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Abstract: In the realm of mathematics education, self-explanation stands as a crucial learning mechanism, 
allowing learners to articulate their comprehension of intricate mathematical concepts and strategies. As digital 
learning platforms grow in prominence, there are mounting opportunities to collect and utilize mathematical 
self-explanations. However, these opportunities are met with challenges in automated evaluation. Automatic 
scoring of mathematical self-explanations is crucial for preprocessing tasks, including the categorization of 
learner responses, identification of common misconceptions, and the creation of tailored feedback and model 
solutions. Nevertheless, this task is hindered by the dearth of ample sample sets. Our research introduces a 
semi-supervised technique using the Language Learning Model (LLM), specifically its Japanese variant, to 
enrich datasets for the automated scoring of mathematical self-explanations. We rigorously evaluated the 
quality of self-explanations across five datasets, ranging from human-evaluated originals to ones devoid of 
original content. Our results show that combining LLM-based explanations with mathematical material 
significantly improves the model's accuracy. Interestingly, there's an optimal limit to how much synthetic self-
explanation data can benefit the system. Exceeding this limit doesn't further improve outcomes. This study 
thus highlights the need for careful consideration when integrating synthetic data into solutions, especially 
within the mathematics discipline. 

Keywords: self-explanation; automated scoring; semi-supervised learning; Language Learning 
Model (LLM); data augmentation 

 

1. Introduction 

The emergence of digital learning platforms has opened a plethora of opportunities for 
researchers to investigate and comprehend learning behaviors through abundant system interaction 
data [1]. A notable area of interest among various learning facets is self-explanation, identified as a 
robust active learning technique. This strategy has been particularly effective in bolstering 
comprehension in subjects like mathematics [1–3]. Self-explanation can be described as a mechanism 
where learners articulate explanations, elucidate concepts, expand on methods, and immerse in 
problem-solving to enhance their grasp and absorb fresh insights [4,5]. 

With the proliferation of computer-driven learning platforms, self-explanation has gained 
renewed attention and application. Contemporary learning innovations place a premium on self-
explanation by crafting intuitive interfaces, creating assessment models rooted in self-explanation 
behaviors, and formulating tactics to extract profound self-explanations [6,7]. Tools like the one 
formulated by Crippen and Earl [8] highlight the centrality of self-explanation in methodical 
problem-solving. Ongoing studies persistently explore the versatile applications of self-explanation 
in education [9,10], like the adoption of template-driven self-explanations. Such templates equip 
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learners with pre-set frameworks, serving as built-in guides to bolster their explanation processes 
[1,11,12]. 

Furthermore, the domain of self-explanation practices reaches beyond traditional boundaries. 
These methods involve understanding a concept and facilitating multiple educational tools such as 
feedback systems, crafting practice quiz responses, and generating valuable datasets for automated 
evaluations [10]. Within this framework, automated assessments play a pivotal role. By analyzing 
and interpreting self-explanations, both educators and automated systems can delve deeper into the 
intricacies of a learner's thought patterns. This knowledge equips them with the capability to tailor 
educational strategies to better cater to individual needs. Such insights are crucial for tasks like 
classifying learner responses, which provide a clear view of their comprehension levels. Additionally, 
they allow for the easy detection of recurring mistakes or topics that consistently stump students 
[9,10].  

However, devising a system capable of automatically grading diverse styles of self-explanation 
is challenging. A major concern is that self-explanation, due to its time-intensive nature [13], poses a 
feasibility issue for mass data collection. Additionally, crafting a quality self-explanation requires 
proficiency in both the specific subject matter and general writing [14,15]. Given these challenges, 
amassing a vast and diverse collection of self-explanation samples is demanding. This predicament 
further complicates the development of systems designed to aid learning through extensive sets of 
self-explanation examples. 

To address these challenges and enhance automated scoring of self-explanations, we propose a 
semi-supervised approach that leverages the LLM. While popular LLMs such as OpenAI's GPT-3 [18] 
are commonly employed in English language settings, due to the nature of the target problem we 
specifically focus on the Japanese variant of the model developed by CyberAgent [16], based on GPT-
NeoX [17]. This approach aims to explore the model's potential for generating self-explanation 
sentences, which will serve as the foundation for our regression models designed to predict self-
explanation scores. By incorporating the semi-supervised methodology and leveraging advanced 
language models, we aim to improve the accuracy and effectiveness of auto-scoring in the self-
explanation learning domain. Our research is anchored by two pivotal questions: 

RQ1: To what extent can the integration of self-explanations generated by the LLM Japanese 
model and mathematical material be used to enhance the accuracy of the predictive regression model 
for self-explanation scores? 

RQ2: What is the optimal quantity of artificially generated pseudo-self-explanation data 
required to effectively improve the predictive performance of the model? 

These research questions provide insights into maximizing the utility of the LLM Japanese 
model and refining data augmentation techniques. The core findings from our research are twofold. 
First, we propose a strategy for advancing automated scoring in math education by synergizing LLM-
generated content and mathematical material. Second, we highlight the ideal quantity of artificial 
self-explanation data for peak predictive accuracy. 

2. Related Work 

2.1. Automated Scoring of Self-Explanations: The Imperative for Rich Data 

Self-explanation, widely recognized for amplifying learning outcomes in various fields, notably 
mathematics, has found its stride in the digital learning milieu [1,4,5]. Emblematic tools like the 
iSTART tutoring system have been devised to foster and elevate learners' grasp and performance 
[19]. Such platforms urge students to think critically, mirroring the analytical strategies of experts. 
Notably, the iSTART system utilizes Natural Language Processing (NLP) in its pioneering approach 
to gauge and rate self-explanations, bolstering understanding across a gamut of texts. 

The endeavor to automate the scoring of self-explanation quality has seen the integration of NLP 
tools and cutting-edge neural network architectures [20]. Techniques like Latent Semantic Analysis 
(LSA) and Recurrent Neural Network (RNN) interfaced with machine learning, underscore the 
capabilities of automated systems, often outshining traditional manual evaluation in both 
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effectiveness and efficiency [14,20–24]. Furthermore, semi-supervised learning techniques, which 
capitalize on abundant unlabeled data, have exhibited the potential in refining scoring accuracy [25]. 
Yet, the quest for more representative samples of self-explanations, especially in languages other than 
English, remains a prevailing challenge. 

2.2. Augmenting Mathematical Self -Explanations Using Large Language Models 

There is a growing interest and need in using synthetic data for various applications. Synthetic 
data has emerged in various domains, presenting dual benefits: expanding the scope of training data 
and ensuring data privacy [26–29]. El Emam [30] highlighted the virtues of synthetic data, paving the 
way for integrating LLMs. Although there's an abundance of generic synthetic data tools and those 
crafted for spatiotemporal data [31,32], their effectiveness often dwindles when faced with complex, 
domain-centric data architectures. In learning analytics, the application of synthetic data often 
stumbles, particularly in the prediction of student outcomes [33–35]. LLMs, in light of their recent 
advancements, are gaining recognition as powerful agents for text data augmentation. This is 
exemplified by Dai et al.'s AugLLM [36], which utilizes ChatLLM [18] to generate supplemental text 
entries, enriching the dataset. There's a noticeable uptick in research delving into the nexus between 
LLMs and mathematical material [37].   

However, Accurate auto-scoring of self-explanations in mathematical education is challenging 
due to the time-intensive creation of quality explanations and the contrast between available data 
and the need of robust scoring models [13,14,24]. To address the data gap in auto-scoring self-
explanations for mathematical education, our study introduces a semi-supervised learning method, 
drawing from the Japanese LLM version. By merging unlabeled data from both the LLM and 
mathematical material datasets, we aim to enhance the accuracy of automated assessments. Our focus 
is uniquely on mathematics education, utilizing the Japanese LLM, which is fine-tuned for the 
intricacies of the Japanese language and math-related challenges. 

3. Problem Setting: The Learning Task 

In this chapter, we primarily introduce the original human-labeled data, which serves as a 
foundation for the subsequent pseudo-labeling of the unlabeled samples, thereby bolstering the 
training process. Prior to delving into methodological details, it is pivotal to define the distinct 
learning task under examination, which underpins our methodological foundation. 

3.1. Collecting Self-Explanations 

Self-explanations from learners are gathered via online platforms, as represented in Figure 1. 
The scope of this approach includes diverse mathematical challenges or quizzes that require written 
elaboration. We utilized the LEAF platform [38], composed of BookRoll (a digital reading 
application), and LAViEW (a tool for learning analytics), enabling students and teachers to monitor 
and reflect on their educational progress. This platform, having been successfully implemented in a 
Japanese secondary school for several years, captures handwritten responses in vector form, 
portraying the precise coordinates and velocity of each pen stroke. 

The learners interacted with the quiz and recorded their answers using a tablet computer, 
employing a stylus for handwriting. As shown in Figure 1, the handwritten answer playback and 
self-explanation input process require students to input an explanation sentence after completing a 
step of their answer during playback.   
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Figure 1. Handwritten answer review playback and self-explanation input user interface. The self-
explanation of the answer section includes the following: If triangle ABO's area is 1, then triangle 
AOC's area is 4. Given that the total area is five and straight-line OP bisects the area of triangle ABC, 
the joint area of quadrilateral ABPO and triangle POC is 2/5. Hence, the area ratio of triangle APO to 
triangle POC is 3:5, leading to a length ratio of straight-line AP to straight-line PC of 3:5. 

3.2. Assessment of Self-Explanation Quality 

Self-explanations in our study were assessed based on three main criteria: coherence, clarity, and 
relevance. Specifically, 'coherence' gauges the logical flow of the explanation, 'clarity' measures its 
understandability, and 'relevance' ensures the inclusion of all pertinent knowledge concepts and 
procedural elements. For consistent evaluation, we adapted the rubric and scoring definitions from 
Nakamoto et al. [10], as depicted in Tables 1 and 2, which are well-suited for tasks with varied 
solutions or strategies [39]. Instead of a detailed sentence-by-sentence breakdown, our approach 
evaluates explanations on a holistic, quiz-by-quiz basis, offering a comprehensive insight into the 
learner's understanding of the topic. 

Table 1. Rubrics and a sample answer of self-explanation in a quiz. 

Number Rubric Sample Answer of Self-explanations 

Step 1 
Be able to find the equation of a linear 
function from two points. 

Substituting the y-coordinate of p into the equation 
of the line AC. 

Step 2 
Be able to find the equation of the line 
that bisects the area of a triangle. 

Find the area of triangle ABC, then find the area of 
triangle OPC. 

Step 3 
Be able to represent a point on a 
straight line using letters (P-
coordinates). 

With the line OC as the base, find the y-coordinate 
of p, which is the height. P’s coordinate is (t, -
1/2t+4). 

Step 4 
Be able to represent a point on a 
straight line using letters (Q-
coordinate). 

Since the coordinates of P are (3,5/2), the line OP is 
y=⅚x, and the coordinates of Q are (t,5/6). 

Table 2. Score Grading Definitions. 

Graded Score Description 

1 (Unacceptable) 
The number of steps for which self-explanation is filled in for the steps required 
for the solution is minimal, and there were problematic expressions in the 
students' self-explanation (e.g., mistaken patterns, boredom.) 

2 (Poor) 
self-explanation are mainly provided for the steps required for the solution. Still, 
they are more like bullet points than explanations. 

3 (Fair) 
self-explanation are mainly provided for the steps required for the answer—the 
average self-explanation level among all respondents. 
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4 (Very Good) 
self-explanation are provided for most of the steps required for the answer, but 
there is room for improvement as an explanation (Logic, expressions). 

5 (Excellent) 
self-explanation are mainly provided for the steps required for the answer, and 
the explanation is logical and well-written. 

For the evaluation process, two independent evaluators employed these rubrics to rate the 
collected 2,205 self-explanations, scoring them on a scale ranging from 1 to 5. A quadratic weighted 
Cohen's kappa coefficient [40] of 0.749 between the evaluators indicated a significant level of 
agreement. The subsequent analysis used the mean score derived from both evaluators, which 
categorized the self-explanation scores for a roughly uniform distribution. Descriptive statistics of 
the collected self-explanations are presented in Table 3. 

Table 3. Descriptive Statistics of Graded Self-Explanations. 

Data 

Type 

Num of 

quiz 

Variations of math 

units 

Total 

answers 

Sentence Length 

(Character 

count)  

Quality 

Score 

Mean SD Mean SD 

Train 40 8 1,420 67.8 56.8 2.94 1.34 

Valid 37 8 355 67.3 59.3 2.92 1.31 

Test 8 3 431 63.7 53.2 2.81 1.25 

In anticipation of the machine learning methodologies outlined in the subsequent chapters, our 
dataset was segmented into three distinct categories. The Train dataset, which incorporates 1,420 self-
explanations, forms the fundamental basis for both training our models and for LLM data 
augmentation. Meanwhile, the Valid dataset, comprising 355 self-explanations, is earmarked for the 
crucial tasks of fine-tuning our models' parameters. It also plays a significant role in the evaluation 
of model accuracy and in ensuring model robustness. Lastly, the Test dataset, which consists of 431 
self-explanations, is designated to provide an measure of the performance of our finalized models. 

3.3. The Text Regression Model Description 

Inspired from the work of Wang et al. [41], we employ BERT [42] and a pre-trained BERT 
Japanese model [43] as the backbone for our regression models, which are intended to predict the 
quality scores of self-explanations. Wang et al.'s methodology of injecting rubrics into the system 
influenced the architecture of our model, making it specifically attuned to the grading of short 
responses. BERT's deep learning model, grounded on a transformer architecture, has been recognized 
for surpassing most preceding models in diverse natural language processing tasks [44]. Given its 
robust performance and compatibility with the Japanese language, BERT is an ideal choice for our 
study. Our model takes as input the preprocessed self-explanation text and the corresponding quiz 
title (Figure 2) and yields as output the predicted quality score for each self-explanation. 
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Figure 2. Workflow for the BERT Regression Models. 

4. The Proposed Method 

4.1. Overview or Pseudo Labeling 

In this section, we delve into our proposed method, building on the foundation laid out in 
Section 3. Our approach, illustrated in Figure 3, seamlessly blends human-labeled mathematical text 
data described in Section 3 and LLM-generated data to enhance our machine learning model. 
Drawing from Cascante-Bonilla's semi-supervised framework [25], we utilize pseudo-labeling as our 
primary technique. For human-labeled data, we lean on mathematical self-explanations, while the 
LLM and mathematical content texts help in producing pseudo-labeled samples to complement 
them. We gathered over 1,420 self-explanation samples for training model from undergraduate math 
students, which were further utilized in the Japanese LLM (Step 1).  Figure 3 provides a 
comprehensive visual overview of this pseudo-training mechanism and its integrated phases. 

 

Figure 3. The Overview of Pseudo Training Process. 

The pseudo-labeling technique commences with the training of an initial model using the labeled 
dataset (Step 2). This model then assigns labels to the unlabeled data, producing what we term as 
"pseudo" labels (Step 3). These newly-formed pseudo labels are then amalgamated with the original 
labeled dataset, initiating a cycle of continuous model enhancement (Steps 4-5). As the model's 
predictive prowess escalates, the caliber of the pseudo labels also elevates. 

4.2. Pseudo-Labeling Training Algorithm: Dataset Categorization, Function Definitions, and Model 

Learning 

The former grounds our machine learning training, while the pseudo-labeled versions of the 
latter augment it. Our methodology, illustrated in Figure 3, fuses human and pseudo-labeled 
samples, creating a mathematically relevant dataset. In this pseudo-labeling training algorithm, we 
are working with different types of datasets and functions, defined as follows: 

(1) Dataset Categorization: 
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Hereafter 𝔻𝑡𝑦𝑝𝑒  represents an unlabeled dataset pertaining to a particular 𝑡𝑦𝑝𝑒 , and 𝔻𝑡𝑦𝑝𝑒∗  
does a labeled dataset of the same category as 𝔻𝑡𝑦𝑝𝑒. 𝔻provided is the composite dataset given to the 
model for training and evaluation, which includes the labeled training set  𝔻train∗ , test dataset 𝔻test, 
and the generated unlabeled sample dataset 𝔻sample. 𝔻provided = 𝔻train∗ + 𝔻test + 𝔻sample (1-1) 

(2) Function Definitions: ℳℴ𝒹ℯℓ(𝜃, 𝔻∗) = 𝑀 (2-1) 𝒯ℯ𝓈𝓉(𝑀, 𝔻test) = 𝔻test∗  (2-2) 𝒮ℯℓℯ𝒸𝓉(𝔻, 𝑘) = 𝔻𝑘  (where 𝒮ℯℓℯ𝒸𝓉(𝔻, 𝑛(𝔻))  = 𝔻) (2-3) 

• ℳℴ𝒹ℯℓ(𝜃, 𝔻∗): A function that takes a set of parameters, denoted by 𝜃, and a labeled dataset 𝔻∗ to yield a learned model 𝑀. 
• 𝒯ℯ𝓈𝓉(𝑀, 𝔻test) : A function that accepts a model 𝑀  and a non-labeled test dataset 𝔻test , 

subsequently outputting a labeled test dataset 𝔻test∗ . 
• 𝒮ℯℓℯ𝒸𝓉(𝔻, 𝑘): A function that takes in a dataset 𝔻 and a numerical value 𝑘 where 0 ≤ 𝑘 ≤𝑛(𝔻) (𝑛(𝔻) refers to the total number of data points in dataset 𝔻), outputting a selected subset  𝔻𝑘 ⊆  𝔻 . 

(3) Model Learning and Final Test: 𝑀1 =  ℳℴ𝒹ℯℓ(𝜃, 𝔻train∗ ) (3-1) 𝑀𝑡+1 = ℳℴ𝒹ℯℓ (𝜃, 𝔻train∗ + 𝒮ℯℓℯ𝒸𝓉(𝒯ℯ𝓈𝓉(𝑀𝑡 , 𝔻sample), 𝑘𝑡)) (3-2) 𝔻test∗ =  𝒯ℯ𝓈𝓉(𝑀𝑇, 𝔻test) (where 𝑇 is sufficient number of 𝑡) (3-3) 

The model learning procedure follows an iterative process. Initially, the model 𝑀1 is trained 
using 𝜃 and the labeled training dataset 𝔻train∗ . In each subsequent timestep, a new model 𝑀𝑡+1 is 
developed with an updated training set, comprising the original labeled dataset 𝔻train∗  and a selected 
subset of the pseudo-labeled 𝔻sample. After the model learning process has been iterated 𝑇 times, 
the final model 𝑀𝑇 is evaluated on the original test dataset 𝔻test to output the pseudo-labeled test 
dataset 𝔻test∗ . This dataset, enriched with pseudo labels, serves as a vital resource for subsequent 
analyses and performance evaluations. 

(4) Parameter Setting in Our Study: 

Figure 4 provides a comprehensive outline of our experimental approach. Our dataset consists 
of both human-annotated and unlabeled samples. For the training process, we amassed 2,205 self-
explanation samples from student contributors. In our setting, 𝜃  stands for a model built using 
logistic regression with text representation acquired from BERT, a state-of-the-art transformer-based 
model renowned for its superior performance on numerous NLP tasks. The iterative process 
continues for 3 timesteps, in other words, 𝑇 is set to 3. The selection size at each timestep 𝑡, denoted 
by 𝑘𝑡, varies as follows: 𝑘1 is equal to the total number of data points in 𝔻sample, such as: 𝑛(𝔻sample), 
whereas for the second time step 𝑘2 could be any one of the following: 128, 256, 512, 1024, 2048, or 
4096. To distinguish them, we defined the (𝑡 + 1)th model, which is the same as 𝑀𝑡+1 in formulae 
3-2, that was learning with selected 𝑘𝑡 training data as 𝑀𝑡𝑘𝑡 . The following formula represents the 
concrete model learning method in the study: 𝑀1 =  ℳℴ𝒹ℯℓ(𝜃, 𝔻train∗ ) (4-1) 𝑀2 = ℳℴ𝒹ℯℓ (𝜃, 𝔻train∗ + 𝒮ℯℓℯ𝒸𝓉(𝒯ℯ𝓈𝓉(𝑀1, 𝔻sample), 𝑛(𝔻sample))) (4-2) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2023                   doi:10.20944/preprints202308.2098.v1

https://doi.org/10.20944/preprints202308.2098.v1


 8 

 

𝑀32𝑖+7 = ℳℴ𝒹ℯℓ (𝜃, 𝔻train∗ + 𝒮ℯℓℯ𝒸𝓉(𝒯ℯ𝓈𝓉(𝑀2, 𝔻sample), 2𝑖+7)) (where 0 ≤ 𝑖 ≤ 5) (4-3) 

𝔻test∗ =  𝒯ℯ𝓈𝓉 (𝑀32𝑖+7 , 𝔻test) (where 0 ≤ 𝑖 ≤ 5) (4-4) 

 

Figure 4. The Detail of Pseudo Training Process. 

4.3. Pseudo Data Preparation: LLM Usage and Mathematical Material 

We employed a pseudo-labeling technique to enrich our dataset, sourcing additional self-
explanation data via the Japanese LLM and mathematical material. 

Given alternatives such as OpenAI's GPT-3 [18], our preference leaned towards CyberAgent's 
LLM [16] due to its open-source availability and its adeptness in the Japanese language, perfectly 
complementing our dataset. To gather data, the LLM tackled mathematical contexts and formulated 
pertinent explanations. Our methodology was as follows: 

• Random Data Selection: We began our process by randomly selecting 30% from our human-
labeled training dataset to capitalize on the rich diversity of student-generated self-explanations. 

• Keyword Extraction: Ten keywords were extracted from each self-explanation, encapsulating 
its essence, guiding LLM to produce contextually relevant data. 

• LLM Generation: LLM Generation: Armed with the extracted keywords, we then proceeded to 
prompt the LLM [45]. Specifically, each set of 10 keywords was used as seed input, directing the 
LLM to generate contextually coherent pseudo-self-explanation data. The model was given a 
directive to "elaborate based on the provided keywords," ensuring the generated content-
maintained relevance to the original self-explanation context. 

Approximately 19,000 entries were generated, with a random subset of 4,096 used for 
experiments. This combination of pseudo and human-labeled data broadened our training set, 
enhancing the automated scoring system's performance without compromising quality. 

We also leveraged the Math Quiz Texts dataset, populated with standard mathematical 
solutions. Its rich mathematical material and contextual problem-solving methods made it invaluable 
for generating mathematical self-explanations. 

4.4. Comparative Analysis of Original and LLM-Generated Dataset 

In Table 4 and Figure 5, a detailed comparative analysis between the original and the 
synthetically generated datasets is elucidated. Upon examination, it becomes evident that the 
augmented datasets exhibit a modest augmentation in their average quality metrics relative to the 
foundational dataset. 
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Figure 5. Boxplots of Self-explanation Scores. 

Table 4. Comparative Metrics for Original and Generated Datasets. 

Data type Counts Mean Score Std 

Original 2,205 2.91 1.33 

LLM 4,096 3.39 1.44 

Math 4,096 3.87 1.77 

Table 6. LLM Generated Samples. 

LLM Generated Texts 

(Original) 
LLM Generated Texts (English Translated) 

Predicted Self-

Explanation Score 

その後、α+β=-a-
2とαβ=2aの関係から解と係
数の関係が分かる。次に、問

題で言及されたαとβを用い
て式を展開し整理し、右辺を

0にする。さらに式を工夫し
て代入が可能な形にする。そ

して、関係式α+β=-a-
2とαβ=2aを式に代入して簡
略化し、a^2+a-
6=0となる。これを因数分解
してaの解を求めると、a=-
3とa=2が得られる。その後、
a=2を代入すると解が重解に
なり、解が一つしかなくなる

ため問題に合わない。したが

って、正しい答えはa=-
3である。その後、重積算や
累乗などいろいろな計算が解

に出てきて混乱するだろうか

ら丁寧に説明していく。 

After that, α+β=-a-2 and αβ=2a can be 
understood from the relationship between the 
solutions and coefficients. Next, expand and 
organize the expressions using the α and β 
mentioned in the problem, and set the right side 
to 0. Further manipulate the equation to get it 
into a form that allows for substitution. Then, 
substitute the relationship α+β=-a-2 and αβ=2a 
into the equation and simplify it, resulting in 
a2+a-6=0. Factorize this to find the solutions for 
a, which are a=-3 and a=2. Afterward, when a=2 
is substituted, the answer becomes a repeated 
root, which means there is only one solution, 
making it inconsistent with the problem. 
Therefore, the correct answer is a=-3. Afterward, 
various calculations such as product of roots 
and exponentiation may appear in the solution, 
and it may be confusing, so I will explain it 
carefully. 

5.00 

代入してみたら、平方根の中

が計算できた。αとβを求め
た。αに-

Substituted it into the formula for solutions. 
Calculated the value inside the square root. 
Found α and β. Substituted α=-2. Examined the 

4.08 
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2を代入した。解を吟味して
、答えは-
3だった。その後、a=-
4.7x^5+7として計算したが誤
差があった。そこで右側の5
を左側の4に変形すると正し
い値が求められた（ただし小

数点以下を切り捨て）。この

問題は高校数学の範囲外であ

るが、中学・高校で習った知

識で解くことができたので紹

介したい。 

solution, and the answer was -3. Afterward, 
calculated it as a=-4.7x^5+7, but there was an 
error. So I rearranged the 5 on the right side to 4, 
and the correct value was obtained (with the 
decimal part truncated). This problem is beyond 
the scope of high school mathematics, but it 
could be solved using knowledge learned in 
middle and high school, so I want to introduce 
it. 

グラフを書いた傾きがー4のy
=x^2の接線を求めた。その後
、接点を原点とし両辺に点a,
bを代入すると「sin-
cos」と出たので、「COS(1)
」で求めた。これで式の意味

が分かったと思う。-
5は角度が変化しないからゼ
ロでないといけないのだ！ 

Used the slope obtained from graphing to find 
the tangent of y=x^2 with slope -4. Took the 
point of tangency as the origin and substituted 
points a and b on both sides. 'Sin-cos' was 
obtained, so I calculated it using 'COS(1)'. I think 
I understood the meaning of the equation now. -
5 does not change the angle, so it must be 
nonzero! 

3.02 

x=3を代入する。方程式を解
き進める。解の吟味を書く。

間違いに気づき、修正する。

最終的な答えを書く。その後

、再帰的に解く。 

Substituted x=3. Proceeded to solve the 
equation. Wrote the examination of the 
solutions. Noticed the mistake and corrected it. 
Wrote the final answer. Afterward, solve it 
recursively. 

2.18 

前のは間違えたため、全部消

した。その後、通分してみた

。 

Since the previous one was incorrect, I deleted 
everything and then performed the common 
denominator. Afterwards, something like this. 

1.23 

Table 7. Math Texts samples. 

Math Texts 
Predicted Self-

Explanation 

Score 

Angle bisector and ratio, using Ceva's theorem: Revised version Succeed Math A 
problem 349 △, let △ have the angle bisector of ∠ and the point where it 
intersects the side , and the point that divides the side in the ratio : . When the 
line intersects at point , find the length of the side . 

5.00 

Using Menelaus's theorem: Segment ratio and area ratio, Revised version 
Succeed Math A problem 350 △, let be the point where it divides the side in the 
ratio : , and the point where the segment is divided in the ratio : , and the point 
where the extension of the segment intersects the side . Find the following 
segment ratios and area ratios: : : △ : △ : : : 

4.93 

Using the relationship between sides and angles: Range of values for side length 
in a triangle, Revised version Succeed Math A problem 355, determine the range 
of values for so that a triangle with the following side lengths exists: , , , . 

3.84 

Using the relationship between the sizes of three sides: Proving inequalities 
related to segment lengths, Revised version Succeed Math A important example 
66, take point inside △, and join , , and . Prove that . Abbreviated. 

3.13 
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Examining the sizes of the three angles of a triangle, Revised version Succeed 
Math A important example 64, examine the sizes of the three interior angles of △ 
. 

2.66 

5. Experiments and Evaluations 

5.1. Exploring the Influence of Self-Explanation Augmentation on Model Efficiency 

We embarked on an exploration to discern the influence of self-explanation augmentation on 
the efficiency of an automated self-explanation scoring model across diverse datasets. We used the 
Mean Absolute Error (MAE) metrics [46,47] to evaluate model performance, giving insights into the 
extent of error deviation and the efficacy for individual items. Tables 8 and 9 lay out the results of 
our experiments, contrasting performance across different dataset permutations. When we 
introduced augmented datasets into the mix, distinct variations in performance emerged. 

Table 8. Datasets Overview. 

Dataset base_line LLM math mixed only_LLM_math 

Original 
(N=1,420) 

〇 〇 〇 〇  

LLM- 
generated  
(N=4,096) 

 〇  〇 〇 

Math texts 
(N=4,096) 

  〇 〇 〇 

Total Number of Data 1,420 5,516 5,516 9,612 8,192 

Table 9. Model Performance for Various Datasets (MAE). 

Data Type base_line LLM math mixed only_LLM_math 

Test 0.749 0.699 0.646 0.692 1.135 

Val 0.602 0.341 0.358 0.336 1.033 

Remarkably, our model, when nurtured with a blend of the 'math' and 'original dataset', 
consistently delivered the most desirable MAE results. This underlines its superior predictive 
precision in assessing self-explanation quality. Such results lend credence to the efficacy of the model 
when trained with this specific data amalgamation. On another note, the 'mixed' model – which 
weaves together human-graded samples, LLM-crafted pseudo-sentences, and mathematical content 
– also demonstrated notable improvements. This outcome underscores the model's robustness and 
flexibility when fed with diverse data sources. Yet, the model named 'only_LLM_math', which 
exclusively depended on LLM-created sentences, trailed behind the foundational model in terms of 
performance. This observation underscores the criticality of harmonizing human-judged and 
machine-produced data to achieve optimal results. 
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5.2. Evaluating Optimal Quantity of Pseudo-Self-Explanation Data 

Tables 10 and 11 shed lights on determining the optimal quantity of pseudo-self-explanation 
data that improves model performance most effectively. The 'baseline' row signifies the MAE when 
the model is trained only on the original dataset, devoid of any pseudo-self-explanation data. Each 
subsequent row shows the MAE when the model is trained with an increasing volume of pseudo-
self-explanation data, ranging from 128 to 4,096 datasets. 

Table 10. Test MAE with Varying Amounts of Added Pseudo-Self-Explanation Data. 

Dataset 
Number of datasets added 

128 256 512 1024 2048 4096 

base_line 0.75 

LLM 0.67 0.63 0.72 0.72 0.71 0.7 

math 0.64 0.66 0.67 0.64 0.65 0.65 

mixed 0.68 0.66 0.71 0.68 0.73 0.69 

only_LLM_math 1.19 0.96 1.02 0.89 1.15 1.14 

Table 11. Validation MAE with Varying Amounts of Added Pseudo-Self-Explanatory Data. 

Dataset 
Number of datasets added 

128 256 512 1024 2048 4096 

base_line 0.60 

LLM 0.57 0.35 0.51 0.49 0.40 0.34 

math 0.40 0.50 0.43 0.35 0.40 0.36 

mixed 0.59 0.32 0.52 0.44 0.40 0.34 

only_LLM_math 1.19 0.90 0.96 0.81 1.02 1.03 

Upon examining the 'LLM' model, we note an enhancement in performance when the added 
datasets increase from 128 to 256. Beyond this, further addition of generated data does not 
significantly reduce the MAE, suggesting an optimal balance between data augmentation and model 
efficacy with an addition of 256 datasets. The 'math' model displays a similar trend, with the lowest 
MAE achieved when 1,024 datasets are added. Beyond this point, no substantial performance 
enhancement is observed with extra data.  

For the 'mixed' model, we see a consistent improvement in performance with increased data, 
but this plateaus beyond 2,048 datasets, where the MAE slightly increases. Conversely, the 
'only_LLM_math' model shows erratic trends. Its performance varies noticeably with the quantity of 
added data and consistently exceeds the baseline model's MAE, regardless of the added data volume. 
This reveals potential difficulties when exclusively relying on generated pseudo-self-explanation 
data. 
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Figure 6. Test MAE plot. 

 

Figure 7. Validation MAE Plot. 

6. Discussion 

6.1. Detailed Analysis of Results (RQ1) 

Regarding Research Question 1, an in-depth analysis of the results displayed in Table 8 reveals 
several noteworthy observations regarding the influence of self-explanation augmentation on the 
model's performance. In the test category, we observe an improvement in the model's performance 
when transitioning from the baseline to the LLM and math models. Notably, the math model achieves 
the lowest MAE at 0.646 , which aligns with Dai et al. [36] 's proposition that data augmentation at 
the semantic level improves robustness and consistency. However, the performance slightly 
deteriorates in the mixed model and substantially plummets in the 'Only LLM Math' model. This 
suggests that an excessive concentration of LLM-generated self-explanations could impair the 
model's predictive proficiency. 

A similar pattern emerges when examining individual topics within the 'Test' category. For 
instance, the model delivers optimal performance for 'Quadratic Equations' with the LLM-generated 
model, but the performance markedly deteriorates when solely relying on LLM-generated self-
explanations. The validation category follows a similar trajectory, with the LLM, math, and mixed 
models outshining the baseline model. Once again, the mixed model achieves the smallest error. 
However, the 'Only LLM Math' model experiences a decline in performance, further highlighting the 
advantages of using a diverse dataset that encompasses both human-evaluated and machine-
generated explanations. 
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6.2. Findings and Observations (RQ2) 

Regarding Research Question 2, the results presented in Table 5 provide valuable insights into 
determining the optimal quantity of generated pseudo-self-explanation data that can enhance the 
model's performance. For the 'LLM' model, an initial improvement in model performance is observed 
as the number of added datasets increases from 128 to 256. Beyond this point, further augmentation 
of the generated data does not lead to a significant reduction in MAE, suggesting that adding 256 
datasets strikes an optimal balance between data augmentation and model performance. 

The 'math' model exhibits a similar pattern, with the lowest MAE observed when 1,024 datasets 
are added, and no significant performance improvements resulting from further data augmentation. 
The 'mixed' model, on the other hand, shows a general trend of performance enhancement with 
increased data augmentation, up to a threshold of 2,048 datasets, beyond which the MAE slightly 
increases. 

In contrast, the 'only_LLM_math' model does not present a consistent trend. Its performance 
fluctuates significantly as the volume of added data increases, and its MAE consistently surpasses 
that of the baseline model, regardless of the amount of added data. This underscores the challenges 
of solely leveraging generated pseudo-self-explanation data for augmentation, particularly when the 
model might lack domain-specific expertise, echoing concerns raised by Dai et al.[36]. 

In conclusion, while data augmentation with generated pseudo-self-explanation data can 
enhance model performance, our study suggests that there is a limit beyond which additional data 
does not lead to further performance improvements. This limit appears to vary depending on the 
specifics of the model and the nature of the generated data. These findings underscore the need for 
careful, context-dependent optimization when applying data augmentation strategies in the 
development of self-explanation auto-scoring models. 

6.3. Limitations and Future Research 

In our research, several limitations of our study should be highlighted. 

• Subject Scope: Our dataset is restricted to mathematics, potentially constraining the 
generalizability of our findings to other subjects. 

• Dependency on LLM: Our methodology hinges on the LLM's ability to generate pseudo-self-
explanation data. This dependence may introduce noise and errors into our system. 

• Data Quality and Representativeness: The performance of our approach is contingent on the 
quality and representativeness of labeled data. Poor or biased data could compromise model 
efficacy. 

• Model Performance Variability: We identified noticeable disparities in our model's 
performance across various mathematical categories. For instance, it predicted 'Property of a 
Circle' (0.242) more accurately than 'Quadratic Functions' (0.419) within the validation datasets. 
These results indicate that self-explanation augmentation's effectiveness may be influenced by 
the inherent complexity of a topic and the linguistic nuances present within the self-
explanations. 

• Evaluation Dataset Categories and Size: The evaluation dataset for some categories is 
comparatively small, which poses challenges in drawing definitive conclusions. It's essential to 
consider the ease of inference as it pertains to various mathematical concepts, including linear 
functions, shapes, equations, and square roots. Certain subjects may be inherently more 
challenging for machine training due to their linguistic or conceptual intricacies. 

In-depth research is paramount to address these limitations, we should study how complex 
topics and language use in self-explanations relate. It's also important to reduce errors from machine-
made data, ensure our data is good quality, and find the best ways to improve our data for different 
situations. By doing this, we can make our learning method for scoring self-explanations much better 
and more reliable. 
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