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Abstract: In industrial settings, gears play a crucial role by assisting various machinery functions
such as speed control, torque manipulation, and altering motion direction.The malfunction or failure
of these gear components can have serious repercussions, resulting in production halts and financial
losses. As aresult, there is an increasing requirement to monitor the state of these components in order
to avoid such issues from occurring. To address this need, research efforts have focused on early defect
detection in gears in order to reduce the impact of possible failures. This study focused on analyzing
vibration and thermal datasets from two extruder machine gearboxes using an autoencoder Long
Short-Term Memory (LSTM) model. The major goal is to implement an outlier detection approach to
detect and classify defects. The results of this study highlighted the extraordinary performance of the
Autoencoder LSTM model, which achieved an impressive accuracy rate of 94.42% in recognizing
malfunctioning gearboxes within the extruder machine system. Furthermore, the study used a
thorough global metrics evaluation methodology to further test the model’s dependability and
efficacy, consequently substantiating the proposed approach’s validity.

Keywords: anomaly detection; autoencoder; long short-term memory; deep learning; discrete
wavelet transform; feature extraction; outlier detection

1. Introduction

The recent industrial revolution has had a significant impact on the production and manufacturing
sectors, with more advancements on the way. Many industry revolutions have come and gone in the
world of research and academia with the aim of increasing and modifying the relationship between
man and machine, which is accomplished through the intelligent integration of the Internet of Things
(IoT) and cyber-physical systems [1-3]. The current phase of the industrial revolution, industry 4.0,
has made technology available in a way that allows for seamless and smart decision-making, which
has generally improved efficiency and revenue in these sectors. One of the most important aspects of
Industry 4.0 is its application in the prognostics and health management (PHM) of equipment, which
entails detecting anomalies as well as predicting when these systems may fail, thereby providing a
healthy and conducive environment for production. Most of the time, this is accomplished through
the use of various types of sensors to collect rich data from these machines in collaboration with a
machine learning algorithm that sequentially trains to understand the nature of the data and then
aids in the detection and early prediction of any future fault occurrences using advanced technology
[4,5]. Most of the means associated with useful data collection from machines for adequate health
monitoring include, but not limited to, vibration sensors, acoustic emission sensors, thermal sensors,
current sensors, and so on; the selection of the appropriate sensor to be used on equipment is solely
dependent on the nature of the machine, the type of environment, and the researcher’s expertise.
The next industrial revolution, industry 5.0, is intended and projected to be more sophisticated and
advanced in the sense that machines not only assist humans but also collaborate with humans in
solving technical problems [6].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The plastic/fabric extruder machine is a critical piece of equipment in the plastic manufacturing
industry. Its working principle entails collecting plastic raw materials through its hopper, which is
then directed to the extruder screw, whose pressure and rotation are provided by the gear and an
electric motor combined with the machine’s heater pad to melt the plastic raw materials as well as
transport them to the chamber where the molten plastic would be used to achieve whatever purpose it
has been assigned in terms of shape. Nonetheless, the machine’s effectiveness is dependent on the
flawless performance of its components. Among these, the extruder screw stands out as a critical
component of the plastic extruder machine. As a result, ensuring the continuing functionality of this
specific component becomes critical. The reason for this monitoring is that any fault in the extruder
screw could have serious consequences for the manufacturing process. The induction motor provides
the required rotary power and torque, while the gear as shown in Figure 1 reduces the rotational
speeds of the extruder screw, resulting in more torque for crushing and transporting raw materials.
There has been a lot of research on fault diagnostics and prediction in induction motors [8-10], but
the focus of this research is on the gearbox, whose failure would be catastrophic in the sense that the
operational movement and rotation of the extruder screw, which has been designed to provide the
required amount of torque and pressure for the manufacturing process, would be greatly affected. In
our study, the gear component of the plastic extruder gearbox is made up of helical gears, which are
known for their high contact ratio and thus provide high torque [7].
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Figure 1. Top view of the extrude gearbox.

While vibrations are frequently anticipated to come from the running gears, vibration sensors
are among the most popular sensors for condition-based gearbox monitoring. Unfortunately, unlike
spur gears, helical gears are known to produce less noisy and non-stationary vibration signals due
to their contact ratio difference; however, noise and non-stationary signal generation are common
with gears, which are regarded as challenges for most signal processing methods [11,12]. Nonetheless,
scientists have devised solutions to this problem, such as fusing vibration data with other sensor data
like sound and thermal data, or de-noising and decomposing vibration data signals to extract the
important spectral properties of the signal [13,14]. Most known classes of helical gear failures often
cause unusual friction between the meshing and /or mating gear components, which generates heat,
making thermal data useful for fault analysis in helical gearbox fault detection and isolation (FDI) [15].

Generally, time-frequency signal transformations are preferred especially in helical gearbox
vibration signals because they present the signal in such a way that useful information can be easily
extracted or detected in a signal, which aids in fault diagnosis. Nonetheless, the auto-encoder LSTM is
well recognized for its capacity to identify faults or function in multivariate time-domain signals. As a
result, the LSTM-auto-encoder is an excellent tool for processing and training a fusion of thermal and
vibration datasets for proper FDI [16,17]. Machine learning (ML) algorithms have long been used by
scientists owing to their efficiency and adaptability to small data sets, as well as their high diagnostic
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and prognostic accuracy, low computational cost, and ease of implementation. However, due to some
of its well-known issues, including its propensity for over-fitting, poor performance with complex
datasets, and high parameter dependence, Artificial Neural Network (ANN)-based algorithms, such as
Feed-forward neural networks (FNNNs), Long Short-Term Memories (LSTMs), Deep neural networks
(DNNs), Deep belief networks (DBNs), Recurrent neural networks (RNNNs), Convolutional neural
networks (CNNs), etc., have presented the ideal sophisticated diagnostic and prognostic tool, despite
their unique challenges such as high computational cost and interpretability issues; however, their
uniqueness and robustness in PHM is no match for traditional ML algorithms.

2. Literature Review and Related Works

As previously stated in the preceding section, gearboxes play a critical role in industrial domains,
particularly in contexts involving torque transfer, speed reduction, and motion dynamics modification,
among other activities. As a result, the consequences of gearbox failure resonate far and wide. Any
failure, regardless of the underlying reason, has the potential to produce unneeded downtime. The
resulting operational stop reduces productivity by hindering industrial processes. Furthermore,
the resulting output shortage directly leads to a revenue loss. The interdependence of gearbox
functionality and industrial processes emphasizes the importance of preventive maintenance and
constant monitoring to avoid potential failures. Mitigating the danger of gearbox failure by such
methods not only ensures operational continuity but also protects against the tangible economic
ramifications of stopped output and financial losses. As a result, grasping the basic properties of
faults is a fundamental prerequisite in the pursuit of effective fault mitigation within mechanical
systems. This includes determining their frequency, patterns of occurrence, and severity. This early
understanding serves as the foundation for developing meticulous tactics for correcting these flaws as
effectively as possible. A significant insight comes when considering the gearbox in a plastic extruder
machine, where the prevalent failures are directly linked with gear-related concerns. While helical
gears are more resistant to failure than spur gears, failure is an unavoidable possibility.

Numerous failures have been extensively researched and documented in the academic world.
These include broken teeth, fissures, the occurrence of pitting corrosion, uniform wear, axis alignment
inconsistencies, fatigue-induced difficulties, instances of impact induced fractures, and the likes.
Surprisingly, amid this spectrum of failures, those linked to fatigue phenomena have emerged as
the most common [18-21]. Notably, the prevalence of fatigue-related failures broadens its impact,
serving as a critical precursor for additional severe and catastrophic defects within the system [21].
Tooth bending fatigue and surface contact fatigue are the two main types of fatigue failure, which are
typically linked to issues with gear assembly, misalignment, unintentional stress concentration, and
unsuitable material choice or heat treatment [21,22]. Gear tooth wear is a similarly common form of
failure to fatigue in terms of prominence. This failure mechanism involves the loss of gear material
and frequently results from many triggers that include mechanical, electrical, and chemical effects [22].
Fundamentally speaking, abrasive and adhesive wear are distinguish modes of tooth wear failures.
Adhesive wear is characterized by material transfer between teeth, which leads to propensities for
ripping and welding, as opposed to abrasive wear, which includes material removal as a result of
inter-tooth contact [22,23]. Scuffing is a key failure mode that is frequently ignored in gear analysis.
This occurrence results from sliding motions interacting with lubricated contacts, which generate high
temperatures. These elevated temperatures can consequently cause the surface film that coats the
gears to deteriorate, leading to deformations and eventually the melting of the relatively softer gear
components [22-25].

The accuracy of relying exclusively on vibration signals for precise defect identification may
be compromised by the elevated levels of noise and temperature that frequently accompany
malfunctioning gear conditions. As a result, many researchers have implemented techniques to
improve diagnostic precision. These methods often entail either applying de-noising techniques
to separate important signals from the noise-contaminated vibration data originating from gear
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components or combining vibration signals with other sensor outputs to create comprehensive
diagnostic models. The incorporation of vibration and acoustic sensor data helped the development
of a thorough diagnostic model, as demonstrated by the researchers in this specific study [26]. Their
method involved the independent extraction of statistical features from each sensor. Relevant attributes
were identified using a cutting-edge feature selection method. In the end, a comprehensive diagnostic
model specifically designed to solve chipped gear defects was developed by synergistically combining
the chosen features from both sensors. In a different study [27], the author skillfully combined current
and vibration sensors operating over a range of frequencies to create a condition-based monitoring
framework for spotting gear wear issues. The study’s conclusions emphasized not only the attainment
of desired results but also a calculated approach for reducing the computing demands generally
connected with data fusion. This was accomplished by carefully assessing the dataset to only include
the most pertinent qualities, and then strategically incorporating statistical and heuristic feature
engineering techniques.

Additionally, Zhang Y. and Baxter K. proposed a cross-domain fault diagnostic framework by
synergistically combining vibration and torque information from a gearbox in a different exploration
[28]. Their ground-breaking approach addressed a common issue that arises when utilizing different
statistics from diverse sensors. To counteract this, they used a fusion strategy in which the various
sensor datasets were combined into a single 1-D sample array. Then, as a crucial element of their
cross-domain fault diagnostic approach, a CNN-based classifier was used. This innovative method
made it possible to integrate several sensor outputs, improving the system’s capacity for diagnostics.
Several researchers have made considerable advances in refining sensor fusion approaches, as
demonstrated by the approach used in this study [29]. To build a diagnostic model, the author
used a trio of sensors—a vibration accelerometer, a microphone, and sound emission sensors—across
a variety of operational circumstances. Their process entailed extracting wavelet features from each
sensor’s data stream, followed by identifying relevant features. This technique resulted in a powerful
model that validated their intended aim. A similar three-sensor fusion technique was discovered in
another study involving the prediction of the remaining usable life (RUL) of a hydraulic gear pump
in the presence of variable pollution levels [30]. The researchers used a Kalman Filter-based linear
model to smoothly fuse fault features from three distinct sensor data streams—vibration, flow rate,
and pressure signals—in this case. These fused properties were then used as input for a Bidirectional
Long Short-Term Memory (BI-LSTM) network, resulting in the creation of a strong RUL architecture.

Due to the inherent characteristics and different origins of sensor data commonly used in sensor
fusion, these datasets often contain intrusive background noise, lack stable patterns across time, and
depart from a normal Gaussian distribution. As described in this specific research study [31,32], these
variables collectively restrict the extraction of important information from the data. Consequently, it is
necessary to use supplementary signal processing techniques to present these datasets in a way that
allows for effective information extraction. In the context of our investigation, the vibration datasets
acquired from machinery necessitate undergoing a de-noising process. This procedure is critical for
extracting relevant information from vibration data. The effectiveness of this process is dependent on
the robustness of the signal processing algorithms used and the expertise of the analyst. Numerous
methods for denoising and decomposing signals have been introduced, including discrete wavelet
transform (DWT), Bayesian filter-based methods, and empirical mode decomposition, the latter of
which is based on the Hilbert Huang transform (HHT) [33,34]. Among these techniques, discrete
wavelet transform and Bayesian-filter-based algorithms are well-known for their effectiveness and
robustness. However, when it comes to performance, empirical evidence has shown that discrete
wavelet transform is a better option for both signal de-noising and decomposition tasks [34]. This
insight acted as a catalyst for its preferential use in our ongoing inquiry.

One of the primary goals of this research is to properly combine vibration sensor data with
thermal sensor data to build a reliable Prognostics and Health Management (PHM) scheme. To achieve
this integration, appropriate fusion techniques must be used to develop strong health indicators
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(HIs) for an efficient diagnostic model [35-37]. It is critical to note that, while the requirement for a
fusion algorithm is undeniable, the technique to be used is significantly dependent on the specific
challenge at hand. Local Linear Embedding (LLE), for example, can be sensitive to the choice of
nearest neighbors, whereas Principal Component Analysis (PCA) may encounter difficulties when
dealing with datasets having a normal distribution. Independent Component Analysis (ICA), on
the other hand, is dependable when dealing with non-Gaussian input distributions, particularly
when these inputs display statistical independence, as demonstrated in previous studies [39,40]. In a
related study [39], the authors conducted a thorough comparison of Independent Component Analysis
(ICA) and Autoencoder (AE) approaches. The goal of this study was to synchronize data collection
from numerous I[JTAG-compatible Embedded Instruments (Els) and build a machine learning-based
system-level model for forecasting the end of life (EOL) in safety-critical systems that use multiple
on-chip embedded instruments. According to the findings of the study, the ICA and EI fusion strategy
excelled in capturing latent variables for model training, hence improving the EOL prognostic power.
In addition, J. Weidong introduced the FastICA compound neural network, an original ICA-based
network that makes use of feature extraction from multi-channel vibration measurements [41]. This
method shows how ICA has the potential to be used as a strong feature extraction tool for challenging
sensor data fusion problems.

As a result, the techniques outlined across the spectrum of reviewed research highlight a common
theme: the inherent limits of relying simply on vibration signals for diagnosing gear-related difficulties.
This collaborative knowledge acts as a catalyst, propelling us to incorporate a unique methodology
into our model. Our method combines vibration and thermal sensor data from a plastic extruder
machine’s gearbox. While it has been recognized that malfunctioning gearboxes frequently generate
heat due to irregular gear meshing, little study has been conducted to harness thermal signals for
comprehensive defect investigation which most recorded studies often focus on thermal imagining
rather than thermal data signals. This undertaking is a unique step, resulting from the inspiration
obtained from the combination of earlier study findings. Therefore, with all these findings in view, the
contributions of this sensor fusion plastic extruder gearbox outlier detection fault-based model are
highlighted as follows:

e A Discrete Wavelet Decomposition for enhanced Vibration Signal Analysis in Plastic Extruder
Gearbox Fault Diagnosis: By Incorporating a Discrete wavelet decomposition strategy, we aim to
extract invaluable insights from the vibration signals entrenched in noise. This technique seeks to
bolster the efficacy of diagnosing faults within the plastic extruder gearboxes.

*  An effective statistical time-frequency domain feature extraction and correlation Filter-Based
Selection technique: We presented an effective method for extracting features in the
time-frequency domain. We further introduced a correlation filter-based feature selection process,
which is commonly used in feature engineering, to highlight salient and vital information, hence
enhancing the model’s overall performance.

e A multi-Sensor Fusion Using the FastICA Technique: Our strategy includes a multi-sensor fusion
paradigm aided by the fast Independent Component Analysis (fastlCA) technique. The proposed
technique harmoniously blends selected information from multiple separate sensor datasets.
This fusion not only condenses data to a single-dimensional array but also preserves the unique
characteristics of each source.

¢ An LSTM-Autoencoder Outlier Detection Using a Fused Multi-Sensor Dataset. We achieved
an outlier detection by leveraging an LSTM-Autoencoder, which is enabled by a fusion of
multi-sensor data techniques. This comprehensive methodology results in a strong framework
ready for defect detection in the context of a plastic extruder gearbox.

¢ A Framework Validation and Global Evaluation Metrics Proposed. We provide a set of global
evaluation indicators to validate our suggested approach. These evaluations highlight the
framework’s efficiency and efficacy, demonstrating its ability to manage the complexities of defect
detection within plastic extruder gears.
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The rest of the paper is structured thus: Section 3 and section 4 covers the theoretical background
and the outlier detection model of the paper. Section 5 breaks down the data collection and
methodological concept of our study. Conclusively, section 6 and section 7 summarizes experimental
results and conclusion of the study respectively.

3. Theoretical Background

This section explains the essential principles underlying the key elements that constitute the
foundation of our research. These parts include DWT for de-noising and signal decomposition, FastICA
for feature dimension reduction, and the proposed Autoencoder-LSTM fault detector.

3.1. DWT De-Noising/Decomposition

The wavelet transform is a signal analysis mathematical tool. Through a succession of wavelets,
it decomposes signals into multiple frequency components at different scales, capturing both time
and frequency information. This enables localized signal feature analysis, which is important for
tasks like de-noising, compression, and feature extraction. These series are produced by orthogonal
functions and indicate a square-integrable function, whether real or complex-valued [31,32]. Just
like DFT and STFT which are often used in situations where the fast Fourier transform falls short in
performance, the wavelet transform as highlighted earlier is a time-frequency signal process tool that
is a unique and efficient tool that can present a signal in an orthogonal or non-orthogonal format using
basic a function known as wavelet [32,38]. Generally, the essential difference is in the decomposition
approach: the Fourier transform divides a signal into its sinusoidal components, whereas the wavelet
transform employs localized functions (wavelets) that exist in both real and Fourier space. Because of
this localization in both domains, the wavelet transform can provide more intuitive and interpretable
information about a signal. Wavelet transform, as opposed to Fourier transform which focuses on the
frequency of a signal in most cases, incorporates both time and frequency characteristics, allowing for
a more dense study of signals with localized features.

As a mathematical tool, the general equation of a wavelet transform is presented thus:

WT(a,b) \}a /j; (O (t)* (’j’) dt )

where a and /a represent the scale parameter and the normalization factor for energy conservation,
which regulates the dilation of the wavelet function of the transform, b represents the translation
parameter across the time axis. The mother wavelet is represented by ¢ () while the 1(f)* represents
the complex conjugate of the presented mother wavelet.

In academia, the two most prevalent wavelet transforms are discrete wavelet transform and
continuous wavelet transform. Their main distinction is the function used in their computation. For
example, in the creation of a DWT, an orthogonal wavelet is frequently used, whereas CWT adapts a
non-orthogonal wavelet. Because of the nature of the signal retrieved from the extruder gearbox, which
is embedded with noise, we concentrated our research on DWT. DWT is well-known for its usage
in signal de-noising and decomposition into distinct levels. The Discrete Wavelet Transform (DWT)
transforms a signal into approximation and detail coefficients at different scales. The approximation
coefficients indicate the low-frequency content of the signal, whereas the detail coefficients represent
high-frequency features. This iterative technique gives a multiscale examination of the signal, allowing
for efficient representation, compression, and signal processing. The coefficients can be used for signal
reconstruction and additional analysis.

The general equation for obtaining the wavelet transform is shown in Equation [].

Wikm) = 3 sl =y ("5") @
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where k represents the scale or level of decomposition, m represents the translation or position in each
decomposed level. X[n] is the discrete-time signal being transformed. i[n] represent discrete wavelet
function.

The performance of a wavelet is solely based on the wavelet function (mother wavelet). Therefore,
it is important to note that the wavelet function’s specific form differs depending on the wavelet family
(e.g., Haar, Daubechies, Morlet, etc.). The aforementioned formulas represent the wavelet transform’s
conceptual structure, while the actual computation includes evaluating the integral or sum over the
proper ranges.

3.2. FastICA for Dimension Reduction

Primarily, Independent Component Analysis (ICA) was created to solve the problem of blind
source separation in image and audio processing. Its major goal was to extract from observed signals a
set of statistically independent components. FastlCA was created in response to the potential of ICA
for dimensionality reduction, specifically for feature fusion [39]. In many circumstances, the mutual
information among numerous aspects is buried by high-order statistical characteristics, and FastICA
is successful at minimizing high-order correlations while maintaining mutual independence among
these features. FastICA is thus a useful tool for reducing dimensionality by merging characteristics
while keeping their independence [39,40,42].

FastICA is a signal decomposition algorithm that divides observed signals into statistically
independent components. It assumes the signals are a mixture of unknown sources and attempts to
estimate the original sources by maximizing their independence. The procedure begins by centering
the signals and then whitening them to remove correlations and equalize variances. To quantify the
divergence from Gaussianity in the altered signals, a measure of non-Gaussianity, such as negentropy; is
used [38,42]. FastICA maximizes this metric iteratively by updating the weights of linear combinations
of the observed signals. After obtaining the independent components, dimensionality reduction can
be accomplished by picking a selection of components that capture the most relevant information or
contribute the most to the original signals. The dimensionality of the data is efficiently decreased by
removing less relevant components. The reconstructed signals can then be obtained by projecting the
independent components back. For our study, we choose FastICA because in fault detection scenarios
the more discriminant the data the better it is for the training model to easily adapt and classify and/or
detect the presence of abnormality in a set of data.

3.3. Correlation Coefficients

Correlation coefficients are statistical measurements that assess the degree and direction of
a relationship between two variables. The Pearson correlation coefficient, Spearman rank-order
correlation coefficient, and Kendall rank correlation coefficient are three regularly used correlation
measurements. The Pearson correlation coefficient evaluates the linear relationship between variables.
It is calculated by dividing the covariance of the variables by the product of their standard deviations.
Pearson correlation coefficients vary from -1 to 1. A value of -1 indicates a strong negative linear
association, 0 shows no linear relationship, and 1 suggests a strong positive linear relationship. It
is commonly symbolized by the symbol (rho). The Spearman rank-order correlation coefficient, on
the other hand, is a non-parametric statistic that assesses the strength of a monotonic relationship
between variables. It is based on the data ranks rather than the actual data values. Its range, like
the Pearson correlation coefficient, is from -1 to 1, with -1 indicating a strong negative monotonic
association, 0 suggesting no monotonic link, and 1 indicating a strong positive monotonic relationship.
The Kendall rank correlation coefficient is another non-parametric statistic that assesses the strength
of the monotonic association between variables. It takes into account the number of concordant and
discordant pairs in the data.

Thus, in our study and the majority of studies involving linear variables, the Pearson correlation
coefficient is frequently selected above alternative correlation coefficients. The other two types,
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however, operate more effectively than the Pearson correlation in situations involving non-linear
variables. The correlation coefficient has generally been used successfully in academia for feature
reduction, selection, diagnostics, prognosis, and other tasks. The Pearson coefficient was used in
this study to extract meaningful and discriminant features, which is essential for effective problem
diagnosis and fault detection [8,9,38,43].

n(Yxy) — (Xx) (Zy)

Pp = 3
\/[anL (£x)] [nZy? - (Tv)] o
6y d?
P W
t = Lo 6

(P+Q+X0)(P+Q+Y0)

3.4. Autoencoder

Autoencoders are a form of artificial neural network that is used to learn input data representations.
They are made up of three basic parts: an encoder, a bottleneck layer, and a decoder. In the bottleneck
layer, the encoder maps the input data to a compressed representation. The bottleneck layer acts as a
bottleneck for information flow, lowering the input’s dimensionality. The latent space representation is
the learned representation in the bottleneck layer. The decoder attempts to recover the original input
data using the latent space representation. The autoencoder’s purpose is to reduce the reconstruction
error, which is the difference between the input data and the reconstructed output.

By defining the problem as a supervised learning task, autoencoders can be trained with the
aid of unlabeled data. The goal is to produce an output that closely resembles the original input.
This is accomplished by reducing the reconstruction error, for instance (x,¥), where x is the initial
input sequence and ¥ is the resultant reconstruction sequence. The autoencoder learns to extract
relevant features from input data and build a compressed representation in the latent space by
iteratively modifying the network’s parameters. As a result, autoencoders can be used for tasks like
dimensionality reduction, data de-noising, and anomaly detection [44—-47].

3.5. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks were created to get around regular RNNs’ limitations
when processing lengthy sequences. To capture and hold long-term dependencies in sequential data,
they contain memory cells and gating mechanisms. A memory cell used by LSTMs serves as a conveyor
belt for information as it moves through the sequence. Long-term memories are stored in the cell state,
and what should be discarded is decided by the forget gate. The output gate regulates the output
depending on the cell state, whereas the input gate controls fresh information that is added to the cell
state. Because they have the capacity to learn and spread pertinent information over lengthy sequences,
LSTMs excel at jobs involving sequential data.

The mathematical expression for the LSTM architectural structure is defined with the following
equation:

ir = 0 (Wi [ht-1, xt]) + b; (6)
fe =0 (Wix[ht1,xt]) + by )

Ot = (T(Wi * [ht_l,xt}) + bo (8)
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C; = tanh (WC * [ht,l, xt]) + b, 9)
Cr=fr*ci1+ir %G (10)

0 = U'(Wo * [ht_l,xt]) + b, (11)
hy = o * tanh (c;) (12)

where i, f, O represents the input, forget, and output gates. x; describes the current input to the LSTM
architectural structure, C;, ¢;—_1, ht, h;—1 represents the cell state, previous cell state, the hidden cell
state, and the previous hidden cell state respectively. o, W, b represents the the sigmoid function,
weight and bias of each gate [48-51].

For a more insightful explanation of the structure of the LSTM; LSTMs employ gates that permit
selective information memory and forgetting, allowing them to update the cell state based on the
current input and past state. The input gate applies an activation function to the input and previous
hidden state (such as sigmoid, ReLU, or softmax), yielding values between 0 and 1. These values are
then multiplied element by element-wise with the input, with their importance scaled accordingly.
The forget gate generates values between 0 and 1 by applying a sigmoid function to the input and
prior concealed state. These values are then multiplied element by element with the prior cell state,
with the previous values scaled according to their importance. Values between 0 and 1 are produced
by the output gate after applying a sigmoid function to the input and prior concealed state. The output
of applying a hyperbolic tangent function to the current cell state is then multiplied element-wise
by these values to produce the LSTM’s final output. A vector of values that is updated at each time
step makes up the cell state of LSTMs. Utilizing the current input, the prior cell state, and the prior
concealed state, the cell state is updated. Following that, the hidden state, which is utilized to make
predictions, is updated using the revised cell state [52-54].

4. The Proposed Outlier Detection Model

In our study, we used an Autoencoder LSTM deep learning approach to create an anomaly
detection model. Anomaly detection entails recognizing patterns that differ clearly from the usual
pattern in a given dataset. Anormality detection seeks to distinguish uncommon datasets, known
as anomaly datasets, from normal datasets. Many strategies have been developed in academia to
detect anomalies [9,43,47,57,58], such as Statistical methods, machine learning algorithms and data
visualization approaches, supervised, semi-supervised, and unsupervised learning approaches, outlier
detection, clustering technique, and so on are some of the commonly used techniques employed for
anomaly detection, where presented models learn the normal patterns or structures from the data
without explicitly labeled anomalies. Once trained, the models can detect outlier from learned usual
behavior and highlight them as potential abnormalities.

Figure 2 displays the anomaly detection model employed in our study; we employed an outlier
detection methodology with the aid of an Autoencoder LSTM deep learning approach. The model
basically comprises of five (5) major steps which are summarized below.
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Figure 2. Proposed LSTM Autoencoder Anomaly Detection Model.

¢ Data acquisition: Both vibration and thermal data were collected in order to construct an
appropriate model for monitoring extruder gear performance. The incorporation of several
data sources is prompted by the fact that vibration signals obtained from gearboxes are prone
to noise contamination, making it difficult to extract valuable insights on their own. A more
comprehensive and useful picture can be built by adding additional data, such as temperature
measurements. Vibration data is critical for detecting anomalies or inconsistencies in the operation
of the gear. However, because of the existence of noise, it is frequently impossible to distinguish
important patterns or trends purely from vibration signals. This is when the extra thermal data
comes into play. By combining vibration and thermal data, it is possible to identify hidden
links and correlations between the performance of the gear and the accompanying temperature
fluctuations. The use of both vibration and thermal data seeks to improve the accuracy and
usability of the model built to monitor the extruder gear. This method allows for a more
comprehensive study, allowing for the detection of potential problems such as high friction,
overheating, or abnormal operating circumstances. Finally, by combining multiple data sources,
a more robust and efficient model may be constructed, providing useful insights for optimizing

extruder gear performance, maintenance, and dependability.
¢  Signal processing and feature extraction: The second key aspect of the model is revolves around

signal processing, with the aim of extracting valuable information from gearbox vibration data
while minimizing the inherent noise. The Discrete Wavelet Transform (DWT) was used as a
method for deconstructing, filtering, and preprocessing the vibration signals to achieve this.
The DWT extracted time-frequency statistical information from both the original signal and
each vibration signal decomposition level. A full analysis of the vibration data was performed
by performing decomposition at various levels, collecting variances across different scales and
frequencies. Thermal data, on the other hand, as a time-varying signal, did not go through
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decomposition. Instead, from the raw temperature data, time statistical features were extracted.
The goal of this method was to capture the temporal patterns and trends revealed by temperature
readings. The study aims to improve the quality and usability of the information gained
by applying the DWT to vibration signal processing and extracting time statistical features
from temperature data. This methodology allowed us to identify key trends, correlations, and
anomalies in the vibration and temperature data, allowing us to gain a more comprehensive
understanding of the extruder gear’s behavior and performance.

e  Feature selection: To obtain an effective diagnosis in the setting of anomaly detection, discriminant
traits are required. A correlation filter technique was used to guarantee that the features extracted
had enough discriminative power. This technique ensures that only features with a correlation
percentage of 70% or above are deemed closely connected. By removing characteristics that do
not match this correlation threshold, the resulting feature set is tailored to include informative
and discriminating features, improving the accuracy and effectiveness of the diagnosis process.

¢  Signal Fusion: The integration of data from numerous sources while keeping their different
characteristics is a critical step in our suggested model’s signal data fusion. FastICA was used as
the signal-processing method in our study for this reason. FastICA aided us in the merging of
data from several sources, allowing us to mix and extract important information while preserving
the distinctive qualities of each data source. We accomplished effective signal integration using
FastICA, allowing for a thorough analysis that captures the synergistic effects and correlations
across the various data sources in our investigation.

e  Diagnosis/outlier detection: The entire model’s procedures are built with the goal of detecting
faults, specifically through outlier detection. The model’s structure is deliberately constructed
to accomplish this aim. As the Al tool of choice in our investigation, we used an autoencoder
LSTM. Details concerning the implementation and operation of the LSTM autoencoder have been
discussed earlier in this section. The overarching goal is to use this Al tool to discover issues by
finding anomalies in data, allowing for prompt diagnosis and intervention.

4.1. Model Hyper-Parameter Function

In the hidden layers of neural networks, activation functions are used to introduce nonlinearity;,
which is critical for representing complex input. For instance, linear regression models are insufficient
for most data representations because they lack nonlinear activation functions. Sigmoid, tanh, and
ReLU (Rectified Linear Unit) are examples of common activation functions that are often employed in
deep-layer neural networks. In binary classification tasks, the sigmoid function transfers inputs to a
range of 0 to 1. However, given big input values, it can saturate, inhibiting learning. The tanh function
is similar to the sigmoid function, however, it maps inputs to a range of -1 to 1.

On the other hand, ReLU has grown in popularity as a result of its capacity to improve training
efficiency and effectiveness. Positive inputs are kept while negative inputs are set to 0. ReLU can
experience the "dying ReLU" problem when neurons stuck in the negative area become inactive,
despite its simplicity and computational efficiency. Loss functions, also known as cost functions,
estimate how much the actual ground truth departs from the outputs that were projected. Various task
kinds are catered for by various loss functions. Cross-entropy loss is appropriate for classification jobs
while mean squared error loss is frequently utilized for regression activities. When developing deep
learning models, the loss function is minimized by changing the model’s weights and biases. Iterative
optimization is used to improve the model’s performance and accuracy. The mathematical equations
for some of the regularly employed activation functions sigmoid, relu, and so ftmax are presented in
Equations (13)-(15) respectively.

1

— 13
1+e* 13)

fx

fx = gx = max(0, x) (14)
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exp (x;)
Yjexp (x))
The success of a model is often determined by the architecture chosen, a decision that is often

reliant on the researcher’s knowledge and experience. Table 1 details the Architecture Parameters of
the model used in our analysis.

softmax (x;) = (15)

Table 1. LSTM-Autoencoder Architecture Model Parameter.

Model Architecture Description

Number of Classes 2
Number of Layers 7
Batch Size 32
Number of Epochs 100
Dropout Rate 0.001
Optimizer Adam
Activation Function Relu
Loss Function MSE
Validation Split 0.2

4.2. Model Global Performance Evaluation Metrics

It is critical to thoroughly examine the diagnostic skills of various deep learning while taking
into account variables like model complexity, computational needs, and parameterization in order to
accurately estimate their capabilities. This makes the use of defined criteria for assessing performance
and discriminating necessary. These parameters include F1-score, accuracy, sensitivity, precision, and
false alarm rate. By using these measurements, we can compare and objectively assess the performance
of various models, allowing us to make well-informed decisions based on their individual advantages
and disadvantages. Some of the known global evaluation metrics employed in studies are presented
thus in Equations (16)—(20).

TP

Accuracy = 7 TP+ TN TN (16)

Sensitivity = TPT—WI—% (17)

Precision = TP+ FP PTF P (18)

Fl-Score — 2% Ser.ls.itivity * Plie-ciéion (19)
Precision + sensitivity

FAR = Fpi% (20)

where TP, FP, TN, and FN, respectively, are the numbers of accurately classified groups, numbers of
inaccurately classified groups, numbers of inaccurately labeled samples that belong to a group that
was accurately classified, and the number of inaccurately labeled samples belonging to a group that
was inaccurately classified.
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It is essential to evaluate categorization models in order to judge their effectiveness and
dependability. Although metrics like true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) give a general picture of classification accuracy; it is frequently required to assess
the performance of each specific class to get a more complete picture. Take the case of a classifier that
completes a five-class issue with an overall accuracy of 95%. This apparently great accuracy may really
be the consequence of the model'’s ability to categorize three or four of the five classes accurately while
misclassifying the other one or two classes. However, in the case of an outlier detection model as in
the case of our model, determining these metrics helps assess the model’s performance in accurately
identifying outliers while minimizing false positives and false negatives, ensuring effective outlier
detection not just for the instance but also when employed in other instances.

This discrepancy underlines the necessity for the confusion matrix, which enables us to assess the
diagnostic efficacy of each class in a model. The confusion matrix gives a thorough examination of
the predictions made by the classifier /outlier, dividing them into true positives, false positives, true
negatives, and false negatives for each class. We may evaluate a model’s performance more carefully
by understanding where it performs best or worse by examining this matrix.

In conclusion, while global metrics offer an overall evaluation of classification accuracy, assessing
class-specific performance using the confusion matrix is essential to spot any inconsistencies or biases
and to make defensible choices about the validity of a classification model.

5. Data Collection and Methodology

This section discusses the data acquisition process, sensor placement, signal processing, feature
extraction, feature selection, and signal fusion. The data employed in the study were acquired from
two independent plastic extruder machines (healthy and faulty machines) in SPONTECH.

SPONTECH is a subsidiary of Toray Inc; Toray Co. is Japan’s premier chemical and textile
conglomerate, with an unrivaled No. 1 position in carbon fiber, as well as Japan’s leading material
giant, producing engineering plastics, IT materials, and chemical fibers in addition to carbon fibers.

Figure 3 depicts the setup of individual sensors on the plastic extruder machine. These sensors
are deliberately critically placed to collect crucial information that will be used to generate a dataset
with useful data when examined. As previously stated, we used two plastic extruder machines in our
research. The first machine as seen in Figure 4a had been running for less than four months, and its
data had been designated as the healthy dataset.

The second machine, represented in Figure 4b, had been in service for more than two years and
had a chipped gear tooth. This machine (with the chipped gear tooth) was used to create the faulty
dataset. We sought to evaluate and analyze the variations between the healthy and faulty situations by
incorporating data from these two machines in order to get insights into the performance and potential
concerns of the plastic extruder machines.
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Thermal Sensor

Figure 4. Pictorial View of two extruder gearbox: (a) Healthy plastic extruder gearbox overview (b)
Faulty plastic extruder gearbox overview.

Figure 5a and 5b depict a visualization of time-domain data gathered from the vibration and
thermal sensors respectively in order to have a better understanding of the data collected from both
machines. In our investigation, We used a shear Piezotronics accelerometer model 353B33 with a
vibration sensitivity of 99.2mv /g for our research. To acquire thermal data, we also used an RTD PT100
thermal sensor. This visualization provides a comprehensive perspective of the data collected from
various sensors, allowing us to assess and comprehend the nature of the measurements gathered from
the plastic extruder machines used in our research.
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Figure 5. Raw motor time-domain signal from both extruder gearboxes: (a) Vibration signals (b)
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thermal signals.

From the observation in Figure 5a, a little distinction can be seen between the vibration data
generated from the healthy and faulty gearbox conditions. The healthy data displayed a uniform
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periodic pattern throughout the whole range of the dataset, occasionally modulated at various intervals.
On the other hand, the faulty data visualization shows a non-consistent behavior across the whole data
range; the early part displayed a non-constituent data display while the remaining part of the dataset
displayed to an extent a uniform visualization of the dataset. However, it is important to note that this
visual representation alone might not necessarily indicate the needed discriminative information for
ensuring the effectiveness of an anomaly detection model.

Additionally, Figure 5b shows a comparable data visualization of temperature signals for both the
healthy and faulty gearbox. On the other hand, it is noticeable that the temperature measurements in
the healthy dataset are a little lower than those in the faulty dataset. The difference is normal given that
a damaged gearbox will probably produce higher temperatures than a healthy one. These temperature
changes can help spot abnormalities in gearbox performance and offer useful insights into possible
variances between the two circumstances.

The substantial quantity of noise contained in the vibration signals produced by gearboxes must
be addressed in order to efficiently extract or enhance vital information. As a result, we used (DWT)
to de-noise the signals for both healthy and malfunctioning gearboxes. The visual representation of
the decomposition and de-noising of the vibration signal received from the gearboxes is shown in
Figure 6. By separating the wanted signal components from the noise using this method, we are able
to emphasize and extract the essential data required for additional analysis and diagnostics.
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Figure 6. Discrete wavelet transform for : (a) Healthy plastic extruder gearbox decomposition (b)
Faulty plastic extruder gearbox decomposition.
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The Discrete Wavelet Transform (DWT) was applied to both the healthy and faulty gearbox signals,
as shown in Figure 6a and 6b, resulting in a four (4) level decomposition. This decomposition efficiently
decreases the effects of noise in the signals, revealing the time-frequency domain properties of the
processed signals. As discussed earlier in the previous chapter, the DWT decomposition generates the
approximate and detailed coefficients that represent the signal’s low and high frequencies, respectively.
In our investigation, we concentrated on the approximate coefficient because it offers more detailed
information on the gearbox signal’s significant frequencies and features.

5.1. Feature Extraction

DWT are signal processing tools that uniquely transform a signal to its time-frequency domain;
thus, time-frequency domain features are frequently used to ensure that useful information is
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successfully extracted from these signal-presenting features that are rich an contain all of the useful
details of a given signal. In our investigation, we used a multi-sensor approach with only the vibration
signal being subjected to a DWT; on the other hand, we retrieved only time-domain statistical features
from the temperature, which is time-variant data.

Table 2. Statistically extracted features and their mathematical formulas.

Domain Feature Name Definition
] N
Median (%) sample
Mean T= % (T x;)
n 2
Root Mean Square Xyms = %
)2
Standard Deviation o= ):(x‘n 1)
)2
Variance S2 = ):(x’n )
- o
Standard Error SE = T
i 1 (xi—p)’
Kurtosis Xiurt = N2 -
3
Time-Domain Skewness Xgew = E K("i*f‘) )]
Max Xmax = max (xl)
Min Xmax = min (x;)
— Xmax
Crest Factor Xcp = 22
Peak-to-peak Xp—p = ¥max — Xmin
Peak factor Xpp = f}“%f
Wave Factor XWE = 7&72?:1\9:42
WE = T ]
— Xmax
Clearance factor XCF = trean ox]
Impulse factor Xip = —Zmax
P = I
; 2
Maximum Frequency Xmr = xmax(% Zfi 1 ]x%)
. . 2
Frequency-Domain  Variance Frequency Xve = Xoar(§ LN |x:]%)
By /2-1 _ 4
Spectral Kurtosis SK = &0 %Xgi’n)‘ MXD® 5
Lox
By /2-1

(X (k)| =] X])*

— 2L
Spectral Skewness 5§ = BLoy

In this study, we used sixteen (16) statistical features in the time domain to evaluate temperature
data. In addition, we all employed sixteen time-frequency domain features in analyzing the DWT
decomposition of the vibration signal as well as the original signal; the sixteen statistical time-frequency
features included twelve (12) time-domain features and four (4) frequency-domain features. Our goal
was to extract useful information from the signals in order to improve the model’s efficiency.

It is vital to highlight that we did not adhere to any precise criteria when selecting statistical
features. Instead, we chose based on the popularity of specific characteristics in the area and the
authors’ experience.
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5.2. Feature Selection and Sensor Fusion

To evaluate the adequacy of the extracted features for our model, we conducted a discriminant
test using a Pearson correlation-filter-based approach. This method involved assessing the correlation
between features and dropping the features with a correlation of 70% or more leaving behind features
below the 70% similarity threshold. Figures 7 and 8 show the correlation plot and the filter-based
correlation plot for both the thermal and vibration datasets employed in our study, respectively.
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Figure 7. Correlation plot for : (a) All extracted statistical features for healthy gearbox (b) all selected
statistical features from healthy gearbox.
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Figure 8. Correlation plot for : (a) All extracted statistical features for faulty gearbox (b) all selected
statistical features from faulty gearbox.

By this means, the correlation filter-based model selected five (5) features from the thermal data
(shown in Figure 7b) and seven (7) features from the vibration data (shown in Figure 8b). This feature
selection process efficiently reduced the dataset, retaining only the relevant and most discriminant
features necessary for optimal model performance.

To integrate the multi-sensor data in our study, FastICA (Fast Independent Component Analysis)
was used to combine multi-sensor data in our investigation. This method was used to keep the
distinguishing characteristics of each sensor’s separate qualities while blending them together. The
FastICA ensures that the fused data keeps the distinct properties of each sensor, allowing us to gather
and exploit the essential information from all sensors in a cohesive manner.
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6. Experimental Results and Model Evaluation

An autoencoder is a neural network that learns to reconstruct input data from a compressed
representation known as encoding. On the other hand, LSTM, a recurrent neural network, is frequently
employed in language processing and captures long-term dependencies. In order to take input data,
learn a concise representation, and reconstruct the original input, an LSTM can be incorporated into
an autoencoder architecture. The reconstruction loss is used to train the autoencoder. Although the
number of features has no direct impact on performance, large amounts of input data could make it
harder to learn a decent representation. Performance is influenced by the size, reliability, and selection
of the hyperparameters.

LSTM-autoencoders, like other neural networks, can be trained using common approaches
such as stochastic gradient descent and back-propagation. The reconstruction loss, which measures
the discrepancy between the input and output sequences, is often used to evaluate network
performance. The LSTM-autoencoder can learn to decrease this reconstruction loss and provide
accurate reconstructions of the input data by refining the model’s parameters using gradient-based
optimization approaches. To create a model that could efficiently determine anomaly in a plastic
extruder gearbox, an autoencoder LSTM architecture was employed in our study; where the LSTM
captured the long-term dependency of a given data which in this case a fusion of the machine’s
vibration and thermal sensor data, while the autoencoder helps in dimension and also for feature
learning. The mean squared error (MSE) is a popular loss function used in the training of an
LSTM-autoencoder. The MSE quantifies the average squared difference between the expected and
true outputs, indicating the goal of accurately reconstructing the input data. The model is trained on
labeled training data and its performance is evaluated on a separate validation set during the training
phase. The validation loss is computed on the validation set, while the training loss is computed
on the training set. It is critical to monitor the trend of these losses, as a considerable difference
between them can suggest over-fitting. Over-fitting happens when the model fits the training data
too closely, resulting in poor performance on unknown data. In academia lots of methodologies have
been presented in mitigating over-fitting in autoencoder LSTM, these techniques include dropout,
early stop, regularization, data augmentation, earlier data fusion, and reducing model complexity
[59]. Some of these techniques we consciously ensure we implement in our model setup to enable and
efficiently model performance that is void of over-fitting. Figure 9 the training and validation loss for
the LSTM-autoencoder model employed in our study.

Autoencoder Training and Validation Loss

0.000200 —— Taining Loss

0000175 —— Validation Loss
0000150

0000125
0000100

Loss

0Loooa7s

0000050

0000025

0000000 A

o 5 10 15 20
Epoch

Figure 9. Training and validation loss plot for our autoencoder LSTM model.

Figure 9 depicts our model’s effective training, adaption, and validation. It clearly shows the
discernible difference between validation and training loss. Notably, throughout the early stages of
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model training, the difference between the training and validation losses shrank significantly, reaching
a point of negligible importance around the 22nd epoch. Because of this convergence, model training
was halted at that epoch.

The key objective of our model is to create a framework capable of quickly identifying instances
of anomalies within a plastic extruder gearbox. As a result, it is critical to evaluate the model’s
performance by subjecting it to our faulty collected data. This technique seeks to assess the model’s
competency and precision in finding faults using an outlier fault detection methodology included
in the model’s architecture. We also employed other evaluation metrics to authenticate our model
such as precision, F1-score, accuracy, and accuracy to achieve this goal. These metrics prove valuable
when an individual possesses the actual labels of input data and seeks to group the signal. The
LSTM-autoencoder’s architecture is composed of seven layers and encompasses 247,937 parameters;
the seven layers include an input layer, four encoder LSTM layers, a repeated vector layer, and a
time-distributed layer. A comprehensive depiction of the LSTM-autoencoder model is available in
Table 1, showcasing the architecture of our model such as a dropout rate set at 0.001, a total of 100
epochs, a batch size of 32, seven layers, and two classes. After successfully training our model, we
used an outlier detection technique to predict the presence of an abnormality in our faulty dataset.
Figure 10 depicts the reconstruction error and the threshold, which demonstrate the principle of the
outlier detection technique used in our model; reconstruction error is the difference or discrepancy
between the input data and the output data of a model, which occurs frequently when the input
data is fed through an encoding and decoding process. In the case of anomaly detection, as used in
our model, reconstruction error is frequently used to highlight the dissimilarity between input and
output data, perhaps indicating if the data is anomalous or faulty. In our situation, we used the dataset
gathered from the healthy extruder gearbox to train our model, and the dataset collected from the
faulty extruder gearbox as the output dataset.
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Figure 10. Visualization plot for the set threshold with reconstruction error for the proposed model’s
outlier detection.

Global metrics are critical in measuring the performance and efficacy of models across entire
datasets or any particular problem the model is intended to address in the realms of data analysis,
machine learning, and assessment. When looking for a full understanding of how a model
performs across numerous classes, categories, or instances, using global evaluation metrics becomes
very important. This method allows for a comprehensive assessment of a model’s strengths and
shortcomings across all groups and categories.

To evaluate the model performance in our study, we used global evaluation metrics such as
Accuracy, F1-Score, Recall, and Precision. These metrics provide a comprehensive picture of how well
the model performs in various settings. Our findings are summarized in Table 3, which summarizes
the conclusions of our inquiry.
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Table 3. Global Evaluation Metrics values for the Autoencoder-LSTM Model.

Definition Accuracy (%) Precision (%) Recall (%) F1-Score (%)
AE-LSTM 94.42 100 93.67 91.72

To emphasize the importance of model validation, we present the concept of a confusion matrix.
This tool we used to determine whether the presented accuracy corresponds to the predicted labels’
class classifications. Figure 11 presents an overview of the confusion matrix technique on our model.
The derived confusion matrix shows that the model’s predictions are proportionally consistent with
the accuracy metric, reinforcing the model’s reliability.
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Figure 11. Confusion matrix for faulty class anomaly outlier detection for the proposed model.
7. Discussion and Conclusion

Breakdowns in machinery can have serious consequences, including downtime and financial
losses. Our research focused on the gearbox of a plastic extruder machine, which is primarily made
up of helical gears. helical gears, despite their lower susceptibility to failure, are not immune to
breakdowns, necessitating the implementation of Condition-Based Monitoring (CBM). Our analysis
used a multi-sensor approach, including vibration and thermal sensors. Traditional vibration
measurement can be hampered due to the tendency of defective gearboxes to generate excessive
noise. Our research resulted in a solid framework that included various methodologies such as the
Discrete Wavelet Transform (DWT) for vibration signal decomposition, time-frequency statistical
feature extraction, correlation filter-based feature selection, the Fast Independent Component Analysis
(FASTICA) sensor fusion technique, and an outlier fault detection approach.

One of our study’s main goals was to create a model capable of seamlessly merging different
sensors while retaining their inherent properties, which aligned with the study’s overall goal. We
extracted 16 time-domain features from temperature signals and time-frequency features from
vibration signals to do this. Following that, we used a careful procedure to choose the five and
seven most important features from the thermal and vibration datasets respectively. Using the Fast
Independent Component Analysis (FASTICA) approach, these selected features were harmoniously
blended into a single-dimensional representation. pleasantly, our innovative implementation of the
Autoencoder-LSTM outlier fault detection technique achieved a remarkable prediction performance
accuracy of 94.42%, setting an impressive milestone in our research path. In a commitment to ensuring
the integrity of our model, we thoroughly scrutinized our outcomes using a variety of global evaluation
metrics. This extensive study served to validate and highlight the robustness and dependability of our
proposed system. Overall, our study’s multidimensional approach not only addressed sensor fusion
but also demonstrated the potential of our model for effective problem detection and classification in
the context of plastic extruder gearbox systems.
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A pivotal hurdle encountered in our study revolved around data acquisition, which had a
substantial impact on the data collection procedure. This highlighted the need to use appropriate data
extraction strategies to achieve the goals of our study. Future studies could compare the accuracy and
performance of our model to alternative models that use different feature extraction and selection
approaches. Additionally, the incorporation of more advanced deep learning algorithms could be
investigated in order to evaluate whether improved performance can be attained within feasible
computing timeframe. Notably, despite our model’s 94.42% accuracy, there is still room for significantly
better performance results. These efforts would contribute to a thorough understanding of fault
detection models, helping the improvement and optimization of our proposed system.
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Abbreviations

The following abbreviations are used in this manuscript:

RUL Remaining Useful Life

FN False Negative

TN True Negative

TP True Positive

FDI False Detection and Isolation
IoT Internet of Things

PHM Prognostics and Health Management
LSTM Long Short Term Memory

ANN Artificial Neural Network

ML Machine Learning

DL Deep Learning

FNNN Feed-forward neural networks

DNN Deep neural networks

CNN Convolutional neural networks

DBN Deep belief networks

DWT Discrete Wavelet Transform

LLE Local Linear Embedding

PCA Principal Component Analysis

ICA Independent Component Analysis

AE Autoencoder

Al Artificial Intelligence

FastICA  Fast Independent Component Analysis
MSE Mean Square Error

CBM Condition Based Monitoring
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