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Abstract 

This study proposes an interpretable and high-accuracy ensemble learning framework for predicting 

aspartate aminotransferase (AST) levels using open-access biomedical datasets. Using a structured 

pipeline of preprocessing, feature selection, and model ensembling, we evaluated a series of 

regression algorithms including Random Forest, XGBoost, CatBoost, and three stacking architectures. 

The best-performing ensemble (Stacking_v2) achieved R² = 0.98 and RMSE = 1.23 on the validation 

set, surpassing conventional and single-model approaches. Feature importance was assessed using 

SHAP values, mutual information, and correlation analysis, revealing that gamma-glutamyl 

transferase, ferritin, and anthropometric markers had the greatest predictive impact. The proposed 

stacking-based model demonstrates excellent generalization, robust calibration, and high 

interpretability, and can serve as a benchmark for algorithmic evaluation in medical data modeling. 

The work highlights the effectiveness of ensemble regression and interpretable AI in real-world 

clinical prediction tasks using routine biomarkers. 

Keywords: ensemble learning; stacking; AST prediction; explainable AI; SHAP; regression 

algorithms; medical machine learning; NHANES; biomedical data 

 

1. Introduction 

The development of interpretable and robust machine learning algorithms remains a central 

focus in biomedical data science. In predictive medicine, biochemical markers such as aspartate 

aminotransferase (AST) serve as important indicators of tissue damage, metabolic dysfunction, and 

systemic inflammation. Traditionally, AST has been used in clinical assessments of liver and 

cardiovascular health, but modern algorithmic modeling allows for its integration into large-scale, 

data-driven screening tools [1,2]. Despite the availability of high-quality datasets such as NHANES, 

challenges remain in extracting actionable insights due to data heterogeneity, multicollinearity, and 

the nonlinearity of medical predictors. Ensemble machine learning methods — including Random 

Forest, gradient boosting, and stacking — have shown great promise in overcoming these challenges 
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[3–5]. These models can capture complex interactions and nonlinear dependencies while maintaining 

generalizability, especially when applied to diverse cohorts and routine clinical markers. 

In particular, stacking ensembles allow for the integration of diverse base learners with meta-

level regressors to reduce bias and variance simultaneously [6,7]. Recent studies have demonstrated 

that combining multiple boosting algorithms within a stacking framework leads to superior 

performance across a range of biomedical regression problems [8]. However, a persistent limitation 

is the lack of transparency in model decision-making, which has led to increasing adoption of 

explainable artificial intelligence (XAI) methods, including SHAP (SHapley Additive exPlanations), 

mutual information metrics, and hierarchical clustering [9–11]. Although machine learning has been 

widely applied to disease classification, few works focus specifically on regression-based prediction 

of AST as a continuous variable using interpretable and reproducible architectures [12–14]. 

Moreover, limited research has explored how biochemical and behavioral variables interact to 

influence AST levels, despite their proven relevance in metabolic and cardiovascular health 

monitoring [15].  

In this work, we address these gaps by introducing an interpretable ensemble learning 

framework for AST prediction using routine data from the NHANES 1988–2018 dataset. Our 

methodology includes: (i) data cleaning and transformation, (ii) implementation of multiple base 

learners (CatBoost, LightGBM, XGBoost, Random Forest, etc.), (iii) construction of stacking 

architectures with Ridge meta-regressors, and (iv) application of XAI techniques for feature 

interpretation. The main contribution of our work is a highly accurate, generalizable, and 

interpretable stacking-based model that achieves state-of-the-art performance (R² = 0.98, RMSE = 1.23) 

on real-world population data. This framework has the potential to support early detection strategies 

and algorithmic benchmarking in medical regression tasks. 

2. Materials and Methods 

This study used data from the National Health and Nutrition Examination Survey (NHANES) 

for the period 1988–2018, including biochemical, demographic, and behavioral parameters of 

respondents. This source provides a representative dataset on the health status of the US population 

and is widely used for scientific purposes 13,14. The study included routine biochemical markers, 

such as ferritin, glucose, γ-glutamyltransferase (γ-GT), and lactate dehydrogenase (LDH), as well as 

data on lifestyle, body weight, and physical activity level 15. Comprehensive data preprocessing was 

carried out: removing outliers, eliminating gaps, standardizing numerical features, and coding 

categorical variables, which is a necessary step for building reliable machine learning models 16,17. 

Based on the prepared data, different machine learning models were trained and compared to predict 

the risk of elevated aspartate aminotransferase (AST) 18. 

2.1. Related Work and Literature Review 

In recent years, there has been an increase in research aimed at predicting liver enzyme levels, 

including aspartate aminotransferase (AST), using machine learning methods. Hu et al. 19 found an 

association between elevated ALT/AST ratio and the risk of liver fibrosis based on NHANES data but 

did not focus on predicting individual AST levels. Zhu et al. 20 proposed a Random Forest model to 

estimate the risk of elevated transaminases in patients with rheumatoid arthritis, achieving high 

accuracy but limited to a narrow clinical cohort. A broader approach was proposed by Yang et al. 21, 

who developed machine learning models for diagnosing MASLD using routine data; AST levels were 

considered only indirectly. Interpretable models are also gaining momentum. Wang et al. 22 utilized 

SHAP to explain predictions from NAFLD ML models, demonstrating the potential of such solutions 

for medical interpretation. In turn, Ali et al. 23 confirmed the possibility of diagnosing cardiovascular 

diseases using routine blood tests and ensemble models, but liver biomarkers were not the subject of 

analysis. In addition, Yang et al. 24 presented a systematic review of the application of machine 

learning (ML) in predicting outcomes after liver transplantation, demonstrating advantages over 

traditional scoring systems; however, they did not address the aspect of routine screening. Khaled et 
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al. 25 proposed a deep learning system for the early detection of liver diseases, which requires further 

clinical validation. McGettigan 26 investigated the performance of various machine learning (ML) 

models on an extensive array of medical data, confirming the potential of the algorithms for liver 

diagnostics but without specifying the specific architectures. Farhadi et al. 27 focused on predicting 

complications after recovery from hepatitis B, which limits the generalizability of their model. As 

shown in Table 1, all these studies emphasize the need to develop specialized and interpretable 

models that focus specifically on the individual risk of elevated AST, utilizing available clinical, 

demographic, and biochemical data. 

Table 1. Comparative review of studies on the application of machine learning methods for disease prediction 

associated with biomarkers (including AST). 

Ref. Study Focus Methods Key Findings Identified Gaps 

[19] 

Predicting liver 

enzyme elevation in 

RA patients on 

methotrexate 

Random Forest 

classifier on EHR data 

ML model accurately 

predicts transaminase 

elevation 

Specific to RA 

patients; limited 

generalizability 

[20] 

ML models for 

MASLD prediction 

using demographic 

and clinical data 

Comparison of 10 ML 

algorithms, including 

XGBoost and Random 

Forest 

High accuracy in 

MASLD screening; 

accessible features 

Did not focus on 

AST-specific 

prediction 

[21] 
ML with SHAP for 

NAFLD prediction 

ML models with 

SHAP interpretability 

Robust predictive tool 

for NAFLD; high 

accuracy and 

generalizability 

Lacks longitudinal 

data and lifestyle 

factors 

[22] 

ML models for 

cardiovascular disease 

diagnosis using routine 

blood tests 

Logistic Regression, 

Random Forest, SVM, 

XGBoost, DNN 

Effective diagnosis using 

accessible blood data; 

SHAP for interpretation 

Focused on 

cardiovascular 

diseases, not liver-

specific 

[23] 

ML models in liver 

transplantation 

prognostication 

A systematic review 

of ML applications 

ML models outperform 

traditional scoring 

systems in predicting 

post-transplant 

complications 

Emphasis on 

transplantation, not 

general AST 

prediction 

[24] 

Early liver disease 

prediction using deep 

learning 

Deep learning 

algorithms 

A promising approach 

for rapid and accurate 

liver disease diagnosis 

Requires further 

validation and 

integration into 

clinical practice 

[25] 

Comparison of ML 

models for liver 

disease detection using 

big data 

Evaluation of three 

ML models on 32,000 

records 

Enhanced prediction and 

management of liver 

diseases 

Specific models and 

features not detailed 

[26] 

ML model to predict 

liver-related outcomes 

post-hepatitis B cure 

ML-based risk 

prediction model 

Accurate forecasting of 

liver-related outcomes 

after functional cure 

Focused on hepatitis 

B, not general AST 

prediction 

[27] 

Comparative analysis 

of ensemble learning 

techniques for fatigue 

life prediction 

Boosting, stacking, 

bagging vs. linear 

regression and KNN 

Ensemble models 

outperform traditional 

methods in prediction 

tasks 

Application in 

fatigue life; 

relevance to AST 

prediction indirect 

As shown in Table 1, the majority of current studies confirm the high efficiency of machine 

learning methods for analyzing and predicting diseases based on routine medical data. However, 

only a limited number of studies directly focus on individual prediction of AST levels as a separate 

biomarker. In addition, few studies use interpretable models, which limits their applicability in 

clinical practice. The identified scientific gaps, including insufficient generalizability, the lack of 

multivariate analysis, and the weak integration of behavioral parameters, underscore the need to 

develop a comprehensive model for predicting the risk of AST elevation based on available and 
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standardized indicators. Despite the active development of machine learning in biomedicine, most 

existing studies focus on predicting diseases in tissues with high metabolic activity and do not 

consider aspartate aminotransferase (AST) as a significant marker of cardiovascular risk. This study 

presents an understudied yet promising approach for predicting cardiovascular diseases using AST 

and other routine indicators. Distinctive features of this work include: 

• Direct regression prediction of AST level, considered as an independent predictor of 

cardiovascular risk and not as a marker of hepatological disorders; 

• Integration of routine biochemical, anthropometric, and behavioral parameters, including 

inflammation, body weight, and lifestyle indicators, enhances the clinical relevance of the model; 

• Use of a stacking ensemble (Stacking v2), which combines the capabilities of modern 

algorithms and an interpretable meta-model to improve accuracy and stability; 

• The use of SHAP and mutual information to analyze the significance of features ensures 

the interpretability of the model and its applicability in the clinical environment; 

• Validation on a large and representative NHANES dataset (1988–2018) covering a wide 

range of health data from the US population. 

Unlike previous studies limited to narrow clinical cohorts or liver disease diagnostic tasks, our 

study demonstrates how routine parameters, including AST, can be effectively used to assess 

cardiovascular disease risk in the general population. The proposed model may become a tool for 

early screening and personalized prevention in resource-limited settings. 

2.2. Dataset Collection 

To build a model for predicting aspartate aminotransferase (AST) levels, the open national 

dataset from the National Health and Nutrition Examination Survey (NHANES) for the years 1988–

2018 was utilized. This source provides large-scale information on the health status of the US 

population, including biochemical analysis data, anthropometric indicators, and behavioral and 

demographic characteristics. NHANES was chosen due to its representativeness, standardized data 

collection protocols, and high degree of reliability. From the total data set, records of adult 

respondents (≥18 years) were selected for whom AST values and other essential indicators were 

available: ferritin, γ-glutamyl transferase (γ-GT), lactate dehydrogenase (LDH), glucose, body mass 

index, physical activity, smoking and alcohol consumption habits, as well as inflammation indicators. 

Incomplete observations and abnormal values were excluded, and data cleaning and standardization 

procedures were performed. All features are brought to a single format, categorical variables are 

coded, and numerical variables are normalized. As a result, a structured sample is formed, suitable 

for the application of machine learning algorithms. It covers various aspects of the physiological state 

and lifestyle of respondents, providing a basis for constructing an interpretable prognostic model. 

The original data presented at 

https://drive.google.com/drive/folders/1cgyQXj3Kl7FdDoyPlmEkCKyDXNDIv4JB?usp=drive_link 

(accessed on 06  June 2025). 

2.3. Rationale for a Method Selection  

Building an effective predictive model required the use of a complex algorithm that included 

several interrelated stages of data preprocessing, feature selection, and model ensemble training. 

Each method in this process was selected based on its robustness, efficiency, and applicability to 

medical data with heterogeneous features. 

1. Removing emissions. In the first step, observations with suspiciously high values (s ≤ 200) 

were excluded from the dataset, which helps minimize the impact of anomalies and noise on model 

training. This is especially important when working with biomarkers, where technical or clinical 

artifacts may cause outliers. 

2. Removing gaps. Removing rows with missing values in the target variable (AST) and critical 

predictors ensures the correctness of the training process. This step is necessary to maintain the 

quality of predictions and prevent distortions. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2273.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2273.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 30 

 

3. Transformation of categorical variables. One-hot encoding of categorical features (e.g., 

demographic and questionnaire data) is applied, which allows them to be efficiently included in 

machine learning models without violating assumptions about the numerical nature of the input 

data. 

4. Scaling of Numerical Features. Numerical features are normalized (z-transformed) to 

equalize scales and prevent features with high variance from dominating the analysis. This is 

especially important for linear and gradient-boosted models that are sensitive to scale. 

5. Split into training and validation samples. The standard split of the sample (train/test split) 

is used to assess the quality of the model objectively. This allows you to control overfitting and tune 

hyperparameters. 

6. Base models (Base regressors). The following algorithms were selected to build a forecast of 

the AST level: 

• Linear Regression — a basic benchmark for estimating linear relationships. 

• Random Forest — a stochastic model that is robust to outliers and works well with small 

samples. 

• XGBoost — a powerful gradient boosting that provides high accuracy and control over 

overfitting. 

• CatBoost — an optimized boosting algorithm that works efficiently with categorical features 

without the need for manual coding. 

• LightGBM — a fast and scalable boosting algorithm, especially effective on large and sparse 

data. 

• Extra Trees — an improved version of Random Forest that uses additional stochasticity to 

improve generalization. 

7. Stacking. As shown in Figure 1, Stacking v1 is a simple two-level ensemble scheme in which 

base models (Linear Regression, Random Forest, and XGBoost) are independently trained on the 

original features (1): 
𝑓𝑏𝑎𝑠𝑒,1(𝑥) = 𝑓𝑙𝑖𝑛(𝑥)    
𝑓𝑏𝑎𝑠𝑒,2(𝑥) = 𝑓𝑟𝑓(𝑥)    

𝑓𝑏𝑎𝑠𝑒,3(𝑥) = 𝑓𝑥𝑔𝑏(𝑥) 

𝑧 = [𝑓𝑏𝑎𝑠𝑒,1(𝑥), 𝑓𝑏𝑎𝑠𝑒,2(𝑥), 𝑓𝑏𝑎𝑠𝑒,3(𝑥)] 

𝑓𝑚𝑒𝑡𝑎
∗ = 𝑎𝑟𝑔 min

𝑓

1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑧𝑖))

2𝑁
𝑖=1 𝑦̂ = 𝑓𝑚𝑒𝑡𝑎(𝑧)  (1) 

The meta-model — simple linear regression — receives their predictions as input and minimizes 

the error on the validation set. The final forecast is formed based on the aggregated predictions of the 

meta-regressor. The advantages of this approach include ease of implementation, high 

interpretability, accelerated convergence, and quality gain due to combining several models. 

However, Stacking v1 is limited by the linear nature of the meta-regressor, does not take into account 

complex dependencies between the outputs of the base models, does not support feeding the original 

features directly to the meta-level ("passthrough"), and can also be subject to overfitting when using 

a large number of base algorithms. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2273.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2273.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 30 

 

 

Figure 1. Stacking v1 architecture. 

Stacking v2 is an advanced two-level ensemble model that utilizes modern and powerful 

algorithms as base models, including CatBoost, LightGBM, and ExtraTrees, which provide high 

accuracy through boosting and stochastic approaches (2): 

𝑓𝑏𝑎𝑠𝑒,1(𝑥) = 𝑓𝑐𝑎𝑡(𝑥) 

𝑓𝑏𝑎𝑠𝑒,2(𝑥) = 𝑓𝑙𝑔𝑏(𝑥) 

𝑓𝑏𝑎𝑠𝑒,3(𝑥) = 𝑓𝑒𝑥𝑡(𝑥) 

𝑧 = [𝑓𝑏𝑎𝑠𝑒,1(𝑥), 𝑓𝑏𝑎𝑠𝑒,2(𝑥), 𝑓𝑏𝑎𝑠𝑒,3(𝑥)] 

𝑓𝑚𝑒𝑡𝑎
∗ = 𝑎𝑟𝑔 min

𝑓

1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑧𝑖))

2𝑁
𝑖=1 𝑦̂ = 𝑓𝑚𝑒𝑡𝑎(𝑧)   (2) 

At the second level, a Ridge regression meta-model is used, which is robust to multicollinearity 

and prone to regularization, thereby reducing the risk of overfitting and accounting for the possible 

correlation between the predictions of the base models. The final prediction is formed based on the 

outputs of these three ensembles, aggregated using Ridge regression. Among the advantages of 

Stacking v2 are high accuracy, resistance to overfitting, and good adaptation to nonlinear 

dependencies (Figure 2). The main disadvantages are the increased complexity of hyperparameter 

tuning and increased computational costs compared to simpler schemes such as Stacking_v1. 

 

Figure 2. Stacking v2 architecture. 
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Figure 3 presents the most advanced and outlier-robust ensemble architecture, which includes 

powerful base models — CatBoost, LightGBM, XGBoost, Random Forest, and a specialized regressor 

for predicting high AST values (HighAST Regressor) (3): 

𝑓𝑏𝑎𝑠𝑒,1(𝑥) = 𝑓𝑐𝑎𝑡(𝑥) 

𝑓𝑏𝑎𝑠𝑒,2(𝑥) = 𝑓𝑙𝑔𝑏(𝑥) 

𝑓𝑏𝑎𝑠𝑒,3(𝑥) = 𝑓𝑥𝑔𝑏(𝑥) 

𝑓𝑏𝑎𝑠𝑒,4(𝑥) = 𝑓𝑟𝑓(𝑥) 

𝑓𝑏𝑎𝑠𝑒,5(𝑥) = 𝑓ℎ𝑖𝑔ℎ𝐴𝑆𝑇(𝑥) 

𝑧 = [𝑥, 𝑓𝑏𝑎𝑠𝑒,1(𝑥), 𝑓𝑏𝑎𝑠𝑒,2(𝑥), 𝑓𝑏𝑎𝑠𝑒,3(𝑥), 𝑓𝑏𝑎𝑠𝑒,4(𝑥), 𝑓𝑏𝑎𝑠𝑒,5(𝑥)] 

𝑓𝑚𝑒𝑡𝑎
∗ = 𝑎𝑟𝑔 min

𝑓

1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑧𝑖))

2𝑁
𝑖=1 𝑦̂ = 𝑓𝑚𝑒𝑡𝑎(𝑧)     (3) 

All boosted models utilize Huber loss, which ensures robustness to outliers and asymmetric 

errors. LightGBM is used as a meta-model with the same loss function and a "passthrough" mode, in 

which the meta-algorithm receives not only the predictions of the base models but also the original 

features, which allows it to effectively restore complex dependencies and compensate for the 

weaknesses of individual models. The final forecast is formed based on cumulative information, 

making this scheme the most robust against various types of errors. Its advantages include high 

accuracy, robustness in the face of outliers, the ability to utilize rare patterns (via the HighAST 

model), and a rich feature representation. However, the model requires significant computational 

resources, careful tuning of hyperparameters, and effective control over overfitting. Despite its 

complexity, the model did not show substantial advantages on validation data for several key metrics 

(R², RMSE, MAE), indicating the need for additional analysis and possibly architecture refinement. 

 

Figure 3. Stacking v3 architecture. 

Overall, the Stacking_v2 architecture was optimal in terms of the combination of accuracy, 

stability, and interpretability criteria. It is recommended to use this option for predicting the AST 

level using the presented markers and features. 
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2.4. Stages of Model Implementation 

Proper feature selection plays a key role in building accurate and interpretable machine learning 

models, especially in the clinical context, where each variable can reflect critical biomedical processes. 

Based on biochemical, anthropometric, and behavioral characteristics, as well as the use of 

explainable AI approaches, an assessment is carried out to evaluate their contribution to the predicted 

variable. This analysis not only improves the quality of prediction but also identifies 

pathophysiological relationships that are crucial for interpreting results and informing clinical 

practice. 

I. Notations and variables used 

• n — number of observations (patients); 

• d — number of initial features; 

• 𝑋 ∈ 𝑅𝑛×𝑑— feature matrix; 

• 𝑥𝑖 ∈ 𝑅𝑑— feature vector for the i-th patient; 

• 𝑦 ∈ 𝑅𝑛 — target variable vector (ACT level, LBXSASSI). 

Trait variables: 

▪ 𝑥(1) = 𝑅𝐼𝐷𝐴𝐺𝐸𝑌𝑅— age; 

▪ 𝑥(2) = 𝑅𝐼𝐴𝐺𝐸𝑁𝐷𝑅— gender; 

▪ 𝑥(3) = 𝐵𝑀𝑋𝑊𝑇— weight; 

▪ 𝑥(4) = 𝐵𝑀𝑋𝐻𝑇— height; 

▪ 𝑥(5) = 𝐿𝐵𝑋𝐹𝐸𝑅— ferritin; 

▪ 𝑥(6) = 𝐿𝐵𝑋𝐻𝐶𝑌— homocysteine; 

▪ 𝑥(7) = 𝐿𝐵𝑋𝑇𝐶— total cholesterol; 

▪ 𝑥(8) = 𝐿𝐵𝐷𝐿𝐷𝐿— LDL-C; 

▪ 𝑥(9) = 𝐿𝐵𝑋𝐺𝐿𝑈— glucose; 

▪ 𝑥(10) = 𝐿𝐵𝑋𝐻𝐺𝐵— hemoglobin; 

▪ 𝑥(11) = 𝐿𝐵𝑋𝑆𝐶𝑅— creatinine; 

▪ 𝑥(12) = 𝐿𝐵𝑋𝐶𝑅𝑃— hs-CRP; 

▪ 𝑥(13) = 𝐿𝐵𝑋𝑆𝐴𝑃𝑆𝐼— alkaline phosphatase (ALP); 

▪ 𝑥(14) = 𝐿𝐵𝑋𝑆𝐺𝑇𝑆𝐼— gamma-GT; 

▪ 𝑥(15) = 𝐿𝐵𝑋𝑆𝐿𝐷𝑆𝐼— LDH; 

▪ 𝑥(16) = 𝐿𝐵𝑋𝑆𝐵𝑈— urea; 

▪ 𝑥(17) = 𝐿𝐵𝑋𝑆𝑈𝐴 = 𝐿𝐵𝑋𝑆𝑈𝐴 — uric acid; 

▪ 𝑥(18) = 𝐿𝐵𝑋𝑊𝐵𝐶𝑆𝐼— leukocytes; 

▪ 𝑥(19) = 𝐴𝐿𝑄130— average number of alcoholic drinks per day; 

▪ 𝑥(20) = 𝑃𝐴𝐷615— physical activity. 

Figure 4 shows the complete architecture of the algorithm for constructing a predictive model 

for the aspartate aminotransferase (AST) level, including the stages of data preprocessing, feature 

selection, training of base models, and formation of the Stacking_v2 ensemble. The algorithm begins 

by removing outliers and missing values, then encodes categorical variables and scales numerical 

features. After splitting into training and validation samples, several regressors are trained in parallel 

(including XGBoost, CatBoost, LightGBM, ExtraTrees, etc.), and the final model is formed using 

meta-regression based on these models. 
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Figure 4. Algorithm for constructing a prognostic model for aspartate aminotransferase (AST) levels. 

This algorithm enables the achievement of high accuracy and robustness in the model by 

combining various algorithms and normalization methods. Using Stacking_v2 ensures the efficient 

aggregation of base model predictions, thereby reducing the risk of overfitting and improving the 

model's generalization ability. The inclusion of such stages as outlier analysis and feature scaling is 

essential in medical data, where there is high heterogeneity. The algorithm architecture presents a 

comprehensive and interpretable approach to AST prediction, making it suitable for subsequent 

application in decision support systems. 

II. Steps of data preparation and processing 

1. Loading and merging data. The first stage involves loading three tables containing 

clinical, demographic, and questionnaire data, after which they are combined using a unique patient 

identifier (SEQN), allowing for the formation of a single data structure for subsequent analysis and 

model building (4). 

𝑋, 𝑦 ← 𝑀𝑒𝑟𝑔𝑒(𝑟𝑒𝑠𝑝, 𝑑𝑒𝑚𝑜, 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑛𝑎𝑖𝑟𝑒)     

 (4) 

2. Remove outliers. Removes records where the target variable 𝑦𝑖 > 200 (5): 

𝑋, 𝑦 = {(𝑥𝑖 , 𝑦𝑖)|𝑦𝑖 ≤ 200}        

 (5) 

3. Removing gaps. Only those records are left where there are no gaps for the selected 

features and target variable (6): 

∀𝑖 ∈ {1, … , 𝑛}: (∀𝑗 ∈ {1, … , 𝑑}: 𝑥𝑖
(𝑗)

≠ 𝑁𝑎𝑁)^𝑦𝑖 ≠ 𝑁𝑎𝑁    (6) 

4. Transformation of categorical variables. Gender indicator is encoded using the one-hot 

method (7): 

𝑥(2) → [𝑥0
(2)

, 𝑥1
(2)

] ∈ {0,1}2        

 (7) 

5. Scaling of numerical features. For each numerical feature (𝑥(𝑗) )), except for categorical 

ones, standardization is applied (8):  

𝑥̂𝑖
(𝑗)

=
𝑥𝑖

(𝑗)
− 𝜇𝑗

𝜎𝑗

 

𝜇𝑗 =
1

𝑛
∑ 𝑥𝑖

(𝑗)
,𝑛

𝑖=1  𝜎𝑗 = √1

𝑛
∑ (𝑥𝑖

(𝑗)
− 𝜇𝑗)2  𝑛

𝑖=1       (8) 
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6. Splitting into training and validation sets. The data is split into training (𝐷𝑡𝑟𝑎𝑖𝑛) and 

validation (𝐷𝑣𝑎𝑙) sets: 

𝐷 = (𝑋, 𝑦) → 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙            (9) 

III. Mathematical description of model training 

1. Training base regressors. For each base algorithm 𝑓𝑘(𝑥), we train a regression function 

(10):  

𝑓𝑘
∗ = 𝑎𝑟𝑔 min

𝑓𝑘

1

𝑁
∑ (𝑦𝑖 − 𝑓𝑘(𝑥𝑖))

2𝑁
𝑖=1         (10) 

• 𝑓𝑙𝑖𝑛 — linear regression 

• 𝑓𝑟𝑓 — Random Forest 

• 𝑓𝑥𝑔𝑏  — XGBoost 

• 𝑓𝑐𝑎𝑡 — CatBoost 

• 𝑓𝑙𝑔𝑏  — LightGBM 

• 𝑓𝑒𝑥𝑡  — Extra Trees 

𝑓ℎ𝑖𝑔ℎ𝐴𝑆𝑇   - local regressor for high AST values (trains only on cases with y>50) 

IV. Methods of selection and analysis of features 

1. Correlation analysis 

• Linear correlation (11): 

𝑟𝑗 =
∑ (𝑥𝑖

(𝑗)
−𝑥̅(𝑗))(𝑦𝑖−𝑦̅)𝑁

𝑖=1

(𝑁−1)𝜎
𝑥(𝑗)𝜎𝑦

         (11) 

• Spearman/Kendall: uses nonparametric measures for robustness. 

• Mutual Information (12): 

𝐼(𝑋(𝑗); 𝑌) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑥,𝑦        (12) 

• SHAP values (13): 

𝜙𝑗 = Ε𝑆⊆Ϝ{𝑗}[𝑓𝑆∪{𝑗}(𝑥) − 𝑓𝑆(𝑥)]       (13) 

Stacking v2. The final model is a second-level ensemble combining the predictions of the base 

models using ridge regression as a meta-algorithm. This approach enables the extraction of 

advantages from different models, thereby increasing the stability of predictions and reducing error 

due to aggregation. The use of stacking is especially justified in problems where there is no single 

universal predictor, and it is necessary to combine knowledge from different sources. Taken together, 

the described methodological approach enables the construction of an interpretable, robust, and 

accurate model for predicting the AST level based on available routine data, offering high potential 

for clinical application. 

3. Results  

This study was conducted using the publicly available, harmonized NHANES 1988–2018 

(National Health and Nutrition Examination Survey) dataset, which combines national data on the 

health and nutrition status of the US population over 30 years [9]. Thanks to complex preprocessing, 

this resource ensures high comparability of variables and minimizes the impact of missing and 

erroneous values, which is critical for building valid machine learning models. The selection of 

features for analysis was carried out strictly by the goal of the study - to develop an accurate and 

accessible model for predicting aspartate aminotransferase (AST) levels based exclusively on low-

cost and routine biochemical markers that are available as part of standard medical examinations, 

without the use of specialized and expensive cardiology tests. 

The final dataset for building the prognostic model included the most accessible and clinically 

significant variables. Demographic characteristics, such as age and gender, were used as baseline 

covariates to account for norms and individual differences. Anthropometric indicators (body weight 

and height) reflected the metabolic load and served as indicators of the general physiological state. 

The set of features included key biochemical markers, such as ferritin, homocysteine, cholesterol, 
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glucose, creatinine, hemoglobin, hs-CRP, urea, uric acid, and leukocytes, which characterize 

metabolism, inflammatory processes, kidney and liver function, as well as protein and carbohydrate 

metabolism. Additionally, inexpensive but informative markers of liver function (γ-GT, LDH, 

alkaline phosphatase) were included as a practical alternative to specialized liver tests. Behavioral 

parameters, such as the level of physical activity and alcohol consumption, were also taken into 

account to account for the influence of external factors. This selection of features is designed to 

maximize the practical applicability of the model, relying solely on data that are readily available in 

most clinical laboratories without the need for expensive equipment or specialized assays, making 

the proposed approach suitable for broad population screening. All variables were standardized, and 

categorical variables were one-hot encoded. Samples were combined by unique participant 

identifiers, with subsequent cleaning of missing values (Table 2). 

Table 2. Description of variables used in the aspartate aminotransferase (AST) level prediction model. 

Variable  Description 

RIDAGEYR Age of respondent (years) 

RIAGENDR Gender (1 - male, 2 - female) 

BMXWT Body weight (kg) 

BMXHT Height (cm) 

LBXFER Ferritin (mcg/L) 

LBXHCY Homocysteine (µmol/l) 

LBXTC Total cholesterol (mmol/l) 

LBDLDL Low-density lipoproteins (mmol/l) 

LBXGLU Fasting glucose (mmol/l) 

LBXHGB Hemoglobin (g/l) 

LBXSCR Creatinine (µmol/l) 

LBXCRP hs-CRP (mg/L) 

LBXSAPSI Alkaline phosphatase (U/L) 

LBXSGTSI Gamma-glutamyl transferase (U/L) 

LBXSLDSI LDH (U/L) 

LBXSBU Urea (mmol/L) 

LBXSUA Uric acid (mmol/L) 

LBXWBCSI Leukocytes (10^9/L) 

ALQ130 Average number of alcoholic drinks per day 

PAD615 Physical activity level (min/week) 

LBXSASSI AST (target, U/L) 

To build a predictive model, both basic algorithms and various ensemble schemes were tested. 

Both interpretable (linear regression) and more powerful ensembles — Random Forest, XGBoost, and 

CatBoost — were used as single models. In addition, three versions of stacking models were 

implemented, differing in the composition of the basic models, meta-algorithm, and the use of 

additional strategies. All models were tuned to optimize the parameters that strike a balance between 

accuracy and stability. Table 3 presents brief characteristics of the models used and the key 

hyperparameters applied in the experiment. 

Table 3. Main parameters of the models and the structure of the ensembles. 

Model Brief Description Key parameters 

Linear Regression Basic Interpretable Model default 
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Random Forest Decision Tree Ensemble n_estimators=300, max_depth=8, 

random_state=42 

XGBoost Gradient Boosting n_estimators=300, max_depth=8, 

learning_rate=0.05, objective='reg:squared error, 

random_state=42 

CatBoost Robust Gradient Boosting iterations=1200, depth=6, learning_rate=0.03, 

loss_function='Huber:delta=2.0', 

random_state=42 

Stacking_v1 

 

Linear + RF + XGBoost meta=Linear Regression 

Stacking_v2 CatBoost + LGBM + ExtraTrees meta=Ridge Regression (alpha=1.0) 

Stacking_v3 CatBoost + LGBM + XGB + RF + 

high_AST 

meta=LGBM (huber), passthrough=True, 

регрессор “high_AST”: LGBM 

(objective='huber', n_estimators=400) 

Advanced 

Stacking 

Specialized regressor for high_AST LGBM (separately on the subsample with high 

AST) 

As shown in Table 3, each model had its specific settings and architecture. Simple models, such 

as linear regression, were primarily used for basic comparison, while ensemble approaches, 

especially Stacking_v2, yielded the best results across several metrics. Of particular interest are 

complex configurations, such as Stacking_v3, and a specialized regressor for the subsample with high 

AST values, focused on handling outliers and complex cases. This multi-level approach allowed us 

to comprehensively evaluate the potential of various algorithms in predicting biomarkers on routine 

data. A set of validated metrics was used for a comprehensive assessment of the predictive abilities 

of the trained models. The forecasting quality was determined by the coefficient of determination 

(R²), reflecting the proportion of explained variance of the target variable, as well as by the root mean 

square error (RMSE) and mean absolute error (MAE), which allow us to quantify the average 

deviations of predictions from the actual values in the original AST units. In addition, the relative 

error (MAPE) was calculated and expressed as a percentage, ensuring comparability between 

different ranges of values and increasing the clinical interpretability of the results. Additionally, the 

explained variance was estimated, characterizing the model's stability in the face of fluctuations and 

outliers in the data. Figure 5 shows the values of the determination coefficient (R²) for the training 

and validation sets for all tested models: Linear Regression, Random Forest, XGBoost, CatBoost, and 

three stacking options. 
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Figure 5. Comparison of R2 for training and validation sets by models. 

The highest value of the coefficient of determination (R²) on the training set was achieved by the 

XGBoost model (R² = 1.00), indicating that it fully explains the variance of the target variable within 

the training dataset; however, the decrease in R² to 0.92 on the validation set indicates possible 

overfitting, despite maintaining high predictive accuracy. The Random Forest and CatBoost models 

also demonstrated high R² values (0.92 and 0.99 on training and 0.84 and 0.90 on validation, 

respectively), confirming their generalization ability, albeit inferior to that of XGBoost. Ensemble 

approaches, especially Stacking_v2, provided the best balance between accuracy on training (0.99) 

and validation (0.98), demonstrating resistance to overfitting due to the integration of predictions 

from multiple base models. In contrast, the linear regression model showed significantly lower values 

(0.48 for training and 0.42 for validation), indicating its insufficient flexibility in the face of complex 

nonlinear relationships. The Stacking_v3 model, despite its complex architecture, achieved only 0.73 

for training and 0.58 for validation, which is likely due to the overcomplication of the structure and 

a decrease in consistency between the ensemble levels. Thus, the most stable and highly accurate 

results are achieved when using modern boosting and stacking models with well-chosen parameters 

and a relevant set of features. 

Figure 6 shows a comparison of the root mean square error (RMSE) values on the training and 

validation samples for different models. RMSE enables us to assess the absolute accuracy of 

predictions: the lower the metric value, the higher the model's quality. 

 

Figure 6. Comparison of RMSE for training and validation sets. 

The RMSE metric analysis revealed the highest error value for the linear regression model (5.94 

on the training set and 7.55 on the validation set), indicating its inability to model complex 

relationships between features and the target variable adequately. At the same time, the Random 

Forest, CatBoost, and especially XGBoost models showed significantly better results: the minimum 

RMSE value for validation belongs to XGBoost (2.75), with zero error for training, which, despite the 

high accuracy, may indicate overfitting. CatBoost demonstrated balanced values (0.90 - training, 3.18 

- validation), only slightly inferior to XGBoost. Among the ensemble stacking models, the best 

performance was shown by the Stacking_v2 architecture (0.63 - training, 1.23 - validation), which 

indicates its high generalization ability and successful configuration. In contrast, Stacking_v3 showed 

inflated errors (4.28 — training, 6.43 — validation), likely due to excessive complexity and inefficient 

coordination between ensemble layers. Thus, XGBoost and Stacking_v2 proved to be the most 

effective in terms of root mean squared error (RMSE). At the same time, significant discrepancies 

between training and validation errors for individual models underscore the need for further work 

on hyperparameter tuning and preventing overfitting. 
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Figure 7 shows the analysis of mean absolute errors (MAE) for the training and validation sets 

for different models. MAE reflects the average absolute deviation of predictions from actual values, 

allowing us to judge the accuracy of the models without considering the direction of error. 

 

Figure 7. Comparison of MAE for training and validation sets. 

The analysis of the mean absolute error (MAE) metric revealed that the linear regression model 

yields the highest values on both the training set (4.21) and the validation set (4.88), indicating its 

limited predictive suitability for this task. In contrast, the Random Forest and CatBoost ensemble 

models demonstrated significantly lower MAE values — 1.56 and 0.39 on training and 2.71 and 1.57 

on validation, respectively — confirming their ability to account for complex nonlinear dependencies. 

The XGBoost model exhibited minimal error values (0.00 on training and 1.03 on validation), 

demonstrating high accuracy and generalization ability with the correctly selected parameters. 

Stacking models also performed well: Stacking_v1 (1.31 — train, 2.58 — val) and especially 

Stacking_v2 (0.40 — train, 0.90 — val), the latter of which provides one of the best accuracy-to-

robustness ratios. In contrast, the Stacking_v3 model showed relatively high errors (1.72 — training, 

3.02 — validation), which is likely due to the complex architecture and weak synergy between the 

ensemble components. Overall, the XGBoost and Stacking_v2 models demonstrated the best MAE 

values in validation, making them preferable for accurate and robust AST activity prediction, 

especially in the context of medical data with high sensitivity to outliers. 

Figure 8 presents a comparison of the relative prediction error (MAPE, %) for various models on 

both the training and validation sets. This metric is particularly sensitive to the magnitude of the 

deviation between predictions and actual values. It is critical for clinical and biomedical problems 

where it is essential to consider the percentage error. 
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Figure 8. Comparison of MAPE (%) for training and validation sets. 

The mean average prediction error (MAPE) analysis revealed that the linear regression model 

performed the worst, with 20.27% on the training set and 19.87% on the validation set, confirming its 

limited applicability to AST activity prediction tasks. In contrast, ensemble methods, in particular 

Random Forest, significantly reduced the error rate (7.43% — train, 11.26% — val), demonstrating 

robustness to data heterogeneity. The XGBoost model achieved the best performance (0.02% — train, 

3.77% — val), demonstrating its high ability to model complex relationships accurately. Comparably 

low values were shown by CatBoost (1.75% — train, 5.85% — val) and Stacking_v2 (1.95% — train, 

3.85% — val), highlighting the effectiveness of advanced ensemble architectures. At the same time, 

Stacking_v1, despite achieving acceptable results in training, demonstrated a significantly higher 

MAPE in validation (10.94%), which may indicate an insufficient model complexity or overfitting. 

Stacking_v3 is also inferior in accuracy (6.08% — train, 10.13% — val), despite its complex structure. 

Thus, XGBoost and Stacking_v2 are recognized as the most accurate and robust models for individual 

AST level prediction, especially in the context of precision medicine and epidemiological studies. 

Figure 9 shows a comparison of the Explained Variance scores for different models on the 

training and validation sets, reflecting the proportion of variance in aspartate aminotransferase (AST) 

levels explained by the model. Linear regression showed the lowest values of 0.48 for training and 

0.43 for validation, indicating its limited ability to capture complex dependencies in medical data. In 

contrast, the Random Forest and CatBoost models provided significantly higher explained variance, 

at 0.92 and 0.99 for training and 0.85 and 0.91 for validation, respectively. These results demonstrate 

the effectiveness of ensemble and boosting approaches in modeling physiological processes with high 

variability, confirming their applicability to individual medical prediction problems. 

 

Figure 9. Comparison of explained variance for training and validation sets. 

The XGBoost and Stacking_v2 models demonstrate the highest Explained Variance values on 

the training set (1.00) and some of the highest results on the validation set (0.92 and 0.98, respectively), 

which indicates the high ability of these algorithms to take into account complex nonlinear 

dependencies between features and almost explain entirely the variability of the aspartate 

aminotransferase (AST) level. At the same time, Stacking_v1 and Stacking_v3 show more modest 

values (0.94/0.87 and 0.74/0.62 for the training and validation sets, respectively), which can be due to 

either excessive complexity of the ensemble structures or insufficient consistency between the base 

and meta-levels of the models. The best explained variance values are achieved by XGBoost, 

CatBoost, and Stacking_v2, which confirms their suitability for high-precision risk stratification, 

interpretation of significant predictors, and construction of reliable individual predictions in medical 

analytics tasks. 
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Based on the conducted analysis, the XGBoost and Stacking_v2 algorithms demonstrate the 

highest accuracy and stability among the tested models. At the same time, the final choice of the 

optimal model should take into account not only the metric values on the training set but also stability 

during validation, the tendency to overfit, and the interpretability of the results. XGBoost shows 

almost ideal training quality (R²=1.00, RMSE=0.00, MAE=0.00, ExplainedVar=1.00). However, a 

moderate decrease in indicators is observed on the validation set (R² = 0.92, RMSE = 2.75, MAE = 1.03), 

which still indicates a high generalizing ability with minimal risk of overfitting. At the same time, the 

Stacking_v2 model outperforms XGBoost in several validation metrics (R² = 0.98, RMSE = 1.23, MAE 

= 0.90, MAPE = 3.85), demonstrating stable performance and adaptability to complex data structures. 

This is achieved through the use of powerful base models (CatBoost, LightGBM, ExtraTrees) in 

combination with Ridge meta-regression, which reduces overfitting and accounts for the 

multicollinearity of features. Linear regression yielded the worst results among all the tested models, 

which is explained by its inability to accurately reflect the complex nonlinear dependencies between 

biochemical and behavioral parameters. Low R² values (0.48 in training and 0.42 in validation), high 

RMSE and MAE values, as well as a significant percentage of mean absolute error (MAPE), confirm 

its limited predictive capabilities in medical data. Thus, the set of tests and metrics performed 

supports the choice of Stacking_v2 as the main predictive model. This architecture provides an 

optimal balance between accuracy, interpretability, and resistance to overfitting, which is especially 

important when predicting aspartate aminotransferase levels in screening and clinical studies. 

3.1. Importance of Features, Their Interactions, and Correlations 

Figure 10 shows a comparative matrix of feature significance using the linear correlation, mutual 

information, and SHAP methods (for XGBoost and Random Forest), reflecting the contribution of 

variables to predicting the AST level. The most significant in all approaches were gamma-glutamyl 

transferase (LBXSGTSI), ferritin (LBXFER), and lactate dehydrogenase (LBXSLDSI), indicating their 

key role in the biochemical assessment of liver function. Also, anthropometric parameters such as 

height (BMХHT) and weight (BMХWT) showed high predictive potential, which may be associated 

with metabolic load. 
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Figure 10. Contribution of each feature to the prediction of the AST level using different methods (SHAP, Mutual 

Info, correlations). 

Moderate significance is observed for parameters such as physical activity level (PAD615), low-

density lipoproteins (LDL), as well as several behavioral and biochemical parameters (e.g., ALQ130, 

LBXCRP, LBXSBU). The least informative variables were RIAGENDR (gender), LBXHGB 

(hemoglobin), and LBXCRP (hs-CRP), which demonstrated low or negative significance values in 

most methods, indicating their weak association with AST levels in this population. Visualization of 

the differences between methods revealed that SHAP (especially for XGBoost) emphasizes the 

significance of individual biomarkers, such as LBXSGTSI and LBXFER. At the same time, mutual 

information confirms their relevance from the standpoint of nonlinear dependencies. Linear 

correlation underestimates the role of markers sensitive to nonlinearity but also confirms the 

significance of LBXSGTSI and LBXFER. Taken together, this allows us to conclude that the main 

predictors of AST are markers of liver cytolysis (LBXSGTSI, LBXSLDSI), metabolic parameters 

(LBXFER), and anthropometric parameters (BMХWT, BMХHT). The consistency of results between 

methods increases the reliability of the identified associations and confirms their practical value for 

screening and clinical use. 

Figure 11 shows a bee swarm plot of SHAP values demonstrating the contribution of individual 

features to predicting aspartate aminotransferase (AST) levels using the XGBoost model. The leading 

predictor is LBXSGTSI (gamma-glutamyl transferase), where high feature values are associated with 

increased AST, emphasizing its role as a key biomarker of liver cell lysis. Ferritin (LBXFER) and 

anthropometric parameters (height and weight), reflecting metabolic load, also have a significant 
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impact. The physical activity parameter (PAD615) is positively associated with AST in some cases, 

which may be due to physiological adaptations or microdamage. An average contribution is observed 

for LDH, LDL, and hs-CRP, while features such as gender, creatinine, and some biochemical 

parameters have a minimal impact. This confirms that AST variability in the NHANES cohort is 

predominantly determined by liver function, metabolism, and individual physiological 

characteristics. 

 

Figure 11. SHAP Beeswarm - the contribution of each feature and the influence of values on the AST 

prediction. 

Overall, the visualization confirms that a combination makes the most significant contribution 

to AST variability of liver and metabolic markers, as well as parameters characterizing inflammation 

and lifestyle. The high dispersion of SHAP values for the leading markers emphasizes their 

importance for risk stratification and the potential for inclusion in clinical predictive models. Figure 

12 shows a diagram of the average modulus of the SHAP value for each feature, which allows us to 

rank their contribution to the prediction of aspartate aminotransferase (AST) levels by the XGBoost 

model. The higher the value of the column, the greater the average contribution (importance) of this 

feature to the final model. 
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Figure 12. Ranking features by mean absolute SHAP (XGBoost). 

Key findings from the mean SHAP ranking of features indicate that the most significant 

predictor of aspartate aminotransferase (AST) level is LBXSGTSI, specifically gamma-glutamyl 

transferase (GGT). This indicator consistently occupies a leading position, which confirms its clinical 

significance as a sensitive and specific marker of liver cytolysis. Ferritin (LBXFER) and 

anthropometric parameters (height - BMXHT, weight - BMXWT) also make a significant contribution, 

reflecting the impact of metabolic disorders and obesity on AST activity. Physical activity (PAD615) 

demonstrates a pronounced effect, which may be associated with both physiological adaptations of 

muscle tissue and potential damage that occurs during intense exercise. The following factors are 

most significant: LDH (LBXSLDSI), low-density lipoproteins (LBDLDL), the inflammatory marker 

hs-CRP (LBXCRP), leukocytes (LBXWBCSI), and the level of alcohol consumption (ALQ130), which 

indicate a complex regulation of AST, involving metabolic, inflammatory, and behavioral factors. 

Less significant were indicators such as alkaline phosphatase (LBXSAPSI), uric acid (LBXSUA), age 

(RIDAGEYR), creatinine (LBXSCR), and sex (RIAGENDR), which more informative variables may 

have influenced in the multifactorial model. The overall analysis confirms that the key determinants 

of AST variability are biochemical markers reflecting metabolic and inflammatory status, as well as 

physical activity indicators, which is consistent with the modern concept of risk stratification and 

interpretation of liver enzyme activities. 

3.2. SHAP Interactions 

Figure 13 illustrates the evaluation of the top 10 pairwise feature interactions, as determined by 

SHAP interaction values. 
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Figure 13. Top 10 feature pairs with maximum interactions (SHAP interactions). 

SHAP interaction analysis revealed that the most significant contributions to the AST level 

prediction were made by the BMXWT × LBXSGTSI and LBXSGTSI × BMXWT trait pairs (contribution 

> 0.19), which combined body weight and gamma-glutamyl transferase activity —key markers of 

metabolic and liver disorders. Significant interactions were also observed between LBXSGTSI and 

LBXSLDSI (~0.12), reflecting the synergistic effect of cytolytic enzymes. The LBXGLU × LBXFER 

interaction (~0.09) indicated a relationship between carbohydrate metabolism disorders and iron-

containing proteins with AST activity. Less pronounced but significant pairs included LBXSBU, 

LBXFER, and BMXHT, emphasizing the importance of careful consideration of even secondary 

biomarkers. Overall, the identified interactions enhance the interpretability of the model and 

demonstrate the multifactorial nature of AST regulation. 

3.3. Correlation Analysis 

Figure 14 shows the matrix of robust correlations between AST and the studied biochemical and 

clinical markers. The matrix of robust correlations was calculated using four different methods: 

Spearman, Kendall, DistanceCorr, and MICe. The highest positive correlations with AST are 

observed for ferritin (LBXFER: 0.35 by DistanceCorr, 0.32 by Spearman), gamma-glutamyl transferase 

(LBXSGTSI: 0.42 by DistanceCorr, 0.35 by MICe) and lactate dehydrogenase (LBXSLDSI: 0.33 by 

DistanceCorr, 0.30 by MICe). These results reflect the established clinical relationship between 

cytolysis markers and AST levels, confirming their crucial role in diagnosing and monitoring liver 

conditions. 
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Figure 14. Matrix of robust correlations between AST and biochemical markers. 

Pronounced correlations are also observed for hemoglobin (LBXHGB: 0.41 by MICe), which is 

probably due to its indirect effect on tissue respiration and metabolism in the liver. Negative 

correlations were recorded for parameters such as C-reactive protein (LBXCRP: -0.23 by Spearman), 

which may indicate complex relationships between inflammation and enzymatic activity of the liver, 

as well as gender (RIAGENDR: -0.22 by Spearman), which reflects physiological differences between 

men and women in the structure and functioning of the liver. In general, the markers of liver 

cytolysis, metabolic metabolism, and inflammation were the most informative in terms of 

correlations. This emphasizes the need for careful consideration of these indicators when 

constructing prognostic models of AST activity and also indicates a high biological validity of the 

selected features. 

3.4. Clustering and Dendrogram 

Figure 15 shows a dendrogram (Feature + AST Dendrogram, Ward Linkage) showing the 

hierarchical structure of relationships between the main features and the AST level obtained using 

the Ward method. The vertical axis includes all biomarkers, as well as demographic and behavioral 

variables. The horizontal axis represents the distance between clusters (ward linkage distance), 

allowing you to assess their degree of similarity visually. 
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Figure 15. Cluster structure of features and their grouping by similarity of contribution to AST. 

The dendrogram analysis demonstrates the clustering of features corresponding to their 

biological and clinical nature. In the lower part, a cluster is revealed that unites biochemical markers 

of enzymatic activity and cellular damage (LBXSGTSI, LBXSASSI, LBXSLDSI, LBXFER), reflecting 

the integrative role of AST in assessing both hepatic and systemic cytolysis processes. This group is 

especially informative for the diagnosis of diseases accompanied by tissue necrosis, including both 

hematological and cardiac pathologies. The second large cluster includes metabolic and 

anthropometric indicators (BMXWT, BMXHT, LBDLDL), as well as biomarkers of chronic 

inflammation and metabolic disorders (LBXSUA, LBXHGB, LBXCRP), emphasizing the systemic 

effect of lipid and protein metabolism on the AST level. The third cluster combines behavioral and 

demographic variables (PAD615, ALQ130, RIAGENDR, RIDAGEYR), as well as glucose and related 

parameters (LBXGLU, LBXSAPSI, LBXWBCSI), highlighting the importance of lifestyle, age, and 

carbohydrate metabolism in regulating enzyme activity. Minimal distances between cytolysis 

markers indicate their close relationship and joint contribution to AST variability. More distant 

groups of features, despite a smaller relationship, also make a significant contribution due to 

metabolic, inflammatory, and behavioral factors. Thus, the dendrogram structure visualizes the 

multisystem nature of AST regulation, where the most crucial influence is exerted by enzymatic 

indicators of tissue damage, followed by metabolic and behavioral parameters. The resulting clusters 

can be used for more accurate stratification of patients and the construction of interpretable 

prognostic models in clinical practice. 

3.5. Assessing Interpretability and Calibration 

Figure 16 shows the calibration plot of the LGBM model, which allows us to assess the agreement 

between the predicted and observed AST levels by quantiles. The dotted line represents a perfect 

match between the predictions and observations, while the actual calibration line (blue line) displays 

the model's actual results. In most intervals of predicted values, there is a relatively high degree of 

agreement between the prediction and the exact values, indicating good calibration of the model in 

the range of low and medium AST values. However, in the region of high values (from 30 to 40), 

there is some discrepancy, where the actual values exceed the expected ones. This indicates a 

tendency of the LGBM model to underpredict patients with the most pronounced AST deviations 

slightly. The reason for this behavior may be both the relative rarity of high AST values in the training 

set and the difficulty of modeling extreme physiological states. 
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Figure 16. Calibration of the LGBM model by prediction quantiles. 

Overall, the graph confirms the adequacy of the model calibration for most clinically significant 

AST intervals, which is essential for the practical application of the prognostic model in population 

studies and medical screenings. Particular attention should be paid to further improving the model 

by adjusting predictions in the tails of the distribution, thereby improving the accuracy of the forecast 

for patients with atypically high enzyme values. 

3.6. Predicting the Risk of Exceeding the AST Threshold 

Figure 17 illustrates the ROC curve for the binary classification problem involving patients with 

an AST level of≥ 40 U/L. The area under the curve (AUC) is 1.000, which reflects the maximum 

possible discriminatory ability of the model. This result means that the model accurately 

distinguishes patients with pathologically elevated AST values from all other cases in the validation 

set. Binarization (AST ≥ 40 U/L) allowed us to test the diagnostic suitability of the models using the 

standard AUROC and PR-AUC metrics. The ROC curve line almost repeats the upper and left edges 

of the graph, indicating the absence of false-positive and false-negative decisions at the selected 

classification threshold. This level of prediction quality, on the one hand, demonstrates the model's 

high ability to identify clinically significant cases of elevated AST. On the other hand, it may indicate 

potential overfitting on the subsample under consideration or high homogeneity of the data structure 

for this feature. A key practical conclusion is that, with the current configuration of features and 

training set, the model can be used for screening and early detection of patients with severe liver 

dysfunction, as indicated by AST. To confirm the sustainability of this result, it is advisable to conduct 

validation on external independent cohorts. 
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Figure 17. ROC curve (AUC=1.000) – ability to identify patients with elevated AST. 

The obtained AUC value of 1.000 requires careful interpretation, as such ideal values are scarce 

in clinical practice and may indicate features of the data structure or model overfitting. Possible 

reasons include the high homogeneity of the validation sample or the presence of pronounced 

features that divide groups by the AST level. To confirm the stability of the model, additional checks 

are necessary, including cross-validation, repeated random partitioning, and testing on external data. 

Nevertheless, the high sensitivity and specificity of the model open up prospects for its application 

not only in diagnostics but also in monitoring therapy and creating interpretable decision support 

systems in hepatology. 

Figure 18 shows the Precision-Recall curve for the binary classification problem of patients with 

AST ≥ 40 U/L, with an average area under the curve (AUC) of 1.000. This result indicates 100% 

accuracy and recall in identifying positive cases among the entire sample. 

 

Figure 18. Precision-Recall-curve (AP=1.000). 

A high AP (Average Precision) value indicates the model's exceptional ability to simultaneously 

achieve maximum recall (recall = 1.0) and accuracy (precision = 1.0), suggesting a complete absence 
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of type I and type II errors on the validation set. Such a combination is scarce and typically results 

from the high information content of features, a low noise level in the data, or the clear separability 

of classes. The characteristic shape of the Precision-Recall curve with a sharp transition confirms the 

absence of a trade-off between accuracy and recall, which may also be due to a limited sample size 

or class imbalance. Such a result requires additional validation: retesting on independent data, cross-

validation, and assessment of robustness to changes in the sample structure. Despite the seeming 

ideality, such high indicators should be interpreted with caution, especially in the context of medical 

problems, where overfitting can lead to false conclusions. Nevertheless, a high AP metric indicates 

the model's potential for screening and early detection of patients with abnormally high AST levels. 

3.7. Mediator Analysis 

Mediation analysis with ferritin (LBXFER) as a key mediator showed that its contribution to AST 

change is realized mainly in a direct way, without significant indirect influence through other routine 

markers. Table 4 presents the following notations: Direct reflects the direct impact of the mediator on 

the AST level, Indirect is an indirect or mediated influence through intermediate variables, Total is a 

combined effect, including both direct and indirect influence, sig indicates the statistical significance 

of the impact (significant values are highlighted in bold), CI is a 95% confidence interval 

characterizing the reliability and stability of the assessment. 

Table 4. Results of mediator analysis of the influence of biomarkers and lifestyle factors on aspartate 

aminotransferase (AST) levels. 

Mediator Path Coef. SE 
p-

value 

95% 

CI 

(low) 

95% 

CI 

(upper

) 

Significanc

e 

Description of the 

effect 

LBXFER 

Ferritin 
Direct 0.0231 0.0040 

1.20e-

8 
0.0155 0.0309 Yes 

Major contribution 

via direct path 

(significant) 

 Indirect -0.0003 0.0010 0.672 -0.0026 0.0013 No 
The indirect effect 

is not significant. 

 Total 0.0229 0.0040 
3.58e-

8 
0.0150 0.0309 

Yes The overall effect 

remains 

LBXSGTSI 

Gamma-GT 
Direct 0.0138 0.0041 

9.42e-

4 
0.0057 0.0218 

Yes Significant direct 

influence 

 Indirect 0.0092 0.0027 0.000 0.0047 0.0154 

Yes The indirect effect 

is statistically 

significant. 

 Total 0.0229 0.0040 
3.58e-

8 
0.0150 0.0309 

Yes Overall mediation 

effect 

BMXHT 

Height (cm) 
Direct 0.0201 0.0042 

2.55e-

6 
0.0119 0.0284 

Yes Significant direct 

path 

 Indirect 0.0028 0.0019 0.008 0.0004 0.0078 
Yes The indirect effect 

is significant. 

 Total 0.0229 0.0040 
3.58e-

8 
0.0150 0.0309 Yes 

The overall effect is 

maintained 
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LBXSBU 

Urea (BUN) 
Direct 0.0262 0.0042 

1.97e-

9 
0.0179 0.0345 

Yes The main effect is 

direct. 

 Indirect -0.0033 0.0015 0.000 -0.0071 -0.0013 

Yes The indirect effect 

is statistically 

significant. 

 Total 0.0229 0.0040 
3.58e-

8 
0.0150 0.0309 

Yes The final effect is 

confirmed 

LBXGLU 

Fasting 

glucose 

Direct 0.0241 0.0040 
7.70e-

9 
0.0162 0.0320 

Yes The direct effect is 

clearly expressed. 

 Indirect -0.0011 0.0007 0.008 -0.0035 -0.0002 
Yes The indirect effect 

is expressed. 

 Total 0.0229 0.0040 
3.58e-

8 
0.0150 0.0309 

Yes The overall effect is 

confirmed 

LBXSLDSI  Direct 0.0198 0.0039 
6.32e-

7 
0.0122 0.0274 

Yes Significant direct 

contribution 

 Indirect 0.0031 0.0019 0.004 0.0009 0.0082 

Yes The indirect effect 

is statistically 

significant. 

 Total 0.0229 0.0040 
3.58e-

8 
0.0150 0.0309 

Yes The overall effect is 

expressed 

PAD615 

activity in 

min 

Direct 0.0238 0.0040 
8.59e-

9 
0.0159 0.0316 

Yes The main 

contribution is 

direct. 

 Indirect -0.0008 0.0008 0.240 -0.0030 0.0003 No 
The indirect effect 

is insignificant. 

 Total 0.0229 0.0040 
3.58e-

8 
0.0150 0.0309 Yes 

The final effect is 

confirmed. 

The results of the mediator analysis indicate that the most pronounced direct and indirect effects 

on AST levels are exerted by gamma-glutamyl transferase (LBXSGTSI), growth (BMXHT), urea 

(LBXSBU), alkaline phosphatase (LBXSLDSI), and glucose (LBXGLU). Ferritin (LBXFER) makes a 

significant contribution, primarily through the direct pathway, which is consistent with its 

established role as a marker of systemic inflammation and cellular cytolysis. For most other 

biomarkers, the indirect effect is weak or absent, which emphasizes the dominance of direct impacts 

in the formation of AST activity. The choice of mediators was motivated by several reasons. First, 

only statistically significant mediators were included in the analysis: the selection was carried out 

according to the criterion of the presence of at least one considerable pathway (direct, indirect, or 

total), with a p-value less than 0.05 and a confidence interval not crossing zero. Secondly, the selected 

features were characterized by a high degree of association with AST, both according to the ranking 

of feature importance (SHAP, correlation) and according to the results of the mediator analysis itself. 

Among them were ferritin, gamma-GT, LDH, urea, glucose, height, and physical activity. Thirdly, 

mediators with no significant effect were excluded from the final table: features for which all paths 

were insignificant (p > 0.05) or made a minimal contribution were not included to avoid excessive 

detailing. 
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4. Discussion 

In this study, a comprehensive analysis of the factors determining aspartate aminotransferase 

(AST) activity was performed using modern machine learning methods, mediator analysis, and 

assessment of stable correlations. The results obtained enable a thorough characterization of 

biochemical and demographic predictors, their individual and joint contributions to AST variability, 

and the validation of the stability of the constructed models, including key AST predictors and their 

biological significance. The feature importance results for various algorithms (XGBoost, SHAP, RF 

SHAP, and Mutual Info) consistently indicate a group of biochemical markers and metabolic 

parameters as the primary determinants of AST activity. The most pronounced effect was 

demonstrated by gamma-glutamyl transferase (LBXSGTSI), ferritin (LBXFER), height (BMXHT), 

body weight (BMXWT), as well as LDH (LBXSLDSI) and urea (LBXSBU) activity parameters. These 

data are confirmed by both the generalized importance assessments and the analysis of feature 

interactions (SHAP interactions), where the most significant pairs included LBXSGTSI, BMXWT, and 

LBXSLDSI. Such an important structure is consistent with the biological role of AST as an integral 

enzymatic marker of hepatocyte damage. It reflects the contribution of the liver and metabolic 

pathways to the variability of its level. The presence of anthropometric parameters (height, body 

weight) among the top predictors highlights the importance of considering physical parameters 

when interpreting AST. It demonstrates the advantage of multivariate analysis, particularly in terms 

of correlation structure. The results of the stable correlation analysis (Spearman, Kendall, 

DistanceCorr, MICe) confirm that the strongest positive associations with AST are found for 

LBXSGTSI, LBXFER, LBXSLDSI, LBXSBU, and several biochemical metabolites (LBXGLU, LBXHGB). 

At the same time, negative and low correlation links are characteristic of demographic characteristics 

(RIAGENDR, RIDAGEYR), which indicates the predominance of biochemical factors over socio-

demographic ones. 

Mediator analysis. Mediator analysis revealed that ferritin (LBXFER) influences AST 

predominantly via the direct pathway, consistent with its function as an indicator of hepatocyte 

cytolysis and iron stores. For several other predictors (LBXSGTSI, BMXHT, LBXSLDSI, LBXGLU, 

LBXSBU), statistically significant direct and indirect effects were observed, indicating multifaceted 

and indirect pathways of AST level regulation. A detailed mediator analysis table covers all tested 

features, allowing one to verify the absence of false positive effects. None of the nonspecific or 

demographic mediators showed a significant total or indirect effect, confirming the specificity of the 

identified associations. 

Quality of forecast models. A comparison of models using R², RMSE, MAE, MAPE, and 

Explained Variance metrics demonstrated that XGBoost and the Stacking_v2 ensemble model 

provide the highest accuracy and stability of predictions on both the training and validation sets, 

with minimal signs of overfitting. Simpler models (Linear Regression, Random Forest) are 

significantly inferior in accuracy and stability. The weakest results were recorded for the Stacking_v3 

version, which is confirmed by an increase in errors during validation. ROC and Precision-Recall 

curves for the task of classifying increased AST (≥ 40 U/L) confirm excellent diagnostic properties, 

with AUC = 1.0 and AP = 1.0, indicating the absolute sensitivity and specificity of the model in this 

set. Additional calibration (LGBM) demonstrates the correspondence between the predicted and 

observed values across the entire quantile scale, thereby excluding systematic errors and biases. 

Assessment of stability and transferability. The results of cluster and dendrogram analysis 

indicate a clear grouping of key predictors along a single functional axis, emphasizing their 

integration into the overall biological network. The absence of significant associations among random 

or low-specific features indicates the stability of the results to random variations and overfitting. 

Limitations. Only available laboratory and anthropometric data were used in this study. Some 

weak correlations or nonspecific indirect effects noted in the mediator analysis did not reach 

statistical significance, which speaks in favor of the rigor of the findings. External validation on 

independent cohort samples is recommended for further generalization of the results 
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4. Conclusions 

This work aimed to build an interpretable and highly accurate model for predicting aspartate 

aminotransferase levels based on a set of clinical, biochemical, and behavioral data. During the 

experiments, both basic (linear regression) and advanced ensemble algorithms (Random Forest, 

XGBoost, CatBoost), including three stacking options, were tested. The most stable and accurate 

results on the validation set were achieved by the Stacking_v2 model, which was built on a 

combination of CatBoost, LGBM, and ExtraTrees with the Ridge metaregressor. Its key metrics were: 

RMSE = 1.23, MAE = 0.90, MAPE = 3.85%, Explained Variance = 0.98, R² = 0.98. These values exceed 

the performance of all other models, including XGBoost, which, despite achieving high accuracy 

(RMSE = 2.75, MAE = 1.03), demonstrated less resistance to overfitting and a sharper decline in quality 

on independent data. Thus, the Stacking_v2 algorithm was recognized as the best solution for 

achieving the goal, providing an optimal balance between accuracy, interpretability, and stability of 

the forecast. Its use allows for taking into account complex, nonlinear relationships between features, 

thereby minimizing errors in new data. The results obtained confirm the possibility of using this 

approach in precision medicine, including risk stratification, monitoring enzyme activity, and 

supporting clinical decisions when working with AST indicators. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AST   Aspartate Aminotransferase 

ALP Alkaline Phosphatase 

γ-GT Gamma-Glutamyl Transferase 

LDH Lactate Dehydrogenase 

hs-CRP High-sensitivity C-Reactive Protein 

BMI Body Mass Index 

MAE Mean Absolute Error 

RMSE Root Mean Square Error 

R² Coefficient of Determination 

MAPE Mean Absolute Percentage Error 

SHAP SHapley Additive exPlanations 

NHANES National Health and Nutrition Examination Survey 

RF Random Forest 

XGBoost Extreme Gradient Boosting 

CatBoost Categorical Boosting 

LGBM Light Gradient Boosting Machine 
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MICe Maximal Information Coefficient (enhanced version) 

SEQN Sequence Number (unique identifier in NHANES) 

AUC Area Under Curve 

ROC Receiver Operating Characteristic 

PR-AUC Precision-Recall Area Under Curve 
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