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Abstract: In the realm of mathematics education, self-explanation stands as a crucial learning mechanism,
allowing learners to articulate their comprehension of intricate mathematical concepts and strategies. As digital
learning platforms grow in prominence, there are mounting opportunities to collect and utilize mathematical
self-explanations. However, these opportunities are met with challenges in automated evaluation. Automatic
scoring of mathematical self-explanations is crucial for preprocessing tasks, including the categorization of
learner responses, identification of common misconceptions, and the creation of tailored feedback and model
solutions. Nevertheless, this task is hindered by the dearth of ample sample sets. Our research introduces a
semi-supervised technique using the Language Learning Model (LLM), specifically its Japanese variant, to
enrich datasets for the automated scoring of mathematical self-explanations. We rigorously evaluated the
quality of self-explanations across five datasets, ranging from human-evaluated originals to ones devoid of
original content. Our results show that combining LLM-based explanations with mathematical material
significantly improves the model's accuracy. Interestingly, there's an optimal limit to how much synthetic self-
explanation data can benefit the system. Exceeding this limit doesn't further improve outcomes. This study
thus highlights the need for careful consideration when integrating synthetic data into solutions, especially
within the mathematics discipline.

Keywords: self-explanation; automated scoring; semi-supervised learning; Language Learning
Model (LLM); data augmentation

1. Introduction

The emergence of digital learning platforms has opened a plethora of opportunities for
researchers to investigate and comprehend learning behaviors through abundant system interaction
data [1]. A notable area of interest among various learning facets is self-explanation, identified as a
robust active learning technique. This strategy has been particularly effective in bolstering
comprehension in subjects like mathematics [1-3]. Self-explanation can be described as a mechanism
where learners articulate explanations, elucidate concepts, expand on methods, and immerse in
problem-solving to enhance their grasp and absorb fresh insights [4,5].

With the proliferation of computer-driven learning platforms, self-explanation has gained
renewed attention and application. Contemporary learning innovations place a premium on self-
explanation by crafting intuitive interfaces, creating assessment models rooted in self-explanation
behaviors, and formulating tactics to extract profound self-explanations [6,7]. Tools like the one
formulated by Crippen and Earl [8] highlight the centrality of self-explanation in methodical
problem-solving. Ongoing studies persistently explore the versatile applications of self-explanation
in education [9,10], like the adoption of template-driven self-explanations. Such templates equip
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learners with pre-set frameworks, serving as built-in guides to bolster their explanation processes
[1,11,12].

Furthermore, the domain of self-explanation practices reaches beyond traditional boundaries.
These methods involve understanding a concept and facilitating multiple educational tools such as
feedback systems, crafting practice quiz responses, and generating valuable datasets for automated
evaluations [10]. Within this framework, automated assessments play a pivotal role. By analyzing
and interpreting self-explanations, both educators and automated systems can delve deeper into the
intricacies of a learner's thought patterns. This knowledge equips them with the capability to tailor
educational strategies to better cater to individual needs. Such insights are crucial for tasks like
classifying learner responses, which provide a clear view of their comprehension levels. Additionally,
they allow for the easy detection of recurring mistakes or topics that consistently stump students
[9,10].

However, devising a system capable of automatically grading diverse styles of self-explanation
is challenging. A major concern is that self-explanation, due to its time-intensive nature [13], poses a
feasibility issue for mass data collection. Additionally, crafting a quality self-explanation requires
proficiency in both the specific subject matter and general writing [14,15]. Given these challenges,
amassing a vast and diverse collection of self-explanation samples is demanding. This predicament
further complicates the development of systems designed to aid learning through extensive sets of
self-explanation examples.

To address these challenges and enhance automated scoring of self-explanations, we propose a
semi-supervised approach that leverages the LLM. While popular LLMs such as OpenAl's GPT-3 [18]
are commonly employed in English language settings, due to the nature of the target problem we
specifically focus on the Japanese variant of the model developed by CyberAgent [16], based on GPT-
NeoX [17]. This approach aims to explore the model's potential for generating self-explanation
sentences, which will serve as the foundation for our regression models designed to predict self-
explanation scores. By incorporating the semi-supervised methodology and leveraging advanced
language models, we aim to improve the accuracy and effectiveness of auto-scoring in the self-
explanation learning domain. Our research is anchored by two pivotal questions:

RQ1: To what extent can the integration of self-explanations generated by the LLM Japanese
model and mathematical material be used to enhance the accuracy of the predictive regression model
for self-explanation scores?

RQ2: What is the optimal quantity of artificially generated pseudo-self-explanation data
required to effectively improve the predictive performance of the model?

These research questions provide insights into maximizing the utility of the LLM Japanese
model and refining data augmentation techniques. The core findings from our research are twofold.
First, we propose a strategy for advancing automated scoring in math education by synergizing LLM-
generated content and mathematical material. Second, we highlight the ideal quantity of artificial
self-explanation data for peak predictive accuracy.

2. Related Work

2.1. Automated Scoring of Self-Explanations: The Imperative for Rich Data

Self-explanation, widely recognized for amplifying learning outcomes in various fields, notably
mathematics, has found its stride in the digital learning milieu [1,4,5]. Emblematic tools like the
iSTART tutoring system have been devised to foster and elevate learners' grasp and performance
[19]. Such platforms urge students to think critically, mirroring the analytical strategies of experts.
Notably, the iSTART system utilizes Natural Language Processing (NLP) in its pioneering approach
to gauge and rate self-explanations, bolstering understanding across a gamut of texts.

The endeavor to automate the scoring of self-explanation quality has seen the integration of NLP
tools and cutting-edge neural network architectures [20]. Techniques like Latent Semantic Analysis
(LSA) and Recurrent Neural Network (RNN) interfaced with machine learning, underscore the
capabilities of automated systems, often outshining traditional manual evaluation in both
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effectiveness and efficiency [14,20-24]. Furthermore, semi-supervised learning techniques, which
capitalize on abundant unlabeled data, have exhibited the potential in refining scoring accuracy [25].
Yet, the quest for more representative samples of self-explanations, especially in languages other than
English, remains a prevailing challenge.

2.2. Augmenting Mathematical Self -Explanations Using Large Language Models

There is a growing interest and need in using synthetic data for various applications. Synthetic
data has emerged in various domains, presenting dual benefits: expanding the scope of training data
and ensuring data privacy [26-29]. El Emam [30] highlighted the virtues of synthetic data, paving the
way for integrating LLMs. Although there's an abundance of generic synthetic data tools and those
crafted for spatiotemporal data [31,32], their effectiveness often dwindles when faced with complex,
domain-centric data architectures. In learning analytics, the application of synthetic data often
stumbles, particularly in the prediction of student outcomes [33-35]. LLMs, in light of their recent
advancements, are gaining recognition as powerful agents for text data augmentation. This is
exemplified by Dai et al.'s AugLLM [36], which utilizes ChatLLM [18] to generate supplemental text
entries, enriching the dataset. There's a noticeable uptick in research delving into the nexus between
LLMs and mathematical material [37].

However, Accurate auto-scoring of self-explanations in mathematical education is challenging
due to the time-intensive creation of quality explanations and the contrast between available data
and the need of robust scoring models [13,14,24]. To address the data gap in auto-scoring self-
explanations for mathematical education, our study introduces a semi-supervised learning method,
drawing from the Japanese LLM version. By merging unlabeled data from both the LLM and
mathematical material datasets, we aim to enhance the accuracy of automated assessments. Our focus
is uniquely on mathematics education, utilizing the Japanese LLM, which is fine-tuned for the
intricacies of the Japanese language and math-related challenges.

3. Problem Setting: The Learning Task

In this chapter, we primarily introduce the original human-labeled data, which serves as a
foundation for the subsequent pseudo-labeling of the unlabeled samples, thereby bolstering the
training process. Prior to delving into methodological details, it is pivotal to define the distinct
learning task under examination, which underpins our methodological foundation.

3.1. Collecting Self-Explanations

Self-explanations from learners are gathered via online platforms, as represented in Figure 1.
The scope of this approach includes diverse mathematical challenges or quizzes that require written
elaboration. We utilized the LEAF platform [38], composed of BookRoll (a digital reading
application), and LAVIiEW (a tool for learning analytics), enabling students and teachers to monitor
and reflect on their educational progress. This platform, having been successfully implemented in a
Japanese secondary school for several years, captures handwritten responses in vector form,
portraying the precise coordinates and velocity of each pen stroke.

The learners interacted with the quiz and recorded their answers using a tablet computer,
employing a stylus for handwriting. As shown in Figure 1, the handwritten answer playback and
self-explanation input process require students to input an explanation sentence after completing a
step of their answer during playback.
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Figure 1. Handwritten answer review playback and self-explanation input user interface. The self-
explanation of the answer section includes the following: If triangle ABO's area is 1, then triangle
AOC's area is 4. Given that the total area is five and straight-line OP bisects the area of triangle ABC,
the joint area of quadrilateral ABPO and triangle POC is 2/5. Hence, the area ratio of triangle APO to
triangle POC is 3:5, leading to a length ratio of straight-line AP to straight-line PC of 3:5.

3.2. Assessment of Self-Explanation Quality

Self-explanations in our study were assessed based on three main criteria: coherence, clarity, and
relevance. Specifically, 'coherence’ gauges the logical flow of the explanation, 'clarity’ measures its
understandability, and 'relevance' ensures the inclusion of all pertinent knowledge concepts and
procedural elements. For consistent evaluation, we adapted the rubric and scoring definitions from
Nakamoto et al. [10], as depicted in Tables 1 and 2, which are well-suited for tasks with varied
solutions or strategies [39]. Instead of a detailed sentence-by-sentence breakdown, our approach
evaluates explanations on a holistic, quiz-by-quiz basis, offering a comprehensive insight into the
learner's understanding of the topic.

Table 1. Rubrics and a sample answer of self-explanation in a quiz.

Number Rubric Sample Answer of Self-explanations
Step 1 Be able to find the equation of a linear Substituting the y-coordinate of p into the equation
function from two points. of the line AC.
Be able to find the equation of the line Find the area of triangle ABC, then find the area of
Step 2 . . .
that bisects the area of a triangle. triangle OPC.
Be able to represent a point on a With the line OC as the base, find the y-coordinate
Step 3 straight line using letters (P- of p, which is the height. P’s coordinate is (t, -
coordinates). 1/2t+4).

Be able to represent a point on a
Step 4 straight line using letters (Q-
coordinate).

Since the coordinates of P are (3,5/2), the line OP is
y=%x, and the coordinates of Q are (t,5/6).

Table 2. Score Grading Definitions.

Graded Score Description

The number of steps for which self-explanation is filled in for the steps required
1 (Unacceptable) for the solution is minimal, and there were problematic expressions in the
students' self-explanation (e.g., mistaken patterns, boredom.)

self-explanation are mainly provided for the steps required for the solution. Still,

2 (Poor) they are more like bullet points than explanations.

self-explanation are mainly provided for the steps required for the answer —the

3 (Fair) average self-explanation level among all respondents.
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self-explanation are provided for most of the steps required for the answer, but

4 (Very Good
(Very ) there is room for improvement as an explanation (Logic, expressions).

self-explanation are mainly provided for the steps required for the answer, and

5 (Excellent) the explanation is logical and well-written.

For the evaluation process, two independent evaluators employed these rubrics to rate the
collected 2,205 self-explanations, scoring them on a scale ranging from 1 to 5. A quadratic weighted
Cohen's kappa coefficient [40] of 0.749 between the evaluators indicated a significant level of
agreement. The subsequent analysis used the mean score derived from both evaluators, which
categorized the self-explanation scores for a roughly uniform distribution. Descriptive statistics of
the collected self-explanations are presented in Table 3.

Table 3. Descriptive Statistics of Graded Self-Explanations.

Sentence Length

Quality
Data Num of Variations of math Total (Character Score
Type quiz units answers count)
Mean SD Mean  SD
Train 40 8 1,420 67.8 56.8 2.94 1.34
Valid 37 8 355 67.3 59.3 2.92 1.31
Test 8 3 431 63.7 53.2 2.81 1.25

In anticipation of the machine learning methodologies outlined in the subsequent chapters, our
dataset was segmented into three distinct categories. The Train dataset, which incorporates 1,420 self-
explanations, forms the fundamental basis for both training our models and for LLM data
augmentation. Meanwhile, the Valid dataset, comprising 355 self-explanations, is earmarked for the
crucial tasks of fine-tuning our models' parameters. It also plays a significant role in the evaluation
of model accuracy and in ensuring model robustness. Lastly, the Test dataset, which consists of 431
self-explanations, is designated to provide an measure of the performance of our finalized models.

3.3. The Text Regression Model Description

Inspired from the work of Wang et al. [41], we employ BERT [42] and a pre-trained BERT
Japanese model [43] as the backbone for our regression models, which are intended to predict the
quality scores of self-explanations. Wang et al.'s methodology of injecting rubrics into the system
influenced the architecture of our model, making it specifically attuned to the grading of short
responses. BERT's deep learning model, grounded on a transformer architecture, has been recognized
for surpassing most preceding models in diverse natural language processing tasks [44]. Given its
robust performance and compatibility with the Japanese language, BERT is an ideal choice for our
study. Our model takes as input the preprocessed self-explanation text and the corresponding quiz
title (Figure 2) and yields as output the predicted quality score for each self-explanation.
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4. The Proposed Method

4.1. Overview or Pseudo Labeling

In this section, we delve into our proposed method, building on the foundation laid out in
Section 3. Our approach, illustrated in Figure 3, seamlessly blends human-labeled mathematical text
data described in Section 3 and LLM-generated data to enhance our machine learning model.
Drawing from Cascante-Bonilla's semi-supervised framework [25], we utilize pseudo-labeling as our
primary technique. For human-labeled data, we lean on mathematical self-explanations, while the
LLM and mathematical content texts help in producing pseudo-labeled samples to complement
them. We gathered over 1,420 self-explanation samples for training model from undergraduate math
students, which were further utilized in the Japanese LLM (Step 1). Figure 3 provides a
comprehensive visual overview of this pseudo-training mechanism and its integrated phases.

Human Labeled Samples  |nitial Model
m - - Repeat steps (3) through (5) with a new model
@ oo : M
[ [ (2)Train
Train datasets Human labeled Samples
e ]
Unlabeled Samples Pseudo IaPeIed Samples
L]
Ll L
i ‘e ®  (4)Select TP (5)Re-Train "
(3)Predict L XX )Selec e @', —
L e : e-traine
/ \ (1)Generated peeudo Model
IEI Q labeled Samples
Math text LLM

Figure 3. The Overview of Pseudo Training Process.

The pseudo-labeling technique commences with the training of an initial model using the labeled
dataset (Step 2). This model then assigns labels to the unlabeled data, producing what we term as
"pseudo" labels (Step 3). These newly-formed pseudo labels are then amalgamated with the original
labeled dataset, initiating a cycle of continuous model enhancement (Steps 4-5). As the model's
predictive prowess escalates, the caliber of the pseudo labels also elevates.

4.2. Pseudo-Labeling Training Algorithm: Dataset Categorization, Function Definitions, and Model
Learning

The former grounds our machine learning training, while the pseudo-labeled versions of the
latter augment it. Our methodology, illustrated in Figure 3, fuses human and pseudo-labeled
samples, creating a mathematically relevant dataset. In this pseudo-labeling training algorithm, we
are working with different types of datasets and functions, defined as follows:

(1) Dataset Categorization:
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Hereafter D.,,, represents an unlabeled dataset pertaining to a particular type, and Dz,
does a labeled dataset of the same category as Dyype. Dprovided 18 the composite dataset given to the
model for training and evaluation, which includes the labeled training set Dj,i,, test dataset Dyegt,
and the generated unlabeled sample dataset Dg,mpie-

]D)provided = Dirain + Diest + ID)sample (1-1)
(2) Function Definitions:
Modet(6,D*) =M (2-1)
Test(M, ]D)test) = Diest (2-2)
Setect(D, k) = Dy (where Sefect(]])),n(]])))) = ]D)) (2-3)

o Modetf(6,D"): A function that takes a set of parameters, denoted by 6, and a labeled dataset
D* to yield a learned model M.

o Test(M,Dyg): A function that accepts a model M and a non-labeled test dataset Dyegt,
subsequently outputting a labeled test dataset Dfqg;.

o Sefect(D,k): A function that takes in a dataset D and a numerical value k where 0 < k <
n(D) (n(D) refers to the total number of data points in dataset D), outputting a selected subset
D,c D .

(3) Model Learning and Final Test:

M, = Modet(6, D} ) (3-1)
Meyy = Modet (8, Dy, + Setect (Test (M, Dogmpe), ke)) (3-2)
Diest = Test(My, Diesr) (Where T is sufficient number of t) (3-3)

The model learning procedure follows an iterative process. Initially, the model M, is trained
using 6 and the labeled training dataset Df,;,. In each subsequent timestep, a new model M;, is
developed with an updated training set, comprising the original labeled dataset Dy.,;, and a selected
subset of the pseudo-labeled Dgympie. After the model learning process has been iterated T times,
the final model My is evaluated on the original test dataset Do to output the pseudo-labeled test
dataset Df.. This dataset, enriched with pseudo labels, serves as a vital resource for subsequent
analyses and performance evaluations.

(4) Parameter Setting in Our Study:

Figure 4 provides a comprehensive outline of our experimental approach. Our dataset consists
of both human-annotated and unlabeled samples. For the training process, we amassed 2,205 self-
explanation samples from student contributors. In our setting, 6 stands for a model built using
logistic regression with text representation acquired from BERT, a state-of-the-art transformer-based
model renowned for its superior performance on numerous NLP tasks. The iterative process
continues for 3 timesteps, in other words, T is set to 3. The selection size at each timestep t, denoted
by k;, varies as follows: k; isequal to the total number of data pointsin Dgympe, such as: n(Dgampie),
whereas for the second time step k, could be any one of the following: 128, 256, 512, 1024, 2048, or
4096. To distinguish them, we defined the (t + 1)th model, which is the same as M;,, in formulae
3-2, that was learning with selected k, training data as M,*. The following formula represents the
concrete model learning method in the study:

M, = Modet(8,Diqin) (4-1)

M, = Modet (9, D{rain + Sel’ect(Test(Ml, Dsample), n(]D)sample))) (4-2)
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i+7 i .
M3 = Modet (6, Dy, + Setect (Test(My, Dyampre), 2*7)) (where 0 <i<5)  (4-3)
i+7 i
Diese = Test (M3, Diyt) (where 0 < i < 5) (4-4)
Predict Predict M1283 Predict
—> 256
M, Dla'?‘ph M, —>I8 3 -.,Mka >l
% '_ "Mm‘as .
. * Label . Label 3 -
Train ' Data Train . Data Train with each Final .
T v T ] training data D, Result +
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D —p D +D D — D +D —h—b B 0. Bl
Make N different data ‘D K ey

sets with each set k 2

. .
frain D sample ‘T’x train sample sample ﬁ train sample
D i selecting pk data

=

train

Figure 4. The Detail of Pseudo Training Process.

4.3. Pseudo Data Preparation: LLM Usage and Mathematical Material

We employed a pseudo-labeling technique to enrich our dataset, sourcing additional self-
explanation data via the Japanese LLM and mathematical material.

Given alternatives such as OpenAl's GPT-3 [18], our preference leaned towards CyberAgent's
LLM [16] due to its open-source availability and its adeptness in the Japanese language, perfectly
complementing our dataset. To gather data, the LLM tackled mathematical contexts and formulated
pertinent explanations. Our methodology was as follows:
¢ Random Data Selection: We began our process by randomly selecting 30% from our human-

labeled training dataset to capitalize on the rich diversity of student-generated self-explanations.

e Keyword Extraction: Ten keywords were extracted from each self-explanation, encapsulating
its essence, guiding LLM to produce contextually relevant data.

e  LLM Generation: LLM Generation: Armed with the extracted keywords, we then proceeded to
prompt the LLM [45]. Specifically, each set of 10 keywords was used as seed input, directing the
LLM to generate contextually coherent pseudo-self-explanation data. The model was given a
directive to "elaborate based on the provided keywords," ensuring the generated content-
maintained relevance to the original self-explanation context.

Approximately 19,000 entries were generated, with a random subset of 4,096 used for
experiments. This combination of pseudo and human-labeled data broadened our training set,
enhancing the automated scoring system's performance without compromising quality.

We also leveraged the Math Quiz Texts dataset, populated with standard mathematical
solutions. Its rich mathematical material and contextual problem-solving methods made it invaluable
for generating mathematical self-explanations.

4.4. Comparative Analysis of Original and LLM-Generated Dataset

In Table 4 and Figure 5, a detailed comparative analysis between the original and the
synthetically generated datasets is elucidated. Upon examination, it becomes evident that the
augmented datasets exhibit a modest augmentation in their average quality metrics relative to the
foundational dataset.


https://doi.org/10.20944/preprints202308.2098.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2023 d0i:10.20944/preprints202308.2098.v1

Boxplots of Self-explanation scores of datasets

5 —

Self-explanation Scores

original LLM Math
data_type

Figure 5. Boxplots of Self-explanation Scores.

Table 4. Comparative Metrics for Original and Generated Datasets.

Data type Counts Mean Score Std
Original 2,205 291 1.33
LLM 4,096 3.39 1.44
Math 4,096 3.87 1.77

Table 6. LLM Generated Samples.

LL T Predi -
M Qenemted exts LLM Generated Texts (English Translated) redzcted‘Self
(Original) Explanation Score

Z D&, at+p=-a-

2L ap=2aDER LR L 4% After that, a+p=-a-2 and aff=2a can be

e DORIMR BB, Wiz, [ understood from the relationship between the
BTERSNicakpr A solutions and coefficients. Next, expand and

TR A B LEH L, A% organize the expressions using the a and
0lZ9 5, &6iZ&ETHRkL mentioned inthe problem, and set the right side
TRADHEER T 5D, £ to0. Further manipulate the equation to get it

L <. BfRa+p=-a- into a form that allows for substitution. Then,
2L ap=2a% UM A LT substitute the relationship a+p=-a-2 and ap=2a
Ak L. a™2+a- into the equation and simplify it, resulting in

6=0L 7%, ZHERESSE a2+a-6=0. Factorize this to find the solutions for 5.00
L CafiEZsRdDAH L, a=  a, which are a=-3 and a=2. Afterward, when a=2
3La=23MGHiLd, Dk, issubstituted, the answer becomes a repeated
a=2% WA % LRV EARIZ  root, which means there is only one solution,
7Y | fEN—> L2 < 72 %5 making it inconsistent with the problem.
T=OREIZE D72V, L7225 Therefore, the correct answer is a=-3. Afterward,
> T, ELWE X [Fa=- various calculations such as product of roots
3TH D, £D#%, HIEHES and exponentiation may appear in the solution,
BRRIRENSNASIEFDME and it may be confusing, so I will explain it
CHTE TRELT 2725 9 D> carefully.

OTEICHL TV,

RALTHIZE, FEHROH Substituted it into the formula for solutions.
WEHETE 72, akpaRk®  Calculated the value inside the square root. 4.08
7o all- Found a and . Substituted a=-2. Examined the
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312oTc, TD%, a= error. So I rearranged the 5 on the right side to 4,
4.7x"5+7 L U CEE L7237 and the correct value was obtained (with the
ENd o, £ THMDS5 decimal part truncated). This problem is beyond
w DAL T D EIEL  the scope of high school mathematics, but it
WEDSKR D BTz (7272 L/ could be solved using knowledge learned in
FRLLITF 280 $C) . 2@ middle and high school, so I want to introduce
FIEIZ SR OFHA TH it

DN, P SR TE o A

TR Z LN TEZDOTH

Irirzuy,

777 a2 BFENEHE B —4Dy
=MD RO T, TDH%
CBEREFEURE LlZIZNa,
bR AT 5 L [sin-

cos| &=, [COS(1)
] TRD=, ZNTROER
Nymol=L B, -
SIZAENRENL LRV NLE
TRV EWT RN DTS

Used the slope obtained from graphing to find

the tangent of y=x"2 with slope -4. Took the

point of tangency as the origin and substituted

points a and b on both sides. 'Sin-cos' was 302
obtained, so I calculated it using 'COS(1)". I think

I understood the meaning of the equation now. -

5 does not change the angle, so it must be

nonzero!

x=3Z R AT %, HFIER A Substituted x=3. Proceeded to solve the

xiEd 5, fROWBIEEEL,  equation. Wrote the examination of the
BhEWIZRSX, EIET %, solutions. Noticed the mistake and corrected it. 2.18
A& 2 2 E L, D% Wrote the final answer. Afterward, solve it

. FHRMIICAEL recursively.

AT IXEE 2 72728, 274 Since the previous one was incorrect, I deleted
L7z, =0k, sy L THIZ everything and then performed the common 1.23
0 denominator. Afterwards, something like this.

Table 7. Math Texts samples.

Predicted Self-
Math Texts Explanation
Score

Angle bisector and ratio, using Ceva's theorem: Revised version Succeed Math A
problem 349 A, let A have the angle bisector of £ and the point where it
intersects the side , and the point that divides the side in the ratio : . When the
line intersects at point, find the length of the side .

5.00

Using Menelaus's theorem: Segment ratio and area ratio, Revised version

Succeed Math A problem 350 A, let be the point where it divides the side in the

ratio :, and the point where the segment is divided in the ratio :, and the point 493
where the extension of the segment intersects the side . Find the following

segment ratios and area ratios: :: A: A:::

Using the relationship between sides and angles: Range of values for side length
in a triangle, Revised version Succeed Math A problem 355, determine the range 3.84
of values for so that a triangle with the following side lengths exists:, , , .

Using the relationship between the sizes of three sides: Proving inequalities
related to segment lengths, Revised version Succeed Math A important example 3.13
66, take point inside A, and join, , and . Prove that . Abbreviated.

d0i:10.20944/preprints202308.2098.v1
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Examining the sizes of the three angles of a triangle, Revised version Succeed
Math A important example 64, examine the sizes of the three interior angles of A 2.66

5. Experiments and Evaluations

5.1. Exploring the Influence of Self-Explanation Augmentation on Model Efficiency

We embarked on an exploration to discern the influence of self-explanation augmentation on
the efficiency of an automated self-explanation scoring model across diverse datasets. We used the
Mean Absolute Error (MAE) metrics [46,47] to evaluate model performance, giving insights into the
extent of error deviation and the efficacy for individual items. Tables 8 and 9 lay out the results of
our experiments, contrasting performance across different dataset permutations. When we
introduced augmented datasets into the mix, distinct variations in performance emerged.

Table 8. Datasets Overview.

Dataset base_line LLM math mixed only_LLM_math
Original

(N=1,420) O O O O

LLM-

generated O O O
(N=4,096)

Math texts

(N=4,096) © O O

Total Number of Data 1,420 5,516 5,516 9,612 8,192

Table 9. Model Performance for Various Datasets (MAE).

Data Type base_line LLM math mixed only_LLM_math
Test 0.749 0.699 0.646 0.692 1.135
Val 0.602 0.341 0.358 0.336 1.033

Remarkably, our model, when nurtured with a blend of the 'math' and 'original dataset',
consistently delivered the most desirable MAE results. This underlines its superior predictive
precision in assessing self-explanation quality. Such results lend credence to the efficacy of the model
when trained with this specific data amalgamation. On another note, the 'mixed’ model — which
weaves together human-graded samples, LLM-crafted pseudo-sentences, and mathematical content
— also demonstrated notable improvements. This outcome underscores the model's robustness and
flexibility when fed with diverse data sources. Yet, the model named 'only_LLM_math', which
exclusively depended on LLM-created sentences, trailed behind the foundational model in terms of
performance. This observation underscores the criticality of harmonizing human-judged and
machine-produced data to achieve optimal results.
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5.2. Evaluating Optimal Quantity of Pseudo-Self-Explanation Data

Tables 10 and 11 shed lights on determining the optimal quantity of pseudo-self-explanation
data that improves model performance most effectively. The 'baseline' row signifies the MAE when
the model is trained only on the original dataset, devoid of any pseudo-self-explanation data. Each
subsequent row shows the MAE when the model is trained with an increasing volume of pseudo-
self-explanation data, ranging from 128 to 4,096 datasets.

Table 10. Test MAE with Varying Amounts of Added Pseudo-Self-Explanation Data.

Number of datasets added

Dataset
128 256 512 1024 2048 4096
base_line 0.75
LLM 0.67 0.63 0.72 0.72 0.71 0.7
math 0.64 0.66 0.67 0.64 0.65 0.65
mixed 0.68 0.66 0.71 0.68 0.73 0.69
only_LLM_math 1.19 0.96 1.02 0.89 1.15 1.14

Table 11. Validation MAE with Varying Amounts of Added Pseudo-Self-Explanatory Data.

Number of datasets added

Dataset
128 256 512 1024 2048 4096
base_line 0.60
LLM 0.57 0.35 0.51 0.49 0.40 0.34
math 0.40 0.50 0.43 0.35 0.40 0.36
mixed 0.59 0.32 0.52 0.44 0.40 0.34
only_LLM_math 1.19 0.90 0.96 0.81 1.02 1.03

Upon examining the 'LLM' model, we note an enhancement in performance when the added
datasets increase from 128 to 256. Beyond this, further addition of generated data does not
significantly reduce the MAE, suggesting an optimal balance between data augmentation and model
efficacy with an addition of 256 datasets. The 'math' model displays a similar trend, with the lowest
MAE achieved when 1,024 datasets are added. Beyond this point, no substantial performance
enhancement is observed with extra data.

For the 'mixed' model, we see a consistent improvement in performance with increased data,
but this plateaus beyond 2,048 datasets, where the MAE slightly increases. Conversely, the
‘only_LLM_math' model shows erratic trends. Its performance varies noticeably with the quantity of
added data and consistently exceeds the baseline model's MAE, regardless of the added data volume.
This reveals potential difficulties when exclusively relying on generated pseudo-self-explanation
data.
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Figure 6. Test MAE plot.
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Figure 7. Validation MAE Plot.
6. Discussion

6.1. Detailed Analysis of Results (RQ1)

Regarding Research Question 1, an in-depth analysis of the results displayed in Table 8 reveals
several noteworthy observations regarding the influence of self-explanation augmentation on the
model's performance. In the test category, we observe an improvement in the model's performance
when transitioning from the baseline to the LLM and math models. Notably, the math model achieves
the lowest MAE at 0.646 , which aligns with Dai et al. [36] 's proposition that data augmentation at
the semantic level improves robustness and consistency. However, the performance slightly
deteriorates in the mixed model and substantially plummets in the 'Only LLM Math' model. This
suggests that an excessive concentration of LLM-generated self-explanations could impair the
model's predictive proficiency.

A similar pattern emerges when examining individual topics within the 'Test' category. For
instance, the model delivers optimal performance for 'Quadratic Equations’ with the LLM-generated
model, but the performance markedly deteriorates when solely relying on LLM-generated self-
explanations. The validation category follows a similar trajectory, with the LLM, math, and mixed
models outshining the baseline model. Once again, the mixed model achieves the smallest error.
However, the 'Only LLM Math' model experiences a decline in performance, further highlighting the
advantages of using a diverse dataset that encompasses both human-evaluated and machine-
generated explanations.
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6.2. Findings and Observations (RQ2)

Regarding Research Question 2, the results presented in Table 5 provide valuable insights into
determining the optimal quantity of generated pseudo-self-explanation data that can enhance the
model's performance. For the LLM' model, an initial improvement in model performance is observed
as the number of added datasets increases from 128 to 256. Beyond this point, further augmentation
of the generated data does not lead to a significant reduction in MAE, suggesting that adding 256
datasets strikes an optimal balance between data augmentation and model performance.

The 'math’ model exhibits a similar pattern, with the lowest MAE observed when 1,024 datasets
are added, and no significant performance improvements resulting from further data augmentation.
The 'mixed' model, on the other hand, shows a general trend of performance enhancement with
increased data augmentation, up to a threshold of 2,048 datasets, beyond which the MAE slightly
increases.

In contrast, the 'only_LLM_math' model does not present a consistent trend. Its performance
fluctuates significantly as the volume of added data increases, and its MAE consistently surpasses
that of the baseline model, regardless of the amount of added data. This underscores the challenges
of solely leveraging generated pseudo-self-explanation data for augmentation, particularly when the
model might lack domain-specific expertise, echoing concerns raised by Dai et al.[36].

In conclusion, while data augmentation with generated pseudo-self-explanation data can
enhance model performance, our study suggests that there is a limit beyond which additional data
does not lead to further performance improvements. This limit appears to vary depending on the
specifics of the model and the nature of the generated data. These findings underscore the need for
careful, context-dependent optimization when applying data augmentation strategies in the
development of self-explanation auto-scoring models.

6.3. Limitations and Future Research

In our research, several limitations of our study should be highlighted.

e Subject Scope: Our dataset is restricted to mathematics, potentially constraining the
generalizability of our findings to other subjects.

¢  Dependency on LLM: Our methodology hinges on the LLM's ability to generate pseudo-self-
explanation data. This dependence may introduce noise and errors into our system.

e Data Quality and Representativeness: The performance of our approach is contingent on the
quality and representativeness of labeled data. Poor or biased data could compromise model
efficacy.

e Model Performance Variability: We identified noticeable disparities in our model's
performance across various mathematical categories. For instance, it predicted 'Property of a
Circle' (0.242) more accurately than 'Quadratic Functions' (0.419) within the validation datasets.
These results indicate that self-explanation augmentation's effectiveness may be influenced by
the inherent complexity of a topic and the linguistic nuances present within the self-
explanations.

e Evaluation Dataset Categories and Size: The evaluation dataset for some categories is
comparatively small, which poses challenges in drawing definitive conclusions. It's essential to
consider the ease of inference as it pertains to various mathematical concepts, including linear
functions, shapes, equations, and square roots. Certain subjects may be inherently more
challenging for machine training due to their linguistic or conceptual intricacies.

In-depth research is paramount to address these limitations, we should study how complex
topics and language use in self-explanations relate. It's also important to reduce errors from machine-
made data, ensure our data is good quality, and find the best ways to improve our data for different
situations. By doing this, we can make our learning method for scoring self-explanations much better
and more reliable.
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