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Abstract

We investigate the value distribution of difference polynomials of en-
tire and meromorphic functions, which can be viewed as the Hayman’s
conjecture. And we also study the uniqueness of difference polynomials
sharing a common value.
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INTRODUCTION AND DEFINITIONS:

A meromorphic (respectively entire) function always means a non-constant
function meromorphic (respectively analytic) in the complex plane. Nevanlinna
theory of value distribution is concerned with the density of points where a
meromorphic function takes a certain value in the complex plane. It is also as-
sumed that the reader is familiar with the basic concepts of Nevanlinna Theory,
see e.g. ([4],[9]), such as the characteristic function T(r, f), proximity function
m(r, f), counting function N(r, f) and so on. In addition, S(r, f) denotes any
quantity that satisfies the condition that S(r, f)= o(T(r, f)) as r tends to infin-
ity outside of a possible exceptional set of finite logarithimic measure. In the
sequel, a meromorphic function a(z)is called a small function with respect to f
if and only if T[r, a (z)] = o(T(r, f)) as r tends to infinity outside of a possible
exceptional set of finite logarithimic measure. We denote by S(f), the family of
all such small meromorphic functions.

We say that two meromorphic functions f and g share the value a (belonging
to extended complex plane) CM (IM)

provided that
f(z) ≡ a
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if and only if
g(z) ≡ a,

counting multiplicity (ignoring multiplicity).

DEFINITION 1 :
Let c be a non-zero complex costant then for a meromorphic function f(z) , we
define its shift by f(z+c) and its difference operator by

∆cf(z) = f(z + c)− f(z),

∆mcf(z) = f(z +mc)− f(z),

where m is a positive integer

∆n
c f(z) = ∆n

c
−1(∆cf(z)),

n∈ N, n ≥ 2,

=

n∑
k=0

(−1)k.n!

k!.(n− k)!
f(z + n− k.c).

In particular,
∆n

c f(z) = ∆nf(z)

for c=1.
We define Differential - difference Monomial as

M [f ] =

k∏
i=0

m∏
j=0

[f (j)(z + cij)]
nij

where cij are complex constants , and nij are natural numbers , i= 0, 1, ...
,k and j=0, 1, ... ,m.

Then the degree of M[f] will be the sum of all the powers in the product on
the right hand side.

DEFINITION 2 : Let

M1[f ],M2[f ], ...

denote the distinct monomials in f, and

a1(z), a2(z), ...

be the small meromorphic functions including complex numbers then

P [f ] = P [z, f ] =
∑
j∈∆

aj(z).Mj [f ]
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where ∆ is a finite set of multi- indices, aj(z) are small functions of f, Mj [f ] are
differential- difference monomials,
will be called a differential- difference polynomial in f, which is a finite sum of
products of f , derivatives of f, their shifts, and derivatives of its shifts. We
define the total degree d of P[z, f] in f as

d = Max.︸ ︷︷ ︸
j∈∆

dM j .

If all the terms in the summation of P[f] have same degrees, then P[f] is known
as homogeneous differential- difference polynomial. Usually, we take P[f] such
that T(r, P) 6= S(r, f).

Linear Difference Polynomial is defined as the Difference polynomial of de-
gree one e.g.

∆n
c f(z).

Uniqueness Theory of Meromorphic functions is an important part of Nevan-
linna Theory. Recently number of papers have focussed on the Nevanlinna
Theory with respect to difference operators. Then many authors started to
investigate the uniqueness of meromorphic functions sharing values with their
shifts or difference operators.
The classical result due to Nevanlinna theory of meromorphic functions is the
five point theorem i.e. if two non-constant meromorphic functions f and g share
five distinct values ignoring multiplicities(IM) then

f(z) ≡ g(z).

The number 5 is best possible. If the number of shared values is decreased, then
an additional assumptions on value distribution needs to be introduced in order
to obtain uniqueness.

DEFINITION 3 :

Let k be a positive integer and a be a complex number. We denote byNk)(r, 1/(f−
a)), the counting function of a- points of f with multiplicity ≤ k, by N(k(r, 1/(f−
a)), the counting function of a- points of f with multiplicity ≥ k then

Set Nk(r, 1/(f−a)) = N̄(r, 1/(f−a))+N̄(2(r, 1/(f−a))+ ...+N̄(k(r, 1/(f−a))

A finite value a is called the Picard exceptional value of f, if f - a has no zeros.
The Picard theorem shows that a transcendental entire function has at most
one Picard exceptional value, a transcendental meromorphic functions has at
most two picard exceptional values. The Hayman conjecture [4] is that if f is
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a transcendental meromorphic function and n ∈ N, then fnf ′ takes every finite
non-zero value infinitely often which means that the Picard exceptional value of
fnf ′ may only be zero. Laine and Yang[5] has proved this conjecture for shifts
and difference operators as following:

THEOREM A[5]: Let f be a transcendental entire function with finite order
and c be a non-zero complex constant. Then for n ≥ 2, f(z)nf(z + c) assumes
every non-zero complex value a infinitely often.
Liu K. et. al.[6] proved the above result for the meromorphic functions and
obtained the follwing result:

THEOREM B[6]: Let f be a transcendental meromorphic function func-
tion with finite order and c be a non-zero complex constant. Then for n ≥ 6,
f(z)nf(z + c)− a(z) has infinitely many zeros.

THEOREM C[6]: Let f be a transcendental meromorphic function function
with finite order and c be a non-zero complex constant. Then for n ≥ 7, then
the difference polynomial f(z)n[f(z + c)− f(z)]a(z) has infinitely many zeros.

We will consider the general linear difference polynomials in place of shift or
difference operator and prove the following results:

MAIN RESULTS:

THEOREM 1.1: Let f be a transcendental entire function with finite order
and as in definition 2, P[f] be a linear difference polynomial defined as
P [f ] = c0f(z) + c1f(z+ c) + c2f(z+ 2c) + ...+ cnf(z+ nc);T (r, P [f ])6= S(r, f),
where c 6= 0 and cj , j = 0, 1, ..., n, are complex constants then flP [f ]−a(z), a(z) 6=
0, ∞ has infinitely many zeros provided l > 2n + 1.

THEOREM 1.2: Let f be a transcendental meromorphic function with finite
order and as in definition 2, P[f] be a linear difference polynomial defined as
P [f ] = c0f(z) + c1f(z+ c) + c2f(z+ 2c) + ...+ cnf(z+ nc);T (r, P [f ])6= S(r, f),
where c 6= 0 and cj , j = 0, 1, ..., n, are complex constants then flP [f ]−a(z), a(z) 6=
0, ∞ has infinitely many zeros provided l > 4n + 3.

SOME COROLLARIES:

1. If n = 0 in above theorems and P[f] = f(z+c), then the following results
are improvement and generalizations of Theorem A and Theorem B:
i. for transcendental entire function f, flf(z+c) assumes every non-zero complex
value ’a’ infinitely often provided l > 1.
ii. In case of transcendental meromorphic function f, flf(z + c) assumes every
non-zero and finite complex value ’a’ infinitely often provided l > 3.

2. If n = 1 in above theorems and P[f] = f(z+c) - f(z) , then
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i. for transcendental entire function f, fl[f(z + c) − f(z)] (6= S(r, f)) assumes
every non-zero complex value ’a’ infinitely often provided l > 3.
ii. In case of transcendental meromorphic function f, fl[f(z+c)−f(z)] ( 6= S(r, f))
assumes every non-zero and finite complex value ’a’ infinitely often provided l
> 7.

3. Similar results can be obtained for fl[∆n
c f(z)] for all n.

EXAMPLES:

1. Let f(z) = ezi + 1, c = Π then f(z).f(z + c) 6= 1 identically. Therefore,
Cor. 1 (i) does not hold for l= 1.

2. Let f(z) = tan z, c = Π
2 , f3.f(z + c) = −tan2z 6= 1 identically. So cor.

1(ii) does not hold for l = 3.

3. Let f(z) = ez+1
ez−1 , c= Πi then f(z)2.f(z + c) 6= -1 identically. So cor. 1(ii)

does not hold for l = 2.

4. Let f(z) = e↑ −ez, then f2.f(z + c) − 2 = −1 and order of f is infinite,
where c is non-zero constant satisfying ec = −2. So f2.f(z+ c)− 2 has no zeros.
This shows that the main results do not hold for infinite ordered f.

For the proof of the results we need the following lemmas:

LEMMA 1 ([2],[3]): Let f be a non- constant meromorphic function of finite
order and c be a non- zero complex constant, then

m(r, f(z+c)
f(z) ) = S(r, f),

for all r outside a possible exceptional set of finite logarithmic measure.

LEMMA 2 [1]: Let c be a non-zero complex constant, and let f be a mero-
morphic function of finite order then

T(r, f(z+c)) = T(r, f) + S(r, f)

N(r, f(z+c)) = N(r, f) + S(r, f)

N(r, 0, f(z+c)) = N(r, 0, f) + S(r, f)

LEMMA 3 ([8]): LetF and G be two non-constant meromorphic functions.
If F and G share 1 CM, then one of the following three cases holds:

i. max.( T(r, F), T(r, G)) ≤ N2(r, 0, F ) + N2(r, 0, G) + N2(r, F ) + N2(r,G) +
S(r, F ) + S(r,G)
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ii.F≡ G

iii.F.G≡ 1.

PROOF OF THEOREM 1.1:

Let G[z] = flP [f ] where f is an entire function and suppose G[z]- a(z), a(z)6= 0,
∞ has finitely many zeros. Then we get by using Lemma 1 and Lemma 2

T(r, G[z]) = T(r,fl[c0f(z) + c1f(z + c) + c2f(z + 2c) + ...+ cnf(z + nc)] )

=T(r,fl+1[c0 + c1
f(z+c)
f(z) + c2

f(z+2c)
f(z) + ...+ cn

f(z+nc)
f(z) ]

≥ (l + 1) T(r, f) - T(r, [c0 + c1
f(z+c)
f(z) + c2

f(z+2c)
f(z) + ...+ cn

f(z+nc)
f(z) ])

But T(r, [c0 + c1
f(z+c)
f(z) + c2

f(z+2c)
f(z) + ...+ cn

f(z+nc)
f(z) ])

≤ T(r, f(z+c)
f(z) ) + T(r, f(z+2c)

f(z) ) + ... + T(r, f(z+nc)
f(z) ) + S(r, f)

= N(r, f(z+c)
f(z) ) + N(r, f(z+2c)

f(z) ) + ... + N(r, f(z+nc)
f(z) ) + S(r, f)

= N(r, 1
f(z) ) + N(r, 1

f(z) ) + ... + N(r, 1
f(z) ) + S(r, f)

≤ n T(r, f)+ S(r, f)

Therefore, we have

T(r, G[z])
≥ (l + 1) T(r, f) - n T(r, f)+ S(r, f) ...(1)

Since f is entire, therefore, by using Nevanlinna’s second main theorem and
lemma , we get

[ l + 1 - n] T(r, f) ≤ T(r, G[z]) ≤ N̄(r, 1
G(z) ) + N̄(r, 1

G(z)−a(z) ) + S(r, G)

= N̄(r, 1
G(z) ) + S(r, f)

≤ (n + 2) N(r, 0, f)+S(r, f)

≤ (n + 2) T(r, f) +S(r, f)

So we get

l T(r, f) ≤ (2n + 1)T(r, f) +S(r, f)
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which is a contradiction as l > 2n + 1. Thus our supposition is wrong and
hence, flP [f ]− a(z), a(z)6= 0, ∞ has infinitely many zeros.

PROOF OF THEOREM 1.2:

Let G[z] = flP [f ] where f is a meromorphic function and suppose G[z]- a(z),
a(z) 6= 0,∞ has finitely many zeros. Then we get by using Lemma 1 and Lemma
2

T(r, G[z]) = T(r,fl[c0f(z) + c1f(z + c) + c2f(z + 2c) + ...+ cnf(z + nc)] )

=T(r,fl+1[c0 + c1
f(z+c)
f(z) + c2

f(z+2c)
f(z) + ...+ cn

f(z+nc)
f(z) ]

≥ (l + 1) T(r, f) - T(r, [c0 + c1
f(z+c)
f(z) + c2

f(z+2c)
f(z) + ...+ cn

f(z+nc)
f(z) ])

But T(r, [c0 + c1
f(z+c)
f(z) + c2

f(z+2c)
f(z) + ...+ cn

f(z+nc)
f(z) ])

≤ T(r, f(z+c)
f(z) ) + T(r, f(z+2c)

f(z) ) + ... + T(r, f(z+nc)
f(z) ) + S(r, f)

= N(r, f(z+c)
f(z) ) + N(r, f(z+2c)

f(z) ) + ... + N(r, f(z+nc)
f(z) ) + S(r, f)

≤ 2n T(r, f)+ S(r, f)

Therefore, we have

T(r, G[z])
≥ (l + 1) T(r, f) - 2n T(r, f)+ S(r, f)

Since f is meromorphic, therefore, by using Nevanlinna’s second main theo-
rem and lemma , we get

[ l + 1 - 2n] T(r, f) ≤ T(r, G[z]) ≤ N̄(r, 1
G(z) ) + N̄(r,G(z)) + N̄(r, 1

G(z)−a(z) )

+ S(r, G)

= N̄(r, 1
G(z) ) + N̄(r,G(z)) + S(r, f)

≤ (2n + 4) T(r, f)+S(r, f)

So we get

l T(r, f) ≤ (4n + 3)T(r, f) +S(r, f)

which is a contradiction as l > 4n + 3. Thus our supposition is wrong and
hence, flP [f ]− a(z), a(z)6= 0, ∞ has infinitely many zeros.
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APPLICATIONS:

As applications of the above main results, we present the following result:

THEOREM 2.1: Let f and g be transcendental entire functions with finite
order and as in definition 2, P[f] and P[g] be two linear difference polynomials
defined as
P [f ] = c0f(z) + c1f(z+ c) + c2f(z+ 2c) + ...+ cnf(z+ nc);T (r, P [f ])6= S(r, f),
where c 6= 0 and cj , j = 0, 1, ..., n, are complex constants, and f lP [f ] and glP [g]
share a(z), a(z)6= 0, ∞ CM, then f lP [f ] = glP [g] or f lP [f ].glP [g] = (a(z))2.
provided l > 3n + 5.

PROOF OF THEOREM 2.1:

Let F(z) = f lP [f ]
a(z) and G(z) = glP [g]

a(z) , then F(z) and G(z) share 1 CM except the

zeros or poles of a(z). We have by using Lemma 2,

N2(r, 0, F ) = N2(r, 0, f l) +N2(r, 0, P [f ]) + S(r, f)

≤ N1)(r, 0, f) +N(r, 0, f) +N(r, 0, P [f ]) + S(r, f) by definition 3

≤ (n+ 3)T (r, f) + S(r, f)

Similarly, we have N2(r, 0, G)≤ (n+ 3)T (r, g) + S(r, g)

By Lemma 3, suppose i, holds, then since f, g are entire functions

max.( T(r, F), T(r, G)) ≤ N2(r, 0, F ) + N2(r, 0, G) + N2(r, F ) + N2(r,G) +
S(r, F ) + S(r,G)

≤ (n+ 3)[T (r, f) + T (r, g)] + S(r, f) + S(r, g)

Thus, we have

T(r, F) + T(r, G) ≤ 2(n+ 3)[T (r, f) + T (r, g)] + S(r, f) + S(r, g)

Using eq. 1 we have

[ l + 1 - n] [T(r, f) + T(r, g)] ≤ T(r, F) + T(r, G)

≤ 2(n+ 3)[T (r, f) + T (r, g)] + S(r, f) + S(r, g)

Thus, l.[T (r, f) + T (r, g)]≤ (3n+ 5)[T (r, f) + T (r, g)] + S(r, f) + S(r, g)

which contradicts the given condition that l > 3n + 5.
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Hence by Lemma 3, result holds.
REMARK: Similar result can be proved when f, g are meromorphic functions.

SOME COROLLARIES:
1. Let f and g be transcendental entire functions with finite order, c be non-zero
complex constant and if F = fnf(z + c) and G = gng(z + c) share 1 CM, then
for n > 5, F≡ G or F.G ≡ 1 which corresponds with the result in [7].

2. Let f and g be transcendental entire functions with finite order, c be non-zero
complex constant and if F = fn[f(z + c) − f(z)] and G = gn[g(z + c) − g(z)]
share 1 CM, then for n > 8, F≡ G or F.G ≡ 1.

3. Similar results can be obtained for fl[∆n
c f(z)] and gl[∆n

c g(z)] for all n.

EXAMPLES:

1. Let f(z) = sin z and g(z) = cos z, l = 1, c = π, then f lP [f ] = f lf(z + c) =
-sin2z and glP [g] = glg(z + c) = -cos2z. Here -sin2z and -cos2z share -1/2,CM
which proves that the Theorem 2.1 may not be true when l = 1.

2. Let f(z) = ez and g(z) = e−z, l = 1, c =π.i, then f lP [f ] = f lf(z + c) =
-e2z and glP [g] = glg(z + c) = -e−2z Here -e2z and -e−2z share -1,CM and
f lP [f ].glP [g] = 1. This holds for l > 1 too.

3. In case of meromorphic functions, let f(z) = tanz and g(z) = cotz, l =
1, c = π, then f lP [f ] = f lf(z + c) = tan2z and glP [g] = glg(z + c) = cot2z.
Here tan2z and cot2z share 1,CM and f lP [f ].glP [g] = 1.
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