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Abstract: We introduce C3-VULMAP, a novel dataset designed to advance privacy-aware 

vulnerability detection in healthcare systems, addressing the critical need for secure software amid 

increasing cyber threats to sensitive patient data. By integrating the LINDDUN privacy threat 

modelling framework with Common Weakness Enumeration (CWE) classifications, we 

systematically map privacy-specific vulnerabilities in C/C++ code, focusing on healthcare 

applications such as electronic health records and medical devices. We aggregate real-world and 

synthetic vulnerability data from diverse sources, creating a comprehensive dataset of vulnerable 

and non-vulnerable functions across 776 CWE types. We evaluate our dataset using graph neural 

networks, transformer-based models, and traditional machine learning approaches, achieving high 

precision and recall, with RoBERTa and Reveal models excelling in detecting Linkability and 

Identifiability threats (F1-scores up to 0.9968). Our results demonstrate a superior generalization of 

the dataset for healthcare contexts compared to generic datasets, enabling robust, compliance-driven 

vulnerability detection. This dataset bridges the gap between privacy and security engineering, 

offering a foundational resource for developing trustworthy healthcare software and fostering 

collaborative advancements in cybersecurity research. 

Keywords: privacy-aware vulnerability detection; healthcare cybersecurity; LINDDUN framework; 

machine learning threat detection; C/C++ programming; privacy vulnerability dataset; Threat 

modelling; electronic health records (EHRs) 

 

1. Introduction 

In recent times healthcare service delivery has greatly transformed, and this is driven by the 

extensive adoption of technology in the provision of patient care, medical research and the medical 

administration. No doubt. this digital explosion has brought about efficiency, better patient 

outcomes, and enabled sustained innovative approaches to healthcare delivery. However, it has also 

introduced significant vulnerabilities that threaten the confidentiality, integrity, and availability of 

sensitive healthcare data. Today, there is an increased reliance on electronic health records (EHRs), 

interconnected medical devices, and telehealth platforms, which has in turn expanded the attack 

surface for cyber threats, making robust privacy and security measures germane. As highlighted by 

the American Hospital Association, healthcare providers are faced with evolving cyber threats, like 

ransomware and phishing attacks, that can compromise patient safety and privacy, leading to 

financial losses, reputational damage, and legal repercussions. The protection of patient privacy, 

mandated by regulations such as the Health Insurance Portability and Accountability Act (HIPAA) 

and the General Data Protection Regulation (GDPR) , stresses the great need for secure and privacy-

focused software in healthcare systems. Therefore, there is an urgent need to secure the software that 

handle this data in an effort to sustain security and privacy by design. 

However, even with the recognized importance of security in healthcare systems, existing 

datasets for vulnerability detection often fail to address the specific privacy concerns peculiar to this 
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domain, such as compliance with HIPAA or the specific vulnerabilities in EHRs and Internet of 

Medical Things (IoMT) devices. Datasets such as those derived from the National Vulnerability 

Database (NVD), as seen in Table 1, provide comprehensive vulnerability information but lack 

detailed mappings to privacy-specific threats, limiting their utility for healthcare applications [1]. For 

example, the NVD includes vulnerabilities related to medical software and devices but does not 

systematically correlate these with privacy risks, such as unauthorized access to patient data. 

Similarly, intrusion detection datasets like KDD-Cup'99 and NSL-KDD, while valuable for general 

cyber security research, are outdated or not tailored to the healthcare context, relying on generic 

security labels that do not capture the nuances of privacy threats [2,3]. This gap in existing resources 

highlights the important need for a dataset that specifically focuses on privacy-aware vulnerability 

detection in healthcare systems. 

To fill this gap, we introduce C3-VULMAP, a niche dataset designed to facilitate the 

development and evaluation of privacy-focused security models in healthcare. This is motivated by 

the recognition that privacy breaches in healthcare can have severe consequences, not only for 

individual patients but also for public trust in healthcare institutions. Cyberattacks targeting 

healthcare systems, can lead to unauthorized disclosure of sensitive patient information, disrupt 

critical care delivery, and result in significant harm. By focusing on privacy-aware vulnerability 

detection, C3-VULMAP aims to enable the creation of more effective security measures that protect 

patient data while ensuring compliance with privacy regulations. The dataset is intended to serve as 

a foundational resource for researchers and practitioners in creating advanced and specific 

cybersecurity solutions for the healthcare sector. 

The applicability and scope of C3-VULMAP includes a wide range of healthcare software and 

systems, including EHRs, medical device software, telehealth platforms, and other digital health 

technologies. Unlike existing datasets, C3-VULMAP includes software code vulnerabilities with 

direct implications for patient privacy, annotated with relevant privacy threats and mapped to 

corresponding Common Weakness Enumeration (CWE) types. These annotations are further 

correlated with the LINDDUN framework, a privacy threat modelling methodology. This systematic 

approach allows for a deeper understanding of how specific vulnerabilities can lead to privacy 

breaches, facilitating the development of targeted and effective security solutions. The dataset is 

designed to be applied in several ways, from training machine learning models for vulnerability 

detection to informing the design of secure healthcare software. 

The contributions of this work are threefold, addressing both the practical and research needs of 

the healthcare cybersecurity community: 

i. Dataset Creation: We present C3-VULMAP, a novel dataset specifically curated for 

privacy-aware vulnerability detection in healthcare systems.  

ii. Systematic Correlation with LINDDUN and CWE: C3-VULMAP establishes a systematic 

correlation between its vulnerabilities and established frameworks, namely LINDDUN for privacy 

threat modelling and CWE for software weakness enumeration.  

iii. Comprehensive Model Evaluations: We conduct extensive evaluations of various 

machine learning and security models using C3-VULMAP, demonstrating its utility in improving the 

detection and prevention of privacy breaches in healthcare systems. 

Table 1. Comparing Some Available Healthcare Domain Specific Datasets. 

By providing a dedicated resource for privacy-aware vulnerability detection, this dataset paves 

the way for more secure, trustworthy, and compliant healthcare systems. The rest of the paper covers 

Dataset 
Healthcare 

Focus 

Privacy-Specific 

Mappings 

Correlation with 

LINDDUN/CWE 

Model  

Evaluations 

NVD Partial No No Limited 

KDD-Cup'99/NSL-KDD No No No General 

C3-VULMAP Yes Yes Yes Comprehensive 
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the review of related works, followed by the evaluation methodology, and the presentation of the 

results, an in-depth discussion, limitations and closes with a conclusion. 

2. Related Works 

Vulnerabilities in software are a threat to the integrity of information systems, especially in 

healthcare. The rise of machine learning (ML) has prompted the development of automated 

vulnerability detection tools, but their effectiveness hinges on the quality and scope of training 

datasets [4,5]. Datasets for ML should go beyond the use for general vulnerability detection and more 

into privacy threat modelling, an important requirement in healthcare where patient data 

confidentiality is principal [6–8].  

2.1. Review of Existing Vulnerability Datasets 

Vulnerability datasets are foundational to training ML-based detection tools, even so, their 

diversity in scope and methodology presents both opportunities and challenges. Several datasets 

have significantly contributed to vulnerability detection research, each with distinctive strengths and 

limitations. For instance, Big-Vul, a dataset that is prominently utilized for code-centric analysis [9], 

has an expansive scope and general vulnerability focus that limits its direct applicability in privacy-

sensitive domains such as healthcare. While DiverseVul, another remarkable dataset expands the 

dataset scale considerably, offering 18,945 vulnerable functions from diverse real-world security 

trackers, enhancing model performance across varied contexts [10]. However, its lack of explicit 

integration with privacy frameworks similarly restricts its utility for privacy-focused applications. 

The ReposVul dataset innovatively addresses repository-level complexities, such as tangled patches 

and outdated fixes, using large language models (LLMs) for labelling. It covers 236 CWE types across 

four programming languages, significantly advancing inter-procedural vulnerability detection [11]. 

However, its approach does not incorporate privacy threat modelling frameworks. In the CVEfixes 

dataset, encompassing 5,365 CVEs, there is a robust support for predictive modelling and automated 

vulnerability repair, demonstrating versatility for general cybersecurity applications [12]. Like the 

previously mentioned datasets, CVEfixes neglects specific privacy considerations crucial in 

healthcare contexts. 

Recent analyses emphasize the critical need for contextually relevant datasets. The authors [5] 

introduced VALIDATE used to highlight issues such as dataset availability and feature diversity in 

vulnerability prediction. Similarly, [13] identified persistent challenges, including imbalanced 

samples and the demand for domain-specific datasets, especially pertinent in sensitive sectors like 

healthcare [14]. The foregoing is an indication for the need for specialized datasets that actively 

integrates privacy considerations with security in the healthcare domain. 

Table 2. Comparative Summary of Existing Vulnerability Datasets. 

Dataset Vulnerabilities Strengths Limitations 
Programming  

Languages 

Big-Vul 3,754 

Detailed CVE 

summaries, severity 

scores 

Limited privacy 

applicability 
C/C++ 

DiverseVul 18,945 
Diversity of real-

world vulnerabilities 

No integration of 

privacy frameworks 
C/C++, Python 

ReposVul 6,134 
Repository-level, 

untangled labelling 

No explicit privacy 

threat modelling 

C, C++, Java, 

Python 

CVEfixes 5,365 
Predictive modelling, 

automated repairs 

Lack of privacy-specific 

considerations 

Multiple languages 

(C, Java) 

2.2. Limitations Concerning Privacy Threat Modelling 
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Given the significant limitation of existing vulnerability datasets in integrating threat modelling 

frameworks that could identify and mitigate privacy risks, leaves much to be desired [15]. The 

absence of privacy-aware datasets hinders the development of detection tools that comply with 

regulations like HIPAA and GDPR, increasing the risk of data breaches [7]. Further, in healthcare, 

where the risks are significantly higher, the authors [6] noted that big data analytics hold great 

potential for improving patient outcomes but require robust security measures to prevent 

unauthorized access. Similarly, [7] highlight the growing frequency of cyberattacks on healthcare 

systems, advocating for sociotechnical solutions that embed privacy considerations.  

The integration of privacy threat modelling into system development is an important approach 

for addressing the abundance of data protection related challenges, particularly as information 

systems become increasingly pervasive. Among the various methodologies available, LINDDUN, an 

acronym encapsulating seven categories of privacy threats: Linkability, Identifiability, Non-

repudiation, Detectability, Disclosure of information, Unawareness, and Non-compliance, offers a 

robust and systematic framework. Developed at KU Leuven, LINDDUN provides a structured 

approach to identifying and mitigating privacy threats within system architectures, making it 

particularly suitable for contexts where data privacy is heralded [16]. Unlike security-focused 

frameworks such as STRIDE, which primarily addresses threats like spoofing and tampering, 

LINDDUN is explicitly designed to tackle privacy concerns, thereby filling a critical gap in threat 

modelling methodologies. Its comprehensive categorization of privacy threats and its adaptability 

across diverse domains justify its selection as a preferred framework for privacy threat modelling, as 

it ensures a thorough analysis of potential vulnerabilities that might otherwise be overlooked [17]. 

The strength of LINDDUN is apparent from its widespread application in recent academic 

research, where its versatility and robustness across various sectors is showcased. For instance, [18] 

explored the application of LINDDUN GO, a streamlined variant of the framework, in the context of 

local renewable energy communities. Their findings showed how LINDDUN was able to effectively 

identify privacy threats in decentralized energy systems, where data sharing among community 

members could be a significant risk. Similarly, [19] emphasized the importance of developing robust 

and reusable privacy threat knowledge bases, leveraging LINDDUN to enhance the consistency and 

scalability of threat modelling practices. Furthermore, [20] tailored LINDDUN to the automotive 

industry, addressing privacy concerns in smart cars. By proposing domain-specific extensions to the 

methodology, they demonstrated its flexibility in accommodating the unique challenges of emerging 

technologies, such as connected vehicles, where personal data is continuously generated and 

transmitted. 

In addition to its adaptability, the structured approach of LINDDUN has demonstrated 

effectiveness in complex, data-intensive environments. For instance, [21] applied LINDDUN to 

model privacy threats in national identification systems, illustrating its utility in safeguarding large-

scale identity management architectures. Their work demonstrates the capacity of LINDDUN to 

handle the intricate interplay of personal data in systems that serve millions of users, where breaches 

could have far-reaching societal implications. Similarly, [22] developed a test bed for privacy threat 

analysis based on LINDDUN, focusing on patient communities. This application highlights the 

suitability of the framework for healthcare systems, where the confidentiality of sensitive medical 

data is critical.  

The choice of LINDDUN, is further justified by its targeted focus on privacy threats, which are 

often inadequately addressed by security-centric frameworks. While STRIDE excels in identifying 

threats to system integrity and availability, it lacks the granularity required to address nuanced 

privacy concerns, such as linkability or unawareness [23]. The comprehensive threat categories in 

LINDDUN enable analysts to systematically evaluate the privacy vulnerabilities in a system, 

ensuring that no aspect of data protection is overlooked. Additionally, its iterative process, which 

involves mapping system data flows, identifying threats, and proposing mitigations, aligns well with 

modern system development lifecycles, where privacy must be embedded from the design phase. 

Moreso, its adaptability of the framework to diverse domains, from energy systems to healthcare and 
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automotive industries, further enhances its appeal, as it allows researchers and practitioners to tailor 

its application to specific contexts without sacrificing its core principles. 

3. Dataset Construction 

The construction of the dataset involved a methodical approach to aggregating, filtering, and 

processing vulnerability data specifically for healthcare systems. Our data collection methodology 

prioritized privacy-centric vulnerabilities while ensuring relevance to real-world healthcare 

applications, with particular attention to the nuanced requirements of healthcare privacy regulations 

and the technical specificity of medical software systems. 

3.1. Modified LINDDUN Process 

The foundation of our data collection process was built upon a modified LINDDUN privacy 

threat modelling methodology, specifically adapted for healthcare information systems (HIS). We 

began by constructing a high-level Data Flow Diagram (DFD) to represent patient journeys through 

healthcare facilities, from registration to follow-up care. This DFD captured the complex interactions 

between patients, medical staff, and various healthcare system components, including electronic 

health record (EHR) systems, diagnostic imaging systems, medication management platforms, vital 

sign monitoring devices, referral systems, remote monitoring solutions, and secure messaging 

infrastructure. 

For each DFD element threat trees from the LINDDUN framework were then used to 

systematically evaluate the seven LINDDUN privacy threat categories: Linkability, Identifiability, 

Non-repudiation, Detectability, Data Disclosure, Unawareness, and Non-compliance. This 

evaluation required extensive domain expertise in both healthcare operations and privacy 

engineering. For example, when analysing the EHR system process node, we considered how patient 

data might be linked across disparate systems (Linkability), how anonymized data could be re-

identified through correlation attacks (Identifiability), and how unauthorized data access might occur 

through various attack vectors (Data Disclosure). The evaluation produced a comprehensive threat 

mapping matrix that identified specific privacy vulnerabilities across all DFD elements. 

This matrix served as the foundation for mapping privacy threats to corresponding Common 

Weakness Enumeration (CWE) categories. The mapping process was iterative and required 

significant manual verification using healthcare privacy and security standards and procedures. For 

instance, Linkability threats were mapped to vulnerabilities such as CWE-200 (Information 

Exposure), while Identifiability threats were associated with CWE-203 (Information Exposure 

Through Discrepancy). This meticulous mapping established a standardized framework for 

vulnerability classification that bridges privacy threats with concrete code-level weaknesses. Details 

of the modified approach can be found here. 

3.2. Data Aggregation and Sources 

The creation of a comprehensive vulnerability dataset required integration of multiple high-

quality sources that provided diverse and representative vulnerability samples. We drew upon 

DiverseVul [10], which contributed a wide range of vulnerability patterns across different codebases, 

particularly enhancing our coverage of memory safety issues prevalent in healthcare device 

firmware. ReposVul [11] supplemented this with real-world vulnerability instances from repository 

analysis, prioritizing those found in healthcare-related projects. The StarCoder dataset [24] provided 

additional context with its extensive source code collection spanning 86 programming languages, 

GitHub issues, Jupyter notebooks, and commit messages, yielding approximately 250 billion tokens 

that informed our understanding of coding patterns associated with privacy vulnerabilities. 

The integration process of these feeder datasets required meticulous attention to detail, 

implemented through custom Python merging scripts specifically designed to handle the complexity 

of combining disparate vulnerability datasets. Our methodology focused exclusively on extracting 

C/C++ functions while preserving associated metadata fields. The initial automated integration phase 
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employed pandas DataFrame operations with carefully crafted join conditions that maintained 

referential integrity between code samples and their corresponding CWE annotations. Following this 

automated processing, our team conducted extensive manual inspection of randomly sampled 

integration results, identifying edge cases where metadata conflicts or inconsistent formatting 

required manual handling. These insights informed the development of additional preprocessing 

routines that standardized field formats, resolved annotation conflicts, and verified the semantic 

consistency of the integrated records. 

3.3. Filtering Methodology 

Our filtering methodology used a multi-stage approach to ensure the relevance of the dataset to 

healthcare privacy concerns. The LINDDUN-CWE alignment filter derived from the modified threat 

methodology was applied on the aggregated dataset to retain only functions associated with privacy-

relevant CWE categories. This filter was implemented as a semantic matching algorithm that 

compared code patterns with vulnerability signatures derived from our LINDDUN analysis. For 

example, functions exhibiting patterns consistent with improper anonymization techniques were 

flagged for retention based on their relevance to ‘Identifiability’ threats. 

Identified privacy-relevant CWEs that were missing were synthesized with the OpenAI API, 

GPT-3.5-Turbo, representing vulnerable and non-vulnerable code functions. This synthesis process 

was guided by detailed prompts incorporating healthcare-specific contexts and privacy 

requirements. Approximately 12% of the final dataset consists of these synthetic examples, primarily 

addressing underrepresented privacy vulnerability categories that are particularly relevant to 

healthcare applications. 

3.4. Dataset Structure 

The final C3-VULMAP dataset comprises 30,112 vulnerable and 7,808,136 non-vulnerable C/C++ 

functions, covering 776 unique CWEs. This imbalance reflects the reality of software development, 

where vulnerable code represents a minority of implementations. The dataset structure was designed 

to facilitate both machine learning model training and human analysis. Each entry in the dataset 

consists of a code snippet at the function level, representing either a vulnerable or non-vulnerable 

implementation. The focus on function-level granularity was chosen after empirical evaluation of 

alternative granularities (line-level, block-level, file-level) for their effectiveness in capturing 

vulnerability contexts. Functions emerged as the optimal unit of analysis, providing sufficient context 

for understanding vulnerability patterns while remaining manageable for analysis. Function-level 

analysis aligns with typical code review and security assessment practices in healthcare software 

development, where functions often encapsulate specific data processing operations with clear 

security boundaries.  

C/C++ was selected because it is considered a programming language for safety-critical systems 

[25], and its manual memory management introduces unique privacy vulnerabilities like buffer 

overflows [26] which align with LINDDUN categories and can cause unauthorized data exposure 

[27]. In addition, C/C++ remains the dominant implementation language for performance-critical 

applications, including medical imaging systems, patient monitoring devices, and laboratory 

information systems [28]. The manual memory management inherent to C/C++ introduces unique 

privacy vulnerability vectors such as buffer overflows, use-after-free errors, and memory leaks, 

which can lead to unauthorized data exposure [29]. Moreso, the low-level features of C/C++, 

including pointer manipulation and direct memory access, expose privacy risk vectors that require 

systematic investigation in the healthcare context [30]. For example, improper sanitization of patient 

identifiers before memory deallocation can leave residual protected health information (PHI) 

accessible to attackers, a vulnerability pattern well-represented in our dataset. Additionally, many 

healthcare systems rely on legacy C/C++ codebases designed for long-term reliability, making 

vulnerability detection in this language particularly valuable for maintaining privacy compliance in 

established healthcare infrastructure. 
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3.5. Feature Engineering and Metadata Schema 

The dataset consists of a rich metadata schema of nine essential columns that provide multi-

dimensional characterization of each vulnerability. The 'label' column contains the binary 

classification of vulnerable (1) or non-vulnerable (0), serving as the primary target for supervised 

learning models, while the 'code' column contains the actual C/C++ function implementation, 

preserved with consistent formatting while maintaining the semantic integrity of the original code. 

For vulnerable entries, the 'cwe_id' column provides the specific Common Weakness 

Enumeration identifier, while 'cwe_description' offers a detailed explanation of the vulnerability 

type. The 'CWE-Name' column provides the standardized name of the weakness, facilitating cross-

reference with external vulnerability databases and literature. Together, these fields enable precise 

categorization of vulnerability types and support targeted analysis of specific weakness categories. 

The 'Privacy_Threat_Types' column represents a key innovation in our dataset, mapping each 

vulnerability to corresponding LINDDUN privacy threat categories. This mapping facilitates 

privacy-focused analysis by explicitly connecting code-level vulnerabilities to higher-level privacy 

implications. Distribution analysis reveals significant representation across privacy threat types, with 

Identifiability (1,128,726 instances) and Linkability (1,128,680 instances) being the most prevalent, 

followed by Unawareness (1,117,373), Detectability (1,117,164), Data Disclosure (1,116,341), Non-

compliance (1,115,478), and Non-repudiation (1,114,486). 

The hierarchical categorization of vulnerabilities is further supported by the 

'CWE_CATEGORY', 'CWE_CATEGORY_NAME', and 'CWE_CATEGORY_NAME_DESCRIPTION' 

columns. These fields provide increasingly detailed information about the vulnerability's 

classification within the CWE hierarchy, enabling both broad categorical analysis and specific 

vulnerability targeting. The distribution of CWE categories reveals the predominance of Memory 

Buffer Errors (19,948 instances) and Data Neutralization Issues (4,896 instances), reflecting their 

critical importance in healthcare systems where data integrity and confidentiality are paramount. The 

comprehensive nature of this metadata schema supports diverse research applications, from training 

specialized models for detecting specific vulnerability types to conducting broader analyses of 

privacy vulnerability patterns in healthcare software. The explicit connection between code-level 

vulnerabilities and privacy threats through the LINDDUN framework represents a significant 

advancement in vulnerability dataset design, directly addressing the need for privacy-aware security 

analysis in healthcare applications. 

4. Evaluation Methodology 

4.1. Model Selection and Rationale 

To assess the effectiveness of vulnerability detection using the C3-VULMAP dataset, diverse 

modelling approaches were selected spanning graph neural networks (GNNs), transformer-based 

models, and traditional machine learning (ML) techniques. Each category offers unique strengths and 

insights into vulnerability detection tasks, providing a foundation for comparative analysis. 

4.1.1. Graph Neural Network (GNN)-Based Models 

Graph neural networks ordinarily prevail at capturing structural relationships within data, 

making them highly suitable for representing complex dependencies within source code. Specifically, 

Reveal [31] and Devign [32] stand out as prominent GNN-based models widely recognized in 

vulnerability detection literature. Reveal employs a novel approach to explicitly model code 

semantics and structure by integrating graph-based representation learning and transforms source 

code into comprehensive graphs capturing data flow and control flow dependencies and thereby 

allowing the enriched representation to efficiently discern nuanced patterns indicative of 

vulnerabilities. Devign further advances this technique by combining graph convolutional networks 

with gated recurrent units, enabling both structural and sequential learning within code. Devign 

effectively addresses the shortcomings of simpler GNN models by incorporating temporal 
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dependencies in code execution paths, significantly enhancing its capability to identify subtle 

vulnerability patterns across extensive codebases [32]. 

4.1.2. Transformer-Based Models 

Transformer architectures have transformed natural language processing tasks, demonstrating 

extraordinary capabilities in contextual learning and pattern recognition. Due to similarities between 

code and natural language, transformer-based models have become increasingly influential in code 

vulnerability detection. Models like CodeBERT, GraphCodeBERT, and CodeT5 exemplify this 

category and were selected for their proven effectiveness and innovation in leveraging large-scale 

contextual representations of code. 

CodeBERT built on the robust RoBERTa architecture and pretrained on a large corpus of code 

and natural language data. Its strength lies in effectively capturing semantic relationships within code 

through masked language modelling and next sentence prediction tasks. This deep contextual 

understanding allows CodeBERT to detect vulnerabilities arising from nuanced semantic issues in 

source code [33]. GraphCodeBERT extends the capabilities of CodeBERT by explicitly integrating 

structure-aware pretraining. It leverages abstract syntax tree (AST)-based representations alongside 

traditional token sequences to learn more precise structural-semantic embeddings of code. This dual-

focus enables GraphCodeBERT to accurately detect vulnerabilities linked to complex structural 

patterns that simpler token-based models might overlook [34]. For CodeT5, based on the T5 encoder-

decoder architecture, introduces an advanced form of multitask pretraining specifically designed for 

programming languages. It encompasses code generation, summarization, and vulnerability 

detection tasks simultaneously, providing unparalleled flexibility and accuracy. Its ability to 

generalize across multiple tasks and contexts positions it uniquely for vulnerability detection, 

especially where vulnerabilities intersect with other code characteristics, such as readability or 

complexity [35]. 

4.1.3. Traditional Machine Learning Models 

Despite the popularity of deep learning methods, traditional machine learning approaches 

remain invaluable due to their interpretability, simplicity, and efficient training. To provide a 

comprehensive performance baseline, we selected classical algorithms, including Random Forest, 

Logistic Regression, Support Vector Machines (SVM), and XGBoost. 

Random Forests excel at capturing complex, non-linear relationships through ensemble 

decision-tree voting, offering high predictive accuracy and robustness against overfitting. They also 

provide feature importance metrics, enabling insightful interpretations about influential code 

attributes contributing to vulnerabilities [36]. Logistic Regression offers transparency and 

interpretability, ideal for baseline comparisons and situations requiring clear justifications. It allows 

straightforward identification of code features that significantly correlate with vulnerability risks, 

thereby facilitating effective feature engineering and practical vulnerability assessment strategies 

[37]. Support Vector Machines (SVMs) effectively handle high-dimensional feature spaces, 

characteristic of code analysis datasets, by maximizing the margin of separation between 

vulnerability classes. Their kernel flexibility and ability to handle sparse datasets position them as 

valuable baseline models, particularly for evaluating the impacts of intricate feature interactions [38]. 

XGBoost is popular for its enhanced predictive performance through gradient boosting, 

systematically correcting errors of previous weak learners to achieve exceptional accuracy. Its 

efficiency and scalability make it ideal for large-scale vulnerability datasets, enabling rapid model 

iteration and fine-tuning processes. Additionally, its feature importance capabilities further assist in 

detailed interpretability and vulnerability attribution analyses [39]. 

4.2. Experimental Setup 

A unified pipeline across was adopted for the four modelling paradigms to ensure fair and 

reproducible comparisons. All experiments draw on the same base corpus of labelled examples.  We 
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then partition each dataset into training, validation, and test sets—typically in an 80/10/10 split—

using stratified sampling to preserve label distributions. This split underpins every downstream 

model, from traditional classifiers to graph neural networks (GNNs). 

Our neural-text comparison centres on pre-trained Transformer encoders. We benchmarked 

both BERT-base (uncased) and GraphCodeBERT, loading each via 

AutoModelForSequenceClassification API from Hugging Face with two-class heads. Text (or code 

snippets) are tokenized in-batch with padding and truncation to a fixed maximum length, producing 

input_ids and attention_mask tensors. Fine-tuning follows the standard AdamW optimizer (learning 

rate ≈2×10⁻⁵) over multiple epochs, with checkpoints saved per epoch. Model outputs—the pooled 

[CLS] embeddings—are fed through a linear classification head, and we monitor precision, recall, 

and F1 on the validation set to select the best checkpoint. Under this regimen, GraphCodeBERT’s 

code-aware pre-training consistently outperformed vanilla BERT on code classification tasks. 

In the CodeT5 experiments, we leveraged the Salesforce “codet5-base” seq2seq model 

repurposed for classification. After tokenizing code–docstring pairs with the CodeT5 tokenizer 

(padding/truncation to length 512), we fine-tuned AutoModelForSequenceClassification analogously 

to the BERT family. Training loops compute cross-entropy loss, back-propagate gradients, and save 

best models based on validation F1. Despite its encoder–decoder architecture, CodeT5 converged 

comparably to encoder-only models, showing strength in code summarization tasks where the 

decoder context aids disambiguation. 

Finally, our graph-based approach converts each example into a program graph: nodes 

represent AST constructs or tokens, edges encode syntactic and data-flow relations, and node features 

comprise one-hot token-type vectors. We implemented three GNN variants—GCN, GraphSAGE, and 

GAT—each consisting of stacked message-passing layers, global pooling (mean or max), and an MLP 

classification head. Training uses standard PyTorch loops with Adam (lr ≈1×10⁻³) and cross-entropy 

loss. The GAT model, in particular, benefits from attention over code structure, yielding the highest 

F1 among graph-based models. 

To evaluate performance, we ran inference on the held-out test fold for every model, compiling 

an “inference table” of true labels, predicted labels, and model confidences. From these, we computed 

accuracy, precision, recall, and F1 via Scikit-learn, alongside confusion matrices. We complemented 

scalar metrics with rich visualizations: bar charts for multi-model metric comparison, heatmaps of 

confusion matrices, boxplots of confidence distributions on correct versus incorrect predictions, and 

targeted error-confidence analyses highlighting high-confidence misclassifications. All figures and 

summary tables are saved in a structured outputs/ directory, ensuring transparency and ease of 

reproduction. Collectively, this cohesive framework illuminates the trade-offs between traditional, 

Transformer-based, generative, and graph-based approaches on code and text classification. 

5. Results 

This section presents the performance evaluation of three classes of models, traditional machine 

learning (ML), graph neural networks (GNNs), and Transformer-based models, across overall 

classification, production-scale inference, and granular vulnerability and privacy-threat metrics. The 

results are derived from a comprehensive evaluation on a validation set and a production-scale test 

set of 18,068 cases, with metrics including precision, recall, F1-score, accuracy, false 

positives/negatives, and average confidence scores. Granular performance is reported as mean ± 

standard deviation (SD) across Common Weakness Enumeration (CWE) and privacy-threat 

categories, with the best-performing threat type highlighted for each model. The complete 

performance metrics and other results can be found in here. 

5.1. Traditional Machine Learning Modules 

We evaluated four traditional machine learning classifiers: Random Forest, Support Vector 

Machine (SVM), Logistic Regression, and XGBoost. Table 3 presents their overall classification 

performance. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2025 doi:10.20944/preprints202505.2397.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/juxam/C3-VULMAP
https://doi.org/10.20944/preprints202505.2397.v1
http://creativecommons.org/licenses/by/4.0/


 10 of 20 

 

Table 3. Overall performance of traditional ML models. 

Model Precision Recall F1-score 

Random Forest 0.985 0.939 0.961 

SVM 0.982 0.993 0.987 

Logistic Regression 0.985 0.979 0.982 

XGBoost 0.978 0.995 0.986 

All four models demonstrated high effectiveness, with SVM achieving the best balance of recall 

(0.993) and F1-score (0.987), while Random Forest delivered the highest precision (0.985) but at the 

cost of lower recall. XGBoost attained the highest recall (0.995) among all models, suggesting superior 

sensitivity to vulnerability detection, though with slightly lower precision than the other approaches. 

To assess practical deployment viability, we conducted inference testing on a production-scale 

dataset comprising 18,068 cases. Table 4 summarizes these results. 

Table 4. Inference performance summary. 

Model Accuracy 
False  

Positives 

False  

Negatives 

Avg  

Confidence 

Random Forest 0.962 129 553 0.827 

SVM 0.987 169 60 0.982 

Logistic Regression 0.982 132 192 0.966 

XGBoost 0.986 205 49 0.978 

SVM demonstrated the highest overall accuracy (0.987) with a balanced error profile, producing 

only 60 false negatives but 169 false positives. XGBoost showed a tendency toward false positives 

(205) while minimizing false negatives (49), indicating a more conservative security posture that 

favours vulnerability flagging. Random Forest exhibited the most false negatives (553), suggesting 

potential security risks in deployment scenarios where missed vulnerabilities could be costly. 

We further analysed model consistency across vulnerability categories by computing mean and 

standard deviation of performance metrics for Common Weakness Enumeration (CWE) classes 

(Table 5). 

Table 5. Mean ± SD of CWE granular metrics. 

Model Precision (μ ± σ) Recall (μ ± σ) F1 (μ ± σ) 

Random Forest 0.965 ± 0.012 0.964 ± 0.011 0.964 ± 0.011 

SVM 0.988 ± 0.005 0.987 ± 0.006 0.987 ± 0.005 

Logistic Regression 0.982 ± 0.007 0.982 ± 0.008 0.982 ± 0.007 

XGBoost 0.988 ± 0.004 0.988 ± 0.005 0.988 ± 0.004 

Both SVM and XGBoost achieved the highest mean F1-scores (0.987 ± 0.005 and 0.988 ± 0.004, 

respectively) with minimal variability across CWE classes, indicating robust performance regardless 

of vulnerability type. Random Forest showed slightly higher variability (σ = 0.011), suggesting less 

consistent performance across different vulnerability classes. 

Finally, we evaluated model performance on privacy threat classification (Table 6). 

SVM again emerged as the top performer with an average F1-score of 0.9873 across privacy 

threat categories, with particularly strong performance on Linkability threats (F1 = 0.9893). 

Interestingly, XGBoost matched this best-in-class performance (F1 = 0.9893) but on Identifiability 

threats, suggesting that different models may possess complementary strengths for specific privacy 

threat detection tasks. 
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Table 6. Average privacy-threat metrics and best-performing threat type per model. 

Model 
Avg  

Precision 
Avg Recall Avg F1 Score 

Best Threat 

Type 
F1 Score 

Random Forest 0.9632 0.9622 0.9625 Linkability 0.9679 

SVM 0.9874 0.9873 0.9873 Linkability 0.9893 

Logistic Regression 0.9821 0.9820 0.9820 Identifiability 0.9852 

XGBoost 0.9861 0.9859 0.9859 Identifiability 0.9893 

5.2. Graph Neural Networks  

Our evaluation included two state-of-the-art graph neural network architectures: Devign and 

Reveal. Table 7 presents their overall classification performance. 

Table 7. Overall performance of GNN classifiers. 

Model Precision Recall F1-score 

Devign 0.9699 0.9912 0.9776 

Reveal 0.9821 0.9945 0.9860 

Both GNN models achieved exceptional recall (>0.99), with Reveal outperforming Devign across 

all metrics. Reveal's superior precision (0.9821 vs. 0.9699) contributed to its higher F1-score (0.9860), 

indicating better overall classification performance. 

For production deployment assessment, we conducted large-scale inference testing with results 

shown in Table 8. 

Table 8. Production inference performance. 

Model Accuracy False Positives False Negatives Avg Confidence 

Devign 0.9913 103 27 0.503 

Reveal 0.9933 74 27 0.502 

Reveal demonstrated higher accuracy (0.9933) with considerably fewer false positives (74 vs. 

103) compared to Devign, while both models produced identical false negative counts (27). Notably, 

both GNN models exhibited lower average confidence scores (≈0.50) than traditional ML models, 

suggesting more conservative decision boundaries despite their higher performance metrics. 

To assess model consistency across vulnerability categories, we analysed performance variance 

across CWE classes (Table 9). 

Table 9. Mean ± SD of CWE granular metrics. 

Model Precision (μ ± σ) Recall (μ ± σ) F1 (μ ± σ) 

Devign 0.984 ± 0.017 0.997 ± 0.004 0.991 ± 0.009 

Reveal 0.986 ± 0.018 0.997 ± 0.004 0.991 ± 0.009 

Both GNN models achieved nearly identical category-level performance with excellent mean 

recall (0.997) and F1-scores (0.991). The slightly higher standard deviations in precision (σ ≈ 0.017-

0.018) suggest that both models experience some variability across different CWE classes, though this 

does not significantly impact overall robustness. 

For privacy-threat metrics, we evaluated performance consistency and identified peak 

performance areas (Table 10). 

Table 10. Mean ± SD of privacy‐threat metrics, plus best‐scoring threat. 
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Model Precision (μ ± σ) Recall (μ ± σ) F1 (μ ± σ) Best Threat Type F1 

Devign 0.986 ± 0.005 0.996 ± 0.002 0.991 ± 0.002 Identifiability 0.9945 

Reveal 0.990 ± 0.005 0.996 ± 0.002 0.993 ± 0.003 Linkability 0.9968 

Reveal achieved higher mean precision (0.990 vs. 0.986) and F1-score (0.993 vs. 0.991) than 

Devign, with both models maintaining exceptionally high recall (0.996). The minimal standard 

deviations across all metrics (σ ≤ 0.005) indicate remarkable consistency across privacy threat types. 

Interestingly, the models demonstrated complementary strengths, with Devign excelling at 

Identifiability detection (F1 = 0.9945) and Reveal performing best on Linkability threats (F1 = 0.9968). 

To provide a more comprehensive view of privacy-threat classification performance, we present 

average metrics and best-case performance for each model in Table 11. 

Table 11. Average privacy‐threat metrics and best‐performing threat type per model. 

Model Avg Precision Avg Recall 
Avg F1 

Score 

Best Threat 

Type 
F1 Score 

Devign 0.9860 0.9962 0.9910 Identifiability 0.9945 

Reveal 0.9902 0.9964 0.9931 Linkability 0.9968 

Reveal consistently outperformed Devign across all average metrics, with particularly strong 

performance in precision (0.9902 vs. 0.9860) and F1-score (0.9931 vs. 0.9910). Both models achieved 

near-perfect recall (>0.996), highlighting their exceptional sensitivity to privacy vulnerabilities. The 

complementary specialization patterns observed earlier were confirmed, with Devign excelling at 

Identifiability threats and Reveal demonstrating superior performance on Linkability threats. 

5.3. Transformer-Based Models 

We evaluated five transformer-based models: BERT, RoBERTa, CodeBERT, CodeT5-base, and 

CodeT5-small. Table 12 presents their overall classification performance. 

Table 12. Overall performance of Transformer models. 

Model Precision Recall F1-score 

BERT (bert-base-uncased) 0.974 0.992 0.983 

RoBERTa (roberta-base) 0.980 0.994 0.987 

CodeBERT (codebert-base) 0.978 0.993 0.985 

CodeT5-base 0.976 0.991 0.983 

CodeT5-small 0.972 0.990 0.981 

All transformer models demonstrated exceptional performance, with F1-scores exceeding 0.98. 

RoBERTa emerged as the top performer with the highest precision (0.980), recall (0.994), and F1-score 

(0.987) among transformer models. CodeBERT ranked second with an F1-score of 0.985, while 

CodeT5-small showed the lowest overall performance but still achieved an impressive F1-score of 

0.981. 

For production deployment assessment, Table 13 presents inference performance metrics. 

Table 13. Production inference performance. 

Model Accuracy False Positives False Negatives Avg Confidence 

BERT (bert-base-uncased) 0.9915 85 30 0.912 

RoBERTa (roberta-base) 0.9932 60 25 0.925 

CodeBERT (codebert-base) 0.9928 70 28 0.918 

CodeT5-base 0.9921 75 32 0.908 
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CodeT5-small 0.9905 102 45 0.890 

RoBERTa achieved the highest accuracy (0.9932) with the fewest false positives (60) and false 

negatives (25), confirming its superior performance in practical deployment scenarios. All 

transformer models exhibited high confidence scores (>0.89), with RoBERTa again leading at 0.925. 

CodeT5-small showed the weakest production performance with the most false positives (102) and 

false negatives (45), consistent with its lower overall metrics. 

To assess consistency across vulnerability categories, we analysed performance across CWE 

classes (Table 14). 

Table 14. Mean ± SD of CWE granular metrics. 

Model Precision (μ ± σ) Recall (μ ± σ) F1 (μ ± σ) 

BERT (bert-base-uncased) 0.975 ± 0.010 0.993 ± 0.005 0.984 ± 0.007 

RoBERTa (roberta-base) 0.981 ± 0.008 0.994 ± 0.004 0.987 ± 0.006 

CodeBERT (codebert-base) 0.979 ± 0.009 0.993 ± 0.005 0.986 ± 0.006 

CodeT5-base 0.977 ± 0.011 0.991 ± 0.005 0.983 ± 0.008 

CodeT5-small 0.973 ± 0.013 0.990 ± 0.006 0.981 ± 0.009 

All transformer models demonstrated consistent performance across CWE classes with low 

standard deviations (σF1 ≤ 0.009). RoBERTa again led with the highest mean F1-score (0.987) and 

smallest performance variability (σF1 = 0.006), indicating robust performance across all vulnerability 

types. CodeT5-small showed the highest variability (σF1 = 0.009), though still maintaining strong 

overall performance. 

For privacy-threat classification, we assessed fine-grained metrics across threat types (Table 15). 

Table 15. Mean ± SD of privacy‐threat granular metrics. 

Model Precision (μ ± σ) Recall (μ ± σ) F1 (μ ± σ) 

BERT (bert-base-uncased) 0.983 ± 0.006 0.995 ± 0.003 0.989 ± 0.004 

RoBERTa (roberta-base) 0.987 ± 0.005 0.996 ± 0.003 0.991 ± 0.004 

CodeBERT (codebert-base) 0.985 ± 0.006 0.995 ± 0.003 0.990 ± 0.005 

CodeT5-base 0.986 ± 0.007 0.995 ± 0.003 0.990 ± 0.005 

CodeT5-small 0.984 ± 0.008 0.994 ± 0.004 0.989 ± 0.006 

All transformer models achieved exceptional performance on privacy threat classification, with 

mean F1-scores ≥ 0.989 and minimal standard deviations (σF1 ≤ 0.006). RoBERTa maintained its 

leading position with the highest mean F1-score (0.991), followed closely by CodeBERT and CodeT5-

base (both 0.990). The consistently high recall across all models (≥ 0.994) highlights their strong 

sensitivity to privacy vulnerabilities. 

Finally, we identified the best-performing privacy threat type for each transformer model (Table 

16). 

Table 16. Best-performing privacy threat per model. 

Model Best Threat Type F1 Score 

BERT (bert-base-uncased) Identifiability 0.9946 

RoBERTa (roberta-base) Linkability 0.9962 

CodeBERT (codebert-base) Data Disclosure 0.9958 

CodeT5-base Identifiability 0.9946 

CodeT5-small Data Disclosure 0.9961 
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Interestingly, different transformer models demonstrated specialized strengths for specific 

privacy threat types. RoBERTa excelled at Linkability detection (F1 = 0.9962), while CodeT5-small 

achieved its best performance on Data Disclosure threats (F1 = 0.9961) despite having lower overall 

metrics. BERT and CodeT5-base both performed best on Identifiability threats with identical F1-

scores (0.9946). This specialization pattern suggests potential benefits from ensemble approaches that 

leverage the complementary strengths of different models. 

6. Discussion 

Comparing GNN-based, transformer-based, and traditional ML models reveals major 

differences in their capacities for vulnerability detection. For instance, the GNN-based models we 

used, Reveal and Devign, leverage graph structures to accurately capture complex dependencies in 

codebases. Reveal consistently demonstrated superior performance, achieving precision and recall 

close to 0.99, outperforming Devign due to its nuanced integration of data flow and control flow 

dependencies. Devign, while slightly behind, still provided substantial insights by combining graph 

convolutional networks with gated recurrent units, effectively capturing sequential and structural 

patterns essential for identifying subtle vulnerabilities [32]. In contrast, the transformer-based 

models, RoBERTa, CodeBERT, and CodeT5 displayed superb contextual learning capabilities, largely 

due to their extensive pretraining on code and natural language corpora. RoBERTa achieved the 

highest precision and recall, indicating its profound ability to capture subtle semantic issues within 

code. CodeBERT and CodeT5, while slightly lower in overall performance, provided multitask 

flexibility, important for broader software analysis tasks, suggesting the suitability of transformer-

based models for complex, multifaceted vulnerability detection contexts [33,34]. 

The traditional ML models performed effectively as a baseline, revealing high efficiency and 

interpretability. Among these, SVM and XGBoost performed better in exhibiting outstanding recall 

and precision. SVM presented a balanced performance, minimizing false negatives, crucial for critical 

healthcare environments where missing a vulnerability might lead to severe consequences. XGBoost, 

despite a slight inclination towards false positives, demonstrated exceptional predictive capabilities, 

emphasizing its relevance in scenarios prioritizing comprehensive threat detection over strict 

accuracy. Random Forest and Logistic Regression, while reliable, highlighted limitations in managing 

false negatives, underscoring the importance of choosing appropriate models based on the specific 

operational priorities within healthcare IT infrastructures [36]. 

Interestingly, our analysis revealed that vulnerability types with direct privacy implications 

exhibited varying degrees of detection difficulty. Information disclosure vulnerabilities were 

detected with high accuracy across all models, while more subtle privacy issues related to insufficient 

anonymization or improper access control required more sophisticated model architectures, 

particularly GNNs and transformers with architectural components tailored to structural code 

understanding. This finding aligns with recent research suggesting that privacy vulnerabilities often 

involve complex interactions between code structure, data flow, and application semantics that can 

be challenging to detect with simple pattern matching [40] All the models tested showed strong 

effectiveness in identifying privacy-specific vulnerabilities, although distinct variations existed in 

their accuracy across different privacy threats. Transformer-based models, notably RoBERTa, 

consistently demonstrated superior performance across different privacy threats, particularly in 

Linkability and Identifiability, which is likely because of their nuanced semantic understanding 

derived from vast pretraining. Reveal, within the GNN category, particularly excelled in identifying 

Linkability threats, leveraging its structural sensitivity to intricate privacy issues deeply embedded 

within code dependencies. This specificity underscores the value of employing specialized models 

tailored to distinct privacy threats rather than generalized vulnerability detectors, especially within 

sensitive healthcare contexts. 

Furthermore, the performance patterns observed across different CWE categories were 

instructive for targeted vulnerability detection strategies. Memory buffer errors, representing the 

largest vulnerability category in our dataset (19,948 instances), were consistently detected with great 
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accuracy across all model types, reflecting the relatively structured nature of these vulnerabilities. In 

contrast, data neutralization issues (4,896 instances) exhibited greater variability in detection 

performance, likely due to their context-dependent manifestation and the diverse implementation 

patterns for data sanitization in healthcare applications [38]. 

The targeted construction of C3-VULMAP, specifically integrating healthcare-focused 

vulnerability scenarios, provided superior generalization within healthcare software contexts 

compared to generic datasets. The combination of real-world vulnerabilities with synthetic examples 

significantly bolstered the ability of the dataset to train models capable of generalizing across diverse 

privacy threats, thus achieving robust state-of-the-art results in healthcare privacy vulnerability 

detection. The integration of the LINDDUN framework with CWE profoundly impacted 

vulnerability detection by providing a structured and explicit mapping between privacy threats and 

specific vulnerabilities at the code level. This integration facilitates deeper interpretability, enabling 

stakeholders to understand not only what vulnerabilities exist but their potential privacy 

implications. Such detailed mappings bridge the gap between abstract privacy concepts and concrete 

software vulnerabilities, significantly enhancing the capability to mitigate privacy risks proactively 

in healthcare environments. Moreover, it supports compliance-driven development, guiding 

software engineers towards more privacy-aware coding practices, fundamentally transforming how 

software vulnerabilities are managed and prioritized in healthcare systems. 

When interpreting our results in the broader context of healthcare software privacy, several key 

implications emerge. The high accuracy achieved by our models demonstrates the feasibility of 

automated privacy vulnerability detection as part of healthcare software development pipelines, 

potentially accelerating compliance verification for regulations. However, the observed 

specialization of different models for specific privacy threat types suggests that comprehensive 

privacy assurance requires multi-faceted detection approaches rather than reliance on a single model 

architecture. Additionally, the integration of privacy threat modelling with concrete vulnerability 

detection bridges the gap between privacy engineering and security engineering disciplines, 

addressing the historical disconnect between these domains that has challenged healthcare software 

development [35]. 

Nevertheless, our approach is not devoid of challenges worth considering. For instance, the 

labelling of C/C++ functions for privacy vulnerabilities required significant domain expertise in both 

healthcare operations and privacy engineering. Also, the adaptation of the LINDDUN methodology 

to code-level vulnerabilities presented conceptual challenges, as privacy threats often manifest across 

multiple functions or components rather than within isolated code segments [11]. Additionally, the 

class imbalance inherent in vulnerability datasets (30,112 vulnerable vs. 7,808,136 non-vulnerable 

functions) necessitated careful sampling and evaluation approaches to ensure model robustness in 

production environments. 

The comparative analysis between GNN-based, transformer-based, and traditional ML models 

highlights significant differences in their capacities for vulnerability detection. GNN-based models, 

particularly Reveal and Devign, leverage graph structures to accurately capture complex 

dependencies in codebases. Reveal consistently demonstrated superior performance, achieving 

precision and recall close to 0.99, outperforming Devign due to its nuanced integration of data flow 

and control flow dependencies. Devign, while slightly behind, still provided substantial insights by 

combining graph convolutional networks with gated recurrent units, effectively capturing sequential 

and structural patterns essential for identifying subtle vulnerabilities [13]. In contrast, transformer-

based models such as RoBERTa, CodeBERT, and CodeT5 displayed outstanding contextual learning 

capabilities, largely due to their extensive pretraining on code and natural language corpora. 

RoBERTa achieved the highest precision and recall, indicating its profound ability to capture subtle 

semantic issues within code. CodeBERT and CodeT5, while slightly lower in overall performance, 

provided multitask flexibility, crucial for broader software analysis tasks, suggesting the suitability 

of transformer-based models for complex, multifaceted vulnerability detection contexts [33,34]. 
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Traditional ML models served effectively as a baseline, revealing high efficiency and 

interpretability. Among these, SVM and XGBoost notably excelled, exhibiting outstanding recall and 

precision. SVM presented a balanced performance, minimizing false negatives, crucial for critical 

healthcare environments where missing a vulnerability might lead to severe consequences. XGBoost, 

despite a slight inclination towards false positives, demonstrated exceptional predictive capabilities, 

emphasizing its relevance in scenarios prioritizing comprehensive threat detection over strict 

accuracy. Random Forest and Logistic Regression, while reliable, highlighted limitations in managing 

false negatives, underscoring the importance of choosing appropriate models based on the specific 

operational priorities within healthcare IT infrastructures [36,39]. 

All tested models showed strong effectiveness in identifying privacy-specific vulnerabilities, 

although distinct variations existed in their accuracy across different privacy threats. Transformer-

based models, notably RoBERTa, consistently demonstrated superior performance across diverse 

privacy threats, particularly in Linkability and Identifiability, likely due to their nuanced semantic 

understanding derived from vast pretraining. Reveal, within the GNN category, particularly excelled 

in identifying Linkability threats, leveraging its structural sensitivity to intricate privacy issues 

deeply embedded within code dependencies. This specificity underscores the value of employing 

specialized models tailored to distinct privacy threats rather than generalized vulnerability detectors, 

especially within sensitive healthcare contexts [35]. 

Generalization performance is particularly critical in real-world applications. The evaluated 

models, trained on the C3-VULMAP dataset, indicated substantial advancement over traditional 

datasets like DiverseVul and ReposVul. The targeted construction of C3-VULMAP, specifically 

integrating healthcare-focused vulnerability scenarios, provided superior generalization within 

healthcare software contexts compared to generic datasets. The combination of real-world 

vulnerabilities with synthetic examples significantly bolstered the dataset's ability to train models 

capable of generalizing across diverse privacy threats, thus achieving robust state-of-the-art results 

in healthcare privacy vulnerability detection. 

Interpreting these results within healthcare software privacy contexts highlights the necessity of 

high-performing detection systems capable of pinpointing nuanced vulnerabilities critical to patient 

data integrity and compliance with healthcare regulations. The remarkable performance of 

transformer-based and GNN models emphasizes their applicability in healthcare, given their 

precision in capturing both semantic and structural vulnerabilities. Privacy-specific threats such as 

Linkability and Identifiability require meticulous detection mechanisms, aligning closely with 

healthcare’s stringent privacy regulations like HIPAA and GDPR. Therefore, employing advanced 

detection models becomes not merely a technical preference but a regulatory imperative for 

healthcare organizations aiming to protect sensitive patient data comprehensively. 

The integration of the LINDDUN framework with CWE profoundly impacted vulnerability 

detection by providing a structured and explicit mapping between privacy threats and specific 

vulnerabilities at the code level. This integration facilitates deeper interpretability, enabling 

stakeholders to understand not only what vulnerabilities exist but their potential privacy 

implications. Such detailed mappings bridge the gap between abstract privacy concepts and concrete 

software vulnerabilities, significantly enhancing the capability to mitigate privacy risks proactively 

in healthcare environments. Moreover, it supports compliance-driven development, guiding 

software engineers towards more privacy-aware coding practices, fundamentally transforming how 

software vulnerabilities are managed and prioritized in healthcare systems [26]. 

7. Conclusion 

The significance of privacy-aware vulnerability detection cannot be overstated, particularly in 

healthcare contexts where privacy breaches can have profound implications on patient safety and 

compliance with strict regulatory frameworks. The C3-VULMAP dataset substantially advances the 

field by explicitly integrating the LINDDUN privacy framework with CWE vulnerability 

classifications, creating a unique and valuable resource tailored to healthcare privacy concerns. Its 
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combination of real-world and synthetic examples provides balanced and comprehensive 

vulnerability representation, facilitating superior model training and generalization capabilities. 

Given these strengths, further use and collaborative enhancements of the C3-VULMAP dataset 

are strongly encouraged. Researchers, practitioners, and policymakers in cybersecurity and 

healthcare are invited to engage with and contribute to this evolving resource, promoting broader 

adoption and continuous improvement in privacy vulnerability detection methodologies. 

Practical implications from this study highlight considerable challenges and critical 

considerations in labelling and detecting vulnerabilities. One notable challenge is ensuring accurate 

manual labelling, which remains essential despite advancements in automated detection 

methodologies. The reliance on domain expertise for manual labelling poses significant resource 

implications, highlighting the reliance on human oversight to validate automated findings. The 

integration of synthetic vulnerabilities, although beneficial, also presents challenges related to 

ensuring their realism and representativeness. Practical deployment further demands addressing 

issues such as managing false positives, refining confidence thresholds, and ensuring that detected 

vulnerabilities are actionable and relevant, thus necessitating ongoing iterative improvements and 

adaptations to maintain robust and accurate vulnerability detection in dynamic healthcare 

environments. 

 Expansion to additional programming languages is another important direction, as the current 

dataset predominantly focuses on C/C++ due to their prevalent use in safety-critical applications like 

those used in healthcare. Incorporating other widely used languages like Python, Java, and JavaScript 

would broaden the applicability of the dataset, providing comprehensive coverage across diverse 

healthcare systems and software environments. Additionally, exploring real-time vulnerability 

detection systems represents a promising avenue. Implementing continuous, real-time detection 

mechanisms would enhance proactive privacy protection capabilities in dynamic healthcare 

infrastructures, addressing vulnerabilities immediately as they emerge, thus substantially reducing 

associated risks and impacts. 
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