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Abstract: Big data is pivotal in understanding consumer behavior and predicting consumer decisions.
However, research has predominantly focused on specific consumption aspects, with a noticeable
gap in systematic reviews on big data’s role in consumer behavior studies. This paper systematically
reviews 127 articles to identify key topics, significance, challenges, and emerging trends in the
application of big data to consumer behavior research. Our findings indicate that big data analysis in
this field primarily focuses on consumer attitudes, behavior patterns, decision-making processes, and
the impact of major events. Big data is categorized into structured and unstructured types, with deep
learning, machine learning, and text data as essential research methods, particularly for predicting
consumer trends. Future research should focus on enhancing data quality, improving model
interpretability, and fostering stronger collaboration between academia and industry. This study
advances the understanding of how big data can be effectively leveraged in consumer behavior
research, highlighting its potential benefits and challenges.
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1. Introduction

Recently, big data analysis and consumer behavior have played an important role in
transforming the entire marketing process and how companies and market researchers analyze
consumer behavior and market trends. As a result, it has been receiving significant focus from
researchers in consumer behavior and marketing (L. Li, 2023). Researchers have been using different
types of big data and various sophisticated methods, models, and algorithms for analyzing big data
to get a better understanding of consumer behavior. The application of big data analysis has formed
a new way of analyzing consumer behavior compared to the traditional way of thinking research by
improving data resources compared to self-reported surveys (Hofacker et al., 2016). Since consumer
behavior analysis heavily relies on data sources such as questionnaires, interviews, and databases,
big data analytics enables companies to connect all essential elements to develop real-time
approximations and conduct deeper analysis of consumer behavior (Dinu et al., 2016). For example,
compared with interview or questionnaire field data, which is a little limited to data capture,
attributes of big data in consumer behavior such as Google trends textual contents and photos can
help researchers build a deeper understanding of consumers, such as their preferences and
willingness to pay (Kanavos et al., 2018). In addition, as social networks rapidly expand, enabling
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consumers to share their attitudes and comments, big data analytics and data mining technology
have already significantly impacted consumer behavior analysis.

Along with the essential improvements big data and its relevant models and algorithms have
brought to consumer behavior research, there are still some ongoing debates and challenges that need
to be dealt with. The issue of class imbalance has garnered significant attention within the machine
learning community in recent years. Despite the advancements in big data and deep learning, this
problem persists (Rendon et al., 2020). Challenges still exist in selecting various data types and fully
mining big data values (Bello-Orgaz et al., 2016). Moreover, as big data is often unstructured, there
are still challenges to deeply analyzing and transforming data into meaningful information.
Furthermore, data privacy issues impact internal and external stakeholders in various and potentially
unexpected ways (Martin & Murphy, 2017).

A thorough review of the literature on this topic is necessary but currently unavailable, limiting
our understanding of big data’s role in consumer behavior research. Other studies have surveyed the
literature on specific topics of big data research in consumer behavior, such as consumers
repurchasing behavior (Shang & Li, 2017), behavior patterns (S. Singh & Yassine, 2019), product
recommendation (Urkup et al., 2018), public attitude (A. Singh & Glinska-Newes$, 2022) and
consumer decision-making behavior (Pai & Chen, 2023). Moreover, there is also some relevant
literature covering certain aspects of big data research in consumer behavior, such as marketing
research data (Green et al., 2020), user-generated content (Silva et al., 2020), web search data (Giglio
et al., 2020), entreprise database (Adler et al., 2022), industry database (Volkova & Karpushkin, 2023),
and professional database (Daviet et al., 2022).

However, two major gaps remain in this area. First, previous studies on big data focused heavily
on models and algorithms such as data mining, data size, and visualization (Babiceanu & Seker, 2016;
Ierkens et al., 2019), without providing enough insight into trends and key concerns in big data
research. Second, as big data research rapidly evolves with new skills and techniques, past studies
covered only a limited scope.

The following research questions are proposed by this study:

1. In the research field of consumer behavior, what types of big data, models, and algorithms are
used?

2. What are the foremost relevant research topics and the new trends with big data and consumer
behavior?

3. What are the influences, limitations, challenges, and future directions in the field of big data
and consumer behavior?

To answer these research questions, we performed a comprehensive quantitative and qualitative
systematic review of big data and relevant techniques in consumer behavior research, highlighting
their current impact and the latest trends in this field. Our contribution aims to identify avenues for
future research and advance the understanding of how big data can be leveraged to further improve
consumer behavior research.

2. Data and Methods

Bibliometrics was introduced in the early 1990s and established formally in 1969 (A, 1969), then
developed a crucial method for quantitative literature analysis (Diem & Wolter, 2013). With the
analysis of authors, keywords, journals, countries, and institutions, bibliometrics helps trace the
development of specific research fields (Abramo et al., 2011).

Advancements in computing have produced a better environment for bibliometric analysis
through visualization. Research tools like CiteSpace and VOSviewer could generate knowledge
graphs to get a deeper understanding of literature. CiteSpace utilizes set theory to standardize data
and give visualization to reveal the evolution of research clusters, while VOSviewer applies
probability theory for data standardization and gives many visualization options, for example,
Network and Density to explore connections between authors and other elements (Eck & Waltman,
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2009). The combination of the two tools could provide a framework for visualizing and excavating
the developments and connections in a certain research area.

This paper follows the PRISMA protocol to make the flow chart and keep this paper replicability.
The PRISMA protocol has been updated almost annually from 2009 to 2020. The PRISMA-2009
provides a 27-item checklist and a four-phase flow diagram to improve the systematic reviews and
meta-analyses. The PRISMA statement gives guidance for reporting a systematic review (Moher et
al., 2009). The PRISMA-2015 offers a 17-item checklist to facilitate the preparation of a robust protocol,
which could raise the quality and reliability of systematic reviews (Moher et al., 2015). For PRISMA-
2020, it has been introduced to update PRISMA-2009 to make a clear report of study selection,
synthesis, and risk of bias by reflecting advancements in systematic review methodologies and
technologies, for example, machine learning and natural language processing (Page et al., 2021).
PRISMA-2009 aims to standardize and improve transparency in systematic reviews, and PRISMA-
2020, with updates, takes advancements like machine learning and ensures systematic reviews
remain reliable resources for researchers (Sarkis-Onofre et al., 2021).

To ensure the comprehensiveness and accuracy of the retrieval data, the summary of the data
source is shown in Table 1, and Figure 1 represents the selection process followed by the PRISMA
protocol (Page et al., 2021). The Web of Science index is selected as SCI-EXPANDED, SSCI, and the
final Web of Science retrieval strategy is [TS = ((“big data” OR “data analytics” OR “data mining” OR
“machine learning” OR “predictive analytics”) AND (“consumer behavior” OR “consumer behavior” OR
“purchase behavior” OR “buying behavior” OR “shopping behavior” OR “customer behavior”))]. The Scopus
search strategy is [TITLE-ABS-KEY ((“big data” OR “data analytics” OR “data mining” OR “machine
learning” OR “predictive analytics”) AND (“consumer behavior” OR “consumer behavior” OR “purchase
behavior” OR “buying behavior” OR “shopping behavior” OR “customer behavior”))]. The final search was
(204+579=) 783 articles. The period is from January 2012 to December 2023, to cover the whole paper
topics relevant to “big data” and “consumer behavior”. The document type is Articles, the language
is selected as English, and the search date is January 14, 2024. Web of Science is exported as a full
record, and Scopus is exported as all information. There are (133+238=) 371 articles after the primary
limit time, article type, and language. After removing duplicate literature from 90 articles, there are
still 281 articles. After filtering the titles and abstracts, 189 articles remained. The full text and article
title abstract were further screened to obtain 127 valid articles.

Table 1. summary of data source.

Category Specific Standard Requirements
Research database Web of Science core collection, Scopus
Citation indexes WOS (S5CI, SCIE), Scopus
Searching period January 2012 to December 2023
Language “English”
WOS

TS = ((“big data” OR “data analytics” OR “data mining” OR “machine
learning” OR “predictive analytics”)

. AND (“consumer behavior” OR “consumer behavior” OR “purchase

Searching keywords ) ) ) ) )
behavior” OR “buying behavior” OR “shopping behavior” OR
“customer behavior”))
SCOPUS

TITLE-ABS-KEY ((“big data” OR “data analytics” OR “data mining” OR

“machine learning” OR “predictive analytics”)
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AND (“consumer behavior” OR “consumer behavior” OR “purchase
behavior” OR “buying behavior” OR “shopping behavior” OR
“customer behavior”))
“Business” “Computer Science Information Systems”

Subject categories ~ “Environmental Sciences” “Management”

“Green Sustainable Science Technology”

Document types “Articles”
Data extraction Export with full records and cited references in RIS format
Sample size 371

Source: Authors’ elaboration.

= Search for articles from the Scoups and Articles excluded based on eligibility

% WOS database with keywords "Big data“ (editorial material, early access,

& AND "consumer behavior" proceedings paper, essay reviews).

(N=783) (N=412)
Studies before duplicates removed Duplicate.

) (N=371) (N=90)

5 |

8

S Studies after duplicates removed (N=281)
- Studies excluded (N=92)

Studies screened by title and abstract « Not related to big data analysis and
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& Selection of Documents

Figure 1. Process of literature selection. Source: Author’s elaboration based on the selection process on Scopus

and Web of Science.

After data cleansing, quantitative and qualitative analysis was performed on the final dataset of
127 research papers selected. This study employs a two-part methodology for the literature data
analysis, starting with a bibliometric analysis to quantitatively assess the landscape of big data
research in consumer behavior. In the second part, a thematic analysis is conducted, utilizing theme
maps to qualitatively explore key themes and emerging trends within the literature.

From the studies that used big data to analyze consumer behavior, several major topics are
associated with this topic. As shown in Figure 2, a theme map was built based on the literature
analysis offers fundamental topics and clear relationships among big data literature in consumer
behavior; this map can give a foundation for research in the future. Besides, the map could offer
guidance for researchers to understand the state of big data research in consumer behavior recently
and help provide future research directions.
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Figure 2. Literature theme map. Source: Author’s elaboration of data collected from Scopus and Web of

Science.

As illustrated in Figure 2, big data in consumer behavior analysis can be divided into several
key categories. The primary category encompasses consumer behavior and big data types, with
subcategories including consumption, patterns, preferences, attitudes, and decision-making
processes. A detailed analysis of these big data and consumer behavior types is provided in the
subsequent section of the study. Additionally, various models and algorithms, particularly those
involving artificial intelligence (AI), are highlighted, with some AI algorithms demonstrating
exceptional performance in recent years. Other topics, such as influencing factors and the impacts on
consumer behavior, are also explored in the following sections.

3. Results of Bibliometric Analysis

The 127 papers used in this study were published in 110 journals by 83 authors from 284
organizations in 68 countries. Figure 3 presents the number of articles published every year on big
data in the consumer behavior field. The first publication was in 2014. Starting from 2018, there was
an increase in the number of publications. This trend could also be found in other studies (Chandra
& Verma, 2023). The probable reason that big data in consumer behavior has increased rapidly after
2018 could be ascribed to the progress of technologies.
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Figure 3. Distribution of articles by year of publication. Source: Author’s elaboration of data collected from

Scopus and Web of Science.

In terms of paper output by country, China, the United States, and South Korea published the
most papers in this field, and the differences in paper output among other countries were relatively
small. The top 4 countries (China, the United States, the Republic of Korea, and the United Kingdom)
account for a significant portion of the total publications. A long tail distribution with many countries
having fewer publications (2-3 each). European countries like Spain, Italy, Germany, and France have
moderate numbers of publications. Other countries have fewer publications, indicating a potential
for growth or differences in research focus and resources.

To better reflect the core authorship and relevance of big data in the field of consumer behavior
analysis, 127 papers were visualized by author collaboration graph (Figure 5).

The node sizes in Figure 4 represent the number of papers published by the authors, and the
lines represent the collaboration. There are 11 core authors in the sample literature, and the top
authors are Lawson M Cade, Francis Azell, Webb Anne, Asensio Omar Isaac, Bhardwaj Khushi,
Hollauer Catharina, Banboukian Aline, Cotsman Ashley, Shalkh Omar, and Li Mimi. In general, the
cooperation in the field of Consumer big data field is relatively close, the research forces in this field
are in a relatively concentrated state, and the scholars are closely connected, which is of great
significance for the in-depth exploration of this field.
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Figure 4. GIS map of high-yield countries.
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Figure 5. Cooperation map of high-yield authors. Source of data: Author’s elaboration of data collected from

Scopus and Web of Science.

Using the “Detect Outbreak” function of Citespace software to observe deeper development
changes, it was found that professional vocabulary has increased significantly in a short period in a
specific year. Figure 6 is a prominent word map generated by the sample. From the highlighted text,
the duration of hot spots shows a trend from long to short. From 2014 to 2018, the prominent
keywords included marketing, behavior change, customer behavior, customer experience, and data
analysis, with a duration of 7 to 9 years. From 2014 to 2017, the prominent keywords include genetic
algorithms and growth, and the average duration of these keywords is as long as 4 years. Since 2018,
academic research, machine learning, aging, consumer attitudes, and other issues have attracted
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much attention. Among them, the keyword of machine learning has continued to this day, reflecting
that related research will continue to be a key trend in the field of consumer big data in the future.

Top 10 Keywords with the Strongest Citation Bursts

Keywords Year Strength Begin End 2014 - 2023

marketing 2014 1.56 2014 2018

behavior change 2014 0.97 2014 2017

customer behaviour 2015 1.38 2015 2018

big data analytics 2016 1.85 2016 2019 e S
customer experience 2016 1.14 2016 2017 T ——
data analytics 2017 1.95 2017 2018 —
academic research 2018 0.97 2018 2019 S —
machine learning 2020 1.75 2020 2023 —
aged 2020 1.3 2020 2021 —
consumer attitude 2014 1.21 2020 2021 —

Figure 6. Top 10 keywords with the strongest citation bursts. Source: Author’s elaboration of data collected from

Scopus and Web of Science.

Keywords reflect the interrelationships between the various topics represented in the literature
and are the core summary of the article. The analysis of keywords is beneficial to the research of hot
topics in this field. We run Citespace software to obtain the keyword co-occurrence map of consumer
behavior research in the big data field, as shown in Figure 7. The size of each node in the graph
represents the number of times the word appears. As the number of occurrences increases, the circle
becomes larger. Among the keywords with a frequency of more than 20, big data, data mining, and
behavior change appear the most. To sum up, there are nine main directions that scholars of
consumer behavior research in the field of big data focus on: consumer, big data analysis, electronic
commerce, commerce, consumer attitude, sales, big data, data mining and behavior change and other
keywords, high Frequent keywords are the same as keywords that rank high in the center. That is,
the higher the frequency, the more obvious the center. Centrality can cover hot spots and key turning
points to a certain extent.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1668.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2025

doi:10.20944/preprints202505.1668.

ClteSpace, v. 6.3.R1 (64-bit) Basic
March 23, 2024, 8:08:43 BM GMT+01:00
WoS: D:

-2023 (S\ll:e Lenglh-ﬂ

£ Criteri; x (k=25), LRF=2.5, LIN=10, LBY=5, e=1.0
Network: N=284, E= Jd(ﬂensity:l) 0232)

Largest 1 CCs: 247 (86%)

Nodes Labeled: 1.0

Pruning: None

Excluded: o
? -1
= 8

o ’ & L ] it ‘- -a Ie
SN G 5 g:)ehawm)i'<'.fhamge
= N ! consumg'attltudeb'@ta
L ° .' SR cons_g
> -b'ig-datasnalytl n

R . e, o ®

o o‘-

' eléctromc‘.:ommerce
< d’om@ercgata@mng N
° s@es‘ \pat: .

. -
.

e . ©onipetition
i =9 _'@
L

L] L . Ll e
201 = S L] © 3
an . . e\
o P,
2 . o .
2 ™ N

SRV, ». -]

Figure 7. Keywords cluster map. Source: Author’s elaboration of data collected from Scopus and Web of

Science.

CiteSpace, v. 6.3.R1 (84-bit) Basic
Mareh 23, 2024, 8:09:43 PM GMT+01:00

0S:
'rmmspan zmunza (snce Lenglh 1}
Selection Ci g-il -25), LRF=2.5, LIN=10, LBY=5, e=1.0
Network: N 934(Densltr0 0232)
Largest 1 CCs: 247( %)
Nodes. Lahalau
Pruning:
Modularity Q 0 7157
Weighted Mean Silhouette $=0.8121
Harmonic Mean(Q, $)=0.8021

2018 2018 2020 2023

Excluded:
K =T - #0 social media
foodvuprly gty betravioral naiytics ——
: G oravionl change =y
a"‘r'ﬂ& = T #1 market basket analysis
commercial phenomena = —== L gf,;';-;m“#:gz o e
= BT ata minin
&mmerce 5 L - .:”‘.’F.!V,s,?..?.‘."‘o;%‘l;ﬁ;'l‘m 9
CORSHISE bopatior 5 e e
[ = data mining anr—gjeCtronic comyparcg #3 wildlife trade
s, B et caloric ntake. _animal
nimals
human banking | SOMrolleglstydy aged T mans

o #4 machine learning

consumer attitude

machine learning

<
g

i

data anaiyRsinption behavior

snae!s'a'.d-wwv
i

catchment area
alr transporiation

1

#5 parallel naive bayes method
#6 mining technology

#7 big data analytics

e
il declsion trees
Aang

big dataanalytics

#9 big data analysis

orsar
aendemic R
artificial intelli

#10 k-means algorithm

social media
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Combined with literature analysis, the keyword results are summarized into two categories. The
first is algorithm research related to big data mining, which is the research on how computers acquire
new knowledge and skills. On the one hand, it is directly used for information perception, data
prediction, and estimation models. On the other hand, a new type of algorithm attempts to process
and predict existing problems through a large amount of data learning accumulation. This model is
also called “machine learning”. Machine learning represents the forefront of human thinking and
imitation technology. It can optimize certain systems by making predictions through training data
sets, including model-based reinforcement learning, genetic-based multi-objective optimization
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strategies, etc. Algorithms, data algorithms based on data mining, and feature analysis of support
vector machines. The second is the change in consumer behavior and consumer attitudes, the change
in consumer behavior for a certain category of specific agricultural products, or the impact of online
consumer behavior. The third is interdisciplinary frontier disciplines, whose research fields are very
broad. The innovative model of “big data + consumer behavior” will gradually mature in the
development of technology and industry and achieve more new developments of cross-integration
under the guidance of consumer market analysis, consumer preferences, consumer stickiness, and
other needs.

4. Results of the Thematic Analysis
4.1. Types of Big Data Used in Consumer Behavior Research

Different types of big data have been used in consumer behavior research. As shown in Table 2,
the data types can be separated into two categories by the content format, including structured and
unstructured data. Structured data is highly organized and can be stored in a database like SQL,
while unstructured data is complex to store. Then, these two categories can be split into six
subcategories. The subcategories of unstructured data include (1) User-generated content, (2) web
search data, and (3) marketing research data. The subcategories of structured data contain (1)
Enterprise database, (2) Industry database, and (3) Professional database. In the following parts, the
application of every big data type in consumer behavior research will be elaborated.

Table 2. Categories of big data used in consumer behavior research.

Categories Subcategories Example articles
Unstructured Marketing research data (e.g., Retailing (Dubé et al., 2014), (Green et al.,
data and Advertising, diet survey data) 2020)
User-generated content (e.g., tweets, (Ozturkcan et al., 2019), (Silva et
reviews of social websites, Google al., 2020), (Pantano et al., 2019),
keywords) (de Luca et al., 2019)
Web search data (e.g., Taobao live banding  (Xu & Chen, 2023), (Giglio et al.,
data, TripAdvisor, e-commerce platform, 2020), (Xue, 2023), (Wang &
Hadoop cloud computing platform) Zhang, 2021)
Strzztred Enterprise database (e.g., ICT dataset from  (Adler et al., 2022), (Upadhyay

airplane, EIS)

Industry database (revenues of luxury)

Professional database (e.g., genetic data,
American Statistical Association DataFest)

et al.,, 2024)

(Volkova & Karpushkin, 2023)

(Daviet et al., 2022), (Y. Lee &
Kim, 2020)

Source of data: Compiled by the author.

Unstructured Big Data

In recent years, unstructured data has become a commonly used source of big data for analyzing
consumer behavior. Researchers in consumer behavior analysis have utilized unstructured data
collected from marketing research, user-generated content, and web search data to explore various
issues related to consumer behavior. With the rapid development of the Internet and computer
science, many types of unstructured big data have been generated.

For user-generated content data, the rise of the Internet has facilitated the growth of these social
media platforms, allowing consumers to easily share their views online. These data sources provide
valuable insights into consumer behavior; consequently, researchers have collected vast amounts of
online reviews from social media and e-commerce platforms to identify consumer attitudes,
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preferences, behavior patterns, and willingness to pay (e.g., Ozturkcan et al., 2019; Silva et al., 2020;
Pantano et al., 2019; Xu & Chen, 2023). Understanding how brands can maintain the personalized
and intimate relationship qualities provided by social media while meeting consumer expectations
amid the increasing volume of interactions has become essential (Labrecque, 2014).

Other researchers use market research data to get a full understanding of availability,
accessibility, affordability, and appeal in food consumption (Dubé et al., 2014). There’s also a
comparison between supermarket loyalty card data and traditional diet survey data for
understanding the consumption behavior of protein in older adults in the UK (Green et al., 2020).
Compared with User-generated data and Web search data, market research data allows researchers
to focus on a certain type of questions in consumer behavior and make it more precise by
questionnaires and interviews (Dabrowska, 2011). Much progress has been made in today’s
consumer behavior research using market research data. The new utilized netnography and
MAXQDA software provided a new way for qualitative analysis, providing valuable insights for
brands regarding consumer behavior on social media (Hosseini & Ghalamkari, 2018).

Finally, big data can be generated from consumer online browsing, searching, and buying
behavior. Big Data has the potential to enhance the understanding of each stage in the consumer
decision-making process. Traditionally, the field has advanced with a priori theory followed by
experimentation. While the nature of the feedback loop between theory and results may shift
significantly due to the influence of Big Data (Hofacker et al., 2016). Consumers usually search for
information online, not only for comments from other consumers but also for product details and
relevant information; they could even purchase online through e-commerce platforms. Compared to
traditional data resources, web search data could provide a huge volume of numbers and text, which
is useful for text mining and provides a comprehensive understanding of consumer attitudes, needs,
and so on. For example, when it comes to examining the factors influencing consumers’ online
information search behavior with purchasing laptops and mobile phones, total search, number of
searches, and cognitive ability were measured to understand consumer behavior (Dutta & Das, 2017).
Besides, a personalized recommendation framework based on consumer web search data and the
open-source Hadoop cloud computing platform was developed to enhance commodity exposure,
recommend personalized products, and stimulate user consumption in e-commerce (Wang & Zhang,
2021). It could be concluded from these researchers jointly that the web search data provides more
accuracy regarding consumer intention. Search queries (e.g., Xue, 2023; Xu & Chen, 2023) often
directly reflect what consumers are interested in, planning to purchase, or researching at any given
time. By analyzing these data, researchers can gain more precise insights into consumer behavior and
trends, making them a valuable resource for predicting market dynamics and preferences.

Structured Big Data

A professional database, as identified in the literature, is limited in use but is a valuable resource
maintained and updated by professional organizations. In consumer behavior research, these
databases are advantageous because they provide structured data, eliminating the need for extensive
data cleaning, which allows researchers to obtain and analyze data more conveniently. Advances in
molecular genetics, for example, have led to rapid growth in the direct-to-consumer genetic testing
industry, resulting in vast private genetic databases. Some researchers have examined the potential
impact of this data on marketing by proposing a framework that integrates genetic influences into
consumer behavior theory, exploring potential applications of genetic data in marketing (Daviet et
al., 2022). While professional databases save time compared to other data sources, they have
limitations in terms of flexibility and are typically restricted to specific research purposes. Similarly,
industry databases also face limitations, particularly concerning topic specificity. For instance, a
luxury industry database has been used in Russia to identify trends, patterns, and contradictions in
demonstrative consumption within the fashion-retail sector, this includes addressing challenges
related to digital marketing communications and e-commerce, as well as developing a systemic view
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of big data within the marketing communications framework of Russia’s fashion market (Volkova &
Karpushkin, 2023).

Compared to professional and industry databases, enterprise databases are commonly used as
structured data sources. For example, Google Trends, a public web tool by Google, Inc., based on
Google Search, shows the frequency of specific search terms relative to the total search volume across
various regions and languages. Both Google Trends and Wikipedia views data are structured
numerically, unlike other data sources, which are typically in text format (X. Liu et al., 2016). In
consumer behavior research, big data gathered from enterprise databases is often used to analyze
various topics, such as consumer trends and market predictions. For instance, an ICT dataset from
the aviation industry was used to create a Hotelling-inspired catchment area game, which analyzed
the impact of collaboration between airports and airlines by integrating consumer behavior data with
producers’ financial data (Adler et al., 2022). Moreover, in the rapidly evolving landscape of digital
marketing, leveraging data analytics within Enterprise Information Systems (EIS) has become crucial
for businesses to better understand and engage with customers (Upadhyay et al., 2024).

4.2. Types of Consumer Behavior in Big Data Analysis

As shown in Table 3, previous studies have demonstrated that different types of big data have
been utilized to analyze various aspects of consumer behavior, including consumption, patterns,
preferences, attitudes, and decision-making. With the rise of social media platforms, e-commerce
sites, and advanced algorithms such as Al, big data can now be collected more easily from these
platforms and analyzed using the latest techniques (e.g., X. Liu et al., 2016; Adler et al., 2022). Unlike
traditional studies that often relied on a single data source, big data from multiple origins can now
be integrated and analyzed collectively to gain deeper insights into consumer behavior (Green et al.,
2020). These findings indicate that data collected from collaborative datasets can provide a more
comprehensive understanding of consumer behaviors when used supplementally.

The evolution of technology has given rise to various online social media platforms, such as
Facebook, Twitter (now X), and TripAdvisor, providing consumers with avenues to share opinions
and give feedback on products. As a result, consumers with similar buying patterns tend to gather
and form groups (Adamopoulos et al., 2018). It is widely argued that the emergence and evolution of
social media have significantly influenced how consumers obtain information and make decisions
(Ghose & Todri-Adamopoulos, 2016). Since big data is generated from both pre-purchase and post-
purchase activities, the information spread across websites offers an opportunity to gain a deeper
understanding of consumption behaviors and consumer decision-making.

Table 3. Major themes of consumer behavior research in big data.

Layers Subject headings Example articles
Guo, L., & Zhang, D. (2019); Lj, J., &
Hu, Q. (2021); Shang, P., & Li, T.

consumption structure; wildlife (2017); Ushakova, A., & Jankin
consumption; Consumers Mikhaylov, S. (2020); Vepsaldinen, H.,
. repurchasing behavior; household Nevalainen, J., Kinnunen, S., Itkonen,
Consumption . . — .
electricity consumption; food S. T., Meinil3, J., Mannisto, S.,
consumption; vehicle consumers’ Uusitalo, L., Fogelholm, M., &

buying; sustainable consumption Erkkola, M. (2022); Zhou, F., Lim, M.
K. He, Y., & Pratap, S. (2020); Ye,
Y., Ly, X., & Lu, T. (2022).
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user personality traits; customer
behaviour system; Dietary patterns;
Consumer Segmentation; Consumer
Behavior Characteristics;
Psychographic Segmentation; social
representations; energy consumption
behavior patterns; Negative Reviews
Behavioral Patterns; Buying Patterns
from Purchase History; Community
Detection

Patterns

13

Adamopoulos, P., Ghose, A., & Todri,
V. (2018); Chen, M., & Xia, Z. (2015);
Clark, S. D., Shute, B., Jenneson, V.,
Rains, T., Birkin, M., & Morris, M. A.

(2021); Ehsani, F., & Hosseini, M.

(2023); Gan, M., & Ouyang, Y. (2022);
Liu, H., Huang, Y., Wang, Z,, Liu, K,,
Hu, X., & Wang, W. (2019); Pindado,
E., & Barrena, R. (2021); Singh, S., &

Yassine, A. (2019); Sun, M., & Zhao, J.

(2022); Ye, D., Muthu, B., & Kumar, P.

(2022); Zhang, L., Priestley, J.,
Demaio, J., Ni, S., & Tian, X. (2021).

Enterprise customer relationship
management; public attitude towards
organic foods; hotel guest satisfaction;

consumer behavior recognition;

personalized energy management;
Personalized Marketing Strategies;
Effective Online Advertising;
consumer interest in repair; product
recommendation; recommender
systems

Attitude
(recognition)

Li, X. T., & Feng, F. (2018); Singh, A.,
& Glinska-Newes, A. (2022); Xiang,
Z., Schwartz, Z., Gerdes, J. H., &
Uysal, M. (2015); Xie, T. (2023);
Fotopoulou, E., Zafeiropoulos, A.,
Terroso-Saenz, F., Simsek, U.,
Gonzalez-Vidal, A., Tsiolis, G.,
Gouvas, P, Liapis, P., Fensel, A., &
Skarmeta, A. (2017); Han, M. (2023);
Jiménez-Marin, G., Sanz-Marcos, P,
Medina, I. G., & Coelho, P. M. F.
(2020); Kanavos, A., lakovou, S. A.,
Sioutas, S., & Tampakas, V. (2018);
Makov, T., & Fitzpatrick, C. (2021);
Urkup, C., Bozkaya, B., & Sibel
Salman, F. (2018); Venkatrama, S.
(2017).

decision tree; Online Consumer
Behavior Decision; customer choice
behavior in internet of things;
consumer purchase intention

Decision

Lee, Y., & Kim, D.-Y. (2020); Pai, C.-S.,
& Chen, S.-L. (2023); Xiao, B., & Piao,
G. (2022); Yan, Y., Huang, C., Wang,

Q., & Hu, B. (2020); Kiran, P., &
Vasantha, S. (2016).

Source of data: Compiled by the author.

The following paragraphs will carefully analyze the detailed subcategories of consumer
consumption, attitudes, patterns, and predictions of consumer behavior.

Consumer Consumption

As shown in Table 3, the literature review covers various topics, including reasons for consumer

d0i:10.20944/preprints202505.1668.v1

consumption (F. Zhou et al.,, 2020), sustainable consumption (Y. Ye et al., 2022), consumption
structure (Guo & Zhang, 2019), food consumption (Vepsildinen et al., 2022), repurchase (Shang & Li,
2017), and household electricity consumption (Ushakova & Jankin Mikhaylov, 2020).

For text mining analysis, the process involves content filtering and data extraction (J. Li & Hu,
2021). In one study, consumers were categorized into green consumers and traditional consumers,
the findings highlighted the potential of sustainable consumption to generate positive spillover
effects across various domains of consumer behavior. (Y. Ye et al., 2022).

For data mining analysis, researchers found that “cost-effectiveness” is the most critical factor
influencing vehicle consumers, indicating that consumers prefer to purchase vehicles with favorable
pricing (F. Zhou et al., 2020). Analysis of e-commerce platform data suggests that consumption
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structures vary across different periods, showing a trend toward consumption upgrading (Guo &
Zhang, 2019). Grocery purchase data are considered moderately valid for describing food
consumption patterns among adult populations (Vepsaldinen et al., 2022). Additionally, residential
smart meters can effectively reveal energy consumption patterns (Ushakova & Jankin Mikhaylov,
2020).

Moreover, leveraging social media and search engine data helps in developing more effective
strategies for wildlife conservation by addressing wildlife consumption (Li & Hu, 2021). Traditional
database technologies struggle to process large volumes of static customer information and dynamic
transaction data efficiently, whereas machine learning techniques offer effective solutions to this
challenge (Li & Hu, 2021).

Consumer Attitude

The emergence of data analysis technologies and algorithms, particularly artificial intelligence
(Al), has created a need for analyzing consumer attitudes and recognition. Some researchers utilize
big data and text mining to analyze hotel guest satisfaction (Xiang et al., 2015) and public attitudes
toward organic food (A. Singh & Glinska-Newes, 2022). For consumer recognition, researchers
employ Al to identify consumers, and enterprises use data mining to manage relationships with them
(Xie, 2023; X. T. Li & Feng, 2018). In summary, big data mining and Al are commonly used methods
in the processes of consumer recognition and the identification of consumer attitudes. The reviewed
literature indicates that user-generated content (UGC) is predominantly used as a type of big data to
investigate consumer attitudes, particularly focusing on consumer preferences and satisfaction.
Unlike traditional survey-based research that relies on “stated preferences” to assess satisfaction
levels (Lv et al.,, 2022), big data research commonly utilizes UGC (e.g., online reviews, tweets, e-
commerce platform comments) as it provides larger samples, yields better results, and reduces
potential subjective biases. Previous studies have also identified price, subsidies, and after-sales
service as key factors influencing consumer preferences, with price playing a particularly dominant
role (Jung et al., 2021). Additionally, researchers found that mental depreciation and perceived value
significantly affect consumer attitudes toward smartphone repairs (Makov & Fitzpatrick, 2021).

In addition, when comparing traditional analysis with big data analysis of consumer
preferences, traditional methods often treat consumer preference data subjectively through self-rated
questionnaires or interviews. In contrast, big data analysis tools primarily evaluate data attributes
objectively using predefined rules (Makov & Fitzpatrick, 2021). For example, with the use of big data
and Al technologies, enterprises can gain a deeper understanding of consumer preferences, leading
to personalized marketing strategies. Internet of Things (IoT) technologies also facilitate data
collection through various devices, enabling a more comprehensive understanding of consumer
preferences (M. Han, 2023).

Regarding consumer preferences, researchers have primarily focused on product
recommendations and personalized management. In the field of personalized management,
particularly in the energy sector, identifying key energy-consuming factors is crucial. An energy-
aware IT ecosystem has been established to collect relevant information and develop personalized
management using modern techniques such as IoT, data modeling, and personalized
recommendation mechanisms (Fotopoulou et al., 2017). An empirical analysis concluded that spatial-
temporal mobility and financial features are significant factors in predicting consumer attitudes
(Urkup et al, 2018). Through IoT, enterprises can obtain diverse data and gain a deeper
understanding of consumer preferences, which is essential for personalized marketing strategies (M.
Han, 2023). For product recommendations, a large-scale supermarket product recommendation
system was developed based on consumer behavior using data mining techniques from Amazon
(Kanavos et al., 2018). This analysis demonstrated the effectiveness of cloud infrastructure and
MapReduce as a programming environment. Moreover, research on consumer preferences can
enhance advertising effectiveness; companies are advised to estimate the number of customers and
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potential sales opportunities based on consumer preferences (Jiménez-Marin et al., 2020). An
intelligent recommendation framework was also developed for consumer recommendation systems
and has been applied in B2C e-commerce scenarios (Fotopoulou et al., 2017).

Consumer Patterns

Identifying and clarifying consumer patterns has been a significant concern for predicting
consumer purchasing tendencies (Adamopoulos et al., 2018). Researchers have utilized various data
sources, such as tweets (Pindado & Barrena, 2021) and supermarket transaction data (Clark et al,,
2021). Analytical techniques, including cloud computing (D. Ye et al, 2022), text mining
(Adamopoulos et al., 2018), and data mining (M. Chen & Xia, 2015), are commonly employed. Big
data analysis processes can be categorized into two primary methods: text analysis and data analysis.

In text analysis, research on tweets has found that consumer patterns vary across regions, with
regional cultural contexts significantly influencing users’ attitudes toward food innovations (Pindado
& Barrena, 2021). Text mining of word-of-mouth (WOM) messages revealed a positive and
statistically significant effect of personality similarity between social media users on the likelihood of
subsequent purchases after exposure to WOM messages (Adamopoulos et al., 2018). Additionally,
researchers identified psychographic segmentation using natural language processing (NLP)
methods based on two online psychographic lexicons: the Big Five Factor (BFF) personality traits and
the Schwartz Value Survey (SVS), both derived from users’” word usage (H. Liu et al., 2019).
Consumer density is utilized to estimate geographical peculiarities (Clark et al., 2021). Analysis of
online negative reviews has also provided insights into online consumer temporal, perceptual, and
emotional patterns (Sun & Zhao, 2022).

In data analysis, researchers have used various techniques to identify tourists” characteristics,
revealing differences in secondary consumption behaviors among different types of tourists (Gan &
Ouyang, 2022). Additionally, an unsupervised progressive incremental data mining mechanism was
proposed to extract and analyze energy consumption patterns using frequent pattern mining
methods (S. Singh & Yassine, 2019). By accurately identifying customer segments with similar
purchasing preferences, actionable cross-selling strategies were enhanced, ultimately increasing
consumer loyalty (L. Zhang et al., 2021). Supermarket sales data serve as a valuable resource for large-
scale dietary research and can be utilized to clarify public dietary patterns (Clark et al., 2021).

Consumer Decision

Regarding consumer decision-making, one key topic is consumer willingness to buy, which is
analyzed through user-generated content (UGC). UGC is crucial for understanding consumer
intentions. Research has shown that UGC generated from social media and big data significantly
impacts consumer purchase intentions (Kiran & Vasantha, 2016). Another related topic is online
shopping decisions. Researchers have found that reducing touchpoints on e-commerce platforms can
enhance revenue conversion rates (Pai & Chen, 2023), and the internet helps consumers better
understand the products or services offered by companies (Xiao & Piao, 2022). The Internet of Things
(IoT) has transformed traditional consumer networks. To address consumer choice mechanisms and
reduce confusion, IoT and big data analysis can be highly effective (Yan et al., 2020).

Moreover, a decision tree model and artificial intelligence (AI) were used to analyze consumer
behavior on Expedia.com. The analysis found that longer-stay hotel guests tend to prioritize package
deals, and their preferences vary by region (Y. Lee & Kim, 2020).

Predictions of Consumer Behavior

After identifying consumer patterns and attitudes, predicting future consumer behavior is
essential for companies to develop more effective marketing strategies. Accurate forecasting not only
enhances consumer management but also contributes to the economic growth of companies
(Buettner, 2017). Commonly used data for predicting consumer behavior include web search data,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1668.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2025 d0i:10.20944/preprints202505.1668.v1

16

such as the XING dataset from online social networks (Buettner, 2017), also data related to consumer
behavior and payments (Martens et al., 2016), Google Trends (Silva et al., 2019), customer relationship
management datasets (éimovié et al., 2023), and cross-border e-commerce platforms (Mu, 2019).
Additionally, data analysis often involves a combination of structured and unstructured data (Ryu
et al.,, 2020).

The collected 127 consumer behavior studies on forecasting using big data can be traced back to
2016 (Martens et al., 2016). Most of these studies have concentrated on forecasting personality-based
product preferences (Buettner, 2017), consumer variety-seeking behavior (Tian et al., 2018), and
fashion consumer trends (Silva et al., 2019), among others. By utilizing both structured and
unstructured data from diverse sources (e.g., Google Trends, tweets, dietary survey data), Al
algorithms have significantly improved the accuracy of forecasting consumer behavior compared to
traditional methods such as linear regression and regression trees (Jackson & Ivanov, 2023).
Furthermore, web search data is widely used by researchers to predict consumer trends; specifically,
data from Google Trends has been shown to provide more reliable forecasts of tourist behaviors
(Havranek & Zeynalov, 2021). These studies have not only enhanced the prediction of consumer
trends, which is valuable for marketing, but also validated algorithms relevant to machine learning
and text mining.

4.3. Application of Models and Algorithms in Big Data Usage

The advent of digital transformation, social network adoption, cloud infrastructure, and big data
technology now enables researchers to develop models to track and store observed customer
behavior (Sarasquete, 2017). A Big Data-based Purchase Decisions Prediction Model was established
to analyze consumer behavior on cross-border e-commerce platforms (W. Mu, 2019). An Improved
Deep Forest model was designed to predict e-commerce consumers’ repurchase behavior (W. Zhang
& Wang, 2021). Beyond the prediction of purchase and repurchase behaviors, a Deep Trust Network
Model was developed to understand behavioral characteristics in consumer patterns (Y. Wang, 2022).
For predicting consumer behavior, a Neural Network-based Precision Marketing Model focuses on
data mining to study user churn prediction and user value enhancement, which are the two most
critical factors influencing marketing revenue (H. Liu, 2021). In the context of product lifecycle
management, a multi-scale digital model was developed to support complex decision-making
(Udugama et al., 2023).

As big data technology rapidly evolves, new algorithms and models have emerged to handle
the extensive use of large datasets. For example, text mining and data mining play significant roles
in this field (Praveen Kumar et al., 2019). These algorithms are instrumental in predicting and
tracking consumer behavior. An algorithm for collecting and processing power consumption data,
along with a load planning algorithm, was developed to encompass all levels of device interaction
(Zhukovskiy et al., 2021). Furthermore, consumer preferences and attitudes (Serrano et al., 2021),
online consumption behavior (Evangelin & Vasantha, 2022), and energy consumption (Abassi et al.,
2023) were all analyzed using text mining and data mining, making these algorithms widely popular
in the analysis of big data for consumer behavior. In addition to data mining and text mining, CNN-
LSTM (Alikhani et al., 2022) and ANN (Praveen Kumar et al., 2019) models have been applied in
demand response and retail management.

Consumer behavior researchers have also employed Al algorithms in big data analysis for
consumer behavior research. Among Al algorithms, machine learning and deep learning are
commonly used in this context. An analysis of online consumer behavior data from the Google
Merchandise Store found that the ensemble model, eXtreme Gradient Boosting (an Al algorithm), is
the most suitable for predicting purchase conversions among online consumers, with oversampling
identified as the best method to mitigate data imbalance bias (J. Lee et al., 2021). Additionally,
researchers have demonstrated that machine learning is more effective than traditional algorithms,
with larger sample sizes leading to more accurate results. The decision tree model and the arithmetic
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mean calculation method have proven more effective than conventional algorithms (R. Li et al., 2022).
The combination of machine learning and data mining has also been utilized to analyze consumer
behavior in the context of energy usage (Abassi et al., 2023). Thus, it is likely that new Al algorithms
and techniques will continue to be adopted in consumer behavior research in the future.

4.4. Other Research Themes of Big Data in Consumer Behavior

As shown in Figure 9, other research topics could be characterized into case study, influencing
factors, impacts on consumer behavior, and big social events on consumer behavior.
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Figure 9. Other themes relevant to big data and consumer behavior. Source of data: Compiled by the author.

Influencing Factors

In the 127 papers reviewed, only three were directly related to the influencing factors of
consumer behavior utilizing big data, focusing on online shopping characteristic data (Xiao & Piao,
2022), e-commerce marketing platform data for green agricultural products (L. Dong, 2022). Some of
these studies also combined other sources of big data. It was concluded that consumer decision-
making behavior occurs in stages, with different factors influencing each stage of the process (Xiao &
Piao, 2022). Product factors, psychological factors, income factors, social factors, and cultural factors
are the main determinants of consumer behavior (L. Dong, 2022). Additionally, privacy management,
strategic alignment, structure, and functions influence the adoption of big data (Félix et al., 2018).

Impacts on Consumer Behavior

Consumer behavior can be impacted by a wide range of factors. For instance, cultural influences
can significantly affect consumer behavior. A study in Korea found that while social class
characteristics influence the consumption of organic foods, individual lifestyle plays a more critical
role in actual purchasing behavior (S. Han & Lee, 2022). Cultural factors also impact the consumption
of Chinese barbecue, as regional similarities in consumer preferences for barbecue continue to grow
(B. Wang et al., 2023). Besides culture, researchers have found that sustainable consumption is more
prevalent among consumers who prefer socially oriented products (Y. Ye et al.,, 2022). Personality
traits also impact consumer behavior; consumers who exhibit similarity on social media platforms
are more likely to make purchases (Adamopoulos et al., 2018). Additionally, consumers who are less
exposed to display advertising have an increased tendency to search for brands, while those with
higher exposure to display advertising are more likely to engage in direct search behavior (Ghose &
Todri-Adamopoulos, 2016).
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Big Social Events on Consumer Behavior

Among the 127 selected papers, eight focused on the impact of major social events. As shown in
Figure 8, there is a clear relationship between major social events and their impact on consumer
behavior. For example, many researchers have examined the impacts of COVID-19 on various aspects
of consumer behavior, including Airbnb booking behavior (Filieri et al., 2023), companies’ online
consumer behavior (Sakas et al., 2021), consumer satisfaction at the point-of-sale (Brandtner et al.,
2021), and differences between mass and luxury products (Pang et al., 2022). The pandemic also
influenced panic buying (Prentice et al., 2020; Barnes et al., 2021) and service quality perception
(Nilashi et al., 2021). Additionally, after the Great East Japan Earthquake and Tsunami, social media
related to rebuilding activities was found to be positively correlated with the demand for used cars
(Shibuya & Tanaka, 2018).

Case Study

There are eight case studies among the 127 papers reviewed. One case study on the 2011 Great
East Japan Earthquake and Tsunami was conducted to understand car scarcity and demand in the
aftermath, finding that social media interactions related to rebuilding efforts and emotional support
were positively correlated with increased demand for used cars (Shibuya & Tanaka, 2018). Another
case study analyzed online reviews on platforms like Airbnb (C. K. H. Lee et al., 2020), branding
luxury hotels on TripAdvisor (Giglio et al., 2020; Barbera et al., 2023), and Muscovite hotels (Mariani
& Predvoditeleva, 2019), along with firm-generated content from Twitter (now X) (W.-H. Kim et al.,
2023). Furthermore, researchers used data obtained from the automotive market to improve the
accuracy of new product demand forecasting (D. Kim et al., 2019).

5. Conclusion

With the rapid growth of new information and technologies in the field of big data, various types
of large-scale data have been tested, analyzed, and filtered to generate new insights into consumer
behavior. This study offers a systematic review of the application of big data in consumer behavior
research, highlighting key research topics. Given the distinct characteristics of structured and
unstructured data, which are used independently or in combination to address problems, a
systematic literature review is essential for gaining a comprehensive understanding of recent studies
and offering insights for future research.

5.1. Main Findings and Implications

This research identified 127 journal articles published between 2012 and 2023. As shown in Table
1, the bibliometric analysis in Section 3 indicates that leading journals in consumer behavior have
increasingly published studies incorporating big data analysis contributed by researchers
worldwide. Although studies on big data in consumer behavior have gained attention, the field
remains in its early stages, as the first identified paper in this review dates to 2014. Since 2014, big
data analysis in consumer behavior has shown an upward trend in publication frequency, increasing
from 1 paper in 2014 to 24 papers in 2023. The systematic review of these articles addressed the gaps
and questions raised in the introduction.

First, big data in consumer behavior research is categorized into structured and unstructured
data. Structured data includes enterprise databases, industry databases, and professional databases,
while unstructured data encompasses traditional marketing research data, user-generated content,
and web search data. Some researchers argue that combining structured and unstructured data is
more effective. Second, in the application of models and algorithms, it is noted that Al in big data
analytics can significantly influence traditional consumer behavior analysis. Some researchers have
tested various Al models and algorithms to identify the most suitable approaches for predicting
consumer behavior, particularly in forecasting consumption trends. The primary AI methods
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identified are deep learning and machine learning. Besides Al algorithms, the primary big data
analysis methods are text mining and data mining. Third, this review identified major types of
consumer behavior analyzed through big data, including consumer consumption, attitudes, patterns,
and decisions, with a focus on behavior predictions. These aspects of consumer behavior have been
extensively studied using big data analysis, yielding significant insights and contributions.

These findings have valuable implications for academics. On the one hand, with the rapid
advancement of modern technologies, big data has garnered significant attention in consumer
behavior research. However, few studies have summarized and updated the trends in this field. This
systematic review serves as a guideline for consumer behavior researchers to understand current
trends in big data analytics and provides insights, along with identifying research gaps for future
studies. On the other hand, this review highlights the role of big data in consumer behavior research
and clarifies the main types of big data and consumer behaviors studied in recent years. This
contributes to the field by enhancing the understanding of big data’s impact on consumer behavior
analysis.

The findings also have practical implications for companies and enterprises. For example, by
leveraging big data and advanced Al algorithms to predict market trends and consumer preferences,
companies can better anticipate trends and develop future strategies. For instance, research has
shown that social data can be used to predict a user’s personality (Buettner, 2017). Additionally, by
analyzing consumer patterns, companies can create personalized recommendations and
advertisements, enhancing their development. Furthermore, by assessing consumer attitudes,
companies can gauge product acceptance, leading to improved product management. It is suggested
that hotel guest experiences should be analyzed more granularly and nuancedly, enabling hotel
managers to use these insights to enhance guest satisfaction by focusing on key dimensions of the
guest experience (Xiang et al., 2015). For managers, this review may provide new perspectives on
managing their business processes. Undoubtedly, the advent of big data, along with relevant models,
algorithms, and Al, provides a new angle on understanding consumer behavior based on consumer-
generated content. However, extracting valuable information from this data requires relevant
knowledge and a fresh perspective. This review offers potential guidance for managers to pinpoint
key aspects of big data in consumer behavior and identify its potential value. Moreover, this review
can also help consumers understand the rapid development of big data in consumer behavior and
encourage them to benefit from services enhanced by big data and Al technologies.

5.2. Challenges and Future Directions of Big Data Research in Consumer Behavior
Challenges

Although there has been progress in big data analysis, challenges remain regarding data
handling, suitable data analysis methods, data reliability, data privacy, and legal issues.

First, since big data requires large volumes of datasets or data sources, advanced technology and
high costs are often involved. Unstructured data, particularly user-generated content, necessitates
efficient methods for identification, collection, and filtering. Some studies require a combination of
structured and unstructured data (Ryu et al., 2020).

Second, the primary challenge today is finding the most suitable models and algorithms for
analyzing specific questions. Some researchers have developed models to address specific questions
and demonstrated their effectiveness, while others are still testing the efficiency of current Al models
and algorithms. It has been demonstrated that the ensemble model, eXtreme Gradient Boosting
(XGBoost), is particularly effective for predicting online consumer purchase conversion, with
oversampling being the most effective method to address data imbalance (J. Lee et al., 2021).

Third, the quality of collected data remains questionable. Some researchers have developed
frameworks to detect fake reviews in online consumer electronics retailers (Barbado et al., 2019).
Additionally, some user-generated content is too subjective and may not accurately reflect the true
quality of products. Furthermore, although big data analytics has significantly advanced hospitality

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1668.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2025 d0i:10.20944/preprints202505.1668.v1

20

and tourism research, there are growing concerns about data quality, particularly with user-
generated content (UGC). For instance, consumers might post fake or low-quality reviews online,
and some consumer-generated data may be subjective and fail to reflect objective realities (Xue, 2023).

Moreover, some organizations may generate fake big data to attract customers (e.g., spammers
hired to post favorable comments on official social media pages). Therefore, the reliability and
validity of big data present significant challenges for researchers.

Finally, privacy concerns are a common and significant challenge in the era of big data. For
individuals, some types of big data involve sensitive personal information, such as phone numbers,
bank account details, and transaction information. For organizations, certain types of big data may
also include trade secrets, such as internal databases containing customer information. Although this
information is crucial for studying hospitality and tourism management, obtaining it is challenging
due to privacy concerns. This difficulty has become a notable obstacle in hospitality and tourism
research. For instance, researchers reported that they were unable to explore how visitors” behaviors
differ across various party sizes due to restricted access to mobile tracking data containing personal
information (Zhao et al., 2021).

To address these challenges related to data capture and analysis, more advanced Al techniques
are required to obtain more detailed and accurate insights from representative samples. Additionally,
enhancing collaboration between academia and industry may offer a practical approach to
addressing the challenges of data reliability and privacy.

Future Directions

Although research on big data and Al has already made significant contributions to
understanding consumer behavior, there remains substantial room for future development—
particularly in the expansion of data types, the refinement of analytical techniques, and the
exploration of a broader set of research issues. In particular, artificial intelligence (AI) and machine
learning (ML) should play a more central role in addressing these research gaps.

Most current studies, especially in the fields of hospitality and tourism, rely heavily on single-
source datasets such as online reviews or official government statistics. While these sources are
valuable, dependence on a single type of data may limit the depth and reliability of insights. Recent
findings indicate that combining multiple data sources including structured and unstructured data
yields more accurate, objective, and comprehensive results (Anderson et al., 2016, Chaudhary et al.,
2021). Therefore, future research should prioritize integrating heterogeneous datasets and apply Al-
driven data fusion techniques to enable more nuanced consumer behavior analysis. In addition,
combining big data with traditional methods such as surveys, in-depth interviews, and experiments
can further strengthen the robustness and validity of findings.

Moreover, analytical techniques must evolve to meet the demands of increasingly complex and
diverse data. Al and ML methods, especially deep learning, natural language processing (NLP), and
ensemble models like XGBoost, offer powerful capabilities for extracting hidden patterns, predicting
future behavior, and managing large-scale unstructured data. These technologies are particularly
effective in enhancing personalization, forecasting trends, and identifying sentiment in consumer-
generated content. Future research should not only refine the application of these algorithms but also
explore hybrid approaches that combine multiple Al techniques to improve interpretability and
accuracy (C. L. P. Chen & Zhang, 2014; Y. Wang et al., 2018).

Future studies should also expand the scope of inquiry to cover more contemporary and diverse
issues. At the individual level, residents and hospitality and tourism employees are important
subjects for investigation. In the big data era, their lives and work have been significantly impacted
by various events, providing valuable information to better understand their interactions with guests.
For example, researchers focused on public perceptions of robots as hotel frontline employees by
analyzing online reviews (Xiang et al., 2015). Additionally, interactions among different stakeholders
should be explored in future research (Fang et al., 2020). Few studies have focused on the group level
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in the selected articles. However, researchers noted that different travel group compositions (e.g.,
family travelers, couples) exhibit varying attitudes and behaviors (Vepsildinen et al., 2022).
Therefore, future research should focus more on the group level to explore attitudes (e.g., group
experience, group satisfaction) and behaviors (e.g., group booking, group decision-making) of
various travel groups. Some researchers also advocated for increased research at the group level
(Ierkens et al., 2019). At the organizational level, while previous research has primarily focused on
for-profit organizations, nonprofit organizations warrant more attention. Nonprofit organizations
possess vast amounts of big data and face challenges in managing, analyzing, and applying it to
enhance service and consumer experience (Grandhi et al.,, 2021). Therefore, it is worthwhile to
investigate nonprofit organizations using innovative big data and analytics. Furthermore, other
organizational functions, such as human resource management (HRM), require more exploration
beyond marketing and performance analysis.

Finally, at the industry level, other significant issues (e.g., events, transportation) should also be
explored using systematic big data analysis. For instance, the management of major events (e.g.,
festivals, disasters) that can have a substantial impact on industry development warrants further
investigation. For example, when a natural disaster occurs in a scenic area (e.g., the earthquake in
Nine-Village Valley, Sichuan, China), it often leads to extensive discussions and information sharing
on social media platforms. Thus, the rich data generated from these platforms can be used to identify
critical issues and track public opinion trends. Furthermore, big data has not only disrupted the
development of the hospitality and tourism industry but has also impacted other sectors. Therefore,
future research should also examine cross-industry interactions and integrations. Additionally, it is
important to note that existing research primarily focuses on the positive aspects of big data in
hospitality and tourism research and practice. The negative aspects of big data usage remain largely
unexplored and should be investigated in future research.

5.3. Limitations and Future Directions of This Study

Although this study presents a systematic and rigorous review of big data analysis and the
application of Al in consumer behavior research, several limitations should be acknowledged. First,
the review exclusively focused on peer-reviewed journal articles, excluding other potentially
valuable sources such as conference proceedings, books, reports, and review articles. Future reviews
could benefit from incorporating a broader range of literature to capture a more holistic view of the
field. Second, this study only included publications written in English, which may limit the diversity
of perspectives, particularly given the global nature of consumer markets. Future research should
consider including non-English sources to enhance cultural and contextual comprehensiveness.
Third, the selection process was conducted manually, which may have introduced selection bias
despite efforts to ensure objectivity and consistency. Employing Al-based tools and algorithms for
literature screening and classification in future reviews could improve efficiency, reduce bias, and
enhance the reproducibility of findings. Finally, as the big data landscape continues to evolve rapidly,
future systematic reviews should consider dynamic updating mechanisms—potentially through
automated literature mining tools —to keep pace with emerging trends and technologies in consumer
behavior research.
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