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Abstract: This paper proposes a new disorder detection method CCF-AE for dynamic plant based 

only on its input-output relation using cross-correlation function and neural network autoencoder. 

CCF-AE method does not use the reference model of the dynamic object, but consider real-time 

behavior changes, given by input and output time series. The proposed method was used to detect 

disorder in the process of nonlinear pH-neutralization reaction, and the cumulative sum algorithm 

(CUSUM) was used in a comparative experiment. The experiment demonstrated better accuracy of 

the proposed method than the CUSUM algorithm. Also CCF-AE has more advantages in detecting 

disorder in the behavior of a complex nonlinear system. 
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1. Introduction 

In increasingly complex industrial environment, the stable operation of automation control 

systems is crucial to ensuring improved production efficiency and product quality. 

With the development of information technology, traditional control system design has 

gradually shifted from analog circuit architectures that rely on continuous signal processing to 

discrete-time control technology using intelligent algorithms. However, this change also brings with 

it new challenges—the increasing complexity of systems and the diversity of failure modes [1]. The 

complexity of systems highlights the problem of detection disorder and anomalies. The disorder is 

an unpredictable change of system parameters and the anomaly is a visible change of system 

behavior. 

Disorder detection plays a vital role in modern automated control systems. It means a dynamic 

monitoring for the rapid detection of any behavior or pattern deviating from the regular operating 

state during system operation by analyzing real-time data, which is a so-called abnormal situation. 

The root of abnormal situation includes but is not limited to hardware performance degradation, 

operation errors, communication interruptions, etc., which may cause system instability or even crash. 

The use of disorder detection technology helps to provide early warning and take preventive 

measures to prevent potential problems from worsening and maintain the efficient operation and 

safety of the entire system. 

There are many situations that can lead to anomalies in the behavior of dynamic plants. 

Anomalies can occur individually or simultaneously due to defects in sensors, actuators or plants. 

However, in complex industrial systems, it is sometimes not easy to accurately monitor whether a 

certain performance status as a system health indicator is normal (i.e., whether it is a fault or not). For 

example, the degree of machine wear, changes in material properties, etc., these subtle changes may 

not be obvious at first, and we realize the problem only when they reach a certain level and cause 

system performance to degrade or fail. When monitoring multiple process parameters 
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simultaneously, skilled operators often must make operating decisions based solely on their 

experience. Another reason for disorder in the behavior of dynamic plants can be changes in external 

influences on the system. This may be a change in both external conditions leading to a change in the 

dynamic characteristics of the system components, and the setpoint signal is different from expected. 

In the maintenance of complex systems, fault detection faces severe challenges. First of all, real-

time is crucial. The system must react and handle exceptions almost instantly and is sensitive to 

delays. Secondly, the data sent by the sensor may contain errors, such as inaccurate measurements 

or random fluctuations caused by changes in the external environment, which requires the algorithm 

to be highly reliable and resistant to interference. Besides, the continuous updating and adaptability 

of the model is also a challenge. The reference model in the anomaly detection process usually refers 

to the model used to identify and handle abnormal situations during system operation, which relies 

on the understanding of normal behavior and threshold setting. As the environment changes, the 

operating specifications of the system may change, such as new failure modes may appear, or 

operations considered to be normal previously may now become abnormal. 

Modern approaches to disorder detection combine machine learning [2], big data analytics, and 

may incorporate cloud computing and IoT technology to enable data analysis using information not 

available in traditional control systems. From a practical perspective, the challenge for such 

approaches is to process large amounts of data efficiently in real time, while identifying disorder and 

ensuring the reliability of the detection algorithms so that they can cope with changing conditions 

and new causes of abnormal behavior in dynamic plants. 

2. Background 

Detecting a discord in the behavior of dynamic plants has been an active research area for many 

years [3,4]. 

Algorithms for detecting discord are usually based on real-time data. If the deviation between 

the plant output and the output of its reference model increases, an alarm or automatic adjustment 

mechanism is triggered. The simplest approach was to monitor the range of variation of the observed 

characteristics of the plant [5]. More complex approaches, such as the cumulative sum algorithm 

(CUSUM), are based on detecting the deviation of the statistical characteristics of the observed 

process from the normal behavior specified by the stochastic model of the norm. Typically, such a 

model implies the specification of the type and parameters of the distribution of the normal process. 

In recent years, thanks to the significant enhancements in computer performance, disorder 

detection techniques using machine learning have gradually emerged, such as autoencoders [6,7]. As 

a powerful tool, the autoencoder can autonomously learn the basic structure and distribution of data 

and then reconstruct it. So, the data samples of normal working conditions will be mapped to similar 

ones, while the abnormal samples will not, resulting large difference between input and output 

vectors of autoencoder. Therefore, these points that deviate from the norm will be effectively 

identified, which not only improves the accuracy and reliability of anomaly detection, but also 

reduces the need for manual intervention, which helps to build a more intelligent and adaptive 

industrial monitoring system. 

2.1. Model-Based Methods 

Model-based disorder detection is a widely used technology in science and engineering. Its basic 

principle is to provide a mathematical description or algorithm for the behavior of the main 

characteristics of a system. This requires the use of mathematical formalisms to analyze the key 

physical principles and observed dependencies, often by constructing differential equations to 

characterize the dynamic processes. Model-based analysis is particularly effective when designing 

systems with clear structures and well-defined rules, such as simple mechanical devices in 

mechanical engineering or linear control systems in the field of automatic control, because models 

are easy to create and debug. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 December 2024 doi:10.20944/preprints202412.2630.v1

https://doi.org/10.20944/preprints202412.2630.v1


 3 of 18 

 

The task of detecting faults in systems and processes is to automatically identify dependencies 

between measured signals and subsequently detect changes in these dependencies. Based on the 

measured output signals of the plant and its reference model, modeling error values, estimated 

values of parameters, or estimated values of state variable values called features can be calculated. 

Changes or deviations in the detected features compared to normal features will lead to the analysis 

of symptoms [8,9]. 

A typical disorder detection scheme is shown in Figure 1. 

 Plant
𝑢(𝑘) 𝑦(𝑘) 

Model
Generating

features
Fault Detection

 

Figure 1. Scheme for the disorder detection with reference model. 

This approach is based on the assumption that when the physical characteristics within the plant 

are slightly adjusted, the measured output signal will change accordingly. If this change deviates 

from the standard signal pattern estimated by the reference model, it will become obvious and can 

be identified as an abnormal situation. When using this approach, it is necessary to take into account 

that the reference model must repeat the behavior of the plant itself accurately and similarly respond 

to input effects to the plant. 

However, when dealing with complex dynamic systems, such as chemical reaction processes or 

systems involving a large number of variables, building accurate reference model is often a difficult 

task, or even almost impossible. In such complex situations, detection methods that rely on building 

models of dynamic plants may no longer be applicable. Instead, an approach based on data analysis 

that does not require building accurate models of dynamic plants can be considered. Data-driven 

approaches are better suited to complex systems with high uncertainty due to the greater focus on 

analyzing empirical data rather than building detailed analytical mathematical models of a plant. 

2.2. Data-Driven Methods 

Data-driven anomaly detection, as a modern anomaly diagnosis strategy, based on a large 

amount of operational data as a primary resource. Its main idea is to collect data generated by the 

equipment under normal operating conditions, such as temperature, vibration, current and other 

measured parameters, and then use these time series to build a model. Data-based models can 

capture the evolution of plant performance over time and use it as the basis for distinguishing 

whether the plant is in normal condition. 

The specific process includes data collection, pre-processing (cleaning, normalization, etc.), 

feature engineering (extracting key features that cause failures), and then training a model to define 

the normal operating mode of the plant. 

When new data are fed into the model, if they deviate from the known data distribution 

significantly under normal operating conditions, an alarm will be triggered, indicating a potential 

failure. Data-driven methods such as machine learning can automatically learn patterns from 

observed historical data, better capture nonlinear correlations, and avoid relying on precise physical 

models, making them superior in dealing with nonlinear system problems. 

Data-driven disorder detection technology is now widely used in various industrial processes 

including chemical industry [10], polymer manufacturing, microelectronics, steel industry, 

pharmaceutical processes, power distribution networks [11] and flow systems. 

Especially in the last three decades, it has become one of the most fruitful areas of research and 

practice and an important tool for quality control [12,13]. 
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2.2.1. Multivariate Statistical Process Control 

Multivariate statistical process control in process monitoring emerged in the 1990s [14]. It uses 

statistical models to monitor manufacturing processes in real time by extracting key information from 

complex data sets. For example, statistical process control charts are used to compare the current state 

of a process to normal operating conditions. Most commonly, control charts are used to monitor the 

mean or deviation of selected variables that affect a process. Such as the Shewhart control chart [15], 

the CUSUM chart [16], the EWMA chart [17]. Each of the above types of control charts has its own 

advantages and disadvantages. The Shewhart control chart is a statistical tool based on past data 

fluctuations. It is designed with the assumption that samples are collected and analyzed continuously. 

When focusing only on existing test data, if improvements, anomalies, or slight changes in the process 

occur in a short period of time, the control chart may not immediately reflect these short-term changes 

due to the slow sample update, because it relies on historical means and standard deviations to 

determine the normal range. In short, control charts have a good ability to identify stable long-term 

trends, but they may not be sensitive enough for dynamic and fast-changing processes, especially 

those with frequent small adjustments. In contrast, the CUSUM and EWMA control charts are more 

sensitive in detecting small changes in the process because they use information from long-sequence 

samples. Therefore, for large-scale process failures that require an immediate response, the Shewhart 

control chart is an effective tool, but for continuous improvement or monitoring quality trends, other 

methods such as EWMA or CUSUM control charts may be needed to monitor the process in more 

detail. In practical applications, they are often used together to detect anomalies and evaluate process 

stability [18]. 

In general, multivariate statistical methods for discord detection use the typical Hotelling’s 𝑇2 

statistic and the Q statistic, which is also known as the squared prediction error. When the 𝑇2 value 

exceeds a certain threshold, it means that the data points deviate from the normal pattern, i.e., 

deviations from the normal plane may be observed and, thus, discord is detected. 

In the field of process control, principal component analysis (PCA) is one of the most popular 

statistical methods for extracting information from measured data [19]. The main step of PCA is to 

transform the original data into a low-dimensional linear independent space and residual space by 

linear projection. 𝑇2 and Q statistics and their control limits are set in the corresponding space for 

fault detection. 

However, when dealing with complex processes in fields such as industrial chemistry and 

biology, the use of PCA can be problematic if these processes involve significant nonlinear features 

such as periodic changes or adaptive responses within the system. Since the basic assumption of 

using PCA is that data changes are normally distributed and linearly related, its ability to detect 

nonlinear outliers will be weakened. For example, when outliers are generated by nonlinear 

relationships or the behavior of the data evolves over time rather than following a simple linear trend, 

a simple linear transformation of PCA may not accurately capture this outlier behavior of the system 

[20]. To overcome this shortcoming, several improved PCA schemes have been proposed. For 

instance, the paper [21] presented a nonlinear principal component analysis based on a five-layer 

neural network. 

Partial least squares (PLS) is also a classic multivariate statistical analysis technique, which is 

used to establish a linear relationship between input and output. By building a model based on 

normal data in an a priori order, PLS can be implemented for forecasting and monitoring 

applications. Assuming that all measurements follow a normal distribution, 𝑇2 and Q index are 

adopted as statistical indicators for detecting quality and non-quality defects [22]. In contrast to PCA, 

independent component analysis has been used for process monitoring by projecting correlated 

variables into an independent space without orthogonality constraints, making it more applicable to 

non-Gaussian processes [23]. Another method for dealing with non-Gaussian processes is the 

Gaussian mixture model, which fits multiple Gaussian models to approximate non-Gaussian data. It 

has been widely used for process monitoring in arbitrary data sets that do not follow a normal 

distribution [24,25]. 
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2.2.2. Machine Learning Based Method 

Machine learning models can automatically extract features and learn complex patterns from 

large amounts of data without manually developing complex hypotheses or hypothesis distributions. 

This is especially effective when dealing with non-linear and non-Gaussian distributed data. Some 

machine learning methods, such as support vector machines or artificial neural networks, have a 

certain noise resistance and the ability to handle isolated points. In recent years, there has been a 

growing interest in the application of artificial neural networks in fault detection and diagnostic 

systems [26–28]. 

The neural network replaces the analytical model describing the process under normal operating 

conditions. It must be trained to perform this task, and the training data can be collected directly from 

the process or from a simulation model that is as realistic as possible. Once the training is complete, 

the neural network can generate residuals that indicate anomalies. For example, the paper [29] 

described using the residuals between the output of a plant and its neural network model to detect 

anomalies in a real sugar evaporation process. 

However, it is necessary to consider dynamics when modeling dynamic plants in automatic 

control systems using neural networks or detecting disorder in the behavior of a plant. In order to be 

able to record the dynamic behavior of the system, the neural network must have dynamic 

characteristics, such as recurrent neural networks. The paper [30] discusses a method for online 

detection of sensor disorder in substations based on a long-term short-term memory network and an 

adaptive threshold selection algorithm. 

Using only a single fault detection algorithm may lead to false positive problems. In order to 

improve the accuracy and stability of detection, a common approach is to integrate multiple technical 

means, such as combining statistical analysis and machine learning methods. Such a comprehensive 

strategy can complement the advantages of each method, reduce the possibility of errors, and 

enhance the credibility of the final result. 

The paper [31] proposed a process monitoring method using Gaussian mixture model and 

weighted kernel-independent component analysis, in which the Gaussian mixture model is used to 

estimate the probability of kernel-independent components, and the important kernel-independent 

components that dominate the process change are given a higher weight according to the estimated 

probability of collecting important information in the online disorder detection process. 

The paper [32] adopted a method using automatic noise accumulation coding and K nearest 

neighbor (KNN) rule. An autoencoder with multi-level noise reduction is used to model nonlinear 

process data and automatically extract important features. The original nonlinear space is then 

mapped to the feature space and residual space using the multi-level denoising autoencoder. Two 

new statistics for detecting disorder in the above spaces are constructed by introducing a KNN rule 

with corresponding control limits determined by the kernel density estimation. 

Although machine learning has shown great potential in the field of disorder detection, it still 

faces some challenges. In an industrial environment, continuous evolutionary processes may occur, 

such as equipment aging and changing failure modes. Traditional static anomaly detection methods 

can be difficult to account for these changes. And anomalies are often not a single pattern, but contain 

noise and unknown variables. If a model relies too heavily on a known data distribution, it may fail 

when it encounters new anomalies that were not previously noticed. 

The main idea of this work is to use the cross-correlation function between the input and output 

of the plant as a characteristic of its nonlinear dynamics, combined with a neural network 

autoencoder, which helps detect when the plant operation shifts to a new pattern and when 

anomalies occur compared to the reference period of system operation. The proposed method does 

not rely on external reference signals, but directly analyzes real-time data from nonlinear dynamic 

systems, which can respond more quickly to real-time changes within the monitored plant. In 

addition, the autoencoder can dynamically learn the normal distribution of the data during the 

training process, thereby avoiding the subjectivity and variability caused by manual threshold setting. 
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For comparison, we conducted experiments using the proposed method and the cumulative sum 

algorithm respectively to detect disorder in the behavior of the same plant. 

3. Method 

3.1. Cross-Correlation Functions as Characteristics of a Dynamic System 

As a statistical analysis tool, the cross-correlation function (CCF) describes the similarity 

between two signals or sequences, which is especially important for time series, since they reflect the 

relationship between previous and subsequent reference points. In the context of dynamic plants in 

control systems, it is possible to compare the time series measured by a sensor and the expected 

behavior of the plant [33]. 

If the system is not operating under normal conditions, for instance due to internal hardware or 

external disturbances, then the initially stable CCF may change, manifesting as a shift in the peak 

position, a reduction in amplitude, or a distortion in shape. This concept can be used to analyze 

whether the behavior of a plant in a dynamic system deviates from the normal mode. 

For each successive time step t of the control system, the CCF value between the input signal 

𝑢(𝑡) and the output signal 𝑦(𝑡) is calculated according to formula (1). 

𝑟𝑢𝑦(𝜏) = ∫ 𝑢(𝑡)𝑦(𝑡 + 𝜏)𝑑𝑡
∞

−∞

 (1) 

CCF is proposed as an effective feature representation for extracting local features of input-

output time series of the control systems and subsequently feeding it into an autoencoder to capture 

key patterns in the data that may indicate abnormal behavior of the dynamic system. 

In addition, by calculating the CCF, local similarities can be identified without changing the 

frequency characteristics of the signal, which helps the autoencoder learn an invariant representation 

of the data. 

The calculation of continuous CCF needs to be converted into discrete form to match the data 

structure of the autoencoder input. In discrete time, for time series 𝑢(𝑛) and 𝑦(𝑛), the CCF within 

a window with a width of 𝑑 samples starting from time series sample 𝑘 is calculated by formula 

(2): 

𝑟𝑢𝑦(𝜏, 𝑘) =
1

𝑑
∑ 𝑢(𝑛)𝑦(𝑛 + 𝜏)

𝑘+𝑑−1

𝑛=𝑘

 (2) 

The index 𝑘 indicates the position of the calculated CCF sequence in the time series, and the 

argument 𝜏 is the offset of one series that are relative to another, for which one discrete CCF value 

is calculated. Thus, the CCF at position 𝑘  can be viewed as a vector 𝐑𝑢𝑦
𝑘 = [𝑟𝑢𝑦(−𝑑 +

1, 𝑘), … , 𝑟𝑢𝑦(0, 𝑘), … , 𝑟𝑢𝑦(𝑑 − 1, 𝑘)]
T

∈ ℝ2𝑑−1. 

The set of CCF sequences describes the behavior of a dynamic system in response to an input 

signal over a period of time, forming a point cloud in a multidimensional space located in a certain 

area at different time periods under normal operating conditions. 

Figure 2 shows an example of such a region in three-dimensional space, designated as 𝐑𝑢𝑦
𝑁 . 
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𝑟𝑢𝑦 (1) 

𝑟𝑢𝑦 (0) 

𝑟𝑢𝑦 (2) 

𝐑𝑢𝑦
𝑁  

𝐑𝑢𝑦
𝑝  

𝐑𝑢𝑦
𝑞  

 

Figure 2. Vector space of cross-correlation functions. 

When the input signal changes relative to the normal signal belonging to the 𝐑𝑢𝑦
𝑁  region, the 

values in the CCF sequence will also change. We assume that the dynamic response of the system at 

time 𝑝  is represented by the point 𝐑𝑢𝑦
𝑝  belonging to the normal region 𝐑𝑢𝑦

𝑁 . Then, when the 

dynamic response changes at a certain moment 𝑞 > 𝑝, the CCF will be represented by the point 𝐑𝑢𝑦
𝑞  

in Figure 2. 

A drift 𝐑𝑢𝑦
𝑝

→ 𝐑𝑢𝑦
𝑞  detected in the CCF vector space outside the region 𝐑𝑢𝑦

𝑁  representing the 

normal behavior of the system means that at time 𝑞 either a change in the input signal or a change 

in the properties of the dynamic system has occurred. We call this phenomenon disorder. 

3.2. Discord Detection Using Neural Network Autoencoder 

In order to apply the proposed method, we need a method to memorize the CCF of the reference 

dynamic behavior of the process, as well as a way to find the difference between CCF and its norm. 

For this, we used a neural network autoencoder that can remember the CCF vectors from the training 

set and reproduces the memorized vectors. We trained the autoencoder by taking as input 𝐑𝑢𝑦
𝑘  

calculated from the input-output sequence of the process under normal conditions. 

The autoencoder mainly consists of an encoder and a decoder, as shown in Figure 3. The encoder 

𝑧 =  𝑓(𝑊𝑒𝑛𝑐𝑥 + 𝑏𝑒𝑛𝑐)  compresses the set of CCF vectors as input into a low-dimensional 

representation called a code vector. The decoder 𝑥̃  =  𝑓(𝑊𝑑𝑒𝑐𝑧 + 𝑏𝑑𝑒𝑐) tries to recover the original 

set of CCF vectors from the code vector, where 

𝑥̃ = 𝐴𝐸(𝑥) ≡ 𝑓(𝑊𝑑𝑒𝑐  𝑓(𝑊𝑒𝑛𝑐𝑥 + 𝑏𝑒𝑛𝑐) + 𝑏𝑑𝑒𝑐) (3) 

Under normal circumstances, the output of the decoder should be as close as possible to the 

input. During training, the autoencoder learns the data distribution pattern of the set of CCF vectors 

𝐑𝑢𝑦
𝑘  calculated during the normal operation of the dynamic system and tries to minimize the 

reconstruction error, that is, the difference between the input and output data of the autoencoder. 

However, the decoding results of abnormal data will differ due to the abnormal performance after 

encoding. 
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Figure 3. Architecture of the neural network autoencoder. 

When a disorder is detected in the behavior of a dynamic system, that is, the set of CCF 𝐑𝑢𝑦
𝑘  

vectors provided to the autoencoder input does not correspond to the prediction results of the trained 

model, and the actual loss exceeds a given threshold of the error in reconstructing the CCF 𝐑𝑢𝑦
𝑘 . 

3.3. Synthesis and Application of a Discord Detector 

Figure 4 shows the scheme for synthesizing an autoencoder-based discord detector, and its steps 

are as follows: 

Step 1: Data preparation. Collect a series of discrete time series of length 𝑑 at the input and 

output of a normally functioning dynamic system, i.e., input 𝐮𝑘 = [𝑢(1), … , 𝑢(𝑑)]T ∈ ℝ𝑑 and output 

𝐲𝑘 = [𝑦(1), … , 𝑦(𝑑)]T ∈ ℝ𝑑. 

Step 2: Calculation of CCF. Calculate CCF from time series 𝐮𝑘 and 𝐲𝑘 and obtain a set of CCF 

vectors 𝐑𝑢𝑦
𝑘 , describing the reference (normal) behavior of the dynamic system. Use index 𝑘 to 

specify the window number of the calculated CCF sequence, and its value is in the interval: 1 ≤ 𝑘 ≤

[
𝐿

𝑑
]. 

Step 3: Training of the autoencoder. The training dataset of the autoencoder is a set of CCF 

vectors 𝐱(𝑘) = 𝐑𝑢𝑦
𝑘 , which are the characteristics of the normal behavior of the dynamic system. The 

reconstructed CCFs by the autoencoder are denoted as 𝐱̃(𝑘) = 𝐴𝐸(𝐱(𝑘)). The reconstruction error 

𝑟(𝑘) =  ‖𝐱̃(𝑘) − 𝐱(𝑘)‖ is used to measure the difference between the reconstructed and original CCFs, 

where ‖𝑧‖ = √∑ 𝑧𝑛
22𝑑−1

𝑛=1  is usual Euclidean length. 

Step 4: Determination of threshold. The maximum reconstruction error 𝑟𝑡ℎ = max 
𝑘

𝑟(𝑘) 

obtained during training is regarded as the trigger threshold, which indicates that the CCF series 

value has deviated from the expected. 

Encoder Decoder

...

...

Hidden space

......

𝑥1 

𝑥2𝑑−1 

𝑥̃1 

𝑥̃2𝑑−1 

𝑊𝑒𝑛𝑐  

𝑏𝑒𝑛𝑐  

𝑊𝑑𝑒𝑐  

𝑏𝑑𝑒𝑐 
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𝐮𝑘  

... ... ...

...

...
...

...

...

CCF sequences Reconstructed CCF sequences

Training

Calculation of CCF

𝐑𝑢𝑦
𝑘  

𝐱(𝑘) 𝐱̃(𝑘) 

𝑟𝑡ℎ = max
𝑘

 𝑟(𝑘) 

𝑟(𝑘) = ‖𝐱̃(𝑘) − 𝐱(𝑘)‖ 

𝐲𝑘  

𝐴𝐸(∙) 

 

Figure 4. Scheme for the synthesis of discord detector. 

The synthetic result of the disorder detector is the trained autoencoder 𝐴𝐸(⋅) and the disorder 

detection threshold 𝑟𝑡ℎ. 

To detect the disorder caused by the change in the dynamic response of the observation system 

𝑔(⋅), the obtained CCF-AE detector is put into the test. The scheme is shown in Figure 5 and is 

described below step by step: 

Step 1: Collect a time series of consecutive input values 𝐮𝑘 = [𝑢(1), … , 𝑢(𝑑)]T ∈ ℝ𝑑 and output 

values 𝐲𝑘 = [𝑦(1), … , 𝑦(𝑑)]T ∈ ℝ𝑑. 

Step 2: Calculate the CCF from 𝐮𝑘 and 𝐲𝑘, obtaining the vector 𝐱(𝑘) = 𝐑𝑢𝑦
𝑘 . 

Step 3: Calculate the reconstructed CCF value using the autoencoder 𝐱̃(𝑘) = 𝐴𝐸(𝐱(𝑘))  and 

obtain the reconstruction error 𝑟(𝑘) =  ‖𝐱̃(𝑘) − 𝐱(𝑘)‖. 

Step 4: Compare the reconstruction error with the threshold value 𝑟𝑡ℎ. If 𝑟(𝑘) ≤ 𝑟𝑡ℎ means there 

is no disorder and the dynamic response of the system is similar to the responses known to the 

autoencoder, otherwise there is a disorder in the last interval of length 𝑑 indexed by 𝑘 and the 

observed system 𝑔(⋅) may behave inadequately. 

... ... ...
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Figure 5. Scheme for the application of disorder detector. 
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Therefore, the dynamic characteristics represented by the CCF vector 𝐑𝑢𝑦
𝑘  are used as input to 

the autoencoder to obtain the reconstruction error for evaluating the behavior of the dynamic system, 

which makes it possible to identify and localize disorders in the dynamic system. 

3.4. Description of Comparative Experiments 

To illustrate the proposed CCF-AE method, a neutralization reactor process model is used as a 

nonlinear dynamic plant, which provides the possibility of introducing new behavior patterns. 

It is proposed to use the CCF vectors of the input and output time series of the observed 

nonlinear dynamic plants as dynamic characteristics and reconstruct the error through the 

autoencoder for disorder detection. The proposed CCF-AE disorder detection algorithm is shown in 

Figure 6a. 

At the same time, the CUSUM algorithm is also used as a comparative experiment to detect the 

disorder in the output data of the plant. 

The object detected by the CUSUM algorithm is the variance of the deviation of the observed 

output value 𝑑 = 𝑦 − 𝑦̂ from the reference model. A set of errors 𝑑1, 𝑑2, … , 𝑑𝑘 are observed at the 

output of the plant, which are considered to have a probability density function 𝜌(𝑑, 𝜎0
2), and the 

density function when disorder appears from some unknown moment is 𝜌(𝑑, 𝜎1
2). 

The CUSUM algorithm is based on the use of a decision function 

𝑆𝑘 = {
0, 𝑘 = 0

max(0; 𝑆𝑘−1 + 𝑧𝑘) , 𝑘 > 0
 (4) 

To determine the disorder by the process variance, the terms 𝑧𝑘 in formula (4) are calculated 

using the formula 

𝑧𝑘 = −
1

2
𝑙𝑛

𝜎1
2

𝜎0
2 −

1

2
(

1

𝜎1
2 −

1

𝜎0
2)𝑑𝑘

2 (5) 

The decision about the presence of a disorder is made when the decisive boundary 𝐻 is reached. 

𝑆𝑘 > 𝐻 (6) 

In this case, the elementary verification procedure ends and, if necessary, we will apply the 

CUSUM procedure to the sequences 𝑧𝑘
𝑗, changing the number 𝑗 of the sequence. 

The determination of the threshold 𝐻 often involves a compromise between the false detection 

rate 𝑇𝑓𝑎 and true detection rate 𝑇𝑎𝑑 . 

𝑇𝑎𝑑 = 
∑ 𝑡𝑓𝑑

𝑖
𝑖

𝑡𝑒−𝑡𝑠
 (7) 

𝑇𝑓𝑎 = 
∑ 𝑡𝑓𝑑

𝑗
𝑗

𝑡𝑠−𝑡𝑜
 (8) 

where 𝑡𝑓𝑑
𝑖  is the detection period of the i-th true disorder, 𝑡𝑓𝑑

𝑗  is the detection period of the i-th false 

alarm, 𝑡𝑠 is the start time of the disorder, 𝑡𝑒 is the end time of the disorder, 𝑡𝑜 is the start time of 

the detection. 

𝑇𝑓𝑎  refers to the system mistakenly reporting normal data as anomalies. To reduce false 

detection rate, the threshold should be set lower so that the CUSUM can more easily reach the 

threshold, but this may also result in more normal data being treated as anomalies. 

𝑇𝑎𝑑  is the average time between two consecutive false alarms. Raising the threshold can reduce 

𝑇𝑓𝑎, but may also increase the time it takes to detect real anomalies. 

The steps for disorder detection using CUSUM are as follows: 

Step 1: Data preparation. Establish an identification model of the plant. Collect the error output 

set 𝐃 = {𝑑1, 𝑑2, . . . , 𝑑𝑘}. 

Step 2: Initialization. Set the initial variable for the cumulative sum 𝑆𝑘 (usually to zero). 
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Step 3: Calculation of CCF. For each new data point, calculate the difference 𝑧𝑘 between it and 

the previous data point and add it to the sum of all previous 𝑆𝑘−1. 

Step 4: Threshold setting. When the cumulative sum exceeds the threshold, it is considered a 

disorder. Determining threshold values is often an empirical process. 

Step 5: Monitoring and alarming. Keep monitoring the changes in the cumulative sums. Once 

the 𝑆𝑘 exceeds the threshold, an alarm is triggered and that point is recorded as the start time of the 

disorder. Then reset the cumulative sum back to zero and continue monitoring the subsequent data. 

Figure 6b shows the detection scheme based on the CUSUM algorithm. 
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(a) CCF-AE algorithm (b) CUSUM algorithm 

Figure 6. Algorithm for detecting discord using CCF-AE (a) and algorithm for detecting discord using CUSUM 

(b). 

4. Results 

4.1. Mathematical Modeling of a Neutralization Reactor on SimInTech 

Consider a one-dimensional pH neutralization reactor in a control system whose purpose is to 

precisely regulate nonlinear chemical reactions between acid and base solutions [34]. The inputs to 

the neutralization reactor are base stream (𝑞1), acid stream (𝑞3) and buffer stream (𝑞2). The measured 

output (y) of the neutralization reactor is the pH of the effluent solution. The controller controls the 

flow of alkali into the tank, adjusts the opening degree of the valve according to the specified target 

pH value, and controls the reagent mixing rate through the control signal 𝑢 = 𝑞1. The buffer stream 

(𝑞2), acid stream (𝑞3) and tank volume are considered constant during this process. The process is 

shown in Figure 7. 
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Figure 7. The process of pH neutralization reaction. 

The dynamic model for the reaction invariants of the outgoing solution (𝑊𝑎, 𝑊𝑏) in the form of 

a state space is given by the following expression: 

𝑥̇(𝑡) = 𝑓1(𝑥(𝑡))𝑢(𝑡) + 𝑓2(𝑥(𝑡))𝑑(𝑡) + 𝑓3(𝑥(𝑡)) (9) 

𝐹(𝑥, 𝑦) = 0 (10) 

𝑥 ≜ [𝑥1, 𝑥2]T = [𝑊𝑎, 𝑊𝑏]T (11) 

𝑓1(𝑥(𝑡)) = [
1

𝑉
(𝑊𝑎1

− 𝑥1),
1

𝑉
(𝑊𝑏1

− 𝑥2)]
T

 (12) 

𝑓2(𝑥(𝑡)) = [
1

𝑉
(𝑊𝑎2

− 𝑥1),
1

𝑉
(𝑊𝑏2

− 𝑥2)]
T

 (13) 

𝑓3(𝑥(𝑡)) = [
𝑞3

𝑉
(𝑊𝑎3

− 𝑥1),
𝑞3

𝑉
(𝑊𝑏3

− 𝑥2)]
T

 (14) 

𝐹(𝑥, 𝑦) = 𝑥1(𝑡) + 10𝑦(𝑡)−14 − 10−𝑦(𝑡) +  𝑥2(𝑡)
1 + 2 × 10𝑦(𝑡)−𝐾2

1 + 10𝐾1−𝑦(𝑡) + 10𝑦(𝑡)−𝐾2
 (15) 

Equations (9) and (10) were solved using the Runge-Kutta method 45. The state variables 𝑊𝑎 

and 𝑊𝑏  are the response invariants. The model parameters are given in Table 1, the nominal 

operating point is given in Table 2. 

Table 1. Parameters of the basic model of the neutralization reactor. 

Parameter Value 

𝑊𝑎1
 −3.05 ×  10 − 3 𝑚𝑜𝑙 

𝑊𝑎2
 −3 ×  10 − 2 𝑚𝑜𝑙 

𝑊𝑎3
 3 ×  10 − 3 𝑚𝑜𝑙 

𝑊𝑏1
 5 ×  10 − 5 𝑚𝑜𝑙 

𝑊𝑏2
 3 ×  10 − 2 𝑚𝑜𝑙 

𝑊𝑏3
 0 

𝑉 2900 𝑚𝑙 
𝐾1 6.35 
𝐾2 10.25 

Table 2. Nominal operating points of the neutralization reactor. 

Parameter Value 

𝑊𝑎 −4.32 ×  10 − 4 𝑚𝑜𝑙 
𝑊𝑏 5.28 ×  10 − 4 𝑚𝑜𝑙 
𝑞1 15.55 𝑚𝑙/𝑠 
𝑞2 0.55 𝑚𝑙/𝑠 
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𝑞3 16.60 𝑚𝑙/𝑠 

Figure 8 shows a neutralization reactor with a disorder in the input signal created in SimInTech 

software [35], an analog to the MATLAB/Simulink modeling environment. 

To obtain the process behavior in a given range of operating conditions, an amplitude-

modulated pseudo-random signal (APRBS) and a sinusoidal signal with an amplitude of 2 and a 

frequency of 0.2 were used as the process input 𝑢 ∈ [12.5,17]. The duration of the sinusoidal signal 

as an interference source is from the 3001st to the 4154th sample point. The output pH value is 𝑦 ∈

[6,9]. 
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Figure 8. Scheme for the neutralization reactor model in the SimInTech modeling package. 

The input and output data of the neutralization reactor created in the SimInTech modeling 

package are shown in Figure 9. 

0 1000 2000 3000 4000 5000 6000 7000
10
12
14
16
18
20

u

0 1000 2000 3000 4000 5000 6000 7000
6

7

8

9

p
H

Time [Samples]

Time [Samples]  

Figure 9. Results of the neutralization reactor simulation. 

4.2. Results of Experiments Using CCF-AE Algorithm 

The above input and output data of the neutralization reactor, as shown in Figure 9, are used to 

calculate the 𝐑𝑢𝑦
𝑘  vectors with a step of d=5 samples as a characteristic describing the system 

behavior. Figure 10 shows the CCF vectors 𝐑𝑢𝑦
𝑘  under normal operating conditions and during the 

disorder. It can be seen that during the disorder, the shape and amplitude of the CCF vector change 

significantly. 
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(a) CCF vectors before disorder 

-4 -3 -2 -1 0 1 2 3 4
0

100

200

300

400

500

600

700

800

𝐑
𝑢

𝑦
𝑘

 

𝜏 
 

(b) CCF vectors after disorder 

Figure 10. CCF calculation results under a moving window of length 5. 

To synthesize the disorder detector, the proposed dynamic characteristics, represented by 

normalized CCF vectors calculated based on the input and output time series 𝐮𝑘 and 𝐲𝑘 during 

normal system operation, are used as a training data set for the autoencoder with a multilayer 

perceptron (MLP) neural network architecture with two layers and an MLP9,10,9 structure, i.e., the 

input is a 2d-1 CCF vector fed to a hidden layer of 10 neurons, then an output layer of 2d-1 neurons. 

The training lasted 300 epochs. 

Next, the signals u(n) and y(n) at the input and output of the neutralization reactor, as shown in 

Figure 9, are fed to the trained detector. Based on the reconstructed CCF value, the reconstruction 

error is calculated, which reflects the result of the CCF reconstruction for each window of length 5. 

The minimum error value in the autoencoder training process is considered as a threshold value. 

When disorder occurs in the system, the reconstructed output data will deviate from the original data, 

causing the reconstruction error to exceed the threshold value. The average delay time 𝑇𝑎𝑑  is equal 

to the window detection time of 5, and there is no false alarm. 

Figure 11 shows that the reconstruction error r significantly exceeds the threshold (red dashed 

line) between the 601th and 803th windows, which is consistent with the windows where the disorder 

actually occurs. 
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Figure 11. Disorder detection results using the CCF-AE algorithm. 

4.3. Results of Experiments Using CUSUM Algorithm 

To apply the CUSUM algorithm to detect disorder in the behavior of a dynamic system, it is first 

necessary to establish a reference model based on GRU neural networks for the process of 

neutralization reaction. 
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The GRU neural network is used to build a model of the neutralization reactor, using a layer of 

9-dimensional GRU units connected to a fully connected layer of neurons of size 15, and a regression 

layer to build the output of the network. 

Figure 12 shows the output pH value 𝑦̂GRU(𝑛) and pH value 𝑦(𝑛) when the input signal u(n) 

generated by SimInTech is used as the input of the GRU neural network model and the mathematical 

model of the neutralization reaction. 
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Figure 12. pH values output by the GRU neural network model and the mathematical model on the 

SimInTech. 

As a parameter for determining the change in the object parameter, the variance of the 

identification error 𝑑(𝑛) = 𝑦(𝑛) − 𝑦̂GRU(𝑛) should be used. The identification error 𝑑 is shown in 

Figure 13. The root-mean-square identification error in the nominal operating mode intervals was 

0.0018, and in the interval with introduced disturbances was 0.0064. 
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Figure 13. Identification error of GRU neural network. 

The detection of disorder using the CUSUM algorithm is based on the variance. For the initial 

value of the CUSUM algorithm, the variance determined for the mode before disorder 𝜎0
2 = 0.0044 

should be taken, and the variance during disorder 𝜎1
2 = 0.0089 should be taken as the nominal 

disorder. 

Figure 14 shows the disorder detection results using the CUSUM algorithm. 

Threshold H – 100. The disorder occurred at points from 3001 to 4154. It is clear that 9 false 

alarms occurred before the disorder actually occurred. The average time between false detection rate 

𝑇𝑓𝑎 – 89.11 and the true detection rate 𝑇𝑎𝑑  – 5.42. 

The comparison of the results of discord detection by CCF-AE algorithm and CUSUM algorithm 

is shown in Table 3. The experiments show that the CCF-AE algorithm can detect discord faster and 

more reliably than CUSUM. 

Table 3. Results of discord detection by CCF-AE algorithm and CUSUM algorithm. 

Algorithm 𝑇𝑓𝑎 𝑇𝑎𝑑  

CCF-AE 0 5 

CUSUM 89.11 5.42 
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Figure 14. Disorder detection results using the CUSUM algorithm. 

5. Discussion 

The cross-correlation function used in the proposed disorder detection method characterizes 

dynamic changes in the system in real time, and the autoencoder detects the tendency of system 

changes. All the features used by the CUSUM algorithm to detect disorder are statistical. Unlike 

CUSUM, calculating the cross-correlation function and training the neural network autoencoder 

seems to be a simpler task than synthesizing a sufficiently accurate dynamic model of the object and 

adjusting the CUSUM parameters. Thus, when working with complex nonlinear systems, the 

proposed method has more advantages than CUSUM algorithm. 

The CCF-AE algorithm allows one to detect disorder with a fixed delay time equal to the CCF 

calculation window length, which is a significant advantage for real-time systems that need to 

respond to changes within a fixed time. 

The disorder detection method based on the CCF-AE algorithm can be applied to many different 

types of systems and different types of dynamic plants. The working state of the system can be judged 

by the reconstruction error of the CCF sequence between the input and output of the monitoring 

process, and an alarm signal can be issued when the system deviates from the reference mode, and 

the location of the change point can be determined in real time. 

It is advisable to conduct research in the direction of rationalizing the selection of the method 

parameters (CCF window width, neural network structure and error threshold), which will simplify 

the application of the method in practice and make it effective. 

6. Conclusions 

Considering the shortcomings of traditional disorder detection methods that require a reference 

model and are only capable of detecting linear systems, a disorder detection method CCF-AE based 

on the cross-correlation function of the input and output signals of the plant and the neural network 

autoencoder is proposed. This method does not require a reference model and only focuses on the 

input and output signals of the original plant. It does not involve the internal mechanism of the plant 

and is suitable for disorder detection of nonlinear systems. 
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