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Abstract: In Taiwan, colorectal cancer is ranked second and third in terms of mortality and cancer 18 
incidence, respectively. In addition, medical expenditures related to colorectal cancer are 19 
considered to be the third highest. While advances in treatment strategies have provided cancer 20 
patients with longer survival, potentially harmful second primary cancers can occur. Therefore, 21 
second primary colorectal cancer analysis is an important issue with regard to clinical management. 22 
In this study, a novel predictive scheme was developed for predicting the risk factors associated 23 
with second colorectal cancer in patients with colorectal cancer by integrating five data mining 24 
classification techniques, including support vector machine, random forest, multivariate adaptive 25 
regression splines, extreme learning machine, and extreme gradient boosting. In total, 4,287 26 
patients in the datasets provided by three hospital tumor registries were used. Our empirical 27 
results revealed that this proposed predictive scheme provided promising classification results and 28 
the identification of important risk factors for predicting second colorectal cancer based on 29 
accuracy, sensitivity, specificity, and area under the curve metrics. Collectively, our clinical 30 
findings suggested that the most important risk factors were the combined stage, age at diagnosis, 31 
BMI, surgical margins of the primary site, tumor size, sex, regional lymph nodes positive, 32 
grade/differentiation, primary site, and drinking behavior. Accordingly, these risk factors should 33 
be monitored for the early detection of second primary tumors in order to improve treatment and 34 
intervention strategies. 35 

Keywords: risk factors, second primary cancer (SPC), colorectal cancer, classification techniques, 36 
extreme gradient boosting 37 
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1. Introduction 43 

Worldwide, colorectal cancer is considered one of the top three causes of cancer-related deaths 44 
in developed countries (Zinatizadeh et al., 2018). In Taiwan, it is also a leading cause of death, 45 
ranking second and third in terms of incidence and mortality, respectively. However, due to the 46 
success of cancer screening in Taiwan, the early detection and diagnosis of malignant tumors have 47 
become feasible. In addition, due to advances in therapeutic instruments and techniques, such as 48 
three-dimensional spatial conformal radiation therapy, intensity-modulated radiation therapy, and 49 
proximity radiation therapy, cancer patients have longer survival. However, there is a risk of the 50 
occurrence of potentially harmful second primary cancers (SPCs; Sakellakis et al., 2014; Santangelo, 51 
2015; Xu et al., 2016). 52 

   Five-year cancer survival rates have historically been an important indicator of clinical 53 
treatment. Recently, the overall cancer survival rate has increased to 66.5% in the United States 54 
(Mahmoud et al., 2016). In Taiwan, excluding the low survival rates of lung, liver, and gastric cancers, 55 
the survival rate of other cancers has also increased significantly. However, one of the most difficult 56 
clinical issues for cancer survivors is the occurrence of multiple primary malignant neoplasms 57 
(MPMNs). Multiple malignancies are characterized as two or more independent primary 58 
malignancies diagnosed in different tissues/organs in the same individual (Li et al., 2015). In general, 59 
MPMNs are most present in double cancers. According to the literature, the incidence of second 60 
primary malignant tumors in patients with malignant tumors is six times higher than that in healthy 61 
people. Second primary malignant tumors occur most often within 3 years of the first tumor 62 
treatment, with the shorter the interval between the first cancer and the SPC, the worse the prognosis 63 
(Wu et al., 2014). The prevention of MPMNs has always been a significant problem faced by both 64 
doctors and patients. The high prevalence age range for MPMNs is 50–59 years, with most patients 65 
over 50 years (Sakellakis, 2014).  66 

   The first research report on MPMNs was published by Warren and Gates in 1932. According 67 
to their definition, MPMNs should have first and second malignant tumors, there should be at least 2 68 
cm between the two tumors, they should be excluded from metastatic tumors within 5 years, and 69 
occur at a time more than 3 years from the primary tumor (Meng et al., 2017). The definition of SPC 70 
(synchronous vs metachronous) is based on the diagnosed time of the first primary cancer. 71 
Accordingly, primary cancers found within 6 months of the first diagnosis are considered to be 72 
synchronous, whereas metachronous cancers refer to a primary cancer discovered 6 months after the 73 
first diagnosis (Huang et al., 2015). Figure 1 shows the trajectory of cancer treatment, where the 74 
patient is diagnosed and staged first, followed by the targeted therapy and palliative treatment. The 75 
treatment target can be divided into cancer-free survival and chronic comorbid management. The 76 
latter can result in treatment failure, leading to palliative treatment, and in more severe cases, to an 77 
SPC (Patricia et al., 2015). 78 

In Taiwan, the incidence of MPMNs in rapidly increasing. According to the guidelines of the 79 
Institute of Medicine’s prevention and treatment recommendations for multiple malignancies, 80 
“Based on the cancer-registered population, it is imperative to use the empirical medical perspective 81 
and systematic analysis of therapeutic techniques to further develop clinical treatment guidelines for 82 
multiple malignancies (MPMNs)” (Vogt et al., 2017).83 
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 84 
Figure 1. Cancer Care Trajectory 85 
 (Modified from source: Patricia et al., 2015) 86 

   With recent developments in information technology, data classification methods represent 87 
an important research field. Data mining technologies have also become useful tools to support 88 
clinical diagnostic guidelines. Machine learning is used to analyze important information hidden in 89 
the vast amount of data stored in databases. For example, breast cancer (Chang et al., 2019), ovarian 90 
cancer (Tseng et al., 2017), and colorectal cancer (Ting et al., 2018) have achieved good performances 91 
using these techniques. 92 

Over the last two decades, cancer registration databases have been used to store records related 93 
to the treatment of colorectal cancer patients. Indeed, a vast network of useful information is hidden 94 
in these collected datasets. Although traditional data query and statistical functions can be utilized, it 95 
is not easy to find unknown information features in practice and information about their potential 96 
value cannot be directly observed from the dataset. As such, how to explore hidden, unknown, and 97 
valuable information from SPC databases through specific procedures and methods is an important 98 
research topic that aims to improve prevention and treatment strategies for colorectal cancer 99 
survivors. 100 

   In this study, we used machine learning techniques to develop a predictive model of 101 
colorectal cancer and an analyzing model of SPC. These classification techniques can be used to 102 
identify various analyzable risk factors and clinical features within SPC, providing decision support 103 
for clinical treatment.  104 

 105 

2. Methods  106 

2.1 MARS 107 

Multivariate adaptive regression splines (MARS) is a flexible procedure used to find optimal 108 
variable transformations and interactions. It can be used to identify model relationships that are 109 
nearly additive or that involve interactions with fewer variables. MARS is a nonparametric statistical 110 
method based on a divide-and-conquer strategy for partitioning training datasets into separate 111 
groups, each of which gets its own regression equation. The non-linearity of the MARS model is 112 
approximated via the use of separate linear regression slopes in distinct intervals of the independent 113 
variable space.  114 

The MARS function is a weighted sum of the basis functions (BFs), which are splines piecewise 115 
polynomial functions. It can be represented using the following equation [Friedman 1991]: 116 
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𝑓(𝑥) = 𝛼0 + ∑ 𝛼𝑚
𝑀
𝑚=1 Β𝑚(𝑥)                  (1)  117 

 118 
where 𝛼0  and 𝛼𝑚  are constant coefficients that can be estimated using the least-squares 119 

method. M is the number of basis functions. Β𝑚(𝑥) represents the basis functions. The hinge 120 
functions, 𝑚𝑎𝑥⁡(0, 𝑥 − 𝑘)  or 𝑚𝑎𝑥⁡(0, 𝑘 − 𝑥) , with a knot defined at value t are used in MARS 121 
modeling. In addition, MARS automatically selects the variables and values of those variables for 122 
knots of the hinge functions based on generalized cross-validation criterion (Zhang and Goh 2016).  123 

 124 

2.2 RF 125 

Random forest (RF) is an ensemble classification method based on statistical learning theory 126 
that combines several individual classification trees [Breiman, 2001, Yuk et al. 2018]. RF is a 127 
supervised machine learning algorithm that considers the unweighted majority of the class votes. 128 
First, various random samples of variables are selected as the training dataset using the bagging 129 
procedure, which is a meta-algorithm that uses random sampling with replacement to 130 
synchronously reduce variance and elude over-fitting. Classification trees using selected samples are 131 
then built into the training process. A large number of classification trees are then used to form a RF 132 
from the selected samples. Classification and regression tree (CART) is typically the classification 133 
method used for RF modeling. Finally, all classification trees are combined and the final 134 
classification results are obtained by voting on each class and then choosing the winner class in 135 
terms of the number of votes. RF performance is measured by a metric called ‘out of bag’ error, 136 
which is calculated as the average of the rate of error for each weak learner. In RF, each individual 137 
tree is explored in a particular way. The most important variable randomly chosen is used as a node 138 
and each tree is developed to its maximum expansion (Breiman, 2001). 139 

 140 

2.3 SVM 141 

Support vector machine (SVM) is a machine learning algorithm based on the structural risk 142 
minimization principle for estimating a function by minimizing the upper bound of the 143 
generalization error (Vapnik 2000). In modeling an SVM model, one can initially use the kernel 144 
function to, either linearly or non-linearly, map the input vectors into one feature space. Then, within 145 
the feature space, the SVM attempts to seek an optimized linear division to construct a hyperplane 146 
that separates the classes. In order to optimize the hyperplane, SVM solves the optimization problem 147 
using the following equation (Vapnik 2000):   148 

𝑀𝑖𝑛⁡𝜙(𝑥) =
1

2
‖𝑤‖2  149 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡⁡𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1⁡, 𝑖 = 1,2, … , 𝑁      (2) 150 

 151 
where 𝑥𝑖 ∈ 𝑅𝑑  is the input variable, 𝑦𝑖 ∈ {−1,1}  is the known target variable, 𝑁  is the 152 

number of sample observations, 𝑑 is the dimension of each observation, 𝑤 is the vector of the 153 
hyperplane, and 𝑏 is a bias term.  154 

In order to solve eq. (2), the Lagrange method is used to transform the optimization problem into 155 
a dual problem. The penalty factor is used as a tuning parameter in the transformed dual problem to 156 
control the trade-off between maximizing the margin and the classification error. In general, SVM 157 
does not find the linear separate hyperplane for all application data. For non-linear data, it must 158 
transform the original data to a higher dimension of linearity separately as the best solution. The 159 
higher dimension is called the feature space and it improves the data separated by classification. The 160 
common kernel functions are linear, polynomial, radial basis function, and sigmoid. Although 161 
several choices for the kernel function are available, the most widely used is the radial basis function 162 
kernel (Tseng et al. 2017; Li et al. 2018). 163 
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 164 

2.4 ELM 165 

Extreme learning machine (ELM) is a single hidden layer feed-forward neural-network (SLFN) that 166 
randomly selects the input weights and analytically determines the output weights of the SLFN 167 
(Huang et al. 2006). The modeling time of ELM is faster than traditional feedforward network 168 
learning algorithms such as the back-propagation (BP) algorithm. It also avoids many difficulties 169 
present in gradient-based methods such as the stopping criteria, learning rate, learning epochs, local 170 
minimal, and over tuning issues.   171 

In SLFNs, 𝑁 represents the arbitrary distinct samples (𝑥𝑖 , 𝑦𝑖), using ρ hidden neurons and the 172 
activation function vector θ(x), and approximates 𝑁 samples with zero error, written as:  173 

𝜢𝜜 = 𝒀                        (3) 174 

where 𝑯𝑁×𝜌 = [𝜃(𝑤𝑖𝑥𝑗 + 𝑏𝑖)] is the hidden layer output matrix of the neural network and the 175 

i-th column of 𝑯; 𝑨 is the matrix of the output weights; 𝑤𝑖  is the weight vector connecting the i-th 176 
hidden node and the input nodes; 𝑏𝑖 is the threshold (bias) of the i-th hidden node; and⁡𝒀 is the 177 
matrix of the targets.  178 

Huang et al. (2006) demonstrated that the input weights and hidden layer biases can be 179 
randomly generated in the ELM algorithm, and the output weights can be determined as simply as 180 
finding the least-square solution to a given linear system. Accordingly, the minimum norm 181 
least-square solution to the linear system is 𝐀̂ = 𝑯̃𝐘, where 𝑯̃ is the Moore-Penrose generalized 182 
inverse of the matrix 𝑯. The minimum norm least-square solution is unique and has the smallest 183 
norm among all least-square solutions (Huang et al., 2006).  184 

 185 

2.5 XGboost 186 

XGBoost belongs to the group of widely used tree learning algorithms. It is a supervised 187 
learning algorithm based on a scalable end-to-end gradient tree boosting system (Chen & Guestrin 188 
2016). Boosting refers to the ensemble learning technique of building many models sequentially, 189 
with each new model attempting to correct for the imperfections or inadequacies in the previous 190 
model. In other words, in gradient boosting, a new weak learner is constructed to be maximally 191 
correlated with the negative gradient of the loss function associated with the whole assembly for 192 
each iteration [Natekin and Knoll 2013].  193 

XGBoost is the implementation of a generalized gradient boosting decision tree that uses a new 194 
distributed algorithm for tree searching, which speeds up tree construction. XGBoost includes a 195 
regularization term that is used to alleviate overfitting, as well as support for arbitrary differentiable 196 
loss functions (Torlay et al. 2017). The objective function of Xgboost consists of two parts, namely, a 197 
loss function over the training set and a regularization term that penalizes the complexity of the 198 
model as follows (Mitchell and Frank 2017): 199 

 200 

Objective = ∑ 𝑳(𝑦𝑖 , 𝑦̂𝑖)𝑖 + ∑ 𝛀(𝑡𝑘)𝑘                     (4) 201 

 202 

where 𝑳(𝑦𝑖 , 𝑦̂𝑖) can be any convex differentiable loss function that measures the difference 203 
between the prediction and the true label for a given training instance. 𝛀(𝑡𝑘)  describes the 204 
complexity of the tree 𝑓𝑘 and is defined in the XGBoost algorithm as: 205 

𝛀(𝑡𝑘) = 𝛾𝑻 +
1

2
𝜆𝜔2                        (5) 206 

where 𝑻⁡is the number of leaves on tree 𝑡𝑘 and 𝜔 is the weight of the leaves. When 𝛀(𝑡𝑘) is 207 
included in the objective function, it is forced to optimize for a less complex tree, which 208 
simultaneously minimizes 𝑳(𝑦𝑖 , 𝑦̂𝑖). This helps to alleviate any overfitting issues. 𝛾𝑻 provides a 209 
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constant penalty for each additional tree leaf and 𝜆𝜔2 penalizes for extreme weights. 𝛾 and 𝜆 are 210 
user configurable parameters (Mitchell and Frank 2017). 211 

 212 

3 Proposed Prediction Scheme 213 

In this study, the five data mining classification techniques described above were integrated to 214 
propose a scheme for predicting SPC in colorectal cancer patients. The flowchart of the proposed 215 
scheme is shown in Figure 1. 216 

  217 
 218 

Figure 1. The proposed scheme for risk factor prediction 219 

 220 
The first step of the proposed scheme was to collect the data. The second step was to collect 221 

candidate risk factors as predictor variables. As shown in Table 1, the 14 risk factors for SPC in 222 
colorectal cancer patients are represented as X1 to X14. The target variable is SPC or not (Y). 223 

Table 1. The fourteen candidate risk factors for SPC in colorectal cancer patients 224 

Variables Description 

X1. Sex Male/female 

X2. Age at diagnosis Age at diagnosis 

X3. Primary site Colon/rectal 

X4. Grade/differentiation Distinguish by differentiation 

X5. Tumor size Distinguish by unit size 

X6. Regional lymph nodes positive Differentiated by lymphoid number 

X7. Combined stage Sorted out by clinical stage and pathologic stage 

X8. Surgical margins of the primary 

site 
Residual/no residual 

X9. Radiation therapy/no radiation 

therapy 
Radiation therapy/no radiation therapy 

X10. Chemotherapy/no chemotherapy Chemotherapy/no chemotherapy 
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X11. BMI BMI 

X12. Smoking behavior Smoking behavior/no smoking behavior 

X13. Betel nut chewing  Betel nut chewing/no betel nut chewing  

X14. Drinking  Drinking/no drinking 

Y: SPC 1: No, 2: yes 

 225 
In the third step, we constructed classification models for predicting SPC in colorectal cancer 226 

patients. In building the classification models, we used two types of modeling processes. One was a 227 
single model and the other was a two-stage model. In modeling the single models, the entire 14 risk 228 
factors were directly used as predictors for SVM, RF, MARS, ELM, and XGboost for constructing 229 
five single classification models. These were termed single SVM (S-SVM), single RF (S-RF), single 230 
MARS (S-MARS), single ELM (S-ELM), and single XGboost (S-XGboost) models. 231 

The two-stage model integrating the feature selection method and classifier were used in the 232 
third step of the proposed scheme as important disease risk factors are often fundamental indicators 233 
that provide useful information for modeling effective disease predictions. In modeling the 234 
two-stage model, a feature selection method was first used to select the important risk factors. 235 
Among the five data mining methods, only RF, MARS, and XGboost can be used to select important 236 
risk factors based on their fundamental algorithms, thus these were used as the three feature 237 
selection methods to identify and rank important risk factors for predicting SPC in colorectal cancer 238 
patients. Each feature selection method generated one set of important risk factors. Using only one 239 
feature selection technique may not provide stable and effective selection results. A simple average 240 
rank method was used to combine the risk factor selection results of the three methods.  241 

Table 2 shows the selected and ranked risk factors using the RF, MARS, and XGboost methods. 242 
Note that a risk factor with a rank of 1 indicates that it is the most important risk factor, while that 243 
with a rank of 14 indicates that it is a risk factor not selected by the method. For each risk factor, the 244 
average rank was obtained by calculating the average value of its rankings in the RF, MARS, and 245 
XGboost methods. Table 2 shows also the average rank of every risk factor. The ranked overall 246 
variable importance of all the risk factors is shown in Figure 2. It can be observed that X7, with an 247 
average rank of 1, is the most important risk factor, followed by X2 and X11. 248 

 249 

Table 2. The selected and ranked risk factors using the RF, MARS, and XGboost methods 250 

Risk factors RF MARS XGboost Average Rank  

X1 10 2 4 5.3 

X2 2 3 2 2.3 

X3 11 5 11 9.0 

X4 6 14 5 8.3 

X5 5 8 3 5.3 

X6 7 9 9 8.3 

X7 1 1 1 1.0 

X8 4 4 8 5.3 

X9 14 9 14 12.3 

X10 13 14 13 13.3 

X11 3 6 6 5.0 

X12 12 7 12 10.3 

X13 9 14 10 11.0 

X14 8 14 7 9.7 

 251 
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 252 

Figure 2. The ranking of all risk factors 253 

 254 
In the modeling process of the two-stage method, after obtaining the average rank of each risk 255 

factor, the overall important risk factors should be identified before constructing a classification 256 
model. In this study, an average rank value less than 10 was used as the criteria for selecting the 257 
overall important risk factors. These criteria were determined by the suggestion of clinical 258 
physicians. Based on these criteria, it can be observed from Figure 2 that the 10 risk factors, including 259 
X7 (combined stage), X2 (age at diagnosis), X11 (BMI), X8 (surgical margins of the primary site), X5 260 
(tumor size), X1 (sex), X6 (regional lymph nodes positive), X4 (grade/differentiation), X3 (primary 261 
site), and X14 (drinking) were selected as the important risk factors. 262 

 In the final stage of the two-stage method, the identified 10 overall important risk factors were 263 
served as the input variables for the SVM, RF, MARS, ELM, and XGboost methods in order to 264 
predict SPC in colorectal cancer patients. The five two-stage methods were termed A-SVM, A-RF, 265 
A-MARS, A-ELM, and A-XGboost, respectively.  266 

In the fourth step of the proposed scheme, after obtaining the classification results from the five 267 
single methods and the five two-stage methods, we used accuracy, sensitivity, specificity, and area 268 
under the curve (AUC) parameters as classification accuracy metrics to compare the performance of 269 
the ten models. 270 

In the final step, after comparing the classification performance of the S-SVM, S-RF, S-MARS, 271 
S-ELM, S-XGboost, A-SVM, A-RF, A-MARS, A-ELM, and A-XGboost models, we obtained the final 272 
diagnosis results and identified the important risk factors for predicting SPC in colorectal cancer 273 
patients. 274 

 275 

4. Empirical Results 276 

In this study, colorectal cancer datasets provided by three hospital cancer registries were used 277 
to verify the proposed medical diagnostic scheme for predicting the occurrence of SPC in colorectal 278 
cancer patients. Each patient in the dataset had 14 predictor variables, with one response variable 279 
indicating SPC or not. Excluding incomplete records, there were a total of 4,287 patients in the 280 
dataset. The 10-fold cross-validation method was used in this study for evaluating the performance 281 
of the proposed scheme.  282 

For modeling the ten models, including the S-SVM, S-RF, S-MARS, S-ELM, S-XGboost, A-SVM, 283 
A-RF, A-MARS, A-ELM, and A-XGboost models, for their predictive ability for the risk of SPC in 284 
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colorectal cancer patients, the software R (version 3.6.1) was employed. Each method used a 285 
different R package for analysis. This study used a 10-fold cross-validation procedure for training 286 
and testing the performance of the ten models. 287 

  Using the process detailed in Section 3, Table 3 shows the classification results of the five 288 
single methods, including the S-SVM, S-RF, S-MARS, S-ELM, and S-XGboost models. From Table 3, 289 
it can be observed that the AUC values of the S-SVM, S-RF, S-MARS, S-ELM, and S-XGboost models 290 
were 0.711, 0.618, 0.640, 0.710, and 0.550, respectively. The single SVM model provided the highest 291 
AUC value, followed by the single XGboost model with a slightly smaller AUC value. However, it 292 
also can be seen from Table 3 that the accuracy value of the S-XGboost model was 0.641, which is 293 
significantly greater than that of the single SVM model at 0.408. Figure 3 shows the ROC curves of 294 
the five single classification methods for the occurrence of SPC in colorectal cancer patients. Thus, 295 
among the five single classification methods, the single XGboost model provided the best 296 
classification results.   297 

 298 

Table 3. Classification results of the five single methods 299 

Methods Accuracy Sensitivity Specificity AUC 

S-SVM 0.408 0.233 0.428 0.711 

S-RF 0.819 0.384 0.868 0.618 

S-MARS 0.727 0.488 0.754 0.640 

S-XGboost 0.641 0.709 0.633 0.710 

S-ELM 0.483 0.361 0.496 0.550 

 300 
 301 
 302 

  

(a) S-SVM (b) S-RF 

  

(c) S-MARS (d) S-XGboost 
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(e) S-ELM  

Figure 3. ROC curves of the five single methods 303 

  304 
As aforementioned, the 10 risk factors, including X7, X2, X11, X8, X5, X1, X6, X4, X3, and X14, 305 

were selected as the important risk factors and then served as the critical predictor variables for 306 
constructing the five two-stage methods, including the A-SVM, A-RF, A-MARS, A-ELM, and 307 
A-XGboost models.  308 

Table 4 shows the classification accuracy matrices of the five two-stage methods. As depicted in 309 
Table 4, it can be observed that the A-XGboost method generated the highest AUC value at 0.714, 310 
with a sensitivity value of 0.767, compared with the competing models. Figure 4 displays the ROC 311 
curves of the five two-stage methods. From Table 4 and Figure 4, it can be observed that the 312 
A-XGboost method generated the best performance for predicting the occurrence of SPC in 313 
colorectal cancer patients and is the best method among the five two-stage models.  314 

 315 

Table 4. Classification results of the five two-stage methods 316 

Methods Accuracy Sensitivity Specificity AUC 

A-SVM 0.294 0.407 0.281 0.672 

A-RF 0.615 0.558 0.622 0.604 

A-MARS 0.731 0.361 0.772 0.566 

A-XGboost 0.611 0.767 0.593 0.714 

A-ELM 0.425 0.442 0.424 0.546 

 317 

  

(a) A-SVM (b) A-RF 

  

(c) A-MARS (d) A-XGboost 
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(e) A-ELM  

Figure 4. ROC curves of the five two-stage methods 318 

 319 
For comparing the classification performance between the five single methods and the five 320 

two-stage models, Figure 5 depicts the AUC values of the ten models in decreasing order. It can be 321 
observed from Figure 5 that the A-XGboost model generated the best AUC value, followed by the 322 
S-SVM and S-XGboost models. These results indicated that the A-XGboost method is a good 323 
alternative for constructing a classification model for diagnosing the occurrence of SPC in colorectal 324 
cancer. Moreover, the A-XGboost method can be used to select important risk factors that are more 325 
influential on patients with SPC of colorectal cancer.  326 

 327 
 328 

 329 

Figure 5. Comparison of the AUC values of the five classifiers with and without using the proposed 330 
scheme 331 

 332 

5. Discussion and Conclusions 333 

In this study, 10 important risk factors, including the combined stage, age at diagnosis, BMI, 334 
surgical margins of the primary site, tumor size, sex, regional lymph nodes positive, 335 
grade/differentiation, primary site, and drinking behavior, were selected by the A-XGboost model, 336 
which provided the best classification performance among the ten models constructed in this study.   337 

Colorectal cancer ranks second and third in terms of mortality and incidence, respectively, in 338 
Taiwan. It is also the third highest cancer in terms of medical expenditure. While patient survival has 339 
improved, the occurrence of second primary cancers in colorectal cancer patients has become an 340 
important issue for clinical management. To address this issue, data from the cancer registry can be 341 
used to better understand the disease and maximize the prevention of SPC. Important issues for 342 
future research include predictive models (radiotherapy and chemotherapy) and their association 343 
with SPC, as well as a better understanding of the interactions with other genetic factors. Further 344 
discussion with patients after diagnosis should help determine the optimal duration of monitoring 345 
and follow-up.  346 
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