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1. Introduction
The Euler’s conjecture, which states that there are infinitely many primes of the form n2 + 1, is one

of Landau’s problems on prime numbers. There are several ways to attack this conjecture. One way is to
relax the number of prime factors of f (n), and the best result in this way is due to Iwaniec [1]. Building
on the previous work of Richert [2], he showed that for any irreducible polynomial f (n) = an2 + bn+ c
with a > 0 and c ≡ 1(mod2), there are infinitely many x such that f (x) has at most 2 prime factors.

Another possible way is to consider the degree of the polynomial. In 1953, Piatetski–Shapiro [3]
has proposed to investigate the prime numbers of the form [nc], where c > 1 and [nc] denotes the
integer part of nc. Clearly [nc] can be regarded as "polynomials of degree c". Define

πc(x) := |{n ⩽ x : [nc] is a prime number}|,

then he has shown that πc(x) ∼ x(c log x)−1 holds for any 1 < c < 12
11 ≈ 1.0909 as x → ∞. This range

has been improved by many authors, and the best record now is due to Rivat and Sargos [4], where
they proved the above asymptotic formula holds for any 1 < c < 2817

2426 ≈ 1.1612.
In 1992, Rivat [5] first introduced a sieve method into this problem. He established a lower bound

with correct order (instead of an asymptotic formula) with 1 < c < 7
6 ≈ 1.1616. After this, many

improvements were made and the range of c was enlarged successively to

1 < c <
20
17

≈ 1.1765, 1 < c <
13
11

≈ 1.1818, 1 < c <
45
38

≈ 1.1842 and 1 < c <
243
205

≈ 1.18536

by Jia [6] (and Baker, Harman and Rivat [7]), Jia [8], Kumchev [9] and Rivat and Wu [10] respectively.
In this paper, we obtain the following result.
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Theorem 1.1. For sufficiently large x and 1 < c < 211
178 ≈ 1.18539, we have πc(x) ≫ x(c log x)−1.

Throughout this paper, we always suppose that x is a sufficiently large integer, γ and θ0–θ6 are
positive numbers which will be fixed later. Let 37

44 < γ < 28
33 and c = 1

γ . The letter p, with or without
subscript, is reserved for prime numbers. We define the sets A and B as

A = {m : m = [nc], x ⩽ nc < 2x}, B = {n : x ⩽ n < 2x},

and we put

Ad = {a : ad ∈ A}, Bd = {b : bd ∈ A}, P(z) = ∏
p<z

p, S(A, z) = ∑
a∈A

(a,P(z))=1

1, S(B, z) = ∑
b∈B

(b,P(z))=1

1.

Then we only need to show that S
(
A, (2x)

1
2

)
> 0. Our aim is to show that the sparser set A contains

the expected proportion of primes compared to the bigger set B, which requires us to decompose
S
(
A, (2x)

1
2

)
and prove asymptotic formulas of the form

S(A, z) = (1 + o(1))xγ−1(2γ − 1)S(B, z) (1)

for some parts of it, and drop the other positive parts. The asymptotic formulas will be given in the
next section. We define the boolean function as

Boole[X] =

1 if X is true,

0 if X is false.

2. Sieve Asymptotic Formulas
In this section we provide some asymptotic formulas for sieve functions. Let ω(u) denote the

Buchstab function determined by the following differential–difference equationω(u) = 1
u , 1 ⩽ u ⩽ 2,

(uω(u))′ = ω(u − 1), u ⩾ 2.

Following [10] directly, we set γ = 178
211 , θ0 = 6γ − 5, θ1 = 1 − γ, θ2 = 61γ−49

11 , θ3 = 3 − 3γ, θ4 = 3γ − 2,
θ5 = 60−61γ

11 , θ6 = γ and let pj = xtj . We define the asymptotic region I as

I(m, n) := {θ1 ⩽ m < θ2 or θ3 ⩽ m < θ4 or θ5 ⩽ m < θ6 or

θ1 ⩽ m + n < θ2 or θ3 ⩽ m + n < θ4 or θ5 ⩽ m + n < θ6}.

Lemma 2.1. We can give an asymptotic formula for

∑
t1···tn

S
(
Ap1···pn , xθ0

)
if we have t1 + . . . + tn < θ4.

Lemma 2.2. We can give an asymptotic formula for

∑
t1···tn

S
(
Ap1···pn , pn

)
if we can group (t1, . . . , tn) into (m, n) ∈ I.
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3. The Final Decomposition
Before decomposing, we define non–overlapping regions U1–U3 as

U1(m, n) := {(m, n) /∈ I, m + 2n < θ4}

U2(m, n) :=
{
(m, n) /∈ I, m + 2n ⩾ θ4,

1 − m − n
n

< 2
}

,

U3(m, n) :=
{
(m, n) /∈ I, m + 2n ⩾ θ4,

1 − m − n
n

⩾ 2
}

.

We shall apply different techniques to the different regions above. By Buchstab’s identity, we have

S
(
A, (2x)

1
2

)
= S

(
A, xθ0

)
− ∑

θ0⩽t1<
1
2

S
(
Ap1 , xθ0

)
+ ∑

θ0⩽t1<
1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

S
(
Ap1 p2 , p2

)

= S
(
A, xθ0

)
− ∑

θ0⩽t1<
1
2

S
(
Ap1 , xθ0

)
+ ∑

θ0⩽t1<
1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈I

S
(
Ap1 p2 , p2

)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U1

S
(
Ap1 p2 , p2

)
+ ∑

θ0⩽t1<
1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U2

S
(
Ap1 p2 , p2

)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3

S
(
Ap1 p2 , p2

)

= S1 − S2 + SI + SU1 + SU2 + SU3. (2)
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By Lemma 2.1 and Lemma 2.2, we can give asymptotic formulas for S1, S2 and SI . For SU1, we can use
Buchstab’s identity twice more to get

SU1 = ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U1

S
(
Ap1 p2 , p2

)
= ∑

θ0⩽t1<
1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U1

S
(
Ap1 p2 , xθ0

)

− ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U1
θ0⩽t3<min(t2, 1

2 (1−t1−t2))
(t1,t2,t3) can be partitioned into (m,n)∈I

S
(
Ap1 p2 p3 , p3

)

− ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U1
θ0⩽t3<min(t2, 1

2 (1−t1−t2))
(t1,t2,t3) cannot be partitioned into (m,n)∈I

S
(
Ap1 p2 p3 , xθ0

)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U1
θ0⩽t3<min(t2, 1

2 (1−t1−t2))
(t1,t2,t3) cannot be partitioned into (m,n)∈I

θ0⩽t4<min(t3, 1
2 (1−t1−t2−t3))

(t1,t2,t3,t4) can be partitioned into (m,n)∈I

S
(
Ap1 p2 p3 p4 , p4

)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U1
θ0⩽t3<min(t2, 1

2 (1−t1−t2))
(t1,t2,t3) cannot be partitioned into (m,n)∈I

θ0⩽t4<min(t3, 1
2 (1−t1−t2−t3))

(t1,t2,t3,t4) cannot be partitioned into (m,n)∈I

S
(
Ap1 p2 p3 p4 , p4

)

= SU11 − SU12 − SU13 + SU14 + SU15. (3)

We can give asymptotic formulas for SU11–SU14. For SU15 we can perform Buchstab’s identity more
times to make savings, but we choose to discard all of it for the sake of simplicity. Combining the
above cases, we get a loss from SU1 of

∫ 1
2

θ0

∫ min
(

t1, 1−t1
2

)
θ0

∫ min
(

t2, 1−t1−t2
2

)
θ0

∫ min
(

t3, 1−t1−t2−t3
2

)
θ0

Boole[(t1, t2, t3, t4) ∈ U15]
ω
(

1−t1−t2−t3−t4
t4

)
t1t2t3t2

4
dt4dt3dt2dt1

< 0.001624 (4)

where

U15(t1, t2, t3, t4) :=
{
(t1, t2) ∈ U1, θ0 ⩽ t3 < min

(
t2,

1
2
(1 − t1 − t2)

)
,

(t1, t2, t3) cannot be partitioned into (m, n) ∈ I,

θ0 ⩽ t4 < min
(

t3,
1
2
(1 − t1 − t2 − t3)

)
,

(t1, t2, t3, t4) cannot be partitioned into (m, n) ∈ I}.
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For SU2, we cannot decompose further but have to discard the whole region giving the loss

∫ 1
2

θ0

∫ min
(

t1, 1−t1
2

)
θ0

Boole[(t1, t2) ∈ U2]
ω
(

1−t1−t2
t2

)
t1t2

2
dt2dt1 < 0.412666. (5)

For SU3 we cannot use Buchstab’s identity in a straightforward manner, but we can use Buchstab’s
identity in reverse to make almost–primes visible. The details of using Buchstab’s identity in reverse
are similar to those in [11] and [12]. By using Buchstab’s identity in reverse twice, we have

SU3 = ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3

S
(
Ap1 p2 , p2

)

= ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3

S

(
Ap1 p2 ,

(
2x

p1 p2

) 1
2
)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3
t2<t3<

1
2 (1−t1−t2)

S
(
Ap1 p2 p3 , p3

)

= ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3

S

(
Ap1 p2 ,

(
2x

p1 p2

) 1
2
)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3
t2<t3<

1
2 (1−t1−t2)

(t1,t2,t3) can be partitioned into (m,n)∈I

S
(
Ap1 p2 p3 , p3

)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3
t2<t3<

1
2 (1−t1−t2)

(t1,t2,t3) cannot be partitioned into (m,n)∈I

S

(
Ap1 p2 p3 ,

(
2x

p1 p2 p3

) 1
2
)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3
t2<t3<

1
2 (1−t1−t2)

(t1,t2,t3) cannot be partitioned into (m,n)∈I
t3<t4<

1
2 (1−t1−t2−t3)

(t1,t2,t3,t4) can be partitioned into (m,n)∈I

S
(
Ap1 p2 p3 p4 , p4

)

+ ∑
θ0⩽t1<

1
2

θ0⩽t2<min(t1, 1
2 (1−t1))

(t1,t2)∈U3
t2<t3<

1
2 (1−t1−t2)

(t1,t2,t3) cannot be partitioned into (m,n)∈I
t3<t4<

1
2 (1−t1−t2−t3)

(t1,t2,t3,t4) cannot be partitioned into (m,n)∈I

S
(
Ap1 p2 p3 p4 , p4

)

= SU31 + SU32 + SU33 + SU34 + SU35. (6)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2025 doi:10.20944/preprints202504.1190.v1

https://doi.org/10.20944/preprints202504.1190.v1


6 of 7

We can give asymptotic formulas for SU32 and SU34, hence we can subtract them from the loss. In this
way we obtain a loss from SU3 of∫ 1

2

θ0

∫ min
(

t1, 1−t1
2

)
θ0

Boole[(t1, t2) ∈ U3]
ω
(

1−t1−t2
t2

)
t1t2

2
dt2dt1


−

∫ 1
2

θ0

∫ min
(

t1, 1−t1
2

)
θ0

∫ 1−t1−t2
2

t2

Boole[(t1, t2, t3) ∈ U32]
ω
(

1−t1−t2−t3
t3

)
t1t2t2

3
dt3dt2dt1


−

∫ 1
2

θ0

∫ min
(

t1, 1−t1
2

)
θ0

∫ 1−t1−t2
2

t2

∫ 1−t1−t2−t3
2

t3

Boole[(t1, t2, t3, t4) ∈ U34]
ω
(

1−t1−t2−t3−t4
t4

)
t1t2t3t2

4
dt4dt3dt2dt1


< (0.98983 − 0.390798 − 0.020403) = 0.578629 (7)

where

U32(t1, t2, t3) :=
{
(t1, t2) ∈ U3, t2 < t3 <

1
2
(1 − t1 − t2),

(t1, t2, t3) can be partitioned into (m, n) ∈ I},

U34(t1, t2, t3, t4) :=
{
(t1, t2) ∈ U3, t2 < t3 <

1
2
(1 − t1 − t2),

(t1, t2, t3) cannot be partitioned into (m, n) ∈ I,

t3 < t4 <
1
2
(1 − t1 − t2 − t3),

(t1, t2, t3, t4) can be partitioned into (m, n) ∈ I}.

Finally, by (2)–(7), the total loss is less than

0.001624 + 0.412666 + 0.578629 < 0.993 < 1

and the proof of Theorem 1.1 is completed.

4. Application: Piatetski–Shapiro–Vinogradov Theorem
In 1992, Balog and Friedlander [13] considered a hybrid of the Three Primes Theorem and the

Piatetski–Shapiro prime number theorem. They proved that every sufficiently large odd integer can be
written as the sum of three primes of the form [nc0 ] for any fixed 1 < c0 < 21

20 , and every sufficiently
large odd integer can be written as the sum of two normal primes and another prime of the form [nc1 ]

for any fixed 1 < c1 < 9
8 . Their result has been improved by many authors. Now the best range of c1 is

due to Cai [14], where he proved the above statement of c1 holds for any fixed 1 < c1 < 243
205 . Using the

same method but with our Theorem 1.1 instead of Rivat and Wu’s result, we can easily deduce the
following.

Theorem 4.1. Every sufficiently large odd integer can be written as the sum of two normal primes and
another prime of the form [nc1 ] for any fixed 1 < c1 < 211

178 .

We shall consider the range of c0 in another paper.

Acknowledgments: The author would like to thank Professor Jie Wu for his encouragement and some helpful
discussions.
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