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1. Introduction

The Euler’s conjecture, which states that there are infinitely many primes of the form n? + 1, is one
of Landau’s problems on prime numbers. There are several ways to attack this conjecture. One way is to
relax the number of prime factors of f (1), and the best result in this way is due to Iwaniec [1]. Building
on the previous work of Richert [2], he showed that for any irreducible polynomial f (1) = an? + bn + ¢
with a > 0 and ¢ = 1(mod2), there are infinitely many x such that f(x) has at most 2 prime factors.

Another possible way is to consider the degree of the polynomial. In 1953, Piatetski-Shapiro [3]
has proposed to investigate the prime numbers of the form [1n¢], where ¢ > 1 and [n] denotes the
integer part of n°. Clearly [1n¢] can be regarded as "polynomials of degree c". Define

me(x) :== [{n < x: [n°] is a prime number}|,

then he has shown that 7t¢(x) ~ x(clogx)~! holds for any 1 < ¢ < {2 ~ 1.0909 as x — co. This range
has been improved by many authors, and the best record now is due to Rivat and Sargos [4], where
they proved the above asymptotic formula holds for any 1 < ¢ < % ~ 1.1612.

In 1992, Rivat [5] first introduced a sieve method into this problem. He established a lower bound
with correct order (instead of an asymptotic formula) with 1 < ¢ < % ~ 1.1616. After this, many
improvements were made and the range of ¢ was enlarged successively to

20 13 45 243
l1<ce< ﬁNl‘l%S’ l1<c< ﬁ~1.1818, l1<c< £~1.1842and1<c< ﬁ~1.18536

by Jia [6] (and Baker, Harman and Rivat [7]), Jia [8], Kumchev [9] and Rivat and Wu [10] respectively.
In this paper, we obtain the following result.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Theorem 1.1. For sufficiently large x and 1 < ¢ < %;é ~ 1.18539, we have 7t.(x) > x(clogx) 1.

Throughout this paper, we always suppose that x is a sufficiently large integer, -y and 0y—0¢ are
positive numbers which will be fixed later. Let 3 44 <7< 33 8andc = 7. The letter p, with or without
subscript, is reserved for prime numbers. We define the sets A and B as

A={m:m=[n°], x<n°<2x}, B={n:x<n<2},
and we put

Ag={a:adec A}, By={b:bdec A}, P(z)=]]pr. S(Az)= Y 1, SBz= )Y 1L

p<z acA beB
(@PE)=1 (b,PE)=1

Then we only need to show that S (.A, (2x) %) > 0. Our aim is to show that the sparser set A contains
the expected proportion of primes compared to the bigger set 5, which requires us to decompose

S (A, (2x) %> and prove asymptotic formulas of the form

S(A,z) = (140(1))x7 1 (27 —1)S(B, z) (1)

for some parts of it, and drop the other positive parts. The asymptotic formulas will be given in the
next section. We define the boolean function as

1 if Xistrue,

Boole[X] =
0 if Xis false.

2. Sieve Asymptotic Formulas

In this section we provide some asymptotic formulas for sieve functions. Let w(u) denote the
Buchstab function determined by the following differential-difference equation

wu) =1 1 <2,

u
(uw(u)) =wu—-1), u=2.

VoA

Following [10] directly, we set v = 211, 0gp=67—5600=1—7,0, = 617 29 ,03=3—37,0, =37y—-2,
05 = 80 617 ,06 =andletp; =x li. We define the asymptotic region I as

I(m,n) :={61 <m < Byorbs <m<byorfbs <m< O or
<m

01 +n<bBrorfs <m+n < 0io0rbs < m+n<96}

Lemma 2.1. We can give an asymptotic formula for

) S(Apl...pn,xeo)

oty
if wehave t| 4+ ...+ t, < by.

Lemma 2.2. We can give an asymptotic formula for

): S(Amwpnfpn)

Hoty

if we can group (t1,...,t,) into (m,n) € I.
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3. The Final Decomposition

Before decomposing, we define non-overlapping regions U;-U3 as

Uy (m,n) ==

o
n={(

m,n) &I, m+2n <64}
m

n) ¢l m+2n= 94,#<2},

mn) &1, m+2n> @,#22}.

We shall apply different techniques to the different regions above. By Buchstab’s identity, we have

s(A,(zx)%):s(A,x%)— y s(Apl,x90)+ Y S(Apypas P2)

90<t1<% 90<t1<%
90<t2<min(t1,%(1—t1))
= S (A/ ng) — 2 S (Aplr x00> + Z S(‘APle' pz)
90<t1<% 90<t1<%
fp<to<min(ty, 3 (1—t))
(tl,tz)el
+ Z S('Apllﬂz' PZ) + Z S(Ampzr pZ)
90<t1<% 90<t1<%
fp<tr<min(ty, 3 (1—t)) Bo<tp<min(ty, 3 (1-t))
(t1,b2) el (t1,t2)€Un
+ Y S(Apipas P2)
90<t1<%
90<t2<min(t1,%(17t1))
(t1,t2)€ls

= 51— 8+ S;+ Su1 + Suz + Sus- )


https://doi.org/10.20944/preprints202504.1190.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2025 d0i:10.20944/preprints202504.1190.v1

40f7

By Lemma 2.1 and Lemma 2.2, we can give asymptotic formulas for S1, Sp and S;. For Sy;1, we can use
Buchstab’s identity twice more to get

Sur = Z S('Ampzl Pz) = Z S(Aplpzlxgo)
90<t1<% 90<t1<%
60<t2<min(t1,%(17t1)) 60<t2<min(t1,%(lft1))
(tt2) €l (t,t2)Elh
- D S(Apipaps P3)
90<t1<%
90<t2<min(t1,%(17t1))

(t1t2) €l

90<t3<min(t2,% (17t1 7t2))
(t1,t2,t3) can be partitioned into (m,n)€l

o Z 5 (‘APlePs' x9o)
90<t1<%
90<t2<min(t1,%(17t1))
(tit2)elh
90<t3<min(t2,%(17t17t2))
(t1,t2,t3) cannot be partitioned into (m,n)el

+ Z S('APlePsm' P4)

90<t1< 5
90<t2<mm(t1, (1 tl))
(tit2)Ely
90<t3<min(t2,%(17t17t2))
(t1,t2,t3) cannot be partitioned into (m,n)€l
fp<ty<min(t3,3 (1—t; —tr—t3))
(t1,k2,t3,t4) can be partitioned into (m,n)€l

+ Z S(AP1P2P3P4/ pa)

90§t1<%
90<t2<min(t1,%(l—t1))
(tita)ely
Bo<ts<min(ty, 3 (1—t;—t2))
(t1,t2,t3) cannot be partitioned into (m,n)€l
90<t4<mm(t3,%(17t17t27t3))
(t1,t2,t3,t4) cannot be partitioned into (m,n)el

= Syt — Suiz — Suis + Suis + Suis- 3)

We can give asymptotic formulas for S;11-Si14. For Syy15 we can perform Buchstab’s identity more
times to make savings, but we choose to discard all of it for the sake of simplicity. Combining the

above cases, we get a loss from Syy; of

—t—tp

min tl, min(tz,1 5 ) min (t3,
/00 /9 \/90 /90

1—t;—t)—t3—ty
]w = dtydtsdtydt
t]t2t3t421 4utzbtpily

< 0.001624 (4)

I—tj—ty—t3
)

Boole[(ty,tp,t3,t4) € Uys

where
Uis(t1, to, t3,ts) == {(tlrtZ) el b <tz < mln<t2, ;(1 —t - fz)),
(t1,t2, t3) cannot be partitioned into (m,n) € I,
Oy <ty < min<t3,;(1 —tH —ty — t3)>,

(t1, t2, 3, t4) cannot be partitioned into (m, n) € I}.
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For Sy, we cannot decompose further but have to discard the whole region giving the loss
min t1, w (71 ttlz t2>
/ / Boole[(t1, b) € Up)——2L dtydty < 0.412666. 5)
6y 6y tltz

For Sy;3 we cannot use Buchstab’s identity in a straightforward manner, but we can use Buchstab’s
identity in reverse to make almost-primes visible. The details of using Buchstab’s identity in reverse
are similar to those in [11] and [12]. By using Buchstab’s identity in reverse twice, we have

Sus = Z S('AlﬂlPZf PZ)
90<t1<2
90<t2<mm(t1, (l tl))
(t1,ta)els

1

2x \2

C o s ()
90<t1<% P1p2

90<t2<min(t1,%(17t1))
(tt2)€Us

+ Z S(Apipapss P3)
90<t1<%
90<t2<m'm<t1,%(17t1))
(h,t2)eUs
t2<t3<%(17t17t2)

1
2x \?
= S{ Apipor | ——
L ( b (plP.Z) )

90<t1<%
90<t2<min(t1,%(17t1))
(t1t2)€ls
+ )3 S(Apipaps P3)
90<f1<%
90<t2<min(t1,%(l—t1))
(t1,ta)els

t2<t3<%(1—t1—t2)
(t1,t2,t3) can be partitioned into (m,n)€l

1

2x 2

+ S| A ()
Z ( P1P2P3 P1P2p3 )

90<t1<2
fp<to<min(ty, 3 (1—t))
(t,t2)€Us
t2<t3<%(17t17t2)
(t1,t2,t3) cannot be partitioned into (m,n)el

+ Z S(AP1P2P3P4' P4)

90<t1<%
00<t2<min(t1,%(17t1))
(t1,t2)€Us
t2<t3<%(17t17t2)
(t1,t2,t3) cannot be partitioned into (m,n)el
t3<t4<%(17t17t27t3)
(t1,t2,t3,t4) can be partitioned into (m,n)€l

+ Z S(‘Alﬂlpzr’am' pa)

Oo<ti < %
90<t2<min(t1,% (1—1‘1))
(t1,t2) el
ty <t3<%(1—t1—t2)
(t1,t2,t3) cannot be partitioned into (m,n)€l
ta<ty<}(1—ti—tr—t3)
(t1,t2,3,t4) cannot be partitioned into (m,n)€l

= Suz1 + Suzz + Suzs + Suzs + Suss- (6)
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We can give asymptotic formulas for Syj3, and Syj34, hence we can subtract them from the loss. In this
way we obtain a loss from Sy3 of

1—t;—t
min (1, o(FEE)
Boole t1,ty) € Uz|————=dtydt
/9/9 (112) € Un] =it

min il 1-t;—ty w(l ti—t f3>
=t t
_ / / / : Boole[(tl,tz, i’g) S U32] N 3 7 dtzdtrdty
0o /6y

ta titpt3
min t1 h 14%42 1417;243 cd<1*151*1;24*i3*f4) bt
— Boole|(ty,tr,t3,t4) € U tydtadtrdt
/90 /9 /tz , oole[(ty, ty, t3,t4) € Usy) RN 4dtzdtyrdty
< (0.98983 — 0.390798 — 0.020403) = 0.578629 (7)

where

Usa(t, o, t3) 1= {(flffz) els h<t3< 1(1 —t —t),
(t1,t2, t3) can be partitioned into (m,n) € I},
Usa(tr, b, b3, ) = {(tl,tz) s <ty <y (1-h—1),
(t1,t2, t3) cannot be partitioned into (m,n) € I,
%(1 —t1— ) —f3),
(t1,t2, 3, t4) can be partitioned into (m, n) € I}.

3 <ty <

Finally, by (2)—(7), the total loss is less than
0.001624 + 0.412666 + 0.578629 < 0.993 < 1
and the proof of Theorem 1.1 is completed.

4. Application: Piatetski-Shapiro—Vinogradov Theorem

In 1992, Balog and Friedlander [13] considered a hybrid of the Three Primes Theorem and the
Piatetski-Shapiro prime number theorem. They proved that every sufficiently large odd integer can be
written as the sum of three primes of the form [n] for any fixed 1 < ¢ < %, and every sufficiently
large odd integer can be written as the sum of two normal primes and another prime of the form [n“]
for any fixed 1 < ¢; < % Their result has been improved by many authors. Now the best range of c; is
due to Cai [14], where he proved the above statement of c; holds for any fixed 1 < ¢ < %43 Using the
same method but with our Theorem 1.1 instead of Rivat and Wu's result, we can easily deduce the
following.

Theorem 4.1. Every sufficiently large odd integer can be written as the sum of two normal primes and

another prime of the form [n!] for any fixed 1 < ¢; < 2L

We shall consider the range of cg in another paper.

Acknowledgments: The author would like to thank Professor Jie Wu for his encouragement and some helpful
discussions.
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