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Abstract

This study proposes an interpretable and high-accuracy ensemble learning framework for predicting
aspartate aminotransferase (AST) levels using open-access biomedical datasets. Using a structured
pipeline of preprocessing, feature selection, and model ensembling, we evaluated a series of
regression algorithms including Random Forest, XGBoost, CatBoost, and three stacking architectures.
The best-performing ensemble (Stacking_v2) achieved R? = 0.98 and RMSE = 1.23 on the validation
set, surpassing conventional and single-model approaches. Feature importance was assessed using
SHAP values, mutual information, and correlation analysis, revealing that gamma-glutamyl
transferase, ferritin, and anthropometric markers had the greatest predictive impact. The proposed
stacking-based model demonstrates excellent generalization, robust calibration, and high
interpretability, and can serve as a benchmark for algorithmic evaluation in medical data modeling.
The work highlights the effectiveness of ensemble regression and interpretable Al in real-world
clinical prediction tasks using routine biomarkers.

Keywords: ensemble learning; stacking; AST prediction; explainable AI; SHAP; regression
algorithms; medical machine learning; NHANES; biomedical data

1. Introduction

The development of interpretable and robust machine learning algorithms remains a central
focus in biomedical data science. In predictive medicine, biochemical markers such as aspartate
aminotransferase (AST) serve as important indicators of tissue damage, metabolic dysfunction, and
systemic inflammation. Traditionally, AST has been used in clinical assessments of liver and
cardiovascular health, but modern algorithmic modeling allows for its integration into large-scale,
data-driven screening tools [1,2]. Despite the availability of high-quality datasets such as NHANES,
challenges remain in extracting actionable insights due to data heterogeneity, multicollinearity, and
the nonlinearity of medical predictors. Ensemble machine learning methods — including Random
Forest, gradient boosting, and stacking — have shown great promise in overcoming these challenges
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[3-5]. These models can capture complex interactions and nonlinear dependencies while maintaining
generalizability, especially when applied to diverse cohorts and routine clinical markers.

In particular, stacking ensembles allow for the integration of diverse base learners with meta-
level regressors to reduce bias and variance simultaneously [6,7]. Recent studies have demonstrated
that combining multiple boosting algorithms within a stacking framework leads to superior
performance across a range of biomedical regression problems [8]. However, a persistent limitation
is the lack of transparency in model decision-making, which has led to increasing adoption of
explainable artificial intelligence (XAI) methods, including SHAP (SHapley Additive exPlanations),
mutual information metrics, and hierarchical clustering [9-11]. Although machine learning has been
widely applied to disease classification, few works focus specifically on regression-based prediction
of AST as a continuous variable using interpretable and reproducible architectures [12-14].
Moreover, limited research has explored how biochemical and behavioral variables interact to
influence AST levels, despite their proven relevance in metabolic and cardiovascular health
monitoring [15].

In this work, we address these gaps by introducing an interpretable ensemble learning
framework for AST prediction using routine data from the NHANES 1988-2018 dataset. Our
methodology includes: (i) data cleaning and transformation, (ii) implementation of multiple base
learners (CatBoost, LightGBM, XGBoost, Random Forest, etc.), (iii) construction of stacking
architectures with Ridge meta-regressors, and (iv) application of XAl techniques for feature
interpretation. The main contribution of our work is a highly accurate, generalizable, and
interpretable stacking-based model that achieves state-of-the-art performance (R?=0.98, RMSE =1.23)
on real-world population data. This framework has the potential to support early detection strategies
and algorithmic benchmarking in medical regression tasks.

2. Materials and Methods

This study used data from the National Health and Nutrition Examination Survey (NHANES)
for the period 1988-2018, including biochemical, demographic, and behavioral parameters of
respondents. This source provides a representative dataset on the health status of the US population
and is widely used for scientific purposes 13,14. The study included routine biochemical markers,
such as ferritin, glucose, y-glutamyltransferase (y-GT), and lactate dehydrogenase (LDH), as well as
data on lifestyle, body weight, and physical activity level 15. Comprehensive data preprocessing was
carried out: removing outliers, eliminating gaps, standardizing numerical features, and coding
categorical variables, which is a necessary step for building reliable machine learning models 16,17.
Based on the prepared data, different machine learning models were trained and compared to predict
the risk of elevated aspartate aminotransferase (AST) 18.

2.1. Related Work and Literature Review

In recent years, there has been an increase in research aimed at predicting liver enzyme levels,
including aspartate aminotransferase (AST), using machine learning methods. Hu et al. 19 found an
association between elevated ALT/AST ratio and the risk of liver fibrosis based on NHANES data but
did not focus on predicting individual AST levels. Zhu et al. 20 proposed a Random Forest model to
estimate the risk of elevated transaminases in patients with rheumatoid arthritis, achieving high
accuracy but limited to a narrow clinical cohort. A broader approach was proposed by Yang et al. 21,
who developed machine learning models for diagnosing MASLD using routine data; AST levels were
considered only indirectly. Interpretable models are also gaining momentum. Wang et al. 22 utilized
SHAP to explain predictions from NAFLD ML models, demonstrating the potential of such solutions
for medical interpretation. In turn, Ali et al. 23 confirmed the possibility of diagnosing cardiovascular
diseases using routine blood tests and ensemble models, but liver biomarkers were not the subject of
analysis. In addition, Yang et al. 24 presented a systematic review of the application of machine
learning (ML) in predicting outcomes after liver transplantation, demonstrating advantages over
traditional scoring systems; however, they did not address the aspect of routine screening. Khaled et
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al. 25 proposed a deep learning system for the early detection of liver diseases, which requires further
clinical validation. McGettigan 26 investigated the performance of various machine learning (ML)
models on an extensive array of medical data, confirming the potential of the algorithms for liver
diagnostics but without specifying the specific architectures. Farhadi et al. 27 focused on predicting
complications after recovery from hepatitis B, which limits the generalizability of their model. As
shown in Table 1, all these studies emphasize the need to develop specialized and interpretable
models that focus specifically on the individual risk of elevated AST, utilizing available clinical,
demographic, and biochemical data.

Table 1. Comparative review of studies on the application of machine learning methods for disease prediction

associated with biomarkers (including AST).

Ref. Study Focus Methods Key Findings Identified Gaps
Predicting liver
enzyme elevationin ~ Random Forest

ML model accurately ~ Specific to RA

[19] predicts transaminase  patients; limited

RA patients on classifier on EHR data . L.
elevation generalizability
methotrexate
ML models f C i f 10 ML
modets tor ompartson o High accuracy in Did not focus on

MASLD prediction algorithms, including

[20] using demographic =~ XGBoost and RandomMASL,D SCreening; AST—'sp'e cific
. . accessible features prediction
and clinical data Forest
Robust predictive tool
L longitudinal
o1y ML with SHAP for ML models with  for NAFLD; high dz::zn‘zi“ﬁ;:s‘dia
NAFLD prediction SHAP interpretability accuracy and factors kS
generalizability
L Is fi F
Ic\gr d?;?/j;;;): disease Logistic Regression, Effective diagnosis using c;):;soe\/isgllar
[22] dinenosis usin routineRandom Forest, SVM, accessible blood data; diseases. not liver
& 8 XGBoost, DNN SHAP for interpretation o
blood tests specific

ML models outperform
ML models in liver . . traditional scoring
. A systematic review . L
[23] transplantation systems in predicting

Emphasis on
transplantation, not

L. of ML applications general AST
prognostication post-transplant -
. prediction
complications
Requires furth
Early liver disease A promising approach equires further

validation and
integration into
clinical practice

Deep learning

[24] prediction using deep algorithms

learning

for rapid and accurate
liver disease diagnosis

Comparison of ML

. Evaluation of three  Enhanced prediction and
models for liver

Specific models and

[25] .. . . ML models on 32,000 management of liver .
disease detection using . features not detailed
. records diseases
big data
ML model to predict MI-based risk A.ccurate forecasting of Focused on hepatitis
[26] liver-related outcomes L liver-related outcomes B, not general AST
o prediction model . L2
post-hepatitis B cure after functional cure prediction
Comparative analysis Ensemble models Application in

Boosting, stacking,
bagging vs. linear
regression and KNN

of ensemble learning
techniques for fatigue
life prediction

outperform traditional
methods in prediction
tasks

(27]

fatigue life;
relevance to AST
prediction indirect

As shown in Table 1, the majority of current studies confirm the high efficiency of machine
learning methods for analyzing and predicting diseases based on routine medical data. However,
only a limited number of studies directly focus on individual prediction of AST levels as a separate
biomarker. In addition, few studies use interpretable models, which limits their applicability in
clinical practice. The identified scientific gaps, including insufficient generalizability, the lack of
multivariate analysis, and the weak integration of behavioral parameters, underscore the need to
develop a comprehensive model for predicting the risk of AST elevation based on available and
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standardized indicators. Despite the active development of machine learning in biomedicine, most
existing studies focus on predicting diseases in tissues with high metabolic activity and do not
consider aspartate aminotransferase (AST) as a significant marker of cardiovascular risk. This study
presents an understudied yet promising approach for predicting cardiovascular diseases using AST
and other routine indicators. Distinctive features of this work include:

. Direct regression prediction of AST level, considered as an independent predictor of
cardiovascular risk and not as a marker of hepatological disorders;

. Integration of routine biochemical, anthropometric, and behavioral parameters, including
inflammation, body weight, and lifestyle indicators, enhances the clinical relevance of the model;

J Use of a stacking ensemble (Stacking v2), which combines the capabilities of modern
algorithms and an interpretable meta-model to improve accuracy and stability;

J The use of SHAP and mutual information to analyze the significance of features ensures
the interpretability of the model and its applicability in the clinical environment;

. Validation on a large and representative NHANES dataset (1988-2018) covering a wide
range of health data from the US population.

Unlike previous studies limited to narrow clinical cohorts or liver disease diagnostic tasks, our
study demonstrates how routine parameters, including AST, can be effectively used to assess
cardiovascular disease risk in the general population. The proposed model may become a tool for
early screening and personalized prevention in resource-limited settings.

2.2. Dataset Collection

To build a model for predicting aspartate aminotransferase (AST) levels, the open national
dataset from the National Health and Nutrition Examination Survey (NHANES) for the years 1988—
2018 was utilized. This source provides large-scale information on the health status of the US
population, including biochemical analysis data, anthropometric indicators, and behavioral and
demographic characteristics. NHANES was chosen due to its representativeness, standardized data
collection protocols, and high degree of reliability. From the total data set, records of adult
respondents (=18 years) were selected for whom AST values and other essential indicators were
available: ferritin, y-glutamyl transferase (y-GT), lactate dehydrogenase (LDH), glucose, body mass
index, physical activity, smoking and alcohol consumption habits, as well as inflammation indicators.
Incomplete observations and abnormal values were excluded, and data cleaning and standardization
procedures were performed. All features are brought to a single format, categorical variables are
coded, and numerical variables are normalized. As a result, a structured sample is formed, suitable
for the application of machine learning algorithms. It covers various aspects of the physiological state
and lifestyle of respondents, providing a basis for constructing an interpretable prognostic model.
The original data presented at
https://drive.google.com/drive/folders/1cgyQXj3K17FdDoyPImEkCKyDXNDIv4]B?usp=drive_link
(accessed on 06 June 2025).

2.3. Rationale for a Method Selection

Building an effective predictive model required the use of a complex algorithm that included
several interrelated stages of data preprocessing, feature selection, and model ensemble training.
Each method in this process was selected based on its robustness, efficiency, and applicability to
medical data with heterogeneous features.

1. Removing emissions. In the first step, observations with suspiciously high values (s < 200)
were excluded from the dataset, which helps minimize the impact of anomalies and noise on model
training. This is especially important when working with biomarkers, where technical or clinical
artifacts may cause outliers.

2. Removing gaps. Removing rows with missing values in the target variable (AST) and critical
predictors ensures the correctness of the training process. This step is necessary to maintain the
quality of predictions and prevent distortions.
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3. Transformation of categorical variables. One-hot encoding of categorical features (e.g.,
demographic and questionnaire data) is applied, which allows them to be efficiently included in
machine learning models without violating assumptions about the numerical nature of the input
data.

4. Scaling of Numerical Features. Numerical features are normalized (z-transformed) to
equalize scales and prevent features with high variance from dominating the analysis. This is
especially important for linear and gradient-boosted models that are sensitive to scale.

5. Split into training and validation samples. The standard split of the sample (train/test split)
is used to assess the quality of the model objectively. This allows you to control overfitting and tune
hyperparameters.

6. Base models (Base regressors). The following algorithms were selected to build a forecast of
the AST level:

¢ Linear Regression — a basic benchmark for estimating linear relationships.

¢ Random Forest — a stochastic model that is robust to outliers and works well with small
samples.

* XGBoost — a powerful gradient boosting that provides high accuracy and control over
overfitting.

* CatBoost — an optimized boosting algorithm that works efficiently with categorical features
without the need for manual coding.

¢ LightGBM — a fast and scalable boosting algorithm, especially effective on large and sparse
data.

¢ Extra Trees — an improved version of Random Forest that uses additional stochasticity to
improve generalization.

7. Stacking. As shown in Figure 1, Stacking v1 is a simple two-level ensemble scheme in which
base models (Linear Regression, Random Forest, and XGBoost) are independently trained on the
original features (1):

frase, 1 () = fiin(x)
fbase,z x) = frf (x)
frase,s (x) = fxgb (x)
z= [fbase,l (x), frase,2 (x), frase,s (x)]
freta = arg min g S (v = £@))" 9 = fneta(2) ()

The meta-model — simple linear regression — receives their predictions as input and minimizes
the error on the validation set. The final forecast is formed based on the aggregated predictions of the
meta-regressor. The advantages of this approach include ease of implementation, high
interpretability, accelerated convergence, and quality gain due to combining several models.
However, Stacking v1 is limited by the linear nature of the meta-regressor, does not take into account
complex dependencies between the outputs of the base models, does not support feeding the original
features directly to the meta-level ("passthrough"), and can also be subject to overfitting when using
a large number of base algorithms.
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Stacking v1

Linear Regression

Random Forest

XGBoost

Meta: Linear

Final Prediction

Figure 1. Stacking v1 architecture.

Stacking v2 is an advanced two-level ensemble model that utilizes modern and powerful
algorithms as base models, including CatBoost, LightGBM, and ExtraTrees, which provide high
accuracy through boosting and stochastic approaches (2):

fbase,l(x) = fear(x)
frase,2 (x) = flgb (x)
foase,3 (%) = fexe(x)
zZ = [fbase,l(x)'fbase,z(x):fbase,S(x)]

freta = argmin g Bl (vi = £(2)) 9 = fineta(2) @

At the second level, a Ridge regression meta-model is used, which is robust to multicollinearity
and prone to regularization, thereby reducing the risk of overfitting and accounting for the possible
correlation between the predictions of the base models. The final prediction is formed based on the
outputs of these three ensembles, aggregated using Ridge regression. Among the advantages of
Stacking v2 are high accuracy, resistance to overfitting, and good adaptation to nonlinear
dependencies (Figure 2). The main disadvantages are the increased complexity of hyperparameter
tuning and increased computational costs compared to simpler schemes such as Stacking_v1.

Stacking v2

CatBoost

LGBM

ExtraTrees

Meta: Ridge

Final Prediction

Figure 2. Stacking v2 architecture.
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Figure 3 presents the most advanced and outlier-robust ensemble architecture, which includes
powerful base models — CatBoost, LightGBM, XGBoost, Random Forest, and a specialized regressor
for predicting high AST values (HighAST Regressor) (3):

foase1(X) = fear (x)
foase2(%) = fign(x)
foase3(X) = frgp(x)
frasea(x) = frp(x)
foase,s(X) = frighasr (X)
2 = [%, foase1 (%), foase,2(X), foase,s (0O, foase s (), foase,s ()]

fieta = argming S, (v = f(20)" 9 = fnera @) ©)

All boosted models utilize Huber loss, which ensures robustness to outliers and asymmetric
errors. LightGBM is used as a meta-model with the same loss function and a "passthrough" mode, in
which the meta-algorithm receives not only the predictions of the base models but also the original
features, which allows it to effectively restore complex dependencies and compensate for the
weaknesses of individual models. The final forecast is formed based on cumulative information,
making this scheme the most robust against various types of errors. Its advantages include high
accuracy, robustness in the face of outliers, the ability to utilize rare patterns (via the HighAST
model), and a rich feature representation. However, the model requires significant computational
resources, careful tuning of hyperparameters, and effective control over overfitting. Despite its
complexity, the model did not show substantial advantages on validation data for several key metrics
(R?, RMSE, MAE), indicating the need for additional analysis and possibly architecture refinement.

Stacking v3

CatBoost (Huber)

LGBM (Huber)

XGBoost (Huber)

Random Forest

HighAST Regressor

Meta-model: LGBM
(Huber, passthrough)

Final Prediction

Figure 3. Stacking v3 architecture.

Overall, the Stacking_v2 architecture was optimal in terms of the combination of accuracy,
stability, and interpretability criteria. It is recommended to use this option for predicting the AST
level using the presented markers and features.
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2.4. Stages of Model Implementation

Proper feature selection plays a key role in building accurate and interpretable machine learning
models, especially in the clinical context, where each variable can reflect critical biomedical processes.
Based on biochemical, anthropometric, and behavioral characteristics, as well as the use of
explainable Al approaches, an assessment is carried out to evaluate their contribution to the predicted
variable. This analysis not only improves the quality of prediction but also identifies
pathophysiological relationships that are crucial for interpreting results and informing clinical
practice.

I. Notations and variables used

e 1 — number of observations (patients);

e d — number of initial features;

e X € R™4_ feature matrix;

e x; € R?— feature vector for the i-th patient;

e y € R™ — target variable vector (ACT level, LBXSASSI).

Trait variables:
= x@M = RIDAGEYR — age;

* x@ = RIAGENDR— gender;

= x® = BMXWT — weight;

*  x® = BMXHT — height;

=  x®) = LBXFER— ferritin;

*  x(® = LBXHCY — homocysteine;

»  x = LBXTC — total cholesterol;

*= x® =LBDLDL— LDL-G;

= x® = LBXGLU — glucose;

=  x(9 = LBXHGB — hemoglobin;

»  xUD = [BXSCR— creatinine;

= x(® = LBXCRP— hs-CRP;

= x(% = LBXSAPSI— alkaline phosphatase (ALP);
= x(% = LBXSGTSI— gamma-GT;

= x(® = LBXSLDSI— LDH;

= x(*® = LBXSBU — urea;

= x(7 = LBXSUA = LBXSUA — uric acid;

= x(8 = LBXWBCSI — leukocytes;

= x(9 = ALQ130— average number of alcoholic drinks per day;
»  x9 = pAD615— physical activity.

Figure 4 shows the complete architecture of the algorithm for constructing a predictive model
for the aspartate aminotransferase (AST) level, including the stages of data preprocessing, feature
selection, training of base models, and formation of the Stacking_v2 ensemble. The algorithm begins
by removing outliers and missing values, then encodes categorical variables and scales numerical
features. After splitting into training and validation samples, several regressors are trained in parallel
(including XGBoost, CatBoost, LightGBM, ExtraTrees, etc.), and the final model is formed using
meta-regression based on these models.
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S | e i
resp demo X,y ={lx )| w <200 . .
LBXFER RIDAGEYR [ vl "i) o ! fiin — Linear Regression
LBXHCY RIAGENDR
LBXTC BMXWT e frf— Random Forest
LBXTC BMXHT Vi€ {1,...,n}: (-“,'j e {1,..,d}: :ci” # NaN) Ay # NaN
LBXTC rAgb — X(iBoost
LBXTC questionnaire *
LEXTC ALQI30 Transformation of categorical variables feq — CatBoost
- PAD61S (2) (2) (2 2
LBXTC ' [y, 27] € {0,1} figy — LightGBM
LBXSAPSI
LBXSGTSI R
LBXSLDSI Secaling of numerical features fexr— Extra TreesthighAST (y=>50)
LBXSBU 1w )|
LBXSUA Hj = i1 &
. =) _ Training base regressors
LBXWBCSI T = : d
f1 (£1] 3 N 1 9
7 =Vn E:I ][II)’ = ) fi = argmin (o = filxi))
fi N
L =l
Splitting into training and validation sets
Target (y) TRAIN MAIN MODEL
LBXSASSI - D = (X, ) = Pirains Dra (f-e: Stacking v2)

Figure 4. Algorithm for constructing a prognostic model for aspartate aminotransferase (AST) levels.

This algorithm enables the achievement of high accuracy and robustness in the model by
combining various algorithms and normalization methods. Using Stacking_v2 ensures the efficient
aggregation of base model predictions, thereby reducing the risk of overfitting and improving the
model's generalization ability. The inclusion of such stages as outlier analysis and feature scaling is
essential in medical data, where there is high heterogeneity. The algorithm architecture presents a
comprehensive and interpretable approach to AST prediction, making it suitable for subsequent
application in decision support systems.

II. Steps of data preparation and processing

1. Loading and merging data. The first stage involves loading three tables containing
clinical, demographic, and questionnaire data, after which they are combined using a unique patient
identifier (SEQN), allowing for the formation of a single data structure for subsequent analysis and

model building (4).
X,y « Merge(resp, demo, questionnaire)
4)
2. Remove outliers. Removes records where the target variable y; > 200 (5):
X,y ={(x,y)ly; < 200}
®)
3. Removing gaps. Only those records are left where there are no gaps for the selected
features and target variable (6):
Vi€ {1,..,n}:(Vj € {1,..,d}: x # NaN)"y, # NaN (6)
4. Transformation of categorical variables. Gender indicator is encoded using the one-hot
method (7):
x® - [Xéz), xl(Z)] € {0'1}2
@)
5. Scaling of numerical features. For each numerical feature (x\) )), except for categorical
ones, standardization is applied (8):
)]
S _ X TH
=
9
1 j 1 j
=3t x?, o5 = \/;Z?=1(xim — K’ (®)
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6. Splitting into training and validation sets. The data is split into training (Dyy4;,) and
validation (D,,;) sets:

D = (X,¥) = Dirain Dvar 9)
ITI. Mathematical description of model training

1. Training base regressors. For each base algorithm f; (x), we train a regression function
(10):

fx =arg n}in%z:?l:l(% - fk(xi))z (10)

® fiin — linear regression
* frr — Random Forest
fxgp — XGBoost

® f.oe — CatBoost

e figr — LightGBM

e f..: — ExtraTrees

frighast - local regressor for high AST values (trains only on cases with y>50)
IV. Methods of selection and analysis of features
1. Correlation analysis
e Linear correlation (11):

e o))

j (11)
W-1a,(j)0y
J Spearman/Kendall: uses nonparametric measures for robustness.
. Mutual Information (12):
0. y) = pEy)
I(XP3Y) = By p(x,y)log 5o o (12)
e SHAP values (13):
¢j = Eng{j}[fSu{j}(x) — fs(@)] (13)

Stacking v2. The final model is a second-level ensemble combining the predictions of the base
models using ridge regression as a meta-algorithm. This approach enables the extraction of
advantages from different models, thereby increasing the stability of predictions and reducing error
due to aggregation. The use of stacking is especially justified in problems where there is no single
universal predictor, and it is necessary to combine knowledge from different sources. Taken together,
the described methodological approach enables the construction of an interpretable, robust, and
accurate model for predicting the AST level based on available routine data, offering high potential
for clinical application.

3. Results

This study was conducted using the publicly available, harmonized NHANES 1988-2018
(National Health and Nutrition Examination Survey) dataset, which combines national data on the
health and nutrition status of the US population over 30 years [9]. Thanks to complex preprocessing,
this resource ensures high comparability of variables and minimizes the impact of missing and
erroneous values, which is critical for building valid machine learning models. The selection of
features for analysis was carried out strictly by the goal of the study - to develop an accurate and
accessible model for predicting aspartate aminotransferase (AST) levels based exclusively on low-
cost and routine biochemical markers that are available as part of standard medical examinations,
without the use of specialized and expensive cardiology tests.

The final dataset for building the prognostic model included the most accessible and clinically
significant variables. Demographic characteristics, such as age and gender, were used as baseline
covariates to account for norms and individual differences. Anthropometric indicators (body weight
and height) reflected the metabolic load and served as indicators of the general physiological state.
The set of features included key biochemical markers, such as ferritin, homocysteine, cholesterol,
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glucose, creatinine, hemoglobin, hs-CRP, urea, uric acid, and leukocytes, which characterize
metabolism, inflammatory processes, kidney and liver function, as well as protein and carbohydrate
metabolism. Additionally, inexpensive but informative markers of liver function (y-GT, LDH,
alkaline phosphatase) were included as a practical alternative to specialized liver tests. Behavioral
parameters, such as the level of physical activity and alcohol consumption, were also taken into
account to account for the influence of external factors. This selection of features is designed to
maximize the practical applicability of the model, relying solely on data that are readily available in
most clinical laboratories without the need for expensive equipment or specialized assays, making
the proposed approach suitable for broad population screening. All variables were standardized, and
categorical variables were one-hot encoded. Samples were combined by unique participant
identifiers, with subsequent cleaning of missing values (Table 2).

Table 2. Description of variables used in the aspartate aminotransferase (AST) level prediction model.

Variable Description

RIDAGEYR Age of respondent (years)
RIAGENDR Gender (1 - male, 2 - female)
BMXWT Body weight (kg)

BMXHT Height (cm)

LBXFER Ferritin (mcg/L)

LBXHCY Homocysteine (umol/l)

LBXTC Total cholesterol (mmol/1)
LBDLDL Low-density lipoproteins (mmol/l)
LBXGLU Fasting glucose (mmol/l)

LBXHGB Hemoglobin (g/1)

LBXSCR Creatinine (umol/l)

LBXCRP hs-CRP (mg/L)

LBXSAPSI Alkaline phosphatase (U/L)
LBXSGTSI Gamma-glutamyl transferase (U/L)
LBXSLDSI LDH (U/L)

LBXSBU Urea (mmol/L)

LBXSUA Uric acid (mmol/L)

LBXWBCSI Leukocytes (10"9/L)

ALQ130 Average number of alcoholic drinks per day
PAD615 Physical activity level (min/week)
LBXSASSI AST (target, U/L)

To build a predictive model, both basic algorithms and various ensemble schemes were tested.
Both interpretable (linear regression) and more powerful ensembles — Random Forest, XGBoost, and
CatBoost — were used as single models. In addition, three versions of stacking models were
implemented, differing in the composition of the basic models, meta-algorithm, and the use of
additional strategies. All models were tuned to optimize the parameters that strike a balance between
accuracy and stability. Table 3 presents brief characteristics of the models used and the key
hyperparameters applied in the experiment.

Table 3. Main parameters of the models and the structure of the ensembles.

Model Brief Description Key parameters

Linear Regression  Basic Interpretable Model default
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Random Forest Decision Tree Ensemble n_estimators=300, max_depth=8,
random_state=42
XGBoost Gradient Boosting n_estimators=300, max_depth=8,

learning_rate=0.05, objective="reg:squared error,
random_state=42

CatBoost Robust Gradient Boosting iterations=1200, depth=6, learning_rate=0.03,
loss_function="Huber:delta=2.0'",

random_state=42

Stacking_v1 Linear + RF + XGBoost meta=Linear Regression
Stacking_v2 CatBoost + LGBM + ExtraTrees meta=Ridge Regression (alpha=1.0)
Stacking_v3 CatBoost + LGBM + XGB + RF + meta=LGBM  (huber),  passthrough=True,
high AST perpeccop “high_AST”: LGBM
(objective="huber', n_estimators=400)
Advanced Specialized regressor for high_AST LGBM (separately on the subsample with high
Stacking AST)

As shown in Table 3, each model had its specific settings and architecture. Simple models, such
as linear regression, were primarily used for basic comparison, while ensemble approaches,
especially Stacking_v2, yielded the best results across several metrics. Of particular interest are
complex configurations, such as Stacking_v3, and a specialized regressor for the subsample with high
AST values, focused on handling outliers and complex cases. This multi-level approach allowed us
to comprehensively evaluate the potential of various algorithms in predicting biomarkers on routine
data. A set of validated metrics was used for a comprehensive assessment of the predictive abilities
of the trained models. The forecasting quality was determined by the coefficient of determination
(R?), reflecting the proportion of explained variance of the target variable, as well as by the root mean
square error (RMSE) and mean absolute error (MAE), which allow us to quantify the average
deviations of predictions from the actual values in the original AST units. In addition, the relative
error (MAPE) was calculated and expressed as a percentage, ensuring comparability between
different ranges of values and increasing the clinical interpretability of the results. Additionally, the
explained variance was estimated, characterizing the model's stability in the face of fluctuations and
outliers in the data. Figure 5 shows the values of the determination coefficient (R?) for the training
and validation sets for all tested models: Linear Regression, Random Forest, XGBoost, CatBoost, and
three stacking options.
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Figure 5. Comparison of R2 for training and validation sets by models.

The highest value of the coefficient of determination (R?) on the training set was achieved by the
XGBoost model (R? = 1.00), indicating that it fully explains the variance of the target variable within
the training dataset; however, the decrease in R? to 0.92 on the validation set indicates possible
overfitting, despite maintaining high predictive accuracy. The Random Forest and CatBoost models
also demonstrated high R? values (0.92 and 0.99 on training and 0.84 and 0.90 on validation,
respectively), confirming their generalization ability, albeit inferior to that of XGBoost. Ensemble
approaches, especially Stacking_v2, provided the best balance between accuracy on training (0.99)
and validation (0.98), demonstrating resistance to overfitting due to the integration of predictions
from multiple base models. In contrast, the linear regression model showed significantly lower values
(0.48 for training and 0.42 for validation), indicating its insufficient flexibility in the face of complex
nonlinear relationships. The Stacking_v3 model, despite its complex architecture, achieved only 0.73
for training and 0.58 for validation, which is likely due to the overcomplication of the structure and
a decrease in consistency between the ensemble levels. Thus, the most stable and highly accurate
results are achieved when using modern boosting and stacking models with well-chosen parameters
and a relevant set of features.

Figure 6 shows a comparison of the root mean square error (RMSE) values on the training and
validation samples for different models. RMSE enables us to assess the absolute accuracy of
predictions: the lower the metric value, the higher the model's quality.
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Figure 6. Comparison of RMSE for training and validation sets.

The RMSE metric analysis revealed the highest error value for the linear regression model (5.94
on the training set and 7.55 on the validation set), indicating its inability to model complex
relationships between features and the target variable adequately. At the same time, the Random
Forest, CatBoost, and especially XGBoost models showed significantly better results: the minimum
RMSE value for validation belongs to XGBoost (2.75), with zero error for training, which, despite the
high accuracy, may indicate overfitting. CatBoost demonstrated balanced values (0.90 - training, 3.18
- validation), only slightly inferior to XGBoost. Among the ensemble stacking models, the best
performance was shown by the Stacking_v2 architecture (0.63 - training, 1.23 - validation), which
indicates its high generalization ability and successful configuration. In contrast, Stacking_v3 showed
inflated errors (4.28 — training, 6.43 — validation), likely due to excessive complexity and inefficient
coordination between ensemble layers. Thus, XGBoost and Stacking_v2 proved to be the most
effective in terms of root mean squared error (RMSE). At the same time, significant discrepancies
between training and validation errors for individual models underscore the need for further work
on hyperparameter tuning and preventing overfitting.
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Figure 7 shows the analysis of mean absolute errors (MAE) for the training and validation sets
for different models. MAE reflects the average absolute deviation of predictions from actual values,
allowing us to judge the accuracy of the models without considering the direction of error.
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Figure 7. Comparison of MAE for training and validation sets.

The analysis of the mean absolute error (MAE) metric revealed that the linear regression model
yields the highest values on both the training set (4.21) and the validation set (4.88), indicating its
limited predictive suitability for this task. In contrast, the Random Forest and CatBoost ensemble
models demonstrated significantly lower MAE values — 1.56 and 0.39 on training and 2.71 and 1.57
on validation, respectively — confirming their ability to account for complex nonlinear dependencies.
The XGBoost model exhibited minimal error values (0.00 on training and 1.03 on validation),
demonstrating high accuracy and generalization ability with the correctly selected parameters.
Stacking models also performed well: Stacking vl (1.31 — train, 2.58 — val) and especially
Stacking_v2 (0.40 — train, 0.90 — val), the latter of which provides one of the best accuracy-to-
robustness ratios. In contrast, the Stacking_v3 model showed relatively high errors (1.72 — training,
3.02 — validation), which is likely due to the complex architecture and weak synergy between the
ensemble components. Overall, the XGBoost and Stacking_v2 models demonstrated the best MAE
values in validation, making them preferable for accurate and robust AST activity prediction,
especially in the context of medical data with high sensitivity to outliers.

Figure 8 presents a comparison of the relative prediction error (MAPE, %) for various models on
both the training and validation sets. This metric is particularly sensitive to the magnitude of the
deviation between predictions and actual values. It is critical for clinical and biomedical problems
where it is essential to consider the percentage error.
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Figure 8. Comparison of MAPE (%) for training and validation sets.

The mean average prediction error (MAPE) analysis revealed that the linear regression model
performed the worst, with 20.27% on the training set and 19.87% on the validation set, confirming its
limited applicability to AST activity prediction tasks. In contrast, ensemble methods, in particular
Random Forest, significantly reduced the error rate (7.43% — train, 11.26% — val), demonstrating
robustness to data heterogeneity. The XGBoost model achieved the best performance (0.02% — train,
3.77% — val), demonstrating its high ability to model complex relationships accurately. Comparably
low values were shown by CatBoost (1.75% — train, 5.85% — val) and Stacking_v2 (1.95% — train,
3.85% — val), highlighting the effectiveness of advanced ensemble architectures. At the same time,
Stacking_v1, despite achieving acceptable results in training, demonstrated a significantly higher
MAPE in validation (10.94%), which may indicate an insufficient model complexity or overfitting.
Stacking_v3 is also inferior in accuracy (6.08% — train, 10.13% — val), despite its complex structure.
Thus, XGBoost and Stacking_v?2 are recognized as the most accurate and robust models for individual
AST level prediction, especially in the context of precision medicine and epidemiological studies.

Figure 9 shows a comparison of the Explained Variance scores for different models on the
training and validation sets, reflecting the proportion of variance in aspartate aminotransferase (AST)
levels explained by the model. Linear regression showed the lowest values of 0.48 for training and
0.43 for validation, indicating its limited ability to capture complex dependencies in medical data. In
contrast, the Random Forest and CatBoost models provided significantly higher explained variance,
at 0.92 and 0.99 for training and 0.85 and 0.91 for validation, respectively. These results demonstrate
the effectiveness of ensemble and boosting approaches in modeling physiological processes with high
variability, confirming their applicability to individual medical prediction problems.
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Figure 9. Comparison of explained variance for training and validation sets.

The XGBoost and Stacking_v2 models demonstrate the highest Explained Variance values on
the training set (1.00) and some of the highest results on the validation set (0.92 and 0.98, respectively),
which indicates the high ability of these algorithms to take into account complex nonlinear
dependencies between features and almost explain entirely the variability of the aspartate
aminotransferase (AST) level. At the same time, Stacking_v1 and Stacking_v3 show more modest
values (0.94/0.87 and 0.74/0.62 for the training and validation sets, respectively), which can be due to
either excessive complexity of the ensemble structures or insufficient consistency between the base
and meta-levels of the models. The best explained variance values are achieved by XGBoost,
CatBoost, and Stacking_v2, which confirms their suitability for high-precision risk stratification,
interpretation of significant predictors, and construction of reliable individual predictions in medical
analytics tasks.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.2273.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 June 2025 d0i:10.20944/preprints202506.2273.v1

16 of 30

Based on the conducted analysis, the XGBoost and Stacking_v2 algorithms demonstrate the
highest accuracy and stability among the tested models. At the same time, the final choice of the
optimal model should take into account not only the metric values on the training set but also stability
during validation, the tendency to overfit, and the interpretability of the results. XGBoost shows
almost ideal training quality (R?>=1.00, RMSE=0.00, MAE=0.00, ExplainedVar=1.00). However, a
moderate decrease in indicators is observed on the validation set (R?=0.92, RMSE =2.75, MAE =1.03),
which still indicates a high generalizing ability with minimal risk of overfitting. At the same time, the
Stacking_v2 model outperforms XGBoost in several validation metrics (R? = 0.98, RMSE = 1.23, MAE
=0.90, MAPE = 3.85), demonstrating stable performance and adaptability to complex data structures.
This is achieved through the use of powerful base models (CatBoost, LightGBM, ExtraTrees) in
combination with Ridge meta-regression, which reduces overfitting and accounts for the
multicollinearity of features. Linear regression yielded the worst results among all the tested models,
which is explained by its inability to accurately reflect the complex nonlinear dependencies between
biochemical and behavioral parameters. Low R? values (0.48 in training and 0.42 in validation), high
RMSE and MAE values, as well as a significant percentage of mean absolute error (MAPE), confirm
its limited predictive capabilities in medical data. Thus, the set of tests and metrics performed
supports the choice of Stacking_v2 as the main predictive model. This architecture provides an
optimal balance between accuracy, interpretability, and resistance to overfitting, which is especially
important when predicting aspartate aminotransferase levels in screening and clinical studies.

3.1. Importance of Features, Their Interactions, and Correlations

Figure 10 shows a comparative matrix of feature significance using the linear correlation, mutual
information, and SHAP methods (for XGBoost and Random Forest), reflecting the contribution of
variables to predicting the AST level. The most significant in all approaches were gamma-glutamyl
transferase (LBXSGTSI), ferritin (LBXFER), and lactate dehydrogenase (LBXSLDSI), indicating their
key role in the biochemical assessment of liver function. Also, anthropometric parameters such as
height (BMXHT) and weight (BMXWT) showed high predictive potential, which may be associated
with metabolic load.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.2273.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 June 2025 d0i:10.20944/preprints202506.2273.v1

17 of 30
Feature Importance and Relationship to AST
RIAGENDR 150
BMXWT
BMXHT |
LBXFER 1.25
LBXHCY
LBXTC
LeoLoL | 0
LBXGLU
§ LBXHGB 0.06 ~075 &
S LBXSCR A
LBXCRP
LBXSAPSI ' s 030
LBXSGTSI 0.44 0.55
LBXSLDSI 0.35 0.71
LBXSBU
LBXSUA
LBXWBCSI

ALQI30 0.04

PAD615

N

(\go

/o)
G
2
)
‘s

%

(,0)
%,

Method

Figure 10. Contribution of each feature to the prediction of the AST level using different methods (SHAP, Mutual

Info, correlations).

Moderate significance is observed for parameters such as physical activity level (PAD615), low-
density lipoproteins (LDL), as well as several behavioral and biochemical parameters (e.g., ALQ130,
LBXCRP, LBXSBU). The least informative variables were RIAGENDR (gender), LBXHGB
(hemoglobin), and LBXCRP (hs-CRP), which demonstrated low or negative significance values in
most methods, indicating their weak association with AST levels in this population. Visualization of
the differences between methods revealed that SHAP (especially for XGBoost) emphasizes the
significance of individual biomarkers, such as LBXSGTSI and LBXFER. At the same time, mutual
information confirms their relevance from the standpoint of nonlinear dependencies. Linear
correlation underestimates the role of markers sensitive to nonlinearity but also confirms the
significance of LBXSGTSI and LBXFER. Taken together, this allows us to conclude that the main
predictors of AST are markers of liver cytolysis (LBXSGTSI, LBXSLDSI), metabolic parameters
(LBXFER), and anthropometric parameters (BMXWT, BMXHT). The consistency of results between
methods increases the reliability of the identified associations and confirms their practical value for
screening and clinical use.

Figure 11 shows a bee swarm plot of SHAP values demonstrating the contribution of individual
features to predicting aspartate aminotransferase (AST) levels using the XGBoost model. The leading
predictor is LBXSGTSI (gamma-glutamyl transferase), where high feature values are associated with
increased AST, emphasizing its role as a key biomarker of liver cell lysis. Ferritin (LBXFER) and
anthropometric parameters (height and weight), reflecting metabolic load, also have a significant
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impact. The physical activity parameter (PAD615) is positively associated with AST in some cases,
which may be due to physiological adaptations or microdamage. An average contribution is observed
for LDH, LDL, and hs-CRP, while features such as gender, creatinine, and some biochemical
parameters have a minimal impact. This confirms that AST variability in the NHANES cohort is
predominantly determined by liver function, metabolism, and individual physiological
characteristics.

SHAP Beeswarm: Feature Impact on AST
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Figure 11. SHAP Beeswarm - the contribution of each feature and the influence of values on the AST

prediction.

Overall, the visualization confirms that a combination makes the most significant contribution
to AST variability of liver and metabolic markers, as well as parameters characterizing inflammation
and lifestyle. The high dispersion of SHAP values for the leading markers emphasizes their
importance for risk stratification and the potential for inclusion in clinical predictive models. Figure
12 shows a diagram of the average modulus of the SHAP value for each feature, which allows us to
rank their contribution to the prediction of aspartate aminotransferase (AST) levels by the XGBoost
model. The higher the value of the column, the greater the average contribution (importance) of this
feature to the final model.
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Mean |SHAP|: Feature Ranking by XGBoost
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Figure 12. Ranking features by mean absolute SHAP (XGBoost).

Key findings from the mean SHAP ranking of features indicate that the most significant
predictor of aspartate aminotransferase (AST) level is LBXSGTSI, specifically gamma-glutamyl
transferase (GGT). This indicator consistently occupies a leading position, which confirms its clinical
significance as a sensitive and specific marker of liver cytolysis. Ferritin (LBXFER) and
anthropometric parameters (height - BMXHT, weight - BMXWT) also make a significant contribution,
reflecting the impact of metabolic disorders and obesity on AST activity. Physical activity (PAD615)
demonstrates a pronounced effect, which may be associated with both physiological adaptations of
muscle tissue and potential damage that occurs during intense exercise. The following factors are
most significant: LDH (LBXSLDSI), low-density lipoproteins (LBDLDL), the inflammatory marker
hs-CRP (LBXCRP), leukocytes (LBXWBCSI), and the level of alcohol consumption (ALQ130), which
indicate a complex regulation of AST, involving metabolic, inflammatory, and behavioral factors.
Less significant were indicators such as alkaline phosphatase (LBXSAPSI), uric acid (LBXSUA), age
(RIDAGEYR), creatinine (LBXSCR), and sex (RIAGENDR), which more informative variables may
have influenced in the multifactorial model. The overall analysis confirms that the key determinants
of AST variability are biochemical markers reflecting metabolic and inflammatory status, as well as
physical activity indicators, which is consistent with the modern concept of risk stratification and
interpretation of liver enzyme activities.

3.2. SHAP Interactions

Figure 13 illustrates the evaluation of the top 10 pairwise feature interactions, as determined by
SHAP interaction values.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.2273.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 June 2025 d0i:10.20944/preprints202506.2273.v1

20 of 30

Top-10 SHAP Feature Interactions
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Figure 13. Top 10 feature pairs with maximum interactions (SHAP interactions).

SHAP interaction analysis revealed that the most significant contributions to the AST level
prediction were made by the BMXWT x LBXSGTSI and LBXSGTSI x BMXWT trait pairs (contribution
> 0.19), which combined body weight and gamma-glutamyl transferase activity —key markers of
metabolic and liver disorders. Significant interactions were also observed between LBXSGTSI and
LBXSLDSI (~0.12), reflecting the synergistic effect of cytolytic enzymes. The LBXGLU x LBXFER
interaction (~0.09) indicated a relationship between carbohydrate metabolism disorders and iron-
containing proteins with AST activity. Less pronounced but significant pairs included LBXSBU,
LBXFER, and BMXHT, emphasizing the importance of careful consideration of even secondary
biomarkers. Overall, the identified interactions enhance the interpretability of the model and
demonstrate the multifactorial nature of AST regulation.

3.3. Correlation Analysis

Figure 14 shows the matrix of robust correlations between AST and the studied biochemical and
clinical markers. The matrix of robust correlations was calculated using four different methods:
Spearman, Kendall, DistanceCorr, and MICe. The highest positive correlations with AST are
observed for ferritin (LBXFER: 0.35 by DistanceCorr, 0.32 by Spearman), gamma-glutamyl transferase
(LBXSGTSI: 0.42 by DistanceCorr, 0.35 by MICe) and lactate dehydrogenase (LBXSLDSI: 0.33 by
DistanceCorr, 0.30 by MICe). These results reflect the established clinical relationship between
cytolysis markers and AST levels, confirming their crucial role in diagnosing and monitoring liver
conditions.
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Figure 14. Matrix of robust correlations between AST and biochemical markers.

Pronounced correlations are also observed for hemoglobin (LBXHGB: 0.41 by MICe), which is
probably due to its indirect effect on tissue respiration and metabolism in the liver. Negative
correlations were recorded for parameters such as C-reactive protein (LBXCRP: -0.23 by Spearman),
which may indicate complex relationships between inflammation and enzymatic activity of the liver,
as well as gender (RIAGENDR: -0.22 by Spearman), which reflects physiological differences between
men and women in the structure and functioning of the liver. In general, the markers of liver
cytolysis, metabolic metabolism, and inflammation were the most informative in terms of
correlations. This emphasizes the need for careful consideration of these indicators when
constructing prognostic models of AST activity and also indicates a high biological validity of the
selected features.

3.4. Clustering and Dendrogram

Figure 15 shows a dendrogram (Feature + AST Dendrogram, Ward Linkage) showing the
hierarchical structure of relationships between the main features and the AST level obtained using
the Ward method. The vertical axis includes all biomarkers, as well as demographic and behavioral
variables. The horizontal axis represents the distance between clusters (ward linkage distance),
allowing you to assess their degree of similarity visually.
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Figure 15. Cluster structure of features and their grouping by similarity of contribution to AST.

The dendrogram analysis demonstrates the clustering of features corresponding to their
biological and clinical nature. In the lower part, a cluster is revealed that unites biochemical markers
of enzymatic activity and cellular damage (LBXSGTSI, LBXSASSI, LBXSLDSI, LBXFER), reflecting
the integrative role of AST in assessing both hepatic and systemic cytolysis processes. This group is
especially informative for the diagnosis of diseases accompanied by tissue necrosis, including both
hematological and cardiac pathologies. The second large cluster includes metabolic and
anthropometric indicators (BMXWT, BMXHT, LBDLDL), as well as biomarkers of chronic
inflammation and metabolic disorders (LBXSUA, LBXHGB, LBXCRP), emphasizing the systemic
effect of lipid and protein metabolism on the AST level. The third cluster combines behavioral and
demographic variables (PAD615, ALQ130, RIAGENDR, RIDAGEYR), as well as glucose and related
parameters (LBXGLU, LBXSAPSI, LBXWBCSI), highlighting the importance of lifestyle, age, and
carbohydrate metabolism in regulating enzyme activity. Minimal distances between cytolysis
markers indicate their close relationship and joint contribution to AST variability. More distant
groups of features, despite a smaller relationship, also make a significant contribution due to
metabolic, inflammatory, and behavioral factors. Thus, the dendrogram structure visualizes the
multisystem nature of AST regulation, where the most crucial influence is exerted by enzymatic
indicators of tissue damage, followed by metabolic and behavioral parameters. The resulting clusters
can be used for more accurate stratification of patients and the construction of interpretable
prognostic models in clinical practice.

3.5. Assessing Interpretability and Calibration

Figure 16 shows the calibration plot of the LGBM model, which allows us to assess the agreement
between the predicted and observed AST levels by quantiles. The dotted line represents a perfect
match between the predictions and observations, while the actual calibration line (blue line) displays
the model's actual results. In most intervals of predicted values, there is a relatively high degree of
agreement between the prediction and the exact values, indicating good calibration of the model in
the range of low and medium AST values. However, in the region of high values (from 30 to 40),
there is some discrepancy, where the actual values exceed the expected ones. This indicates a
tendency of the LGBM model to underpredict patients with the most pronounced AST deviations
slightly. The reason for this behavior may be both the relative rarity of high AST values in the training
set and the difficulty of modeling extreme physiological states.
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Figure 16. Calibration of the LGBM model by prediction quantiles.

Overall, the graph confirms the adequacy of the model calibration for most clinically significant
AST intervals, which is essential for the practical application of the prognostic model in population
studies and medical screenings. Particular attention should be paid to further improving the model
by adjusting predictions in the tails of the distribution, thereby improving the accuracy of the forecast
for patients with atypically high enzyme values.

3.6. Predicting the Risk of Exceeding the AST Threshold

Figure 17 illustrates the ROC curve for the binary classification problem involving patients with
an AST level of> 40 U/L. The area under the curve (AUC) is 1.000, which reflects the maximum
possible discriminatory ability of the model. This result means that the model accurately
distinguishes patients with pathologically elevated AST values from all other cases in the validation
set. Binarization (AST > 40 U/L) allowed us to test the diagnostic suitability of the models using the
standard AUROC and PR-AUC metrics. The ROC curve line almost repeats the upper and left edges
of the graph, indicating the absence of false-positive and false-negative decisions at the selected
classification threshold. This level of prediction quality, on the one hand, demonstrates the model's
high ability to identify clinically significant cases of elevated AST. On the other hand, it may indicate
potential overfitting on the subsample under consideration or high homogeneity of the data structure
for this feature. A key practical conclusion is that, with the current configuration of features and
training set, the model can be used for screening and early detection of patients with severe liver
dysfunction, as indicated by AST. To confirm the sustainability of this result, it is ad visable to conduct
validation on external independent cohorts.
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Figure 17. ROC curve (AUC=1.000) - ability to identify patients with elevated AST.

The obtained AUC value of 1.000 requires careful interpretation, as such ideal values are scarce
in clinical practice and may indicate features of the data structure or model overfitting. Possible
reasons include the high homogeneity of the validation sample or the presence of pronounced
features that divide groups by the AST level. To confirm the stability of the model, additional checks
are necessary, including cross-validation, repeated random partitioning, and testing on external data.
Nevertheless, the high sensitivity and specificity of the model open up prospects for its application
not only in diagnostics but also in monitoring therapy and creating interpretable decision support
systems in hepatology.

Figure 18 shows the Precision-Recall curve for the binary classification problem of patients with
AST > 40 U/L, with an average area under the curve (AUC) of 1.000. This result indicates 100%
accuracy and recall in identifying positive cases among the entire sample.

Precision-Recall Curve: AST = 40 U/L

0.8

g
>

Precision

=
=

0.2

— PR curve (AP = 1.000)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 18. Precision-Recall-curve (AP=1.000).

A high AP (Average Precision) value indicates the model's exceptional ability to simultaneously
achieve maximum recall (recall = 1.0) and accuracy (precision = 1.0), suggesting a complete absence
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of type I and type II errors on the validation set. Such a combination is scarce and typically results
from the high information content of features, a low noise level in the data, or the clear separability
of classes. The characteristic shape of the Precision-Recall curve with a sharp transition confirms the
absence of a trade-off between accuracy and recall, which may also be due to a limited sample size
or class imbalance. Such a result requires additional validation: retesting on independent data, cross-
validation, and assessment of robustness to changes in the sample structure. Despite the seeming
ideality, such high indicators should be interpreted with caution, especially in the context of medical
problems, where overfitting can lead to false conclusions. Nevertheless, a high AP metric indicates
the model's potential for screening and early detection of patients with abnormally high AST levels.

3.7. Mediator Analysis

Mediation analysis with ferritin (LBXFER) as a key mediator showed that its contribution to AST
change is realized mainly in a direct way, without significant indirect influence through other routine
markers. Table 4 presents the following notations: Direct reflects the direct impact of the mediator on
the AST level, Indirect is an indirect or mediated influence through intermediate variables, Total is a
combined effect, including both direct and indirect influence, sig indicates the statistical significance
of the impact (significant values are highlighted in bold), CI is a 95% confidence interval
characterizing the reliability and stability of the assessment.

Table 4. Results of mediator analysis of the influence of biomarkers and lifestyle factors on aspartate

aminotransferase (AST) levels.

95%
95%
p- CI Significanc  Description of the
Mediator Path Coef. SE CI
value (upper e effect
(low)
)
Major contribution
LBXFER 1.20e-
Direct 0.0231  0.0040 0.0155  0.0309  Yes via direct path
Ferritin 8
(significant)
The indirect effect

Indirect -0.0003 0.0010 0.672  -0.0026 0.0013 No
is not significant.

3.58e- Yes The overall effect
Total 0.0229  0.0040 0.0150  0.0309
8 remains
LBXSGTSI 9.42¢- Yes Significant direct
Direct 0.0138  0.0041 0.0057 0.0218
Gamma-GT 4 influence
Yes The indirect effect
Indirect 0.0092 0.0027 0.000 0.0047 0.0154 is statistically
significant.
3.58e- Yes Overall mediation
Total 0.0229  0.0040 0.0150  0.0309
8 effect
BMXHT 2.55e- Yes Significant  direct
Direct 0.0201  0.0042 0.0119  0.0284
Height (cm) 6 path
Yes The indirect effect

Indirect 0.0028 0.0019  0.008 0.0004  0.0078
is significant.
3.58e- The overall effect is

Total 0.0229  0.0040 0.0150 0.0309  Yes o
8 maintained
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LBXSBU 1.97e- Yes The main effect is
Direct 0.0262  0.0042 0.0179  0.0345
Urea (BUN) 9 direct.
Yes The indirect effect
Indirect -0.0033 0.0015 0.000 -0.0071 -0.0013 is statistically
significant.
3.58e- Yes The final effect is
Total 0.0229  0.0040 0.0150  0.0309
8 confirmed
LBXGLU 770 Yes The direct effect is
.70e-
Fasting Direct 0.0241  0.0040 9 0.0162  0.0320 clearly expressed.
glucose
Yes The indirect effect
Indirect -0.0011 0.0007  0.008 -0.0035 -0.0002
is expressed.
3.58e- Yes The overall effect is
Total 0.0229  0.0040 0.0150  0.0309
8 confirmed
6.32e- Yes Significant  direct
LBXSLDSI Direct 0.0198  0.0039 0.0122  0.0274 o
7 contribution
Yes The indirect effect
Indirect 0.0031 0.0019  0.004 0.0009  0.0082 is statistically
significant.
3.58e- Yes The overall effect is
Total 0.0229  0.0040 0.0150  0.0309
8 expressed
PAD615 Yes The main
8.5%-
activity in Direct 0.0238  0.0040 9 0.0159  0.0316 contribution is
min direct.

The indirect effect
Indirect -0.0008 0.0008  0.240 -0.0030 0.0003 No
is insignificant.
3.58e- The final effect is

Total 0.0229  0.0040 0.0150  0.0309  Yes
8 confirmed.

The results of the mediator analysis indicate that the most pronounced direct and indirect effects
on AST levels are exerted by gamma-glutamyl transferase (LBXSGTSI), growth (BMXHT), urea
(LBXSBU), alkaline phosphatase (LBXSLDSI), and glucose (LBXGLU). Ferritin (LBXFER) makes a
significant contribution, primarily through the direct pathway, which is consistent with its
established role as a marker of systemic inflammation and cellular cytolysis. For most other
biomarkers, the indirect effect is weak or absent, which emphasizes the dominance of direct impacts
in the formation of AST activity. The choice of mediators was motivated by several reasons. First,
only statistically significant mediators were included in the analysis: the selection was carried out
according to the criterion of the presence of at least one considerable pathway (direct, indirect, or
total), with a p-value less than 0.05 and a confidence interval not crossing zero. Secondly, the selected
features were characterized by a high degree of association with AST, both according to the ranking
of feature importance (SHAP, correlation) and according to the results of the mediator analysis itself.
Among them were ferritin, gamma-GT, LDH, urea, glucose, height, and physical activity. Thirdly,
mediators with no significant effect were excluded from the final table: features for which all paths
were insignificant (p > 0.05) or made a minimal contribution were not included to avoid excessive
detailing.
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4. Discussion

In this study, a comprehensive analysis of the factors determining aspartate aminotransferase
(AST) activity was performed using modern machine learning methods, mediator analysis, and
assessment of stable correlations. The results obtained enable a thorough characterization of
biochemical and demographic predictors, their individual and joint contributions to AST variability,
and the validation of the stability of the constructed models, including key AST predictors and their
biological significance. The feature importance results for various algorithms (XGBoost, SHAP, RF
SHAP, and Mutual Info) consistently indicate a group of biochemical markers and metabolic
parameters as the primary determinants of AST activity. The most pronounced effect was
demonstrated by gamma-glutamyl transferase (LBXSGTSI), ferritin (LBXFER), height (BMXHT),
body weight (BMXWT), as well as LDH (LBXSLDSI) and urea (LBXSBU) activity parameters. These
data are confirmed by both the generalized importance assessments and the analysis of feature
interactions (SHAP interactions), where the most significant pairs included LBXSGTSI, BMXWT, and
LBXSLDSI. Such an important structure is consistent with the biological role of AST as an integral
enzymatic marker of hepatocyte damage. It reflects the contribution of the liver and metabolic
pathways to the variability of its level. The presence of anthropometric parameters (height, body
weight) among the top predictors highlights the importance of considering physical parameters
when interpreting AST. It demonstrates the advantage of multivariate analysis, particularly in terms
of correlation structure. The results of the stable correlation analysis (Spearman, Kendall,
DistanceCorr, MICe) confirm that the strongest positive associations with AST are found for
LBXSGTSI, LBXFER, LBXSLDSI, LBXSBU, and several biochemical metabolites (LBXGLU, LBXHGB).
At the same time, negative and low correlation links are characteristic of demographic characteristics
(RIAGENDR, RIDAGEYR), which indicates the predominance of biochemical factors over socio-
demographic ones.

Mediator analysis. Mediator analysis revealed that ferritin (LBXFER) influences AST
predominantly via the direct pathway, consistent with its function as an indicator of hepatocyte
cytolysis and iron stores. For several other predictors (LBXSGTSI, BMXHT, LBXSLDSI, LBXGLU,
LBXSBU), statistically significant direct and indirect effects were observed, indicating multifaceted
and indirect pathways of AST level regulation. A detailed mediator analysis table covers all tested
features, allowing one to verify the absence of false positive effects. None of the nonspecific or
demographic mediators showed a significant total or indirect effect, confirming the specificity of the
identified associations.

Quality of forecast models. A comparison of models using R?, RMSE, MAE, MAPE, and
Explained Variance metrics demonstrated that XGBoost and the Stacking v2 ensemble model
provide the highest accuracy and stability of predictions on both the training and validation sets,
with minimal signs of overfitting. Simpler models (Linear Regression, Random Forest) are
significantly inferior in accuracy and stability. The weakest results were recorded for the Stacking_v3
version, which is confirmed by an increase in errors during validation. ROC and Precision-Recall
curves for the task of classifying increased AST (= 40 U/L) confirm excellent diagnostic properties,
with AUC =1.0 and AP = 1.0, indicating the absolute sensitivity and specificity of the model in this
set. Additional calibration (LGBM) demonstrates the correspondence between the predicted and
observed values across the entire quantile scale, thereby excluding systematic errors and biases.

Assessment of stability and transferability. The results of cluster and dendrogram analysis
indicate a clear grouping of key predictors along a single functional axis, emphasizing their
integration into the overall biological network. The absence of significant associations among random
or low-specific features indicates the stability of the results to random variations and overfitting.

Limitations. Only available laboratory and anthropometric data were used in this study. Some
weak correlations or nonspecific indirect effects noted in the mediator analysis did not reach
statistical significance, which speaks in favor of the rigor of the findings. External validation on
independent cohort samples is recommended for further generalization of the results
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4. Conclusions

This work aimed to build an interpretable and highly accurate model for predicting aspartate
aminotransferase levels based on a set of clinical, biochemical, and behavioral data. During the
experiments, both basic (linear regression) and advanced ensemble algorithms (Random Forest,
XGBoost, CatBoost), including three stacking options, were tested. The most stable and accurate
results on the validation set were achieved by the Stacking v2 model, which was built on a
combination of CatBoost, LGBM, and ExtraTrees with the Ridge metaregressor. Its key metrics were:
RMSE = 1.23, MAE = 0.90, MAPE = 3.85%, Explained Variance = 0.98, R? = 0.98. These values exceed
the performance of all other models, including XGBoost, which, despite achieving high accuracy
(RMSE =2.75, MAE =1.03), demonstrated less resistance to overfitting and a sharper decline in quality
on independent data. Thus, the Stacking v2 algorithm was recognized as the best solution for
achieving the goal, providing an optimal balance between accuracy, interpretability, and stability of
the forecast. Its use allows for taking into account complex, nonlinear relationships between features,
thereby minimizing errors in new data. The results obtained confirm the possibility of using this
approach in precision medicine, including risk stratification, monitoring enzyme activity, and
supporting clinical decisions when working with AST indicators.
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Abbreviations

The following abbreviations are used in this manuscript:

AST Aspartate Aminotransferase

ALP Alkaline Phosphatase

v-GT Gamma-Glutamyl Transferase
LDH Lactate Dehydrogenase

hs-CRP  High-sensitivity C-Reactive Protein
BMI Body Mass Index

MAE Mean Absolute Error

RMSE Root Mean Square Error

R? Coefficient of Determination

MAPE Mean Absolute Percentage Error

SHAP SHapley Additive exPlanations

NHANES National Health and Nutrition Examination Survey
RF Random Forest

XGBoost  Extreme Gradient Boosting

CatBoost ~Categorical Boosting

LGBM Light Gradient Boosting Machine

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.2273.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 June 2025 d0i:10.20944/preprints202506.2273.v1

29 of 30

MICe Maximal Information Coefficient (enhanced version)
SEQN Sequence Number (unique identifier in NHANES)
AUC Area Under Curve

ROC Receiver Operating Characteristic

PR-AUC Precision-Recall Area Under Curve
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