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Abstract: This study evaluates the performance of Universal Dependencies (UD) parsing for Old
English using three neural architectures across various dataset sizes. We compare a baseline spaCy
pipeline, a pipeline with pretrained tok2vec component, and a MobileBERT transformer-based model
on datasets ranging from 1,000 to 20,000 words. Our results demonstrate that the pretrained model
consistently outperforms the alternatives, achieving 83.24% UAS and 74.23% LAS with the largest
dataset. Performance analysis shows that basic tagging tasks reach 85-90% accuracy, while
dependency parsing achieves approximately 75% accuracy. We observe significant improvements
with increasing dataset size, though with diminishing returns beyond 10,000 words. The transformer-
based approach underperforms in spite of its higher computational cost. This highlights the
difficulties of applying modern NLP techniques to historical languages with limited training data.
Our findings suggest that medium-complexity architectures with pretraining on raw text offer the
optimal balance between performance and computational efficiency for Old English dependency
parsing.

Keywords: syntactic parsing; old English; universal dependencies; natural language processing

1. The UD Annotation of Old English

Universal Dependencies (UD) is an annotation framework developed for Natural Language
Processing tasks, cross-linguistic comparison, translation, and language learning (Nivre et al., 2016;
Nivre et al., 2020; Zeman, 2024). The UD framework provides a universal inventory of lexical
categories, morphological features, and dependency relations suitable for cross-linguistic analysis
that can also accomodate language-specific phenomena (de Marneffe et al., 2014; de Marneffe et al.,
2021). UD adopts a dependency-based syntactic representation, where binary asymmetric relations
are established between heads and dependents (de Marneffe and Manning, 2016). The annotation
framework is organised into three layers: universal part-of-speech tags (UPOS), morphological
features (FEATS), and syntactic dependencies (DEPREL). The UPOS layer consists of seventeen
general lexical categories; the FEATS layer encodes morphological properties such as gender,
number, case, and tense; and the DEPREL layer comprises a set of universal dependency relations
that can be extended to handle language-specific constructions. Overall, UD prioritises universal
linguistic patterns over language-specific ones, does not consider empty categories, and favours
content words as syntactic heads over function words.

Old English (650-1150 CE) is a West Germanic language with a predominantly Germanic lexicon
with borrowings from Latin and Old Norse. It is notable for its semantic transparency in word-
formation (Kastovsky, 1992), extensive inflection in nominal, pronominal, and verbal categories
(Campbell, 1987; Middeke, 2022), and relatively free word order compared to Modern English
(Fischer et al., 2000; Ringe and Taylor, 2014). From the typological point of view, Old English is an
SVO language in transition from the SOV type (Pintzuk, 1991, 1999; Kroch and Taylor, 2000;
Koopman, 2005; Haeberli and Pintzuk, 2006; Van Kemenade, 2006), which still surfaces in some
dependent clauses and is reflected by other areas of grammar such as postposition or the genitive
(Allen, 2008). The written records of Old English amount to approximately 3 million words,
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preserved in around 3,000 texts. The primary corpora for Old English are The Dictionary of Old English
Web Corpus (3 million words; Healey et al., 2004) and The York-Toronto-Helsinki Parsed Corpus of Old
English Prose (hereafter YCOE; 1.5 million words; Taylor et al., 2003), the latter providing POS tagging
and syntactic parsing for roughly half of the extant texts.

Recent research has applied the UD framework to the annotation of Old English. Martin Arista
(2022a, 2022b, 2024) establishes the foundations for parsing Old English within UD and extends the
annotation framework to include word-formation processes. This extension reflects the syntactic
regularities and overlaps found in derivational processes and nominalisations in Old English,
particularly those that inherit verbal properties (Ojanguren Lopez, 2024). As regards automatic
dependency annotation, Villa and Giarda (2023) evaluate the performance of a multilingual parser
for Old English. Their study shows that combining Old English data with data from German and
Icelandic yields the highest accuracy, with a peak performance of 75% accuracy for datasets
combining Icelandic, German, and Old English. Villa and Giarda attribute these relatively low
accuracy levels to linguistic factors such as Old English word order and case syncretism. These
authors identify areas of error such as postpositions and discontinuity in relative clauses. They also
note that inaccurate part-of-speech tagging leads to errors in dependency relations such as
coordinating conjunctions, negation adverbial modifiers, auxiliaries, and locative and temporal
adverbial modifiers. The work by Villa and Giarda (2023) is discussed in more detail in Section 4,
which compares their methods and results with this research.

Against this background, this paper focuses on the evaluation of UD parsing, with a specific
focus on assessing how different neural architectures perform on the processing of Old English and
on gauging the impact of the dataset sizes. The paper is structured as follows. Section 2 describes the
different pipeline architectures and datasets of this study. Section 3 evaluates the performance of the
models and the corpora with respect to the components of the pipeline. Section 4 compares our results
with the state of the art in Natural Language Processing in general and with the automatic parsing of
Old English in particular. Section 5 draws the main conclusions of the study.

2. Models and Data of the Study

Three models have been trained on four dataset sizes, which are described in the remainder of
this section. The first model is a basic pipeline with default configuration that uses the spaCy default
tok2vec component initialised with random weights. The second model also uses the tok2vec
component but initialises its weights through a pretraining phase on an unannotated Old English
corpus of about three million words. The third model is based on training from scratch with
approximately 17 MB of text. Then, we the tok2vec component is replaced with a custom-trained
MobileBERT transformer.

The MobileBERT architecture (25.3 million parameters) was selected to match the limited size of
available Old English training data. However, transfer learning from contemporary English BERT
models was not viable for the reasons of lexical distance between Present-Day English and Old
English, which has a consistently Germanic word stock; and spelling differences with respect to the
contemporary language, which has lost certain graphemes (<ee/Z&>, <3/3>, <0/D>, <p/P>, and <p/P>)
that English models cannot handle.

The pipeline architecture adopted in the test is based on the NLP library spaCy. It consists of six
major components or stages, each handling specific aspects of the processing of Old English texts,
which can be seen in Figure 2. The first stage is the Tokenizer, a rule-based component that splits text
into tokens by using predefined English rules. Unlike other components, the Tokenizer is non-
trainable and serves as the initial stage that converts plain text into the internal data structure
required by spaCy. Following tokenization, the second stage implements either a tok2vec or
transformer component, both of which transform tokens into numerical vectors. Given the limited
size of the dataset, this component is shared across subsequent stages to reduce the number of
trainable parameters. Two implementations have been tested: the standard tok2vec and a
MobileBERT transformer. The middle layers of the pipeline consist of the Tagger, which assigns POS
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tags (XPOS column), and the Morphologizer, responsible for UPOS and FEATS assignments. These
components incorporate the vector representations provided by the previous stage. The pipeline
continues with the trainable Lemmatizer component for LEMMA assignments, followed by the
Parser, which handles both dependency parsing (HEAD and DEPREL assignments) and sentence
boundary detection.

Figure 1. Pipeline stages.

[ Baseline [__] Pre-trained Transformer

Mean accuracy (%)

Dataset size
Figure 2. Mean accuracy across all metrics by dataset size.

Thus described, the implementation maintains the pipeline architecture of spaCy, in which
components can be trained independently or jointly. The pipeline also adopts the standard training
workflow of spaCy, with configurable batch sizes (set to process at least 100 words per batch) and
evaluation intervals (every 200 iterations). The evaluation metrics (TAG_ACC, POS_ACC,
MORPH_ACC, LEMMA_ACC, DEP_UAS, DEP_LAS, and SENTS_F) are all standard spaCy metrics
and are calculated with built-in evaluation functions. Additionally, the loss tracking capabilities
during training are used to assess the performance of individual components. Separated loss values
are obtained for the tok2vec, Tagger, Morphologizer, Lemmatizer, and Parser stages.

The source of the datasets is ParCorOEv3. An open access annotated parallel corpus Old English-
English (Martin Arista et al., 2023). The choice of curated Old English text includes Zlfric’s Catholic
Homilies I, The Anglo-Saxon Chronicle A, Anglo-Saxon Laws, St. Mark’s Gospel and King Alfred’s
Orosius. The data of the test have been structured in four datasets of different sizes: 1,000, 5,000,
10,000, and 20,000 words for training. These increasing sizes have been established with a view to
gauging the relationship between training data volume and model performance. This is a
fundamental aspect, considering the scarcity of Old English written records and annotated corpora
noted above. An independent evaluation corpus (20%), which has been fully segregated from the
training data, has provided benchmarking throughout the test. For pre-training purposes, we have
used a larger unannotated corpus of approximately 3 million words (The Dictionary of Old English
Corpus; Healey et al. 2004). The training and test datasets are described by words, tokens and
sentences in Table 1.
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Table 1. Training and test datasets.

Train Test Total
1,000 words
Tokens 995 4,987 5,982
Sentences 59 288 347
5,000 words
Tokens 4,992 4,887 9,879
Sentences 283 288 571
10,000 words
Tokens 9,982 4,887 14,969
Sentences 562 288 850
20,000 words
Tokens 19,991 4,887 24,978
Sentences 1,134 288 1,422

3. Performance Evaluation

Performance evaluation consists of multiple accuracy metrics for each component. The
performance of the Tagger has been measured through TAG_ACC for XPOS tagging. The
performance of the Morphologizer has been tracked via POS_ACC (UPOS) and MORPH_ACC
(FEATS). The performance of the Lemmatizer has been evaluated through LEMMA_ACC.
Dependency parsing has been gauged through both unlabeled (DEP_UAS) and labeled (DEP_LAS)
attachment scores. Sentence boundary detection has been evaluated by using the SENTS_F metric.
LAS (Labelled Attachment Score) and UAS (Unlabelled Attachment Score) are standard evaluation
metrics in dependency parsing (Nivre et al., 2007; Kiibler et al., 2009; Manning, 2011). Whereas the
UAS measures the percentage of tokens that are assigned the correct syntactic head, the LAS
represents the percentage of tokens that are assigned both the correct syntactic head and the correct
dependency label. As a more stringent measure, the LAS is always equal to or lower than the UAS.
Figure 2 presents the results of mean accuracy across all metrics by dataset size. The mean is
calculated from TAG, POS, FEATS, LEMMA, UAS, LAS and SENT-F metrics (see the Appendix for a
breakdown of scores by metric, architecture and dataset).

The performance analysis of this study reflects different degrees of task difficulty. Basic tagging
tasks achieve 85-90% accuracy, while morphological analysis reaches around 80% accuracy.
Dependency parsing gets lower metrics, with accuracy around 75%. The pretrained model performs
better across all metrics and corpus sizes. The transformer-based model obtains lower metrics.

The first model, using the default configuration of spaCy, establishes a baseline for performance.
The model performs well on basic tokenization and simple POS tagging, with accuracy rates around
70-75% for basic POS tagging, but turns out significantly lower accuracy rates for more complex tasks
like dependency parsing (see Appendix). The pretrained model shows more promising results. By
pretraining the tok2vec component on the larger unannotated corpus, we get notable improvements,
with POS tagging accuracy increasing to 85-90% and dependency parsing displaying higher
accuracy, around 75-80% (see Appendix). The third model, implementing a transformer-based
architecture using MobileBERT, constitutes an attempt to leverage advances in neural language
models for historical language processing. This model seemed promising as it might capture long-
range relations and dependencies blurred by the flexible word order of Old English, but it was
hampered by the limited size of the training corpus (see Appendix).

The accuracy metrics show interesting patterns across the three models. Sentence boundary
detection turns out comparatively low metrics, probably due to the inconsistent punctuation patterns
characteristic of Old English texts. Dependency parsing presents more variable results, although the
pretrained model performs better across all corpus sizes. In POS tagging, accuracy improves with
larger training sets, but the rate of improvement decreases significantly after the 10,000-word mark.
Loss tracking during training revealed quick initial improvements followed by diminishing returns,
particularly evident in the larger corpus sizes. Figure 2 illustrates the learning dynamics of the model.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2373.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 May 2025 d0i:10.20944/preprints202505.2373.v1

5 of 12

The results correspond to the best performing architecture (pretrained model) and dataset (20,000
words).

As can be seen in Figure 3, there is clear convergence and consistent performance across key
metrics, including loss, UAS and LAS. To begin with, the loss sharply decreases initially. This is
indicative of rapid improvement in the optimisation of the model during the early training phase. By
approximately 2,000 iterations, the loss stabilizes. This demonstrates that the model has converged
to a steady state with minimal further improvement in optimisation. At the same time, both UAS and
LAS increase rapidly during the initial iterations, which also reflects substantial gains in the accuracy
for syntactic parsing. While UAS consistently outperforms LAS, both metrics stabilise at
approximately 60% and 70%, respectively. The existence of this plateau is telling us that the ability of
the model to assign correct dependencies and labels has reached its peak performance with the
architecture and the dataset selected.
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Figure 3. Loss, UAS and LAS of the pretrained model (20,000 words).

4. Discussion

This section discusses our Old English parsing results from three angles: comparative
performance, dataset scaling effects, and computational efficiency. First, we contextualise our
findings against modern NLP benchmarks and compare them with Villa and Giarda’s (2023) recent
work on Old English dependency parsing. This comparison examines methodological differences in
data selection, learning approaches, and performance outcomes. Second, we analyse how increasing
dataset size affects parsing accuracy across different model architectures, thus identifying optimal
data thresholds and diminishing returns. Finally, we assess the computational requirements of each
model architecture, providing a cost-benefit analysis that balances performance gains against
resource consumption.

We address the question of compared performance metrics in the first place. The current state-
of-the-art in POS tagging reaches 97-98% accuracy across most languages (Wang 2021), while up-to-
date morphological analyzers show an accuracy of 90-92% for morphologically rich languages (Sahin
2020). Modern lemmatizers typically reach 95-97% accuracy (Kanerva 2020) and sentence
segmentation systems present Fl-scores of 95% (Agustyniak 2020). The dependency parsing of
natural languages achieves UAS scores of 95-97% and LAS scores of 93-95% (Ahmad 2023).

In the processing of a historical language like Old English the results obtained so far do not reach
the standards of natural languages for the reasons mentioned above. A relevant contribution to this
field so far has been recently published by Villa and Giarda (2023), who also explore the
methodologies of parsing Old English within the UD framework, although their work differs
significantly from the present study as to dataset construction, training methodologies, and syntactic
analysis. Beginning with datasets, Villa and Giarda’s work focuses on a small, manually annotated
dataset derived from two religious prose texts: Adrian and Ritheus and Zlfric’s Supplemental Homilies.
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Their corpus comprises 292 sentences (5,315 tokens) converted from the YCOE into CoNLL-U format.
To compensate for data scarcity, they employed cross-lingual transfer learning, training UUParser
v2.4 on combinations of Old English data and treebanks from three modern Germanic languages.
The authors reduced support language treebanks to 60k tokens to avoid bias from larger datasets. In
contrast, this study uses a larger and more diverse dataset (25k words) sourced from multiple Old
English texts, including chronicles, as well as historical, religious, legal and biblical texts. Unlike Villa
and Giarda, this study trains models from scratch using spaCy pipelines and tests them.

Turning to learning methods and training approaches, Villa and Giarda’s methodology involved
multilingual transfer learning, which is based on the hypothesis that the structural similarities of
related languages can improve parsing accuracy. Villa and Giarda trained their models on Old
English alone and in combination with Icelandic, German, and Swedish, both individually and
collectively. Their best-performing model combined Old English with Icelandic (UAS 68.44%, LAS
58.70%), likely due to Icelandic’s conservative morpho-syntax (comprising case marking as well as
V2 syntax) and distinctive graphemes (<ee/Z&> and <8/D>). However, they observed diminishing
returns when adding German or Swedish, which they attributed to syntactic divergences (like rigid
SVO order in Swedish vs. relative flexibility in Old English). Notably, their monolingual Old English
model underperformed (UAS 60.79%, LAS 47.23%).

This study gives priority to monolingual pretraining and dataset size. The pretrained model
presented in this study achieves the highest scores (UAS 83.24%, LAS 74.23% with 20k words) and
outperforms the MobileBERT transformer, which struggles as consequence of the lexical and
graphemic differences between Old English and Present-Day English. Villa and Giarda’s lower
overall scores (maximal LAS 58.70%) likely stem from their smaller training data and the
heterogeneity of their support languages. By contrast, the larger dataset selected for this study
enables better generalisation, particularly for morphosyntactic features like case (80.1% accuracy) and
tense (83.8%). The models used in this study excel at local dependencies including, for example,
possessive determiners (90.4% accuracy) but often fail to capture long-distance relations like clausal
complements (25.5% accuracy). Villa and Giarda (2023) as well as this study show a consistent gap
between UAS and LAS, which reflects the difficulty of labeling dependency relations compared to
identifying head-dependent attachments. Villa and Giarda’s best model (Icelandic+Old English)
achieved a 9.74-point gap (UAS 68.44% vs. LAS 58.70%), while the pretrained model of this study
returns a 9.01-point difference (UAS 83.24% vs. LAS 74.23%).

Both studies identify non-projective dependencies as a major issue of automatic parsing. Villa
and Giarda highlight discontinuous constituents, particularly in relative clauses, where the
antecedent and relative pronoun are separated by adjuncts. This study reports 0% accuracy on non-
projective structures, such as relative clauses, clausal modifiers, and conjunctions. These
shortcomings can be attributed to the variable word order of Old English, which gives rise to crossing
dependencies that are not compatible with transition-based parsing algorithms (Martin and Jurafsky
2020: 284).

We examine the question of the impact of dataset sizes now. Across all training methods, a clear
correlation between dataset size and parsing accuracy emerges, though with important differences
as far as learning patterns and efficiency are concerned. The relationship between dataset size and
parsing accuracy follows a non-linear pattern with diminishing returns. The most remarkable
improvements occur in the transition from 1,000 to 5,000 words, with the baseline model showing
gains of +11.61% UAS and +25.85% LAS. The pretrained model, which starts from a higher baseline,
achieves significant improvements of +7.99% UAS and +28.49% LAS. Subsequent increases from 5,000
to 10,000 words and from 10,000 to 20,000 words yield smaller improvements. The rate of
improvement does not plateau even at 20,000 words, which suggests that the limit of useful training
data has not yet been reached.

The three models tested in this study demonstrate different scaling characteristics. The
pretrained model outperforms the alternatives at all dataset sizes, as it achieves 83.24% UAS and
74.23% LAS with 20,000 words. This architecture also shows better data efficiency because it reaches
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higher accuracy levels with smaller datasets than the baseline model for comparable performance. In
contrast, the transformer-based approach consistently underperforms, reaching only 60.17% UAS
and 45.51% LAS even with the largest dataset. The poor scaling efficiency of the transformer model
may be put down to its larger parameter space, which cannot be adequately trained with limited
historical language data.

Different annotation tasks exhibit distinct learning trajectories across dataset sizes. POS tagging
and morphological feature recognition reach near-optimal performance relatively quickly, in such a
way that the pretrained model achieves over 90% accuracy for POS tagging at just 5,000 words. These
tasks benefit from the relatively closed sets of possible tags and the strong correlation between word
form and morphological features in Old English. Dependency parsing continues to improve
substantially across all dataset increments.

This assessment raises two further questions. Firstly, is the advantage of the pretrained model
consistent across all tasks, or driven by exceptional performance on just a few metrics? And, secondly,
does the transformer model struggle uniformly on all tasks, or is its weak overall performance
primarily driven by specific metrics? This could explain which tasks benefit most from pretraining,
where the simple baseline model may be adequate for getting similar results and at what dataset sizes
architectural differences become more important.

To answer the question on the consistency of the advantage of the pretrained model’s
performance, we analyse the performance gap between the pretrained model and the baseline model
across all metrics at the 20K dataset size. The results are tabulated in Table 2.

Table 2. Performance gap between the pretrained and the baseline model.

Difference .
. Pre- . Relative
Metric . Baseline (percentage .
trained . improvement
points)

XPOS 93.20% 90.66% +2.54 +2.8%
UPros 92.96% 90.64% +2.32 +2.6%
FEATS 84.21% 81.00% +3.21 +4.0%
LEMMA 79.83% 79.91% -0.08 -0.1%
UAS 83.24% 78.26% +4.98 +6.4%
LAS 74.23% 68.10% +6.13 +9.0%
SENT-F 71.38% 70.57% +0.81 +1.1%
Mean 82.72% 79.88% +2.84 +3.6%

As is shown in Table 2, the advantage of the pretrained model is not uniform across all tasks.
The largest advantages are in dependency parsing metrics (LAS +6.13pp, UAS +4.98pp). The
pretrained model actually performs slightly worse on lemmatization (-0.08pp) and its advantage is
minimal for sentence segmentation (+0.81pp). It seems to be the case that the pretrained model overall
advantage is a consequence of its strong performance in syntactic tasks, particularly dependency
parsing.

In order to answer the question on the uniformity of the struggle of the transformer model across
tasks, we compare the transformer model to the baseline model at the 20K dataset size. The results
are displayed in Table 3.

Table 3. Architecture comparison.

Difference
. . Performance
Metric Transformer Baseline (percentage ratio
points)
XPOS 79.91% 90.66% -10.75 88.1%
UPOS 79.89% 90.64% -10.75 88.1%
FEATS 64.95% 81.00% -16.05 80.2%
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LEMMA 65.58% 79.91% -14.33 82.1%
UAS 60.17% 78.26% -18.09 76.9%
LAS 45.51% 68.10% -22.59 66.8%

SENT-F 40.07% 70.57% -30.50 56.8%
Mean 62.30% 79.88% -17.58 78.0%

As can be seen in Table 3, the underperformance of the transformer model is non-uniform across
tasks. Its worst result is on sentence segmentation (SENT-F), at only 56.8% of the baseline model’s
performance. Dependency parsing shows the deepest gap (LAS at 66.8% of the baseline model), while
POS tagging shows the smallest difference (88.1% of the baseline model). The weak overall results of
the transformer model, therefore, seem to be a direct consequence of its performance on syntactic
parsing and sentence segmentation.

Table 4 shows the standard deviations across metrics for the mean accuracy.

Table 4. Mean accuracy standard deviations.

Model Dataset Mean accuracy Standard deviation
Baseline 1,000 56.67% 16.16%
Baseline 5,000 69.82% 12.40%
Baseline 10,000 74.70% 10.80%
Baseline 20,000 79.88% 8.69%
Pretrained 1,000 63.45% 19.35%
Pretrained 5,000 75.77% 12.28%
Pretrained 10,000 79.00% 10.32%
Pretrained 20,000 82.72% 8.06%
Transformer 1,000 36.26% 15.55%
Transformer 5,000 54.66% 18.33%
Transformer 10,000 56.74% 16.93%
Transformer 20,000 62.30% 14.09%

As is presented in Table 4, all models become more consistent as dataset size increases because
standard deviations decrease. This indicates that more data not only improves performance but also
makes performance more uniform across tasks. The transformer model has the highest standard
deviations at larger dataset sizes. This highlights an uneven performance across tasks even with more
data. This is in contradistinction to the pretrained model, which has the lowest standard deviations
at the largest dataset size, which suggests that it achieves the most balanced performance across all
metrics.

These remarks on the impact of dataset sizes add a new perspective to the main takeaway of this
study, which underlines the adequacy for Old English parsing of the architecture based on the spaCy-
based pipeline with pretraining on raw text. However, computational costs represent a crucial
consideration alongside performance metrics when evaluating NLP architectures (Rae et al. 2021;
Ding et al., 2023). As a matter of fact, the three architectures under analysis have profiles that require
different computational resources. They are illustrated with respect to the 20,000-word dataset in
Table 5.

Table 5. Computational costs.

Base-line Pretrained Transformer Pretrained Transformer gap
advantage
Metrics
Mean 79.8% 82.72% 62.30% +2.84pp (+3.6%)  -17.58pp (-22.0%)
Standard o o o o o
deviation 8.69% 8.06% 14.09% -0.63pp (-7.2%) +5.40pp (+62.1%)
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Requirements
Training 1-2x
time 1x (plus 5-10x 1-2x slower 5-10x slower
(relative) Pretraining)
Inference
speed 1,000+ 800-1,000 100-300 10-20% slower 70-90% slower
(tokens/sec)
x‘:gneogB) 24 48 8-16+ 2-4 higher 4-8x higher
Model size
(MB) 50-200 200-500 500-1,000+ 2-5x larger 5-20x larger
Higher Strict
GPU Optional Recommended Required hardware hardware
demands requirements
Power Low Medium High 2-3x higher 5-10x higher
Cloud
compute $ $5 555 2x moFe 6-10x m‘ore
expensive expensive
costs

The comparative analysis of the three models on the 20,000-word dataset presents distinct trade-
offs between performance, resources, and practicality. The pretrained model delivers the highest
overall accuracy and requires moderately increased computational resources (1-2x training time, 2x
cloud computing costs). This improvement is particularly pronounced in syntactic tasks. The baseline
model offers excelent efficiency because it consumes minimal resources but achieves solid
performance (79.88% average), making it the most accessible option for resource-constrained
environments. This is in contrast to the transformer model, which clearly underperforms both
alternatives (62.30% average, 17.58 percentage points below baseline) despite demanding higher
computational resources (5-10x longer training time, 70-90% slower inference).

For future applications, the pretrained approach represents the optimal balance between
accuracy and efficiency for most tasks, particularly when both performance and computational
viability matter. However, the strong performance-to-cost ratio of the baseline model makes it an
attractive alternative, especially for basic NLP tasks with limited resources. This advantage becomes
even more outstanding when working with larger datasets, where simpler models with sufficient
data can approach the performance of more complex models. For under-resourced languages or strict
computational constraints, the simpler pipeline might be preferable despite its slightly lower
accuracy. The transformer model’s combination of poor performance and high resource demands
makes it unsuitable for this particular NLP task.

5. Conclusions

This study provides insights into the automatic parsing of Old English within the UD
framework. Through comprehensive evaluation of three pipeline architectures across four dataset
sizes, we have identified effective approaches for processing historical language data.

The pretrained model consistently delivers superior performance. It achieves 82.72% mean
accuracy across all metrics with the largest dataset. This architecture excels particularly in syntactic
tasks, with improvements of 6.13 and 4.98 percentage points in LAS and UAS respectively compared
to the baseline model. The baseline model offers reasonable performance (79.88% mean accuracy)
with minimal computational demands. This makes it suitable for resource-constrained environments.
However, the transformer-based model significantly underperforms (62.30% mean accuracy) despite
requiring more computational resources.

Our analysis of dataset impact shows that while larger training sets consistently improve
performance, the relationship follows a non-linear pattern with diminishing returns. The most
substantial gains occur when expanding from 1,000 to 5,000 words, whereas beyond this threshold
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improvements are modest. Nevertheless, even at 20,000 words, the learning curve has not plateaued
completely, which suggests that additional training data could yield further improvements.

The computational cost analysis points to relevant relations between model complexity, resource
requirements, and performance. The pretrained model represents the optimal balance because it
delivers the highest accuracy with moderate resource demands. For applications where
computational efficiency is important, the baseline model offers an excellent alternative with
acceptable performance.

Overall, our findings demonstrate that medium-complexity architectures with pretraining on
raw text currently provide the best approach for automated analysis of Old English dependencies, as
they outperform both simpler baselines and more complex transformer-based models.
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Abbreviations

The following abbreviations are used in this manuscript:

LAS Labelled Attachment Score
NLP Natural Language Processing
UAS Unlabelled Attachment Score
UD Universal Dependencies
Appendix

The appendix presents a summary table and performance charts by component.
Summary table

Model Dataset Metrics (%) Mean
XPOS UPOS FEATS LEMMA UAS LAS SENT-F
Baseline 1000 75.75 74.79 58.96 54.39 57.44 2732 48.07  56.67
Baseline 5000 84.98 84.98 71.40 68.95 69.05 53.17 56.22 69.82
Baseline 10000 87.88 87.66 75.95 73.90 73.76  60.95 62.81 74.70
Baseline 20000 90.66 90.64 81.00 79.91 7826 68.10 70.57 79.88
Pre-trained 1000 86.44 85.55 70.39 55.35 68.48 3419 43.74 63.45
Pre-trained 5000 90.46 90.10 78.14 69.45 76.47 62.68 63.12 75.77
Pre-trained 10000 91.84 91.62 80.82 74.28 80.07 69.10 65.27 79.00
Pre-trained 20000 93.20 92.96 84.21 79.83 83.24 7423 71.38 82.72
Transformer 1000 5247  52.99 39.13 37.02 4278 1447 14.96 36.26
Transformer 5000 75.60 75.81 59.45 61.36 50.42 29.84 30.14 54.66
Transformer 10000 75.60 75.81 59.45 61.36 55.58 38.83 30.56 56.74
Transformer 20000 79.91 79.89 64.95 65.58 60.17 4551 40.07 62.30

Performance by component
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