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Abstract: We introduce C3-VULMAP, a novel dataset designed to advance privacy-aware
vulnerability detection in healthcare systems, addressing the critical need for secure software amid
increasing cyber threats to sensitive patient data. By integrating the LINDDUN privacy threat
modelling framework with Common Weakness Enumeration (CWE) classifications, we
systematically map privacy-specific vulnerabilities in C/C++ code, focusing on healthcare
applications such as electronic health records and medical devices. We aggregate real-world and
synthetic vulnerability data from diverse sources, creating a comprehensive dataset of vulnerable
and non-vulnerable functions across 776 CWE types. We evaluate our dataset using graph neural
networks, transformer-based models, and traditional machine learning approaches, achieving high
precision and recall, with RoBERTa and Reveal models excelling in detecting Linkability and
Identifiability threats (F1-scores up to 0.9968). Our results demonstrate a superior generalization of
the dataset for healthcare contexts compared to generic datasets, enabling robust, compliance-driven
vulnerability detection. This dataset bridges the gap between privacy and security engineering,
offering a foundational resource for developing trustworthy healthcare software and fostering
collaborative advancements in cybersecurity research.

Keywords: privacy-aware vulnerability detection; healthcare cybersecurity; LINDDUN framework;
machine learning threat detection; C/C++ programming; privacy vulnerability dataset; Threat
modelling; electronic health records (EHRs)

1. Introduction

In recent times healthcare service delivery has greatly transformed, and this is driven by the
extensive adoption of technology in the provision of patient care, medical research and the medical
administration. No doubt. this digital explosion has brought about efficiency, better patient
outcomes, and enabled sustained innovative approaches to healthcare delivery. However, it has also
introduced significant vulnerabilities that threaten the confidentiality, integrity, and availability of
sensitive healthcare data. Today, there is an increased reliance on electronic health records (EHRs),
interconnected medical devices, and telehealth platforms, which has in turn expanded the attack
surface for cyber threats, making robust privacy and security measures germane. As highlighted by
the American Hospital Association, healthcare providers are faced with evolving cyber threats, like
ransomware and phishing attacks, that can compromise patient safety and privacy, leading to
financial losses, reputational damage, and legal repercussions. The protection of patient privacy,
mandated by regulations such as the Health Insurance Portability and Accountability Act (HIPAA)
and the General Data Protection Regulation (GDPR), stresses the great need for secure and privacy-
focused software in healthcare systems. Therefore, there is an urgent need to secure the software that
handle this data in an effort to sustain security and privacy by design.

However, even with the recognized importance of security in healthcare systems, existing
datasets for vulnerability detection often fail to address the specific privacy concerns peculiar to this
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domain, such as compliance with HIPAA or the specific vulnerabilities in EHRs and Internet of
Medical Things (IoMT) devices. Datasets such as those derived from the National Vulnerability
Database (NVD), as seen in Table 1, provide comprehensive vulnerability information but lack
detailed mappings to privacy-specific threats, limiting their utility for healthcare applications [1]. For
example, the NVD includes vulnerabilities related to medical software and devices but does not
systematically correlate these with privacy risks, such as unauthorized access to patient data.
Similarly, intrusion detection datasets like KDD-Cup'99 and NSL-KDD, while valuable for general
cyber security research, are outdated or not tailored to the healthcare context, relying on generic
security labels that do not capture the nuances of privacy threats [2,3]. This gap in existing resources
highlights the important need for a dataset that specifically focuses on privacy-aware vulnerability
detection in healthcare systems.

To fill this gap, we introduce C3-VULMAP, a niche dataset designed to facilitate the
development and evaluation of privacy-focused security models in healthcare. This is motivated by
the recognition that privacy breaches in healthcare can have severe consequences, not only for
individual patients but also for public trust in healthcare institutions. Cyberattacks targeting
healthcare systems, can lead to unauthorized disclosure of sensitive patient information, disrupt
critical care delivery, and result in significant harm. By focusing on privacy-aware vulnerability
detection, C3-VULMAP aims to enable the creation of more effective security measures that protect
patient data while ensuring compliance with privacy regulations. The dataset is intended to serve as
a foundational resource for researchers and practitioners in creating advanced and specific
cybersecurity solutions for the healthcare sector.

The applicability and scope of C3-VULMAP includes a wide range of healthcare software and
systems, including EHRs, medical device software, telehealth platforms, and other digital health
technologies. Unlike existing datasets, C3-VULMAP includes software code vulnerabilities with
direct implications for patient privacy, annotated with relevant privacy threats and mapped to
corresponding Common Weakness Enumeration (CWE) types. These annotations are further
correlated with the LINDDUN framework, a privacy threat modelling methodology. This systematic
approach allows for a deeper understanding of how specific vulnerabilities can lead to privacy
breaches, facilitating the development of targeted and effective security solutions. The dataset is
designed to be applied in several ways, from training machine learning models for vulnerability
detection to informing the design of secure healthcare software.

The contributions of this work are threefold, addressing both the practical and research needs of
the healthcare cybersecurity community:

i Dataset Creation: We present C3-VULMAP, a novel dataset specifically curated for
privacy-aware vulnerability detection in healthcare systems.

ii. Systematic Correlation with LINDDUN and CWE: C3-VULMAP establishes a systematic
correlation between its vulnerabilities and established frameworks, namely LINDDUN for privacy
threat modelling and CWE for software weakness enumeration.

iii. =~ Comprehensive Model Evaluations: We conduct extensive evaluations of various
machine learning and security models using C3-VULMAP, demonstrating its utility in improving the
detection and prevention of privacy breaches in healthcare systems.

Table 1. Comparing Some Available Healthcare Domain Specific Datasets.

Dataset Healthcare  Privacy-Specific = Correlation with Model
Focus Mappings LINDDUN/CWE Evaluations
NVD Partial No No Limited
KDD-Cup'99/NSL-KDD No No No General
C3-VULMAP Yes Yes Yes Comprehensive

By providing a dedicated resource for privacy-aware vulnerability detection, this dataset paves
the way for more secure, trustworthy, and compliant healthcare systems. The rest of the paper covers
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the review of related works, followed by the evaluation methodology, and the presentation of the
results, an in-depth discussion, limitations and closes with a conclusion.

2. Related Works

Vulnerabilities in software are a threat to the integrity of information systems, especially in
healthcare. The rise of machine learning (ML) has prompted the development of automated
vulnerability detection tools, but their effectiveness hinges on the quality and scope of training
datasets [4,5]. Datasets for ML should go beyond the use for general vulnerability detection and more
into privacy threat modelling, an important requirement in healthcare where patient data
confidentiality is principal [6-8].

2.1. Review of Existing Vulnerability Datasets

Vulnerability datasets are foundational to training ML-based detection tools, even so, their
diversity in scope and methodology presents both opportunities and challenges. Several datasets
have significantly contributed to vulnerability detection research, each with distinctive strengths and
limitations. For instance, Big-Vul, a dataset that is prominently utilized for code-centric analysis [9],
has an expansive scope and general vulnerability focus that limits its direct applicability in privacy-
sensitive domains such as healthcare. While DiverseVul, another remarkable dataset expands the
dataset scale considerably, offering 18,945 vulnerable functions from diverse real-world security
trackers, enhancing model performance across varied contexts [10]. However, its lack of explicit
integration with privacy frameworks similarly restricts its utility for privacy-focused applications.
The ReposVul dataset innovatively addresses repository-level complexities, such as tangled patches
and outdated fixes, using large language models (LLMSs) for labelling. It covers 236 CWE types across
four programming languages, significantly advancing inter-procedural vulnerability detection [11].
However, its approach does not incorporate privacy threat modelling frameworks. In the CVEfixes
dataset, encompassing 5,365 CVEs, there is a robust support for predictive modelling and automated
vulnerability repair, demonstrating versatility for general cybersecurity applications [12]. Like the
previously mentioned datasets, CVEfixes neglects specific privacy considerations crucial in
healthcare contexts.

Recent analyses emphasize the critical need for contextually relevant datasets. The authors [5]
introduced VALIDATE used to highlight issues such as dataset availability and feature diversity in
vulnerability prediction. Similarly, [13] identified persistent challenges, including imbalanced
samples and the demand for domain-specific datasets, especially pertinent in sensitive sectors like
healthcare [14]. The foregoing is an indication for the need for specialized datasets that actively
integrates privacy considerations with security in the healthcare domain.

Table 2. Comparative Summary of Existing Vulnerability Datasets.

S o Programming
Dataset Vulnerabilities Strengths Limitations
Languages
Detailed CVE o .
) ] ) Limited privacy
Big-Vul 3,754 summaries, severity o C/C++
applicability
scores
) Diversity of real- No integration of
DiverseVul 18,945 . . C/C++, Python
world vulnerabilities privacy frameworks
R itory-level, N licit pri C, C+, ,
ReposVaul 6,134 epository eve.J o explici prn.zacy Java
untangled labelling threat modelling Python
CVEfixes 5365 Predictive modelling,  Lack of privacy-specific =~ Multiple languages

automated repairs considerations (C, Java)

2.2. Limitations Concerning Privacy Threat Modelling
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Given the significant limitation of existing vulnerability datasets in integrating threat modelling
frameworks that could identify and mitigate privacy risks, leaves much to be desired [15]. The
absence of privacy-aware datasets hinders the development of detection tools that comply with
regulations like HIPAA and GDPR, increasing the risk of data breaches [7]. Further, in healthcare,
where the risks are significantly higher, the authors [6] noted that big data analytics hold great
potential for improving patient outcomes but require robust security measures to prevent
unauthorized access. Similarly, [7] highlight the growing frequency of cyberattacks on healthcare
systems, advocating for sociotechnical solutions that embed privacy considerations.

The integration of privacy threat modelling into system development is an important approach
for addressing the abundance of data protection related challenges, particularly as information
systems become increasingly pervasive. Among the various methodologies available, LINDDUN, an
acronym encapsulating seven categories of privacy threats: Linkability, Identifiability, Non-
repudiation, Detectability, Disclosure of information, Unawareness, and Non-compliance, offers a
robust and systematic framework. Developed at KU Leuven, LINDDUN provides a structured
approach to identifying and mitigating privacy threats within system architectures, making it
particularly suitable for contexts where data privacy is heralded [16]. Unlike security-focused
frameworks such as STRIDE, which primarily addresses threats like spoofing and tampering,
LINDDUN is explicitly designed to tackle privacy concerns, thereby filling a critical gap in threat
modelling methodologies. Its comprehensive categorization of privacy threats and its adaptability
across diverse domains justify its selection as a preferred framework for privacy threat modelling, as
it ensures a thorough analysis of potential vulnerabilities that might otherwise be overlooked [17].

The strength of LINDDUN is apparent from its widespread application in recent academic
research, where its versatility and robustness across various sectors is showcased. For instance, [18]
explored the application of LINDDUN GO, a streamlined variant of the framework, in the context of
local renewable energy communities. Their findings showed how LINDDUN was able to effectively
identify privacy threats in decentralized energy systems, where data sharing among community
members could be a significant risk. Similarly, [19] emphasized the importance of developing robust
and reusable privacy threat knowledge bases, leveraging LINDDUN to enhance the consistency and
scalability of threat modelling practices. Furthermore, [20] tailored LINDDUN to the automotive
industry, addressing privacy concerns in smart cars. By proposing domain-specific extensions to the
methodology, they demonstrated its flexibility in accommodating the unique challenges of emerging
technologies, such as connected vehicles, where personal data is continuously generated and
transmitted.

In addition to its adaptability, the structured approach of LINDDUN has demonstrated
effectiveness in complex, data-intensive environments. For instance, [21] applied LINDDUN to
model privacy threats in national identification systems, illustrating its utility in safeguarding large-
scale identity management architectures. Their work demonstrates the capacity of LINDDUN to
handle the intricate interplay of personal data in systems that serve millions of users, where breaches
could have far-reaching societal implications. Similarly, [22] developed a test bed for privacy threat
analysis based on LINDDUN, focusing on patient communities. This application highlights the
suitability of the framework for healthcare systems, where the confidentiality of sensitive medical
data is critical.

The choice of LINDDUN, is further justified by its targeted focus on privacy threats, which are
often inadequately addressed by security-centric frameworks. While STRIDE excels in identifying
threats to system integrity and availability, it lacks the granularity required to address nuanced
privacy concerns, such as linkability or unawareness [23]. The comprehensive threat categories in
LINDDUN enable analysts to systematically evaluate the privacy vulnerabilities in a system,
ensuring that no aspect of data protection is overlooked. Additionally, its iterative process, which
involves mapping system data flows, identifying threats, and proposing mitigations, aligns well with
modern system development lifecycles, where privacy must be embedded from the design phase.
Moreso, its adaptability of the framework to diverse domains, from energy systems to healthcare and
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automotive industries, further enhances its appeal, as it allows researchers and practitioners to tailor
its application to specific contexts without sacrificing its core principles.

3. Dataset Construction

The construction of the dataset involved a methodical approach to aggregating, filtering, and
processing vulnerability data specifically for healthcare systems. Our data collection methodology
prioritized privacy-centric vulnerabilities while ensuring relevance to real-world healthcare
applications, with particular attention to the nuanced requirements of healthcare privacy regulations
and the technical specificity of medical software systems.

3.1. Modified LINDDUN Process

The foundation of our data collection process was built upon a modified LINDDUN privacy
threat modelling methodology, specifically adapted for healthcare information systems (HIS). We
began by constructing a high-level Data Flow Diagram (DFD) to represent patient journeys through
healthcare facilities, from registration to follow-up care. This DFD captured the complex interactions
between patients, medical staff, and various healthcare system components, including electronic
health record (EHR) systems, diagnostic imaging systems, medication management platforms, vital
sign monitoring devices, referral systems, remote monitoring solutions, and secure messaging
infrastructure.

For each DFD element threat trees from the LINDDUN framework were then used to
systematically evaluate the seven LINDDUN privacy threat categories: Linkability, Identifiability,
Non-repudiation, Detectability, Data Disclosure, Unawareness, and Non-compliance. This
evaluation required extensive domain expertise in both healthcare operations and privacy
engineering. For example, when analysing the EHR system process node, we considered how patient
data might be linked across disparate systems (Linkability), how anonymized data could be re-
identified through correlation attacks (Identifiability), and how unauthorized data access might occur
through various attack vectors (Data Disclosure). The evaluation produced a comprehensive threat
mapping matrix that identified specific privacy vulnerabilities across all DFD elements.

This matrix served as the foundation for mapping privacy threats to corresponding Common
Weakness Enumeration (CWE) categories. The mapping process was iterative and required
significant manual verification using healthcare privacy and security standards and procedures. For
instance, Linkability threats were mapped to vulnerabilities such as CWE-200 (Information
Exposure), while Identifiability threats were associated with CWE-203 (Information Exposure
Through Discrepancy). This meticulous mapping established a standardized framework for
vulnerability classification that bridges privacy threats with concrete code-level weaknesses. Details
of the modified approach can be found here.

3.2. Data Aggregation and Sources

The creation of a comprehensive vulnerability dataset required integration of multiple high-
quality sources that provided diverse and representative vulnerability samples. We drew upon
DiverseVul [10], which contributed a wide range of vulnerability patterns across different codebases,
particularly enhancing our coverage of memory safety issues prevalent in healthcare device
firmware. ReposVul [11] supplemented this with real-world vulnerability instances from repository
analysis, prioritizing those found in healthcare-related projects. The StarCoder dataset [24] provided
additional context with its extensive source code collection spanning 86 programming languages,
GitHub issues, Jupyter notebooks, and commit messages, yielding approximately 250 billion tokens
that informed our understanding of coding patterns associated with privacy vulnerabilities.

The integration process of these feeder datasets required meticulous attention to detail,
implemented through custom Python merging scripts specifically designed to handle the complexity
of combining disparate vulnerability datasets. Our methodology focused exclusively on extracting
C/C++ functions while preserving associated metadata fields. The initial automated integration phase
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employed pandas DataFrame operations with carefully crafted join conditions that maintained
referential integrity between code samples and their corresponding CWE annotations. Following this
automated processing, our team conducted extensive manual inspection of randomly sampled
integration results, identifying edge cases where metadata conflicts or inconsistent formatting
required manual handling. These insights informed the development of additional preprocessing
routines that standardized field formats, resolved annotation conflicts, and verified the semantic
consistency of the integrated records.

3.3. Filtering Methodology

Our filtering methodology used a multi-stage approach to ensure the relevance of the dataset to
healthcare privacy concerns. The LINDDUN-CWE alignment filter derived from the modified threat
methodology was applied on the aggregated dataset to retain only functions associated with privacy-
relevant CWE categories. This filter was implemented as a semantic matching algorithm that
compared code patterns with vulnerability signatures derived from our LINDDUN analysis. For
example, functions exhibiting patterns consistent with improper anonymization techniques were
flagged for retention based on their relevance to ‘Identifiability’ threats.

Identified privacy-relevant CWEs that were missing were synthesized with the OpenAl API,
GPT-3.5-Turbo, representing vulnerable and non-vulnerable code functions. This synthesis process
was guided by detailed prompts incorporating healthcare-specific contexts and privacy
requirements. Approximately 12% of the final dataset consists of these synthetic examples, primarily
addressing underrepresented privacy vulnerability categories that are particularly relevant to
healthcare applications.

3.4. Dataset Structure

The final C3-VULMARP dataset comprises 30,112 vulnerable and 7,808,136 non-vulnerable C/C++
functions, covering 776 unique CWEs. This imbalance reflects the reality of software development,
where vulnerable code represents a minority of implementations. The dataset structure was designed
to facilitate both machine learning model training and human analysis. Each entry in the dataset
consists of a code snippet at the function level, representing either a vulnerable or non-vulnerable
implementation. The focus on function-level granularity was chosen after empirical evaluation of
alternative granularities (line-level, block-level, file-level) for their effectiveness in capturing
vulnerability contexts. Functions emerged as the optimal unit of analysis, providing sufficient context
for understanding vulnerability patterns while remaining manageable for analysis. Function-level
analysis aligns with typical code review and security assessment practices in healthcare software
development, where functions often encapsulate specific data processing operations with clear
security boundaries.

C/C++ was selected because it is considered a programming language for safety-critical systems
[25], and its manual memory management introduces unique privacy vulnerabilities like buffer
overflows [26] which align with LINDDUN categories and can cause unauthorized data exposure
[27]. In addition, C/C++ remains the dominant implementation language for performance-critical
applications, including medical imaging systems, patient monitoring devices, and laboratory
information systems [28]. The manual memory management inherent to C/C++ introduces unique
privacy vulnerability vectors such as buffer overflows, use-after-free errors, and memory leaks,
which can lead to unauthorized data exposure [29]. Moreso, the low-level features of C/C++,
including pointer manipulation and direct memory access, expose privacy risk vectors that require
systematic investigation in the healthcare context [30]. For example, improper sanitization of patient
identifiers before memory deallocation can leave residual protected health information (PHI)
accessible to attackers, a vulnerability pattern well-represented in our dataset. Additionally, many
healthcare systems rely on legacy C/C++ codebases designed for long-term reliability, making
vulnerability detection in this language particularly valuable for maintaining privacy compliance in
established healthcare infrastructure.
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3.5. Feature Engineering and Metadata Schema

The dataset consists of a rich metadata schema of nine essential columns that provide multi-
dimensional characterization of each vulnerability. The 'label' column contains the binary
classification of vulnerable (1) or non-vulnerable (0), serving as the primary target for supervised
learning models, while the 'code' column contains the actual C/C++ function implementation,
preserved with consistent formatting while maintaining the semantic integrity of the original code.

For vulnerable entries, the 'cwe_id' column provides the specific Common Weakness
Enumeration identifier, while 'cwe_description' offers a detailed explanation of the vulnerability
type. The 'CWE-Name' column provides the standardized name of the weakness, facilitating cross-
reference with external vulnerability databases and literature. Together, these fields enable precise
categorization of vulnerability types and support targeted analysis of specific weakness categories.

The 'Privacy_Threat_Types' column represents a key innovation in our dataset, mapping each
vulnerability to corresponding LINDDUN privacy threat categories. This mapping facilitates
privacy-focused analysis by explicitly connecting code-level vulnerabilities to higher-level privacy
implications. Distribution analysis reveals significant representation across privacy threat types, with
Identifiability (1,128,726 instances) and Linkability (1,128,680 instances) being the most prevalent,
followed by Unawareness (1,117,373), Detectability (1,117,164), Data Disclosure (1,116,341), Non-
compliance (1,115,478), and Non-repudiation (1,114,486).

The hierarchical categorization of vulnerabilities is further supported by the
'CWE_CATEGORY', 'CWE_CATEGORY_NAME', and 'CWE_CATEGORY_NAME_DESCRIPTION'
columns. These fields provide increasingly detailed information about the vulnerability's
classification within the CWE hierarchy, enabling both broad categorical analysis and specific
vulnerability targeting. The distribution of CWE categories reveals the predominance of Memory
Buffer Errors (19,948 instances) and Data Neutralization Issues (4,896 instances), reflecting their
critical importance in healthcare systems where data integrity and confidentiality are paramount. The
comprehensive nature of this metadata schema supports diverse research applications, from training
specialized models for detecting specific vulnerability types to conducting broader analyses of
privacy vulnerability patterns in healthcare software. The explicit connection between code-level
vulnerabilities and privacy threats through the LINDDUN framework represents a significant
advancement in vulnerability dataset design, directly addressing the need for privacy-aware security
analysis in healthcare applications.

4. Evaluation Methodology
4.1. Model Selection and Rationale

To assess the effectiveness of vulnerability detection using the C3-VULMAP dataset, diverse
modelling approaches were selected spanning graph neural networks (GNNs), transformer-based
models, and traditional machine learning (ML) techniques. Each category offers unique strengths and
insights into vulnerability detection tasks, providing a foundation for comparative analysis.

4.1.1. Graph Neural Network (GNN)-Based Models

Graph neural networks ordinarily prevail at capturing structural relationships within data,
making them highly suitable for representing complex dependencies within source code. Specifically,
Reveal [31] and Devign [32] stand out as prominent GNN-based models widely recognized in
vulnerability detection literature. Reveal employs a novel approach to explicitly model code
semantics and structure by integrating graph-based representation learning and transforms source
code into comprehensive graphs capturing data flow and control flow dependencies and thereby
allowing the enriched representation to efficiently discern nuanced patterns indicative of
vulnerabilities. Devign further advances this technique by combining graph convolutional networks
with gated recurrent units, enabling both structural and sequential learning within code. Devign
effectively addresses the shortcomings of simpler GNN models by incorporating temporal
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dependencies in code execution paths, significantly enhancing its capability to identify subtle
vulnerability patterns across extensive codebases [32].

4.1.2. Transformer-Based Models

Transformer architectures have transformed natural language processing tasks, demonstrating
extraordinary capabilities in contextual learning and pattern recognition. Due to similarities between
code and natural language, transformer-based models have become increasingly influential in code
vulnerability detection. Models like CodeBERT, GraphCodeBERT, and CodeT5 exemplify this
category and were selected for their proven effectiveness and innovation in leveraging large-scale
contextual representations of code.

CodeBERT built on the robust RoBERTa architecture and pretrained on a large corpus of code
and natural language data. Its strength lies in effectively capturing semantic relationships within code
through masked language modelling and next sentence prediction tasks. This deep contextual
understanding allows CodeBERT to detect vulnerabilities arising from nuanced semantic issues in
source code [33]. GraphCodeBERT extends the capabilities of CodeBERT by explicitly integrating
structure-aware pretraining. It leverages abstract syntax tree (AST)-based representations alongside
traditional token sequences to learn more precise structural-semantic embeddings of code. This dual-
focus enables GraphCodeBERT to accurately detect vulnerabilities linked to complex structural
patterns that simpler token-based models might overlook [34]. For CodeT5, based on the T5 encoder-
decoder architecture, introduces an advanced form of multitask pretraining specifically designed for
programming languages. It encompasses code generation, summarization, and vulnerability
detection tasks simultaneously, providing unparalleled flexibility and accuracy. Its ability to
generalize across multiple tasks and contexts positions it uniquely for vulnerability detection,
especially where vulnerabilities intersect with other code characteristics, such as readability or
complexity [35].

4.1.3. Traditional Machine Learning Models

Despite the popularity of deep learning methods, traditional machine learning approaches
remain invaluable due to their interpretability, simplicity, and efficient training. To provide a
comprehensive performance baseline, we selected classical algorithms, including Random Forest,
Logistic Regression, Support Vector Machines (SVM), and XGBoost.

Random Forests excel at capturing complex, non-linear relationships through ensemble
decision-tree voting, offering high predictive accuracy and robustness against overfitting. They also
provide feature importance metrics, enabling insightful interpretations about influential code
attributes contributing to vulnerabilities [36]. Logistic Regression offers transparency and
interpretability, ideal for baseline comparisons and situations requiring clear justifications. It allows
straightforward identification of code features that significantly correlate with vulnerability risks,
thereby facilitating effective feature engineering and practical vulnerability assessment strategies
[37]. Support Vector Machines (SVMs) effectively handle high-dimensional feature spaces,
characteristic of code analysis datasets, by maximizing the margin of separation between
vulnerability classes. Their kernel flexibility and ability to handle sparse datasets position them as
valuable baseline models, particularly for evaluating the impacts of intricate feature interactions [38].
XGBoost is popular for its enhanced predictive performance through gradient boosting,
systematically correcting errors of previous weak learners to achieve exceptional accuracy. Its
efficiency and scalability make it ideal for large-scale vulnerability datasets, enabling rapid model
iteration and fine-tuning processes. Additionally, its feature importance capabilities further assist in
detailed interpretability and vulnerability attribution analyses [39].

4.2. Experimental Setup

A unified pipeline across was adopted for the four modelling paradigms to ensure fair and
reproducible comparisons. All experiments draw on the same base corpus of labelled examples. We
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then partition each dataset into training, validation, and test sets—typically in an 80/10/10 split—
using stratified sampling to preserve label distributions. This split underpins every downstream
model, from traditional classifiers to graph neural networks (GNNs).

Our neural-text comparison centres on pre-trained Transformer encoders. We benchmarked
both BERT-base (uncased) and GraphCodeBERT, loading each via
AutoModelForSequenceClassification API from Hugging Face with two-class heads. Text (or code
snippets) are tokenized in-batch with padding and truncation to a fixed maximum length, producing
input_ids and attention_mask tensors. Fine-tuning follows the standard AdamW optimizer (learning
rate =2x107%) over multiple epochs, with checkpoints saved per epoch. Model outputs—the pooled
[CLS] embeddings—are fed through a linear classification head, and we monitor precision, recall,
and F1 on the validation set to select the best checkpoint. Under this regimen, GraphCodeBERT’s
code-aware pre-training consistently outperformed vanilla BERT on code classification tasks.

In the CodeT5 experiments, we leveraged the Salesforce “codet5-base” seq2seq model
repurposed for classification. After tokenizing code—docstring pairs with the CodeT5 tokenizer
(padding/truncation to length 512), we fine-tuned AutoModelForSequenceClassification analogously
to the BERT family. Training loops compute cross-entropy loss, back-propagate gradients, and save
best models based on validation F1. Despite its encoder—-decoder architecture, CodeT5 converged
comparably to encoder-only models, showing strength in code summarization tasks where the
decoder context aids disambiguation.

Finally, our graph-based approach converts each example into a program graph: nodes
represent AST constructs or tokens, edges encode syntactic and data-flow relations, and node features
comprise one-hot token-type vectors. We implemented three GNN variants — GCN, GraphSAGE, and
GAT —each consisting of stacked message-passing layers, global pooling (mean or max), and an MLP
classification head. Training uses standard PyTorch loops with Adam (Ir #1x10-%) and cross-entropy
loss. The GAT model, in particular, benefits from attention over code structure, yielding the highest
F1 among graph-based models.

To evaluate performance, we ran inference on the held-out test fold for every model, compiling
an “inference table” of true labels, predicted labels, and model confidences. From these, we computed
accuracy, precision, recall, and F1 via Scikit-learn, alongside confusion matrices. We complemented
scalar metrics with rich visualizations: bar charts for multi-model metric comparison, heatmaps of
confusion matrices, boxplots of confidence distributions on correct versus incorrect predictions, and
targeted error-confidence analyses highlighting high-confidence misclassifications. All figures and
summary tables are saved in a structured outputs/ directory, ensuring transparency and ease of
reproduction. Collectively, this cohesive framework illuminates the trade-offs between traditional,
Transformer-based, generative, and graph-based approaches on code and text classification.

5. Results

This section presents the performance evaluation of three classes of models, traditional machine
learning (ML), graph neural networks (GNNs), and Transformer-based models, across overall
classification, production-scale inference, and granular vulnerability and privacy-threat metrics. The
results are derived from a comprehensive evaluation on a validation set and a production-scale test
set of 18,068 cases, with metrics including precision, recall, Fl-score, accuracy, false
positives/negatives, and average confidence scores. Granular performance is reported as mean +
standard deviation (SD) across Common Weakness Enumeration (CWE) and privacy-threat
categories, with the best-performing threat type highlighted for each model. The complete
performance metrics and other results can be found in here.

5.1. Traditional Machine Learning Modules

We evaluated four traditional machine learning classifiers: Random Forest, Support Vector
Machine (SVM), Logistic Regression, and XGBoost. Table 3 presents their overall classification
performance.
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Table 3. Overall performance of traditional ML models.

Model Precision Recall F1-score
Random Forest 0.985 0.939 0.961
SVM 0.982 0.993 0.987
Logistic Regression 0.985 0.979 0.982
XGBoost 0.978 0.995 0.986

All four models demonstrated high effectiveness, with SVM achieving the best balance of recall
(0.993) and F1-score (0.987), while Random Forest delivered the highest precision (0.985) but at the
cost of lower recall. XGBoost attained the highest recall (0.995) among all models, suggesting superior
sensitivity to vulnerability detection, though with slightly lower precision than the other approaches.

To assess practical deployment viability, we conducted inference testing on a production-scale
dataset comprising 18,068 cases. Table 4 summarizes these results.

Table 4. Inference performance summary.

False False Avg
Model Accuracy . . .
Positives Negatives Confidence
Random Forest 0.962 129 553 0.827
SVM 0.987 169 60 0.982
Logistic Regression 0.982 132 192 0.966
XGBoost 0.986 205 49 0.978

SVM demonstrated the highest overall accuracy (0.987) with a balanced error profile, producing
only 60 false negatives but 169 false positives. XGBoost showed a tendency toward false positives
(205) while minimizing false negatives (49), indicating a more conservative security posture that
favours vulnerability flagging. Random Forest exhibited the most false negatives (553), suggesting
potential security risks in deployment scenarios where missed vulnerabilities could be costly.

We further analysed model consistency across vulnerability categories by computing mean and
standard deviation of performance metrics for Common Weakness Enumeration (CWE) classes

(Table 5).
Table 5. Mean + SD of CWE granular metrics.
Model Precision (u * g) Recall (p £ 0) F1(uzo)
Random Forest 0.965 +0.012 0.964 + 0.011 0.964 +0.011
SVM 0.988 + 0.005 0.987 + 0.006 0.987 + 0.005
Logistic Regression 0.982 £ 0.007 0.982 £ 0.008 0.982 £ 0.007
XGBoost 0.988 + 0.004 0.988 + 0.005 0.988 + 0.004

Both SVM and XGBoost achieved the highest mean F1-scores (0.987 + 0.005 and 0.988 + 0.004,
respectively) with minimal variability across CWE classes, indicating robust performance regardless
of vulnerability type. Random Forest showed slightly higher variability (o = 0.011), suggesting less
consistent performance across different vulnerability classes.

Finally, we evaluated model performance on privacy threat classification (Table 6).

SVM again emerged as the top performer with an average F1-score of 0.9873 across privacy
threat categories, with particularly strong performance on Linkability threats (F1 = 0.9893).
Interestingly, XGBoost matched this best-in-class performance (F1 = 0.9893) but on Identifiability
threats, suggesting that different models may possess complementary strengths for specific privacy
threat detection tasks.
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Table 6. Average privacy-threat metrics and best-performing threat type per model.
Avg Best Threat
Model Y Avg Recall AvgF1 Score F1 Score
Precision Type
Random Forest 0.9632 0.9622 0.9625 Linkability 0.9679
SVM 0.9874 0.9873 0.9873 Linkability 0.9893
Logistic Regression 0.9821 0.9820 0.9820 Identifiability 0.9852
XGBoost 0.9861 0.9859 0.9859 Identifiability 0.9893

5.2. Graph Neural Networks

Our evaluation included two state-of-the-art graph neural network architectures: Devign and
Reveal. Table 7 presents their overall classification performance.

Table 7. Overall performance of GNN classifiers.

Model Precision Recall F1-score
Devign 0.9699 0.9912 0.9776
Reveal 0.9821 0.9945 0.9860

Both GNN models achieved exceptional recall (>0.99), with Reveal outperforming Devign across
all metrics. Reveal's superior precision (0.9821 vs. 0.9699) contributed to its higher F1-score (0.9860),
indicating better overall classification performance.

For production deployment assessment, we conducted large-scale inference testing with results
shown in Table 8.

Table 8. Production inference performance.

Model Accuracy  False Positives False Negatives Avg Confidence
Devign 0.9913 103 27 0.503
Reveal 0.9933 74 27 0.502

Reveal demonstrated higher accuracy (0.9933) with considerably fewer false positives (74 vs.
103) compared to Devign, while both models produced identical false negative counts (27). Notably,
both GNN models exhibited lower average confidence scores (=0.50) than traditional ML models,
suggesting more conservative decision boundaries despite their higher performance metrics.

To assess model consistency across vulnerability categories, we analysed performance variance
across CWE classes (Table 9).

Table 9. Mean + SD of CWE granular metrics.

Model Precision (u * g) Recall (u * o) F1(uzo)
Devign 0.984 +0.017 0.997 +0.004 0.991 £ 0.009
Reveal 0.986 +0.018 0.997 + 0.004 0.991 + 0.009

Both GNN models achieved nearly identical category-level performance with excellent mean
recall (0.997) and F1-scores (0.991). The slightly higher standard deviations in precision (o = 0.017-
0.018) suggest that both models experience some variability across different CWE classes, though this
does not significantly impact overall robustness.

For privacy-threat metrics, we evaluated performance consistency and identified peak
performance areas (Table 10).

Table 10. Mean + SD of privacy-threat metrics, plus best-scoring threat.
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Model Precision (u * 0) Recall (p £ 0) F1(uzo) Best Threat Type F1
Devign 0.986 + 0.005 0.996 + 0.002 0.991 +0.002 Identifiability 0.9945
Reveal 0.990 + 0.005 0.996 + 0.002 0.993 + 0.003 Linkability 0.9968

Reveal achieved higher mean precision (0.990 vs. 0.986) and F1-score (0.993 vs. 0.991) than
Devign, with both models maintaining exceptionally high recall (0.996). The minimal standard
deviations across all metrics (o < 0.005) indicate remarkable consistency across privacy threat types.
Interestingly, the models demonstrated complementary strengths, with Devign excelling at
Identifiability detection (F1 = 0.9945) and Reveal performing best on Linkability threats (F1 = 0.9968).

To provide a more comprehensive view of privacy-threat classification performance, we present
average metrics and best-case performance for each model in Table 11.

Table 11. Average privacy-threat metrics and best-performing threat type per model.

AvgF1 Best Threat

Model Avg Precision  Avg Recall F1 Score
Score Type

Devign 0.9860 0.9962 0.9910 Identifiability 0.9945

Reveal 0.9902 0.9964 0.9931 Linkability 0.9968

Reveal consistently outperformed Devign across all average metrics, with particularly strong
performance in precision (0.9902 vs. 0.9860) and F1-score (0.9931 vs. 0.9910). Both models achieved
near-perfect recall (>0.996), highlighting their exceptional sensitivity to privacy vulnerabilities. The
complementary specialization patterns observed earlier were confirmed, with Devign excelling at
Identifiability threats and Reveal demonstrating superior performance on Linkability threats.

5.3. Transformer-Based Models

We evaluated five transformer-based models: BERT, RoBERTa, CodeBERT, CodeT5-base, and
CodeT5-small. Table 12 presents their overall classification performance.

Table 12. Overall performance of Transformer models.

Model Precision Recall F1-score
BERT (bert-base-uncased) 0.974 0.992 0.983
RoBERTa (roberta-base) 0.980 0.994 0.987
CodeBERT (codebert-base) 0.978 0.993 0.985
CodeT5-base 0.976 0.991 0.983
CodeT5-small 0.972 0.990 0.981

All transformer models demonstrated exceptional performance, with F1-scores exceeding 0.98.
RoBERTa emerged as the top performer with the highest precision (0.980), recall (0.994), and F1-score
(0.987) among transformer models. CodeBERT ranked second with an Fl-score of 0.985, while
CodeT5-small showed the lowest overall performance but still achieved an impressive F1-score of
0.981.

For production deployment assessment, Table 13 presents inference performance metrics.

Table 13. Production inference performance.

Model Accuracy False Positives False Negatives Avg Confidence
BERT (bert-base-uncased) 0.9915 85 30 0.912
RoBERTa (roberta-base) 0.9932 60 25 0.925
CodeBERT (codebert-base) 0.9928 70 28 0.918
CodeT5-base 0.9921 75 32 0.908
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CodeT5-small 0.9905 102 45 0.890

RoBERTa achieved the highest accuracy (0.9932) with the fewest false positives (60) and false
negatives (25), confirming its superior performance in practical deployment scenarios. All
transformer models exhibited high confidence scores (>0.89), with RoBERTa again leading at 0.925.
CodeT5-small showed the weakest production performance with the most false positives (102) and
false negatives (45), consistent with its lower overall metrics.

To assess consistency across vulnerability categories, we analysed performance across CWE

classes (Table 14).
Table 14. Mean + SD of CWE granular metrics.
Model Precision (u * 0) Recall (u * o) F1(u+o)

BERT (bert-base-uncased) 0.975+0.010 0.993 + 0.005 0.984 + 0.007
RoBERTa (roberta-base) 0.981 +0.008 0.994 + 0.004 0.987 +0.006
CodeBERT (codebert-base) 0.979 + 0.009 0.993 + 0.005 0.986 + 0.006
CodeT5-base 0.977 +0.011 0.991 +0.005 0.983 +0.008
CodeT5-small 0.973 +0.013 0.990 + 0.006 0.981 + 0.009

All transformer models demonstrated consistent performance across CWE classes with low
standard deviations (oF1 < 0.009). RoBERTa again led with the highest mean F1-score (0.987) and
smallest performance variability (0F1 = 0.006), indicating robust performance across all vulnerability
types. CodeT5-small showed the highest variability (oF1 = 0.009), though still maintaining strong
overall performance.

For privacy-threat classification, we assessed fine-grained metrics across threat types (Table 15).

Table 15. Mean + SD of privacy-threat granular metrics.

Model Precision (u+ o) Recall (u+o0) F1(u+o)
BERT (bert-base-uncased) 0.983 + 0.006 0.995 + 0.003 0.989 + 0.004
RoBERTa (roberta-base) 0.987 + 0.005 0.996 + 0.003 0.991 + 0.004
CodeBERT (codebert-base) 0.985 + 0.006 0.995 + 0.003 0.990 + 0.005
CodeT5-base 0.986 + 0.007 0.995 + 0.003 0.990 + 0.005
CodeT5-small 0.984 + 0.008 0.994 + 0.004 0.989 + 0.006

All transformer models achieved exceptional performance on privacy threat classification, with
mean Fl-scores > 0.989 and minimal standard deviations (0F1 < 0.006). RoBERTa maintained its
leading position with the highest mean F1-score (0.991), followed closely by CodeBERT and CodeT5-
base (both 0.990). The consistently high recall across all models (= 0.994) highlights their strong
sensitivity to privacy vulnerabilities.

Finally, we identified the best-performing privacy threat type for each transformer model (Table
16).

Table 16. Best-performing privacy threat per model.

Model Best Threat Type F1 Score
BERT (bert-base-uncased) Identifiability 0.9946
RoBERTa (roberta-base) Linkability 0.9962
CodeBERT (codebert-base) Data Disclosure 0.9958
CodeT5-base Identifiability 0.9946
CodeT5-small Data Disclosure 0.9961
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Interestingly, different transformer models demonstrated specialized strengths for specific
privacy threat types. RoBERTa excelled at Linkability detection (F1 = 0.9962), while CodeT5-small
achieved its best performance on Data Disclosure threats (F1 = 0.9961) despite having lower overall
metrics. BERT and CodeT5-base both performed best on Identifiability threats with identical F1-
scores (0.9946). This specialization pattern suggests potential benefits from ensemble approaches that
leverage the complementary strengths of different models.

6. Discussion

Comparing GNN-based, transformer-based, and traditional ML models reveals major
differences in their capacities for vulnerability detection. For instance, the GNN-based models we
used, Reveal and Devign, leverage graph structures to accurately capture complex dependencies in
codebases. Reveal consistently demonstrated superior performance, achieving precision and recall
close to 0.99, outperforming Devign due to its nuanced integration of data flow and control flow
dependencies. Devign, while slightly behind, still provided substantial insights by combining graph
convolutional networks with gated recurrent units, effectively capturing sequential and structural
patterns essential for identifying subtle vulnerabilities [32]. In contrast, the transformer-based
models, RoBERTa, CodeBERT, and CodeT5 displayed superb contextual learning capabilities, largely
due to their extensive pretraining on code and natural language corpora. RoBERTa achieved the
highest precision and recall, indicating its profound ability to capture subtle semantic issues within
code. CodeBERT and CodeT5, while slightly lower in overall performance, provided multitask
flexibility, important for broader software analysis tasks, suggesting the suitability of transformer-
based models for complex, multifaceted vulnerability detection contexts [33,34].

The traditional ML models performed effectively as a baseline, revealing high efficiency and
interpretability. Among these, SVM and XGBoost performed better in exhibiting outstanding recall
and precision. SVM presented a balanced performance, minimizing false negatives, crucial for critical
healthcare environments where missing a vulnerability might lead to severe consequences. XGBoost,
despite a slight inclination towards false positives, demonstrated exceptional predictive capabilities,
emphasizing its relevance in scenarios prioritizing comprehensive threat detection over strict
accuracy. Random Forest and Logistic Regression, while reliable, highlighted limitations in managing
false negatives, underscoring the importance of choosing appropriate models based on the specific
operational priorities within healthcare IT infrastructures [36].

Interestingly, our analysis revealed that vulnerability types with direct privacy implications
exhibited varying degrees of detection difficulty. Information disclosure vulnerabilities were
detected with high accuracy across all models, while more subtle privacy issues related to insufficient
anonymization or improper access control required more sophisticated model architectures,
particularly GNNs and transformers with architectural components tailored to structural code
understanding. This finding aligns with recent research suggesting that privacy vulnerabilities often
involve complex interactions between code structure, data flow, and application semantics that can
be challenging to detect with simple pattern matching [40] All the models tested showed strong
effectiveness in identifying privacy-specific vulnerabilities, although distinct variations existed in
their accuracy across different privacy threats. Transformer-based models, notably RoBERTa,
consistently demonstrated superior performance across different privacy threats, particularly in
Linkability and Identifiability, which is likely because of their nuanced semantic understanding
derived from vast pretraining. Reveal, within the GNN category, particularly excelled in identifying
Linkability threats, leveraging its structural sensitivity to intricate privacy issues deeply embedded
within code dependencies. This specificity underscores the value of employing specialized models
tailored to distinct privacy threats rather than generalized vulnerability detectors, especially within
sensitive healthcare contexts.

Furthermore, the performance patterns observed across different CWE categories were
instructive for targeted vulnerability detection strategies. Memory buffer errors, representing the
largest vulnerability category in our dataset (19,948 instances), were consistently detected with great
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accuracy across all model types, reflecting the relatively structured nature of these vulnerabilities. In
contrast, data neutralization issues (4,896 instances) exhibited greater variability in detection
performance, likely due to their context-dependent manifestation and the diverse implementation
patterns for data sanitization in healthcare applications [38].

The targeted construction of C3-VULMAP, specifically integrating healthcare-focused
vulnerability scenarios, provided superior generalization within healthcare software contexts
compared to generic datasets. The combination of real-world vulnerabilities with synthetic examples
significantly bolstered the ability of the dataset to train models capable of generalizing across diverse
privacy threats, thus achieving robust state-of-the-art results in healthcare privacy vulnerability
detection. The integration of the LINDDUN framework with CWE profoundly impacted
vulnerability detection by providing a structured and explicit mapping between privacy threats and
specific vulnerabilities at the code level. This integration facilitates deeper interpretability, enabling
stakeholders to understand not only what vulnerabilities exist but their potential privacy
implications. Such detailed mappings bridge the gap between abstract privacy concepts and concrete
software vulnerabilities, significantly enhancing the capability to mitigate privacy risks proactively
in healthcare environments. Moreover, it supports compliance-driven development, guiding
software engineers towards more privacy-aware coding practices, fundamentally transforming how
software vulnerabilities are managed and prioritized in healthcare systems.

When interpreting our results in the broader context of healthcare software privacy, several key
implications emerge. The high accuracy achieved by our models demonstrates the feasibility of
automated privacy vulnerability detection as part of healthcare software development pipelines,
potentially accelerating compliance verification for regulations. However, the observed
specialization of different models for specific privacy threat types suggests that comprehensive
privacy assurance requires multi-faceted detection approaches rather than reliance on a single model
architecture. Additionally, the integration of privacy threat modelling with concrete vulnerability
detection bridges the gap between privacy engineering and security engineering disciplines,
addressing the historical disconnect between these domains that has challenged healthcare software
development [35].

Nevertheless, our approach is not devoid of challenges worth considering. For instance, the
labelling of C/C++ functions for privacy vulnerabilities required significant domain expertise in both
healthcare operations and privacy engineering. Also, the adaptation of the LINDDUN methodology
to code-level vulnerabilities presented conceptual challenges, as privacy threats often manifest across
multiple functions or components rather than within isolated code segments [11]. Additionally, the
class imbalance inherent in vulnerability datasets (30,112 vulnerable vs. 7,808,136 non-vulnerable
functions) necessitated careful sampling and evaluation approaches to ensure model robustness in
production environments.

The comparative analysis between GNN-based, transformer-based, and traditional ML models
highlights significant differences in their capacities for vulnerability detection. GNN-based models,
particularly Reveal and Devign, leverage graph structures to accurately capture complex
dependencies in codebases. Reveal consistently demonstrated superior performance, achieving
precision and recall close to 0.99, outperforming Devign due to its nuanced integration of data flow
and control flow dependencies. Devign, while slightly behind, still provided substantial insights by
combining graph convolutional networks with gated recurrent units, effectively capturing sequential
and structural patterns essential for identifying subtle vulnerabilities [13]. In contrast, transformer-
based models such as RoBERTa, CodeBERT, and CodeT5 displayed outstanding contextual learning
capabilities, largely due to their extensive pretraining on code and natural language corpora.
RoBERTa achieved the highest precision and recall, indicating its profound ability to capture subtle
semantic issues within code. CodeBERT and CodeT5, while slightly lower in overall performance,
provided multitask flexibility, crucial for broader software analysis tasks, suggesting the suitability
of transformer-based models for complex, multifaceted vulnerability detection contexts [33,34].
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Traditional ML models served effectively as a baseline, revealing high efficiency and
interpretability. Among these, SVM and XGBoost notably excelled, exhibiting outstanding recall and
precision. SVM presented a balanced performance, minimizing false negatives, crucial for critical
healthcare environments where missing a vulnerability might lead to severe consequences. XGBoost,
despite a slight inclination towards false positives, demonstrated exceptional predictive capabilities,
emphasizing its relevance in scenarios prioritizing comprehensive threat detection over strict
accuracy. Random Forest and Logistic Regression, while reliable, highlighted limitations in managing
false negatives, underscoring the importance of choosing appropriate models based on the specific
operational priorities within healthcare IT infrastructures [36,39].

All tested models showed strong effectiveness in identifying privacy-specific vulnerabilities,
although distinct variations existed in their accuracy across different privacy threats. Transformer-
based models, notably RoBERTa, consistently demonstrated superior performance across diverse
privacy threats, particularly in Linkability and Identifiability, likely due to their nuanced semantic
understanding derived from vast pretraining. Reveal, within the GNN category, particularly excelled
in identifying Linkability threats, leveraging its structural sensitivity to intricate privacy issues
deeply embedded within code dependencies. This specificity underscores the value of employing
specialized models tailored to distinct privacy threats rather than generalized vulnerability detectors,
especially within sensitive healthcare contexts [35].

Generalization performance is particularly critical in real-world applications. The evaluated
models, trained on the C3-VULMAP dataset, indicated substantial advancement over traditional
datasets like DiverseVul and ReposVul. The targeted construction of C3-VULMAP, specifically
integrating healthcare-focused vulnerability scenarios, provided superior generalization within
healthcare software contexts compared to generic datasets. The combination of real-world
vulnerabilities with synthetic examples significantly bolstered the dataset's ability to train models
capable of generalizing across diverse privacy threats, thus achieving robust state-of-the-art results
in healthcare privacy vulnerability detection.

Interpreting these results within healthcare software privacy contexts highlights the necessity of
high-performing detection systems capable of pinpointing nuanced vulnerabilities critical to patient
data integrity and compliance with healthcare regulations. The remarkable performance of
transformer-based and GNN models emphasizes their applicability in healthcare, given their
precision in capturing both semantic and structural vulnerabilities. Privacy-specific threats such as
Linkability and Identifiability require meticulous detection mechanisms, aligning closely with
healthcare’s stringent privacy regulations like HIPAA and GDPR. Therefore, employing advanced
detection models becomes not merely a technical preference but a regulatory imperative for
healthcare organizations aiming to protect sensitive patient data comprehensively.

The integration of the LINDDUN framework with CWE profoundly impacted vulnerability
detection by providing a structured and explicit mapping between privacy threats and specific
vulnerabilities at the code level. This integration facilitates deeper interpretability, enabling
stakeholders to understand not only what vulnerabilities exist but their potential privacy
implications. Such detailed mappings bridge the gap between abstract privacy concepts and concrete
software vulnerabilities, significantly enhancing the capability to mitigate privacy risks proactively
in healthcare environments. Moreover, it supports compliance-driven development, guiding
software engineers towards more privacy-aware coding practices, fundamentally transforming how
software vulnerabilities are managed and prioritized in healthcare systems [26].

7. Conclusion

The significance of privacy-aware vulnerability detection cannot be overstated, particularly in
healthcare contexts where privacy breaches can have profound implications on patient safety and
compliance with strict regulatory frameworks. The C3-VULMAP dataset substantially advances the
field by explicitly integrating the LINDDUN privacy framework with CWE vulnerability
classifications, creating a unique and valuable resource tailored to healthcare privacy concerns. Its
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combination of real-world and synthetic examples provides balanced and comprehensive
vulnerability representation, facilitating superior model training and generalization capabilities.

Given these strengths, further use and collaborative enhancements of the C3-VULMAP dataset
are strongly encouraged. Researchers, practitioners, and policymakers in cybersecurity and
healthcare are invited to engage with and contribute to this evolving resource, promoting broader
adoption and continuous improvement in privacy vulnerability detection methodologies.

Practical implications from this study highlight considerable challenges and critical
considerations in labelling and detecting vulnerabilities. One notable challenge is ensuring accurate
manual labelling, which remains essential despite advancements in automated detection
methodologies. The reliance on domain expertise for manual labelling poses significant resource
implications, highlighting the reliance on human oversight to validate automated findings. The
integration of synthetic vulnerabilities, although beneficial, also presents challenges related to
ensuring their realism and representativeness. Practical deployment further demands addressing
issues such as managing false positives, refining confidence thresholds, and ensuring that detected
vulnerabilities are actionable and relevant, thus necessitating ongoing iterative improvements and
adaptations to maintain robust and accurate vulnerability detection in dynamic healthcare
environments.

Expansion to additional programming languages is another important direction, as the current
dataset predominantly focuses on C/C++ due to their prevalent use in safety-critical applications like
those used in healthcare. Incorporating other widely used languages like Python, Java, and JavaScript
would broaden the applicability of the dataset, providing comprehensive coverage across diverse
healthcare systems and software environments. Additionally, exploring real-time vulnerability
detection systems represents a promising avenue. Implementing continuous, real-time detection
mechanisms would enhance proactive privacy protection capabilities in dynamic healthcare
infrastructures, addressing vulnerabilities immediately as they emerge, thus substantially reducing
associated risks and impacts.
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