) used  for  fNIRS  recording. The 

system consists of 24 laser diode sources and 32 photodetectors. (Image taken from OBELAB. NIRSIT Channel 

Information). 

The  raw  optical  density  signals  collected  from  the  fNIRS  device were  pre‐processed  using 

OBELAB’s built‐in Digital Signal Processing (DSP) toolkit. This toolkit applied noise reduction and 

signal correction algorithms to enhance signal integrity. Following pre‐processing, changes in blood 

oxygenation (HbO2) and deoxygenation (HbR) concentrations were computed using the modified 

Beer–Lambert Law [14], a standard approach for quantifying hemodynamic responses based on light 

absorption properties in biological tissues. 

Experimental Procedure 

The study will begin with the collection of written informed consent from all participants prior 

to  their  formal  enrolment.  Following  consent,  participants will  attend  a  comprehensive  briefing 

session. During  this  session,  they will  receive  both  verbal  and written  instructions detailing  the 

study’s purpose,  the  structure of  the  experimental  tasks, and  relevant  safety protocols. After  the 

briefing, participants will undergo  the  sensor  fitting procedure. They will be  equipped with  the 

necessary physiological  and neuroimaging  equipment,  including a high‐density  fNIRS  system  to 

monitor cerebral hemodynamic. Next, participants will complete a simulator familiarization phase, 

during which they will spend several minutes interacting with the driving simulator. 

The experimental phase will involve participants performing a series of structured driving tasks 

under controlled yet cognitively demanding conditions. The simulated environment will mimic real‐

world challenges, including night time driving at approximately 1:00 AM and heavy rainfall. These 

conditions are intended to increase visual and attentional demands, thereby simulating scenarios that 

elevate cognitive load and mental fatigue in actual driving situations. While navigating the simulated 

driving environment, participants will concurrently perform the auditory‐modified n‐back  task at 

varying difficulty  levels  (0‐back, 1‐back, and 2‐back). The steering wheel‐mounted  red and green 

buttons will reinforce dual‐task coordination. This dual‐task paradigm is designed to assess cognitive 

workload by requiring  the allocation of attention and working memory resources across both  the 

primary (driving) and secondary (n‐back) tasks. Throughout the experimental session, fNIRS will be 

used  to  continuously  monitor  changes  in  cerebral  oxygenation  within  the  prefrontal  cortex. 

Combined with measures of driving performance and  task accuracy,  the  fNIRS data will provide 
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insights  into  how  cognitive  load  and  environmental  complexity  interact  to  affect  multitasking 

performance in safety‐critical settings. 

Research Methodology 

fNIRS  data  is  collected  from  the  prefrontal  cortex  while  participants  engage  in  a  driving 

simulator and perform auditory n‐back tasks (0‐back, 1‐back, and 2‐back) to induce varying levels of 

cognitive load. The raw signals undergo a pre‐processing pipeline and are segmented into 10‐second, 

20‐second, and 30‐second windows using both overlapping and non‐overlapping strategies, allowing 

for analysis of temporal resolution and classification performance. These segments are then fed into 

EEGNet, a compact convolutional neural network originally designed for EEG data, which is adapted 

here  to  classify  cognitive workload  based  on  hemodynamic  patterns. An  overview  of  the  data 

processing  and  classification  pipeline,  including  fNIRS  acquisition,  pre‐processing,  windowing 

strategies, and EEGNet classification, is illustrated in Figure 4. 

Data 
Preprocessing
10sec, 20sec, 
30sec window

EEGNet Model
0-back
1-back
2-back

OBELAB Device

Pupil Core glasses

fNIRS Data 
collection

 

Figure 4. Schematic representation of the fNIRS‐based cognitive workload classification pipeline. 

Data Pre‐Processing 

First, to normalize the feature scales and mitigate the influence of varying baseline values across 

channels,  the  fNIRS  signals were  standardized  using  the  Standard  Scaler method  as  shown  in 

Equation 1. This transformation was applied independently to each channel across the dataset. 

𝑥′ ൌ
𝑥 െ ú
õ
  (1)

In  the above  equation  𝑥  is  the original  feature value,  ú  is  the mean,  and  õ  is  the  standard 
deviation computed across the training dataset. This ensures that the data for each channel has zero 

mean  and  unit  variance, which  improves  the  convergence  of  learning  algorithms  and  helps  in 

comparing features on the same scale. 

After  standardization,  the  fNIRS  time‐series data was  segmented  into  temporal windows  to 

extract meaningful features that reflect short‐term variations in cognitive load. This segmentation is 

a critical step in time‐series analysis, particularly for physiological signals such as fNIRS, where brain 

activation patterns  fluctuate  over  time.  In  this  study,  two  types of  segmentation  strategies were 

adopted: overlapping windows and non‐overlapping windows. The overlapping window method 

utilizes a sliding window approach, in which each new segment shares a portion of its data with the 

previous  segment.  This  technique  enhances  the  temporal  resolution  of  the  dataset,  potentially 

capturing transient or transitional changes in cognitive states more effectively. In contrast, the non‐

overlapping window strategy divides the entire signal into consecutive, discrete segments with no 

repetition. This method reduces computational load and redundancy in the data but may risk missing 

subtle transitions between cognitive states. 

To  determine  the  most  effective  temporal  resolution  for  cognitive  load  classification,  we 

experimented with three different window lengths: 10 seconds, 20 seconds, and 30 seconds. We used 

the varying window sizes was to explore the trade‐off between temporal sensitivity and contextual 

information. Shorter windows may capture fine‐grained fluctuations but can be sensitive to noise, 
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whereas longer windows may smooth out such noise but risk losing rapid cognitive transitions. By 

comparing the classification performance across these window lengths and segmentation types, we 

aim to identify the optimal temporal configuration that best represents the underlying patterns of 

cognitive load in fNIRS data. This systematic segmentation process allows for a robust analysis of 

how temporal framing affects the predictability and stability of machine learning models applied to 

cognitive workload detection. 

EEGNet Model 

To classify cognitive load across three levels (0‐back, 1‐back, and 2‐back), this study employed 

the EEGNet model architecture [15], originally developed for EEG‐based brain–computer interface 

applications.  EEGNet  was  chosen  for  its  compact  design  and  proven  ability  to  decode 

neurophysiological signals with relatively few parameters. The structure of EEGNet model is shown 

in Table 1. The model was trained using the Adam optimizer, which adapts the learning rate during 

training, and optimized with categorical cross‐entropy loss an appropriate objective for multi‐class 

classification. Training was conducted over 200 epochs to enable the model to learn discriminative 

spatiotemporal  features  from  the  input  fNIRS  data.  The  EEGNet  architecture  consists  of  three 

sequential blocks designed to progressively extract and integrate spatial and temporal features from 

the input signals. 

Table 1. Layer‐wise configuration of the EEGNet model, illustrating the sequence of operations used to extract 

discriminative spatiotemporel features from fNIRS input for multi‐class classification. 

Type  Parameters  Output Shape 

Conv2D 

Input channels = 1, Output 

channels = F1, Kernel size = (1, 

kernel length), Padding = (0, Kernel 

length//2), Bias = False 

[Batch size, F1, Number of channels, 

Number of time samples] 

BatchNorm2D  Number of features = F1 
[Batch size, F1, Number of channels, 

Number of time samples] 

Conv2DWithConstraint

Input channels = F1, Output 

channels = F1∙D, Kernel size = 

(Number of channels, 1), Maximum 

norm = 1, Bias = False 

[Batch size, F1∙D, 1, Number of time 

samples] 

BatchNorm2D  Number of features = F1∙D 
[Batch size, F1∙D, 1, Number of time 

samples] 

ELU Activation  ‐ 
[Batch size, F1∙D, 1, Number of time 

samples] 

AvgPool2D or 

MaxPool2D 
Kernel size = (1, 4), Stride = (1, 4) 

[Batch size, F1∙D, 1, Number of time 

samples/4] 

Dropout  p = drop probability 
[Batch size, F1∙D, 1, Number of time 

samples/4] 

Conv2D (Depthwise) 

Input channels = F1∙D, Output 

channels = F1∙D, Kernel size = (1, 

16), groups = F1∙D 

[Batch size, F1∙D, 1, Number of time 

samples/4] 

Padding = (0, 8), Bias = False 

Conv2D (Pointwise) 

Input channels = F1∙D, Output 

channels = F2, Kernel size = (1, 1), 

Padding = (0, 0), Bias = False 

[Batch size, F2, 1, Number of time 

samples/4] 

BatchNorm2D  Number of features = F2 
[Batch size, F2, 1, Number of time 

samples/4] 

ELU Activation  ‐ 
[Batch size, F2, 1, Number of time 

samples/4] 
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AvgPool2D or 

MaxPool2D 
Kernel size = (1, 8), Stride = (1, 8) 

[Batch size, F2, 1, Number of time 

samples/32] 

Dropout  p = drop prob 
[Batch size, F2, 1, Number of time 

samples/32] 

Conv2D 

Input channels = F2, Output 

channels = N (classes), Kernel = (1, 

Final conv length), Bias = True 

[Batch size, N, 1, 1] 

Log Softmax  Dimension = 1  [Batch size, N, 1, 1] 

Expression (squeeze)  ‐  [Batch size, N] 

Block 1: Spatial Feature Extraction 

This block begins with  an  input  layer  followed by  two key  convolutional operations. A  2D 

convolution is first applied to extract low‐level features across time and channels. This is followed by 

a  depthwise  convolution,  which  applies  a  separate  filter  to  each  channel  individually.  Unlike 

standard convolutions, this method significantly reduces the number of trainable parameters while 

still  capturing  meaningful  spatial  patterns.  Batch  normalization  follows  each  convolutional 

operation,  standardizing  feature  distributions  and  facilitating  stable  learning.  The  depthwise 

convolution specifically enhances training efficiency and mitigates overfitting, which is particularly 

valuable when working with relatively small neuroimaging datasets. 

Block 2: Separable Convolution for Spatiotemporal Integration 

Block 2 employs a separable convolution, which decouples the learning of temporal and spatial 

patterns. It starts with a depthwise convolution that independently processes each feature map over 

time, enabling the model to capture temporal dynamics within each channel. This is followed by a 

pointwise  convolution  (1×1),  which  combines  the  temporally  filtered  signals  across  channels, 

allowing  the  model  to  learn  cross‐channel  dependencies.  This  two‐stage  approach  reduces 

computational complexity while preserving the ability to represent brain activity patterns distributed 

across  time  and  spatial  locations. By  explicitly  separating  the modeling  of  temporal  and  spatial 

structures, the model becomes better suited to detecting subtle changes in cognitive workload. 

Block 3: Classification and Output 

The final block of the EEGNet model maps the learned high‐level features to class predictions. 

It begins with  a  flattening  layer  that  transforms  the multi‐dimensional  feature maps  into  a one‐

dimensional vector suitable for classification. This vector is then passed through a dense layer that 

projects the features onto three output nodes, each representing one of the cognitive load levels (0‐

back, 1‐back, and 2‐back). A SoftMax activation follows, generating a probability distribution over 

the  three classes, which enables  the model  to produce confidence scores  for each prediction. The 

model  is  trained using  the  categorical cross‐entropy  loss  function, which  compares  the predicted 

probabilities to the true class labels. 

Results and Discussions 

Given that the dataset comprises 204 fNIRS channels, a feature selection step was necessary to 

reduce  dimensionality  and  identify  the most  informative  signals  associated with  cognitive  load 

during simulated driving. To achieve this, we employed the Analysis of Variance (ANOVA) method, 

a statistical approach commonly used in neuroimaging to evaluate the significance of each feature 

with  respect  to  class  separation. Figure  5 presents  the  top  50  ranked  features  identified  through 

ANOVA‐based  feature  selection. As  illustrated  in  the  figure, a greater proportion of  the  selected 

features correspond to HbO2 channels rather than HbR. This observation suggests that changes in 

blood HbO2 are more strongly associated with variations in cognitive load than changes in HbR. 
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Figure 5. Visualization of the top 50 most significant fNIRS channels identified through ANOVA analysis. 

This  finding  aligns with  prior  research  indicating  that HbO2  signals  tend  to  exhibit  higher 

sensitivity to task‐related neural activation, particularly within the prefrontal cortex, where cognitive 

processes such as working memory and attention are regulated. The predominance of HbO2 features 

among the top‐ranked channels implies that blood oxygenation dynamics are more robust indicators 

of  cognitive  workload  in  dual‐task  conditions,  such  as  driving  while  performing  a  secondary 

cognitive task (e.g., the n‐back task). 

After selecting the top 50 features from the fNIRS dataset based on their relevance to cognitive 

load classification further refinement was performed through correlation analysis. This step aimed 

to  assess  the degree  of  linear dependency  between  features  to  ensure  that  each  selected  feature 

contributes uniquely  to  the model, without redundancy. Highly correlated  features can  introduce 

multicollinearity, which may  degrade  the  performance  and  interpretability  of machine  learning 

models by overemphasizing certain aspects of the signal while masking others. 

To address this, a pairwise correlation matrix was computed across the selected features using 

Pearson’s correlation coefficient. This matrix quantifies the linear relationship between feature pairs, 

with values  ranging  from  ‐1  (perfect negative correlation)  to +1  (perfect positive correlation). The 

resulting correlation structure is visualized in Figure 3, which presents a heatmap of the correlation 

coefficients. This visualization highlights the relationships among features and provides insight into 

the overall  redundancy or complementarity of  the selected  features. By ensuring a  low degree of 

correlation among  the  input variables,  the  final dataset becomes more robust and  informative  for 

subsequent model training, reducing overfitting and improving generalization. 
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Figure 6. Correlation heatmap of the top 50 selected fNIRS features, illustrating the pairwise relationships among 

features after feature selection. 

To train and evaluate the EEGNet model, we employed a 5‐fold cross‐validation strategy. This 

approach  was  chosen  to  ensure  robust  model  performance  and  to  minimize  the  potential  for 

overfitting, particularly given the limited size and high dimensionality of the dataset. In each fold, 

the dataset was partitioned into five equal subsets: four were used for training, and one was used for 

validation. This process was repeated five times, with each subset serving as the validation set once, 

allowing for a more generalized assessment of model performance. 

For model optimization, we utilized the Adam optimizer, known for its adaptive learning rate 

capabilities and efficiency in training deep neural networks. To examine the effect of learning rate on 

model performance, three different learning rates were tested: 0.1, 0.01, and 0.001. The model was 

trained over 200 epochs with a batch size of 63, which was selected to balance convergence stability 

and computational efficiency. In addition to model training, we also explored the impact of temporal 

segmentation strategies on classification performance. Specifically, we evaluated  the model using 

both overlapping and non‐overlapping  time window segments of 10 seconds, 20 seconds, and 30 

seconds. This segmentation was applied  to the  time‐series  input data  to  investigate how different 

windowing  strategies  affect  the  model’s  ability  to  capture  temporal  patterns  associated  with 

cognitive load. The results for the overlapping segmentation evaluations are presented  in Table 2, 

while the results for the non‐overlapping segmentation are detailed in Table 3. 

Table 2. Classification performance of EEGNet using overlapping time window segments (10s, 20s, 30s) across 

5‐fold cross‐validation. Results are reported for various learning rates, illustrating the impact of window size 

and overlap on model accuracy. 

Window 

size 

Learning 

rate 
Accuracy  AUC  Recall  Precision  F1‐score 

10s  0.1 
0.5929 ± 

0.0491 

0.7773 ± 

0.0296 

0.5929 ± 

0.0491 

0.6102 ± 

0.0509 

0.6102 ± 

0.0509 

20s  0.1 
0.5693 ± 

0.0343 

0.7737 ± 

0.0348 

0.5693 ± 

0.0343 

0.6345 ± 

0.0260 

0.6345 ± 

0.0260 
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30s  0.1 
0.5610 ± 

0.0267 

0.7568 ± 

0.0258 

0.5610 ± 

0.0267 

0.5900 ± 

0.0117 

0.5900 ± 

0.0117 

10s  0.01 
0.9134 ± 

0.0102 

0.9651 ± 

0.0064 

0.9134 ± 

0.0102 

0.9138 ± 

0.0106 

0.9138 ± 

0.0106 

20s  0.01 
0.9418 ± 

0.0157 

0.9772 ± 

0.0060 

0.9418 ± 

0.0157 

0.9430 ± 

0.0151 

0.9430 ± 

0.0151 

30s  0.01 
0.8879 ± 

0.0427 

0.9485 ± 

0.0179 

0.8879 ± 

0.0427 

0.8932 ± 

0.0384 

0.8932 ± 

0.0384 

10s  0.001 
0.9995 ± 

0.0002 

0.9997 ± 

0.0002 

0.9995 ± 

0.0002 

0.9995 ± 

0.0002 

0.9995 ± 

0.0002 

20s  0.001 
0.9999 ± 

0.0001 

1.0000 ± 

0.0000 

0.9999 ± 

0.0001 

0.9999 ± 

0.0001 

0.9999 ± 

0.0001 

30s  0.001 
1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

Table 3. Classification performance of EEGNet using non‐overlapping  time window segments  (10s, 20s, 30s) 

across 5‐fold cross‐validation. 

Window 

size 

Learning 

rate 
Accuracy  AUC  Recall  Precision  F1‐score 

10s  0.1 
0.7020 ± 

0.0219 

0.8559 ± 

0.0237 

0.7020 ± 

0.0219 

0.7100 ± 

0.0267 

0.7100 ± 

0.0267 

20s  0.1 
0.6818 ± 

0.0137 

0.8233 ± 

0.0331 

0.6818 ± 

0.0137 

0.6838 ± 

0.0199 

0.6838 ± 

0.0199 

30s  0.1 
0.6547 ± 

0.0257 

0.7987 ± 

0.0424 

0.6547 ± 

0.0257 

0.6882 ± 

0.0418 

0.6882 ± 

0.0418 

10s  0.01 
0.9470 ± 

0.0126 

0.9759 ± 

0.0077 

0.9470 ± 

0.0126 

0.9486 ± 

0.0117 

0.9486 ± 

0.0117 

20s  0.01 
0.9444 ± 

0.0081 

0.9705 ± 

0.0102 

0.9444 ± 

0.0081 

0.9454 ± 

0.0081 

0.9454 ± 

0.0081 

30s  0.01 
0.9127 ± 

0.0242 

0.9378 ± 

0.0427 

0.9127 ± 

0.0242 

0.9179 ± 

0.0245 

0.9179 ± 

0.0245 

10s  0.001 
0.9731 ± 

0.0021 

0.9888 ± 

0.0011 

0.9731 ± 

0.0021 

0.9732 ± 

0.0020 

0.9732 ± 

0.0020 

20s  0.001 
0.9327 ± 

0.0115 

0.9678 ± 

0.0036 

0.9327 ± 

0.0115 

0.9346 ± 

0.0106 

0.9346 ± 

0.0106 

30s  0.001 
0.8478 ± 

0.0190 

0.9014 ± 

0.0376 

0.8478 ± 

0.0190 

0.8550 ± 

0.0188 

0.8550 ± 

0.0188 

The evaluation results based on overlapping window segments reveal that a window size of 30 

seconds, in combination with a learning rate of 0.001, yields the highest classification performance, 

achieving an accuracy of 100%. This suggests that longer overlapping windows allow the EEGNet 

model to capture more stable and comprehensive patterns of neural activity associated with cognitive 

load,  leading  to  near‐perfect model  performance.  The  overlapping  approach  benefits  from  the 

redundancy  introduced by the windowing technique, which may help  in smoothing out  transient 

noise  and  enhancing  temporal  context  for  the  model.  In  contrast,  for  the  non‐overlapping 

segmentation, the highest accuracy of 97% is also achieved using a learning rate of 0.001, but in this 

case,  the  best  performance  is  observed  with  a  shorter window  size  of  10  seconds.  Unlike  the 

overlapping scenario, increasing the window size in the non‐overlapping setup does not necessarily 

improve performance. This may  be due  to  the  fact  that  longer non‐overlapping  segments  could 

introduce greater variability between segments or result in fewer training samples, thereby reducing 

the  model’s  generalizability.  These  findings  demonstrate  that  while  the  learning  rate  of  0.001 

consistently yields the best performance across both segmentation strategies, the optimal window 
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size appears to be context dependent. Specifically, overlapping windows benefit more from longer 

durations,  likely  due  to  richer  temporal  information  and  redundancy, whereas  non‐overlapping 

windows may perform better at  shorter durations, which offer more  training  samples and better 

granularity. Therefore, the highest classification performance is not solely determined by window 

size but rather by the interaction between the segmentation strategy and the temporal resolution used 

in pre‐processing. 

Despite  the promising results,  this study has several  limitations  that must be acknowledged. 

First,  although  the  use  of  a  high‐fidelity  driving  simulator  provides  a  controlled  and  safe 

environment, it cannot fully replicate the unpredictable dynamics and stressors of real‐world driving, 

potentially  limiting  the  ecological validity of  the  findings. Second,  the participant  sample, while 

sizeable (N = 38), may still not capture the diversity of the broader driving population in terms of age, 

experience, and cognitive abilities, which could  influence  the generalizability of  the model across 

different user groups. Third, while the auditory n‐back task effectively manipulates cognitive load, it 

may not fully encompass the range of multitasking scenarios encountered during real driving, such 

as  emotional  stress,  decision‐making  under  time  pressure,  or  navigation‐related  distractions. 

Another limitation involves the use of only the prefrontal cortex for fNIRS recordings; although this 

region  is  central  to  executive  function,  other  brain  regions may  also  contribute meaningfully  to 

cognitive workload and were not captured. Finally, although EEGNet achieved near‐perfect accuracy 

under certain configurations, such high performance  in a small and well‐controlled dataset raises 

concerns  about  potential  overfitting,  particularly  when  overlapping  windows  increase  sample 

redundancy. 

Future research should aim to improve ecological validity by extending the study to real‐world 

or mixed‐reality  driving  conditions, where  variables  such  as  road  unpredictability,  fatigue,  and 

external distractions  can  be more naturally  embedded.  Incorporating  a more diverse participant 

cohort across different age groups, driving experiences, and cognitive profiles would also help  to 

generalize the findings. Expanding the neuroimaging scope beyond the prefrontal cortex potentially 

integrating multi‐region fNIRS or combining modalities such as EEG and eye‐tracking could provide 

a more realistic view of cognitive load. Moreover, exploring more realistic secondary task paradigms 

(e.g.,  visual  distractions,  complex  decision‐making,  or  verbal  interaction)  would  enhance  the 

ecological  relevance  of  workload  modeling.  Future  studies  could  investigate  transfer  learning 

techniques to adapt trained models across individuals, as well as explore lightweight architectures 

suitable for real‐time onboard implementation in driver assistance systems. 

Conclusions 

To systematically investigate varying levels of cognitive workload, we developed a dual‐task 

experimental  paradigm  in which  participants were  required  to  perform  a  primary  driving  task 

concurrently with  a  secondary  cognitive  task—a modified  version  of  the  n‐back  task  delivered 

through the auditory modality. This setup was carefully designed to replicate the cognitive demands 

encountered  in  real‐world multitasking  situations,  such  as managing  complex  navigation while 

processing verbal information. The n‐back task was implemented at three distinct levels of difficulty: 

0‐back  (representing  low  cognitive  workload),  1‐back  (moderate  workload),  and  2‐back  (high 

workload). By  systematically varying  the  task difficulty, we  aimed  to  elicit  clearly differentiated 

cognitive  states  that  could  be  measured  through  physiological  responses  during  the  driving 

simulation. 

This approach allows us to evaluate the sensitivity and effectiveness of fNIRS in detecting subtle 

changes in cognitive load under realistic conditions. While previous studies have primarily focused 

on two‐level workload comparisons (e.g., low vs. high), our three‐tiered workload design introduces 

a more granular framework for understanding how cognitive demand escalates across multiple task 

intensities offering richer insights into the brain’s adaptive response to increasing mental strain. In 

addition to the experimental design, we employed the EEGNet deep learning architecture to analyze 

the  recorded  fNIRS  signals.  EEGNet,  originally  developed  for  EEG  data  classification,  has  been 
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adapted in our study to process and classify hemodynamic responses captured by fNIRS, enabling 

automated  workload  detection.  Importantly,  we  explored  the model’s  performance  using  both 

overlapping and non‐overlapping window  segments of  the  fNIRS  signal an aspect  that has been 

rarely addressed in existing literature. Our results demonstrated that both learning rate and temporal 

segmentation  strategy  significantly  impact  classification performance. Notably, a  learning  rate of 

0.001  consistently  yielded  the  highest  accuracy  across  all  experimental  setups.  For  overlapping 

window segments, a longer window duration of 30 seconds produced the best results, likely due to 

the  redundancy and  richer  temporal  information  it provides. Conversely,  in  the non‐overlapping 

segmentation strategy, shorter windows (10 seconds) proved more effective, possibly due to reduced 

variability. 
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