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Article 

Parsing Old English with Universal Dependencies. 
The Impact of Model Architectures and Dataset Sizes 
Javier Martín Arista *, Ana Elvira Ojanguren López and Sara Domínguez Barragán * 

Universidad de La Rioja 
* Correspondence: javier.martin@unirioja.es (J.M.A.); sara.dominguez@aurea.unirioja.es (S.D.B.) 

Abstract: This study evaluates the performance of Universal Dependencies (UD) parsing for Old 
English using three neural architectures across various dataset sizes. We compare a baseline spaCy 
pipeline, a pipeline with pretrained tok2vec component, and a MobileBERT transformer-based model 
on datasets ranging from 1,000 to 20,000 words. Our results demonstrate that the pretrained model 
consistently outperforms the alternatives, achieving 83.24% UAS and 74.23% LAS with the largest 
dataset. Performance analysis shows that basic tagging tasks reach 85-90% accuracy, while 
dependency parsing achieves approximately 75% accuracy. We observe significant improvements 
with increasing dataset size, though with diminishing returns beyond 10,000 words. The transformer-
based approach underperforms in spite of its higher computational cost. This highlights the 
difficulties of applying modern NLP techniques to historical languages with limited training data. 
Our findings suggest that medium-complexity architectures with pretraining on raw text offer the 
optimal balance between performance and computational efficiency for Old English dependency 
parsing. 

Keywords: syntactic parsing; old English; universal dependencies; natural language processing 
 

1. The UD Annotation of Old English 

Universal Dependencies (UD) is an annotation framework developed for Natural Language 
Processing tasks, cross-linguistic comparison, translation, and language learning (Nivre et al., 2016; 
Nivre et al., 2020; Zeman, 2024). The UD framework provides a universal inventory of lexical 
categories, morphological features, and dependency relations suitable for cross-linguistic analysis 
that can also accomodate language-specific phenomena (de Marneffe et al., 2014; de Marneffe et al., 
2021). UD adopts a dependency-based syntactic representation, where binary asymmetric relations 
are established between heads and dependents (de Marneffe and Manning, 2016). The annotation 
framework is organised into three layers: universal part-of-speech tags (UPOS), morphological 
features (FEATS), and syntactic dependencies (DEPREL). The UPOS layer consists of seventeen 
general lexical categories; the FEATS layer encodes morphological properties such as gender, 
number, case, and tense; and the DEPREL layer comprises a set of universal dependency relations 
that can be extended to handle language-specific constructions. Overall, UD prioritises universal 
linguistic patterns over language-specific ones, does not consider empty categories, and favours 
content words as syntactic heads over function words. 

Old English (650–1150 CE) is a West Germanic language with a predominantly Germanic lexicon 
with borrowings from Latin and Old Norse. It is notable for its semantic transparency in word-
formation (Kastovsky, 1992), extensive inflection in nominal, pronominal, and verbal categories 
(Campbell, 1987; Middeke, 2022), and relatively free word order compared to Modern English 
(Fischer et al., 2000; Ringe and Taylor, 2014). From the typological point of view, Old English is an 
SVO language in transition from the SOV type (Pintzuk, 1991, 1999; Kroch and Taylor, 2000; 
Koopman, 2005; Haeberli and Pintzuk, 2006; Van Kemenade, 2006), which still surfaces in some 
dependent clauses and is reflected by other areas of grammar such as postposition or the genitive 
(Allen, 2008). The written records of Old English amount to approximately 3 million words, 
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preserved in around 3,000 texts. The primary corpora for Old English are The Dictionary of Old English 
Web Corpus (3 million words; Healey et al., 2004) and The York-Toronto-Helsinki Parsed Corpus of Old 
English Prose (hereafter YCOE; 1.5 million words; Taylor et al., 2003), the latter providing POS tagging 
and syntactic parsing for roughly half of the extant texts. 

Recent research has applied the UD framework to the annotation of Old English. Martín Arista 
(2022a, 2022b, 2024) establishes the foundations for parsing Old English within UD and extends the 
annotation framework to include word-formation processes. This extension reflects the syntactic 
regularities and overlaps found in derivational processes and nominalisations in Old English, 
particularly those that inherit verbal properties (Ojanguren López, 2024). As regards automatic 
dependency annotation, Villa and Giarda (2023) evaluate the performance of a multilingual parser 
for Old English. Their study shows that combining Old English data with data from German and 
Icelandic yields the highest accuracy, with a peak performance of 75% accuracy for datasets 
combining Icelandic, German, and Old English. Villa and Giarda attribute these relatively low 
accuracy levels to linguistic factors such as Old English word order and case syncretism. These 
authors identify areas of error such as postpositions and discontinuity in relative clauses. They also 
note that inaccurate part-of-speech tagging leads to errors in dependency relations such as 
coordinating conjunctions, negation adverbial modifiers, auxiliaries, and locative and temporal 
adverbial modifiers. The work by Villa and Giarda (2023) is discussed in more detail in Section 4, 
which compares their methods and results with this research. 

Against this background, this paper focuses on the evaluation of UD parsing, with a specific 
focus on assessing how different neural architectures perform on the processing of Old English and 
on gauging the impact of the dataset sizes. The paper is structured as follows. Section 2 describes the 
different pipeline architectures and datasets of this study. Section 3 evaluates the performance of the 
models and the corpora with respect to the components of the pipeline. Section 4 compares our results 
with the state of the art in Natural Language Processing in general and with the automatic parsing of 
Old English in particular. Section 5 draws the main conclusions of the study. 

2. Models and Data of the Study 

Three models have been trained on four dataset sizes, which are described in the remainder of 
this section. The first model is a basic pipeline with default configuration that uses the spaCy default 
tok2vec component initialised with random weights. The second model also uses the tok2vec 
component but initialises its weights through a pretraining phase on an unannotated Old English 
corpus of about three million words. The third model is based on training from scratch with 
approximately 17 MB of text. Then, we the tok2vec component is replaced with a custom-trained 
MobileBERT transformer. 

The MobileBERT architecture (25.3 million parameters) was selected to match the limited size of 
available Old English training data. However, transfer learning from contemporary English BERT 
models was not viable for the reasons of lexical distance between Present-Day English and Old 
English, which has a consistently Germanic word stock; and spelling differences with respect to the 
contemporary language, which has lost certain graphemes (<æ/Æ>, <ȝ/Ȝ>, <ð/Ð>, <þ/Þ>, and <ƿ/Ƿ>) 
that English models cannot handle. 

The pipeline architecture adopted in the test is based on the NLP library spaCy. It consists of six 
major components or stages, each handling specific aspects of the processing of Old English texts, 
which can be seen in Figure 2. The first stage is the Tokenizer, a rule-based component that splits text 
into tokens by using predefined English rules. Unlike other components, the Tokenizer is non-
trainable and serves as the initial stage that converts plain text into the internal data structure 
required by spaCy. Following tokenization, the second stage implements either a tok2vec or 
transformer component, both of which transform tokens into numerical vectors. Given the limited 
size of the dataset, this component is shared across subsequent stages to reduce the number of 
trainable parameters. Two implementations have been tested: the standard tok2vec and a 
MobileBERT transformer. The middle layers of the pipeline consist of the Tagger, which assigns POS 
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tags (XPOS column), and the Morphologizer, responsible for UPOS and FEATS assignments. These 
components incorporate the vector representations provided by the previous stage. The pipeline 
continues with the trainable Lemmatizer component for LEMMA assignments, followed by the 
Parser, which handles both dependency parsing (HEAD and DEPREL assignments) and sentence 
boundary detection. 

 

Figure 1. Pipeline stages. 

 
Figure 2. Mean accuracy across all metrics by dataset size. 

Thus described, the implementation maintains the pipeline architecture of spaCy, in which 
components can be trained independently or jointly. The pipeline also adopts the standard training 
workflow of spaCy, with configurable batch sizes (set to process at least 100 words per batch) and 
evaluation intervals (every 200 iterations). The evaluation metrics (TAG_ACC, POS_ACC, 
MORPH_ACC, LEMMA_ACC, DEP_UAS, DEP_LAS, and SENTS_F) are all standard spaCy metrics 
and are calculated with built-in evaluation functions. Additionally, the loss tracking capabilities 
during training are used to assess the performance of individual components. Separated loss values 
are obtained for the tok2vec, Tagger, Morphologizer, Lemmatizer, and Parser stages. 

The source of the datasets is ParCorOEv3. An open access annotated parallel corpus Old English-
English (Martín Arista et al., 2023). The choice of curated Old English text includes Ælfric’s Catholic 
Homilies I, The Anglo-Saxon Chronicle A, Anglo-Saxon Laws, St. Mark’s Gospel and King Alfred’s 
Orosius. The data of the test have been structured in four datasets of different sizes: 1,000, 5,000, 
10,000, and 20,000 words for training. These increasing sizes have been established with a view to 
gauging the relationship between training data volume and model performance. This is a 
fundamental aspect, considering the scarcity of Old English written records and annotated corpora 
noted above. An independent evaluation corpus (20%), which has been fully segregated from the 
training data, has provided benchmarking throughout the test. For pre-training purposes, we have 
used a larger unannotated corpus of approximately 3 million words (The Dictionary of Old English 
Corpus; Healey et al. 2004). The training and test datasets are described by words, tokens and 
sentences in Table 1. 
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Table 1. Training and test datasets. 

 Train Test Total 
1,000 words 
Tokens 995 4,987 5,982 
Sentences 59 288 347 
5,000 words 
Tokens 4,992 4,887 9,879 
Sentences 283 288 571 
10,000 words 
Tokens 9,982 4,887 14,969 
Sentences 562 288 850 
20,000 words 
Tokens 19,991 4,887 24,978 
Sentences 1,134 288 1,422 

3. Performance Evaluation 

Performance evaluation consists of multiple accuracy metrics for each component. The 
performance of the Tagger has been measured through TAG_ACC for XPOS tagging. The 
performance of the Morphologizer has been tracked via POS_ACC (UPOS) and MORPH_ACC 
(FEATS). The performance of the Lemmatizer has been evaluated through LEMMA_ACC. 
Dependency parsing has been gauged through both unlabeled (DEP_UAS) and labeled (DEP_LAS) 
attachment scores. Sentence boundary detection has been evaluated by using the SENTS_F metric. 
LAS (Labelled Attachment Score) and UAS (Unlabelled Attachment Score) are standard evaluation 
metrics in dependency parsing (Nivre et al., 2007; Kübler et al., 2009; Manning, 2011). Whereas the 
UAS measures the percentage of tokens that are assigned the correct syntactic head, the LAS 
represents the percentage of tokens that are assigned both the correct syntactic head and the correct 
dependency label. As a more stringent measure, the LAS is always equal to or lower than the UAS. 
Figure 2 presents the results of mean accuracy across all metrics by dataset size. The mean is 
calculated from TAG, POS, FEATS, LEMMA, UAS, LAS and SENT-F metrics (see the Appendix for a 
breakdown of scores by metric, architecture and dataset). 

The performance analysis of this study reflects different degrees of task difficulty. Basic tagging 
tasks achieve 85-90% accuracy, while morphological analysis reaches around 80% accuracy. 
Dependency parsing gets lower metrics, with accuracy around 75%. The pretrained model performs 
better across all metrics and corpus sizes. The transformer-based model obtains lower metrics. 

The first model, using the default configuration of spaCy, establishes a baseline for performance. 
The model performs well on basic tokenization and simple POS tagging, with accuracy rates around 
70-75% for basic POS tagging, but turns out significantly lower accuracy rates for more complex tasks 
like dependency parsing (see Appendix). The pretrained model shows more promising results. By 
pretraining the tok2vec component on the larger unannotated corpus, we get notable improvements, 
with POS tagging accuracy increasing to 85-90% and dependency parsing displaying higher 
accuracy, around 75-80% (see Appendix). The third model, implementing a transformer-based 
architecture using MobileBERT, constitutes an attempt to leverage advances in neural language 
models for historical language processing. This model seemed promising as it might capture long-
range relations and dependencies blurred by the flexible word order of Old English, but it was 
hampered by the limited size of the training corpus (see Appendix). 

The accuracy metrics show interesting patterns across the three models. Sentence boundary 
detection turns out comparatively low metrics, probably due to the inconsistent punctuation patterns 
characteristic of Old English texts. Dependency parsing presents more variable results, although the 
pretrained model performs better across all corpus sizes. In POS tagging, accuracy improves with 
larger training sets, but the rate of improvement decreases significantly after the 10,000-word mark. 
Loss tracking during training revealed quick initial improvements followed by diminishing returns, 
particularly evident in the larger corpus sizes. Figure 2 illustrates the learning dynamics of the model. 
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The results correspond to the best performing architecture (pretrained model) and dataset (20,000 
words). 

As can be seen in Figure 3, there is clear convergence and consistent performance across key 
metrics, including loss, UAS and LAS. To begin with, the loss sharply decreases initially. This is 
indicative of rapid improvement in the optimisation of the model during the early training phase. By 
approximately 2,000 iterations, the loss stabilizes. This demonstrates that the model has converged 
to a steady state with minimal further improvement in optimisation. At the same time, both UAS and 
LAS increase rapidly during the initial iterations, which also reflects substantial gains in the accuracy 
for syntactic parsing. While UAS consistently outperforms LAS, both metrics stabilise at 
approximately 60% and 70%, respectively. The existence of this plateau is telling us that the ability of 
the model to assign correct dependencies and labels has reached its peak performance with the 
architecture and the dataset selected. 

 
Figure 3. Loss, UAS and LAS of the pretrained model (20,000 words). 

4. Discussion 

This section discusses our Old English parsing results from three angles: comparative 
performance, dataset scaling effects, and computational efficiency. First, we contextualise our 
findings against modern NLP benchmarks and compare them with Villa and Giarda´s (2023) recent 
work on Old English dependency parsing. This comparison examines methodological differences in 
data selection, learning approaches, and performance outcomes. Second, we analyse how increasing 
dataset size affects parsing accuracy across different model architectures, thus identifying optimal 
data thresholds and diminishing returns. Finally, we assess the computational requirements of each 
model architecture, providing a cost-benefit analysis that balances performance gains against 
resource consumption. 

We address the question of compared performance metrics in the first place. The current state-
of-the-art in POS tagging reaches 97-98% accuracy across most languages (Wang 2021), while up-to-
date morphological analyzers show an accuracy of 90-92% for morphologically rich languages (Şahin 
2020). Modern lemmatizers typically reach 95-97% accuracy (Kanerva 2020) and sentence 
segmentation systems present F1-scores of 95% (Agustyniak 2020). The dependency parsing of 
natural languages achieves UAS scores of 95-97% and LAS scores of 93-95% (Ahmad 2023). 

In the processing of a historical language like Old English the results obtained so far do not reach 
the standards of natural languages for the reasons mentioned above. A relevant contribution to this 
field so far has been recently published by Villa and Giarda (2023), who also explore the 
methodologies of parsing Old English within the UD framework, although their work differs 
significantly from the present study as to dataset construction, training methodologies, and syntactic 
analysis. Beginning with datasets, Villa and Giarda’s work focuses on a small, manually annotated 
dataset derived from two religious prose texts: Adrian and Ritheus and Ælfric’s Supplemental Homilies. 
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Their corpus comprises 292 sentences (5,315 tokens) converted from the YCOE into CoNLL-U format. 
To compensate for data scarcity, they employed cross-lingual transfer learning, training UUParser 
v2.4 on combinations of Old English data and treebanks from three modern Germanic languages. 
The authors reduced support language treebanks to 60k tokens to avoid bias from larger datasets. In 
contrast, this study uses a larger and more diverse dataset (25k words) sourced from multiple Old 
English texts, including chronicles, as well as historical, religious, legal and biblical texts. Unlike Villa 
and Giarda, this study trains models from scratch using spaCy pipelines and tests them. 

Turning to learning methods and training approaches, Villa and Giarda’s methodology involved 
multilingual transfer learning, which is based on the hypothesis that the structural similarities of 
related languages can improve parsing accuracy. Villa and Giarda trained their models on Old 
English alone and in combination with Icelandic, German, and Swedish, both individually and 
collectively. Their best-performing model combined Old English with Icelandic (UAS 68.44%, LAS 
58.70%), likely due to Icelandic’s conservative morpho-syntax (comprising case marking as well as 
V2 syntax) and distinctive graphemes (<æ/Æ> and <ð/Ð>). However, they observed diminishing 
returns when adding German or Swedish, which they attributed to syntactic divergences (like rigid 
SVO order in Swedish vs. relative flexibility in Old English). Notably, their monolingual Old English 
model underperformed (UAS 60.79%, LAS 47.23%). 

This study gives priority to monolingual pretraining and dataset size. The pretrained model 
presented in this study achieves the highest scores (UAS 83.24%, LAS 74.23% with 20k words) and 
outperforms the MobileBERT transformer, which struggles as consequence of the lexical and 
graphemic differences between Old English and Present-Day English. Villa and Giarda’s lower 
overall scores (maximal LAS 58.70%) likely stem from their smaller training data and the 
heterogeneity of their support languages. By contrast, the larger dataset selected for this study 
enables better generalisation, particularly for morphosyntactic features like case (80.1% accuracy) and 
tense (83.8%). The models used in this study excel at local dependencies including, for example, 
possessive determiners (90.4% accuracy) but often fail to capture long-distance relations like clausal 
complements (25.5% accuracy). Villa and Giarda (2023) as well as this study show a consistent gap 
between UAS and LAS, which reflects the difficulty of labeling dependency relations compared to 
identifying head-dependent attachments. Villa and Giarda’s best model (Icelandic+Old English) 
achieved a 9.74-point gap (UAS 68.44% vs. LAS 58.70%), while the pretrained model of this study 
returns a 9.01-point difference (UAS 83.24% vs. LAS 74.23%). 

Both studies identify non-projective dependencies as a major issue of automatic parsing. Villa 
and Giarda highlight discontinuous constituents, particularly in relative clauses, where the 
antecedent and relative pronoun are separated by adjuncts. This study reports 0% accuracy on non-
projective structures, such as relative clauses, clausal modifiers, and conjunctions. These 
shortcomings can be attributed to the variable word order of Old English, which gives rise to crossing 
dependencies that are not compatible with transition-based parsing algorithms (Martin and Jurafsky 
2020: 284). 

We examine the question of the impact of dataset sizes now. Across all training methods, a clear 
correlation between dataset size and parsing accuracy emerges, though with important differences 
as far as learning patterns and efficiency are concerned. The relationship between dataset size and 
parsing accuracy follows a non-linear pattern with diminishing returns. The most remarkable 
improvements occur in the transition from 1,000 to 5,000 words, with the baseline model showing 
gains of +11.61% UAS and +25.85% LAS. The pretrained model, which starts from a higher baseline, 
achieves significant improvements of +7.99% UAS and +28.49% LAS. Subsequent increases from 5,000 
to 10,000 words and from 10,000 to 20,000 words yield smaller improvements. The rate of 
improvement does not plateau even at 20,000 words, which suggests that the limit of useful training 
data has not yet been reached. 

The three models tested in this study demonstrate different scaling characteristics. The 
pretrained model outperforms the alternatives at all dataset sizes, as it achieves 83.24% UAS and 
74.23% LAS with 20,000 words. This architecture also shows better data efficiency because it reaches 
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higher accuracy levels with smaller datasets than the baseline model for comparable performance. In 
contrast, the transformer-based approach consistently underperforms, reaching only 60.17% UAS 
and 45.51% LAS even with the largest dataset. The poor scaling efficiency of the transformer model 
may be put down to its larger parameter space, which cannot be adequately trained with limited 
historical language data. 

Different annotation tasks exhibit distinct learning trajectories across dataset sizes. POS tagging 
and morphological feature recognition reach near-optimal performance relatively quickly, in such a 
way that the pretrained model achieves over 90% accuracy for POS tagging at just 5,000 words. These 
tasks benefit from the relatively closed sets of possible tags and the strong correlation between word 
form and morphological features in Old English. Dependency parsing continues to improve 
substantially across all dataset increments. 

This assessment raises two further questions. Firstly, is the advantage of the pretrained model 
consistent across all tasks, or driven by exceptional performance on just a few metrics? And, secondly, 
does the transformer model struggle uniformly on all tasks, or is its weak overall performance 
primarily driven by specific metrics? This could explain which tasks benefit most from pretraining, 
where the simple baseline model may be adequate for getting similar results and at what dataset sizes 
architectural differences become more important. 

To answer the question on the consistency of the advantage of the pretrained model´s 
performance, we analyse the performance gap between the pretrained model and the baseline model 
across all metrics at the 20K dataset size. The results are tabulated in Table 2. 

Table 2. Performance gap between the pretrained and the baseline model. 

Metric Pre- 
trained Baseline 

Difference 
(percentage  

points) 

Relative 
improvement 

XPOS 93.20% 90.66% +2.54 +2.8% 
UPOS 92.96% 90.64% +2.32 +2.6% 
FEATS 84.21% 81.00% +3.21 +4.0% 

LEMMA 79.83% 79.91% -0.08 -0.1% 
UAS 83.24% 78.26% +4.98 +6.4% 
LAS 74.23% 68.10% +6.13 +9.0% 

SENT-F 71.38% 70.57% +0.81 +1.1% 
Mean 82.72% 79.88% +2.84 +3.6% 

As is shown in Table 2, the advantage of the pretrained model is not uniform across all tasks. 
The largest advantages are in dependency parsing metrics (LAS +6.13pp, UAS +4.98pp). The 
pretrained model actually performs slightly worse on lemmatization (-0.08pp) and its advantage is 
minimal for sentence segmentation (+0.81pp). It seems to be the case that the pretrained model overall 
advantage is a consequence of its strong performance in syntactic tasks, particularly dependency 
parsing. 

In order to answer the question on the uniformity of the struggle of the transformer model across 
tasks, we compare the transformer model to the baseline model at the 20K dataset size. The results 
are displayed in Table 3. 

Table 3. Architecture comparison. 

Metric Transformer  Baseline 
Difference 
(percentage  

points) 

Performance 
ratio 

XPOS 79.91% 90.66% -10.75 88.1% 
UPOS 79.89% 90.64% -10.75 88.1% 
FEATS 64.95% 81.00% -16.05 80.2% 
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LEMMA 65.58% 79.91% -14.33 82.1% 
UAS 60.17% 78.26% -18.09 76.9% 
LAS 45.51% 68.10% -22.59 66.8% 

SENT-F 40.07% 70.57% -30.50 56.8% 
Mean 62.30% 79.88% -17.58 78.0% 

As can be seen in Table 3, the underperformance of the transformer model is non-uniform across 
tasks. Its worst result is on sentence segmentation (SENT-F), at only 56.8% of the baseline model’s 
performance. Dependency parsing shows the deepest gap (LAS at 66.8% of the baseline model), while 
POS tagging shows the smallest difference (88.1% of the baseline model). The weak overall results of 
the transformer model, therefore, seem to be a direct consequence of its performance on syntactic 
parsing and sentence segmentation. 

Table 4 shows the standard deviations across metrics for the mean accuracy. 

Table 4. Mean accuracy standard deviations. 

Model Dataset  Mean accuracy Standard deviation 
Baseline 1,000 56.67% 16.16% 
Baseline 5,000 69.82% 12.40% 
Baseline 10,000 74.70% 10.80% 
Baseline 20,000 79.88% 8.69% 
Pretrained 1,000 63.45% 19.35% 
Pretrained 5,000 75.77% 12.28% 
Pretrained 10,000 79.00% 10.32% 
Pretrained 20,000 82.72% 8.06% 
Transformer 1,000 36.26% 15.55% 
Transformer 5,000 54.66% 18.33% 
Transformer 10,000 56.74% 16.93% 
Transformer 20,000 62.30% 14.09% 

As is presented in Table 4, all models become more consistent as dataset size increases because 
standard deviations decrease. This indicates that more data not only improves performance but also 
makes performance more uniform across tasks. The transformer model has the highest standard 
deviations at larger dataset sizes. This highlights an uneven performance across tasks even with more 
data. This is in contradistinction to the pretrained model, which has the lowest standard deviations 
at the largest dataset size, which suggests that it achieves the most balanced performance across all 
metrics. 

These remarks on the impact of dataset sizes add a new perspective to the main takeaway of this 
study, which underlines the adequacy for Old English parsing of the architecture based on the spaCy-
based pipeline with pretraining on raw text. However, computational costs represent a crucial 
consideration alongside performance metrics when evaluating NLP architectures (Rae et al. 2021; 
Ding et al., 2023). As a matter of fact, the three architectures under analysis have profiles that require 
different computational resources. They are illustrated with respect to the 20,000-word dataset in 
Table 5. 

Table 5. Computational costs. 

 Base-line Pretrained Transformer 
Pretrained 
advantage Transformer gap 

Metrics 
Mean 79.8% 82.72% 62.30% +2.84pp (+3.6%) -17.58pp (-22.0%) 
Standard 
deviation 

8.69% 8.06% 14.09% -0.63pp (-7.2%) +5.40pp (+62.1%) 
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Requirements 
Training 
time 
(relative) 

1× 
1-2× 
(plus 

Pretraining) 
5-10× 1-2× slower 5-10× slower 

Inference 
speed  
(tokens/sec) 

1,000+ 800-1,000 100-300 10-20% slower 70-90% slower 

Memory 
usage (GB) 2-4 4-8 8-16+ 2-4× higher 4-8× higher 

Model size 
(MB) 

50-200 200-500 500-1,000+ 2-5× larger 5-20× larger 

GPU Optional Recommended Required 
Higher 

hardware  
demands 

Strict 
hardware  

requirements 
Power Low Medium High 2-3× higher 5-10× higher 
Cloud 
compute 
costs 

$ $$ $$$ 
2× more  

expensive 
6-10× more 
expensive 

The comparative analysis of the three models on the 20,000-word dataset presents distinct trade-
offs between performance, resources, and practicality. The pretrained model delivers the highest 
overall accuracy and requires moderately increased computational resources (1-2× training time, 2× 
cloud computing costs). This improvement is particularly pronounced in syntactic tasks. The baseline 
model offers excelent efficiency because it consumes minimal resources but achieves solid 
performance (79.88% average), making it the most accessible option for resource-constrained 
environments. This is in contrast to the transformer model, which clearly underperforms both 
alternatives (62.30% average, 17.58 percentage points below baseline) despite demanding higher 
computational resources (5-10× longer training time, 70-90% slower inference). 

For future applications, the pretrained approach represents the optimal balance between 
accuracy and efficiency for most tasks, particularly when both performance and computational 
viability matter. However, the strong performance-to-cost ratio of the baseline model makes it an 
attractive alternative, especially for basic NLP tasks with limited resources. This advantage becomes 
even more outstanding when working with larger datasets, where simpler models with sufficient 
data can approach the performance of more complex models. For under-resourced languages or strict 
computational constraints, the simpler pipeline might be preferable despite its slightly lower 
accuracy. The transformer model´s combination of poor performance and high resource demands 
makes it unsuitable for this particular NLP task. 

5. Conclusions 

This study provides insights into the automatic parsing of Old English within the UD 
framework. Through comprehensive evaluation of three pipeline architectures across four dataset 
sizes, we have identified effective approaches for processing historical language data. 

The pretrained model consistently delivers superior performance. It achieves 82.72% mean 
accuracy across all metrics with the largest dataset. This architecture excels particularly in syntactic 
tasks, with improvements of 6.13 and 4.98 percentage points in LAS and UAS respectively compared 
to the baseline model. The baseline model offers reasonable performance (79.88% mean accuracy) 
with minimal computational demands. This makes it suitable for resource-constrained environments. 
However, the transformer-based model significantly underperforms (62.30% mean accuracy) despite 
requiring more computational resources. 

Our analysis of dataset impact shows that while larger training sets consistently improve 
performance, the relationship follows a non-linear pattern with diminishing returns. The most 
substantial gains occur when expanding from 1,000 to 5,000 words, whereas beyond this threshold 
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improvements are modest. Nevertheless, even at 20,000 words, the learning curve has not plateaued 
completely, which suggests that additional training data could yield further improvements. 

The computational cost analysis points to relevant relations between model complexity, resource 
requirements, and performance. The pretrained model represents the optimal balance because it 
delivers the highest accuracy with moderate resource demands. For applications where 
computational efficiency is important, the baseline model offers an excellent alternative with 
acceptable performance. 

Overall, our findings demonstrate that medium-complexity architectures with pretraining on 
raw text currently provide the best approach for automated analysis of Old English dependencies, as 
they outperform both simpler baselines and more complex transformer-based models. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

LAS Labelled Attachment Score 
NLP Natural Language Processing 
UAS Unlabelled Attachment Score 
UD Universal Dependencies 

Appendix 

The appendix presents a summary table and performance charts by component. 
Summary table 

Model Dataset Metrics (%) Mean 
  XPOS UPOS FEATS LEMMA UAS LAS SENT-F  
Baseline 1000 75.75 74.79 58.96 54.39 57.44 27.32 48.07 56.67 
Baseline 5000 84.98 84.98 71.40 68.95 69.05 53.17 56.22 69.82 
Baseline 10000 87.88 87.66 75.95 73.90 73.76 60.95 62.81 74.70 
Baseline 20000 90.66 90.64 81.00 79.91 78.26 68.10 70.57 79.88 
Pre-trained 1000 86.44 85.55 70.39 55.35 68.48 34.19 43.74 63.45 
Pre-trained 5000 90.46 90.10 78.14 69.45 76.47 62.68 63.12 75.77 
Pre-trained 10000 91.84 91.62 80.82 74.28 80.07 69.10 65.27 79.00 
Pre-trained 20000 93.20 92.96 84.21 79.83 83.24 74.23 71.38 82.72 
Transformer 1000 52.47 52.99 39.13 37.02 42.78 14.47 14.96 36.26 
Transformer 5000 75.60 75.81 59.45 61.36 50.42 29.84 30.14 54.66 
Transformer 10000 75.60 75.81 59.45 61.36 55.58 38.83 30.56 56.74 
Transformer 20000 79.91 79.89 64.95 65.58 60.17 45.51 40.07 62.30 

Performance by component 
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