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Abstract: In addressing the multifaceted problem of multiple-input multiple-output (MIMO) detection in 
wireless communication systems, this work highlights the pressing need for enhanced detection reliability 
under variable channel conditions and MIMO antenna configurations. We propose a novel method that sets a 
new standard for deep unfolding approaches to MIMO detection by integrating the iterative conjugate gradient 
method with Tikhonov regularization, combining the adaptability of modern deep learning techniques with 
the robustness of classical regularization. Unlike conventional techniques, our strategy treats the regularization 
parameter of Tikhonov regularization as well as step size values and search direction coefficients of conjugate 
gradient (CG) method as trainable parameters within the deep learning framework, allowing for dynamic 
modification according to channel conditions and MIMO antenna configurations. Detection performance is 
significantly improved by the proposed approach in variety of conditions. In different MIMO settings, the 
suggested method consistently shows better bit error rate (BER) and normalized minimum mean square error 
(NMSE) performance. Across a range of MIMO configurations and channel conditions, the proposed method 
exhibits significantly lower BER and NMSE values than well-known techniques such as DetNet and CG. The 
proposed method has superior performance over CG and other model-oriented methods, especially in small 
number of iterations. Consequently, the simulation results demonstrate the flexibility of the proposed 
approach, making it a viable choice for MIMO systems with a range of antenna configurations and different 
channnel conditions. 

Keywords: MIMO detection; Tikhonov regularization; conjugate gradient; deep learning; wireless 
communication 

 

.1. Introduction 

MIMO systems are essential for enhancing spectral efficiency in modern wireless networks. 
Spatial multiplexing in MIMO systems allows for simultaneous transmission of multiple information 
streams across different antennas, setting it apart from diversity systems that focus on reliability by 
transmitting identical information. Achieving higher data rates through spatial multiplexing presents 
significant challenges at the receiver, particularly in detection complexity and efficiency, which have 
been the subject of research for over five decades, driving the evolution of MIMO detection 
methodologies [1,2]. The core of MIMO detection involves decoding transmitted symbols using 
known channel characteristics. While maximum likelihood (ML) detection minimizes bit error rate 
(BER) optimally, it is computationally impractical for physical implementations involving large 
number of antennas. Therefore, alternative methods like sphere decoding (SD), zero forcing (ZF), and 
linear minimum mean squared error (LMMSE) have been developed for near-optimal performance 
with lower complexity [2]. There are also methods such as Neumann series expansion (NSE), Gauss-
Seidel (GS), and Conjugate Gradient (CG) which utilize iterative matrix-vector multiplication to 
reduce system complexity [3,4,5,6]. Non-linear MIMO detectors are useful in reducing interference 
for subsequent signals, though errors in interference signals can degrade detection efficacy [7]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2024                   doi:10.20944/preprints202408.0644.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202408.0644.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

Advanced approaches, such as the Belief Propagation (BP) algorithm [8], are effective for high 
number of antennas and low inter-channel correlation, but may introduce delays and degrade 
performance in fading channels due to their iterative nature. Therefore, developing a detection 
strategy that achieves high reliability without requiring excessive amount of decoding time is one of 
the major challenges in MIMO systems [9].  

In addition to conventional methods discussed above, recent studies have explored both model-
driven and data-driven deep learning approaches [10]. Model-driven techniques enhance iterative 
algorithms like orthogonal approximate message passing (OAMP) [11], alternating direction method 
of multipliers (ADMM) [12], Viterbi [13], expectation propagation [14]. Data-driven solutions use 
deep learning architectures such as autoencoders [15], DNNs, and convolutional neural networks 
(CNNs) [16] for high detection accuracy. These DL-based MIMO detection methods outperform 
traditional detectors under various channel conditions. Although there are studies that either discuss 
model-driven and data-driven approaches separately or together, the increasing amount of data in 
new communication systems increasingly favours model-driven methods. Unsupervised deep 
learning techniques, such as autoencoders, can be used to learn the entire system for MIMO detection, 
as demonstrated in data-driven MIMO detection [15]. In addition, DetNet uses a model-driven 
approach to detection using iterative projected gradient descent [17]. Data-driven methods for MIMO 
detection in fixed-channel scenarios utilize CNNs and DNNs [16]. Another approach uses 
conventional deep learning network topologies for signal detection in MIMO systems with erroneous 
channels [18], while another study employs neural networks to identify decision zones for multi-user 
MIMO systems [19].  

 Deep unfolding algorithms, also known as model-driven deep learning methods, constitute a 
transformative approach that combines classical iterative methods with the adaptive capabilities of 
neural networks, are a common solution for MIMO detection [20,21]. By structuring known iterative 
algorithms into neural network layers, each iteration treated is treated as a layer [22] that allows 
parameter to be trained via backpropagation rather than updated deterministically in a traditional 
way. This leads to improved solutions by incorporating additional or modified parameters to capture 
features that classical methods may miss [23]. Unlike traditional methods, the network can generalize 
to new inputs after training on different data sets, eliminating the need to recalculate parameters for 
each system change. This approach builds neural network layers over multiple iterations using 
advanced learning techniques to achieve unprecedented results [20, 24,25,26]. Various deep 
unfolding-based algorithms for MIMO channel detection are reported, including trainable projected 
gradient detectors [27] and the conjugate gradient descent technique [28,29], with other examples in 
[11,12,30]. Despite these developments, there is still a significant research gap in improving these 
approaches, especially when it comes to dealing with the complexity and variability of harsh 
situations. This emphasises the need for further advances in this area and the usefulness of the 
proposed approach in improving MIMO detection technology. 

Deep unfolding approach also offers significant advantages in computational efficiency and 
hardware implementation [26]. This method is particularly beneficial for physical applications with 
hardware constraints and operational efficiency requirements. By predetermining the neural 
network's structure to mimic specific algorithm iterations, it reduces the need for extensive training 
data and computational resources, addressing major challenges faced by traditional deep neural 
networks (DNNs). Deep unfolding enables the pre-design of general-purpose circuits quickly 
adaptable through trained neural networks, significantly reducing the time from algorithm design to 
market deployment. 

This study presents a significant advance in the field of MIMO signal detection by introducing 
a unique detection strategy that combines Tikhonov regularization and CG method with deep 
unfolding. Using the matrix L as a regularization term enhances the detection process and allows for 
significant improvements over conventional methods for different channel conditions and antenna 
layouts. The main contributions of this study are summarized below: 
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To the best knowledge of authors, this is the first study that Tikhonov regularization is 
integrated with the conjugate gradient method for MIMO detection in a deep learning based 
approach. 

Performance of the proposed method has been compared with both iterative and model-driven 
techniques for different channel models such as Rayleigh, Kronecker, TDL-A, and TDL-E. 

The remaining sections of this study are organized as follows: Section 2 presents the relevant 
work and subjects. Section 3 provides a thorough explanation of the proposed approach. The 
simulation results are given in Section 4 and in Section 5, conclusions are drawn, and suggestions for 
further work are explored. 

2. Materials and Methods 

2.1. MIMO System Model 

In this study, we investigate a MIMO system utilizing spatial multiplexing, wherein the receiver 
antennas concurrently receive symbols transmitted from the transmitter. The system comprises 𝑁𝑁𝑟𝑟  
receiving antennas and 𝑁𝑁𝑡𝑡 transmitting antennas as shown in Fig 1. The received symbols, denoted 
as 𝑦𝑦𝑁𝑁𝑟𝑟, at the receiver side can be expressed as follows: 

                                �

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑁𝑁𝑟𝑟

� = �
ℎ1,1 … ℎ1,𝑁𝑁𝑡𝑡
⋮ … ⋮

ℎ𝑁𝑁𝑟𝑟,1 … ℎ𝑁𝑁𝑟𝑟,𝑁𝑁𝑡𝑡

� �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑁𝑁𝑡𝑡

� + �

𝑛𝑛1
𝑛𝑛2
⋮
𝑛𝑛𝑁𝑁𝑟𝑟

�   (1) 

In the aforementioned equation (1), ℎ𝑁𝑁𝑟𝑟,𝑁𝑁𝑡𝑡 denotes the entries of the channel matrix 
corresponding to the communication link between the 𝑁𝑁𝑡𝑡 -th transmitter antenna and the 𝑁𝑁𝑟𝑟 -th 
receiver antenna. The term 𝑛𝑛𝑁𝑁𝑟𝑟  signifies the additive white Gaussian noise (AWGN) present at 
the  𝑁𝑁𝑟𝑟 -th receiver antenna, characterized by zero mean and variance𝜎𝜎2 . 𝑥𝑥𝑁𝑁𝑡𝑡 ,  𝑦𝑦𝑁𝑁𝑟𝑟 ,  𝑛𝑛𝑁𝑁𝑟𝑟  represent 
complex-valued numbers, and ℎ𝑁𝑁𝑟𝑟,𝑁𝑁𝑡𝑡 signify complex-valued channel which is assumed to exhibit 
flat Rayleigh fading, with the channel entries, ℎ𝑁𝑁𝑟𝑟,𝑁𝑁𝑡𝑡, being independently and identically distributed 
(i.i.d) with zero mean and unit variance. 

The matrix H and the vectors y, s, n have complex values, due to the necessity of using real 
numbers in the deep learning structure, the MIMO channel model is expressed as follows for the 
simulation environment within the scope of the study: 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑦𝑦𝑟𝑟 = 𝐻𝐻𝑟𝑟𝑥𝑥𝑟𝑟 + 𝑛𝑛𝑟𝑟

𝑦𝑦𝑟𝑟 = �
𝑅𝑅𝑅𝑅(𝑦𝑦)
𝐼𝐼𝐼𝐼(𝑦𝑦)�  ∈  𝑅𝑅2𝑁𝑁𝑟𝑟𝑥𝑥1

𝑥𝑥𝑟𝑟 = �
𝑅𝑅𝑅𝑅(𝑠𝑠)
𝐼𝐼𝐼𝐼(𝑠𝑠)�  ∈  𝑅𝑅2𝑁𝑁𝑡𝑡𝑥𝑥1

𝐻𝐻𝑟𝑟 = �
𝑅𝑅𝑅𝑅(𝐻𝐻)
𝐼𝐼𝐼𝐼(𝐻𝐻) 

−𝐼𝐼𝐼𝐼(𝐻𝐻)
𝑅𝑅𝑅𝑅(𝐻𝐻) �  ∈  𝑅𝑅2𝑁𝑁𝑟𝑟𝑥𝑥2𝑁𝑁𝑡𝑡

                            (2) 

MIMO system's simplified block diagram is shown in Figure 1. Multiple antennas are used in 
this system, both at the transmitter and receiver ends.  
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. 

Figure 1. Simplified block diagram of a MIMO system. 

The numerous signal routes between the antennas are depicted in the Figure 1 by connecting 
each transmitting antenna to each receiving antenna. Through the use of spatial diversity and the 
ability to transmit many data streams at once, this arrangement improves the capacity and 
dependability of the system. The intricate interaction and signal propagation in a MIMO system are 
highlighted by the dotted lines. 

2.2. MIMO Channel Model 

MIMO channels are critical to today's modern communication systems. These systems can 
significantly improve transmission rate, reliability, and spectrum efficiency by using multiple 
antennas at both the transmitter and receiver. Each element in the matrix characterizing the MIMO 
channel represents the channel coefficient between a given pair of transmit and receive antennas. The 
effects of multipath propagation are well captured by this matrix, which is important for 
understanding and improving the functionality of advanced communication networks. A Rayleigh 
channel in MIMO systems is a model in which Rayleigh fading affects the channel coefficients. This 
phenomenon happens when there is no direct line-of-sight path and multipath propagation, causing 
changes in the signal's magnitude. Usually, the model for each element of the MIMO channel matrix 
𝐻𝐻 is an independent, identically distributed (i.i.d.) complex Gaussian random variable with unit 
variance and zero mean. This is the result of multiple tiny reflections from various pathways coming 
together to create a fading envelope that has a Rayleigh distribution. The Rayleigh channel model 
works well in indoor or urban settings where there are lots of impediments scattering the signal. It 
functions as a foundational model for analyzing the capacity and performance of MIMO systems in 
practical multipath scenarios. A mathematical framework used in MIMO systems to make it easier to 
characterize spatial correlations between antennas at the transmitter and receiver is called the 
Kronecker channel model [31]. According to the model, transmit and receive correlation matrices at 
each end correspond to separable correlation structures that can be formed from the overall channel 
matrix. The mathematical expression for this model is: 

              𝐻𝐻 =  𝑅𝑅𝑟𝑟
1/2𝐻𝐻𝑤𝑤𝑅𝑅𝑡𝑡

1/2                                          (3) 

where 𝑅𝑅𝑟𝑟
1/2  and 𝑅𝑅𝑡𝑡

1/2  are the Cholesky decompositions of the receiver and transmitter 
correlation matrices, respectively, and 𝐻𝐻𝑤𝑤 is an uncorrelated Rayleigh fading matrix.  

The simplicity and mathematical tractability of the Kronecker model are its main features, 
making it a useful tool for assessing MIMO system performance. In 5G cellular systems, TDL (Tapped 
Delay Line) channel models - such as TDL-A and TDL-E - defined by 3GPP simulate multipath 
propagation [32]. The Tapped Delay Line A (TDL-A) channel model uses a tapped delay line 
structure to simulate realistic time-varying and frequency-selective scenarios. The taps represent 
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discrete paths with unique delays and power levels. The TDL-A model, which is widely used to 
simulate urban environments, pre-calculates the channel impulse response to facilitate the 
assessment of system performance in terms of signal fading and inter-symbol interference (ISI). The 
channel model holds great significance in the advancement and assessment of 5G technologies, 
including massive MIMO and beamforming. It offers valuable perspectives for enhancing 
communication protocols and algorithms, hence guaranteeing reliable performance in practical 
situations. As such, the TDL-A paradigm plays an important role in the design and implementation 
of high-performance 5G networks. On the other hand, the Tapped Delay Line E (TDL-E) channel 
model is particularly well known for its severe multipath conditions, which represent difficult time-
varying and frequency-selective scenarios. These conditions include extended delay spreads and 
large Doppler shifts. The TDL-E model provides a realistic simulation of harsh urban and suburban 
environments through the taps, which represent discrete propagation paths with varying delays and 
power levels. This model is essential for assessing the suitability of advanced 5G technologies for 
harsh environments, including massive MIMO and beamforming. By predicting the channel impulse 
response, TDL-E helps to evaluate system performance, particularly in terms of signal fading, ISI and 
the impact of high mobility on signal integrity. The reliable deployment of next-generation wireless 
technologies will be supported by the ability of 5G networks to maintain high performance under the 
most demanding conditions, thanks to its use in the design and testing of robust communication 
algorithms and protocols. 

2.3. Conventional MIMO Detection 

MIMO detectors are simply classified into two categories as linear and non-linear methods. A 
brief summary of MIMO detection techniques are illustrated in Figure 2. 

. 

Figure 2. MIMO detection techniques. 

As shown in Figure 2, nonlinear method may be classified into non-iterative, iterative, and deep 
learning approaches. Additionaly, deep learning based methods encompass both data-driven and 
deep-unfolded methodologies also called as model-driven. 

The earliest studies on the optimum MIMO detectors published in 1976 [33] which presented a 
Maximum Likelihood (ML) sequence estimation-based receiver with the objective of reducing 
Interchannel Interference (ICI) and ISI in multi-channel transmission systems. Research by van Etten 
demonstrated that this ML receiver could perform almost as well as the optimal receiver in systems 
without ISI and ICI under specific circumstances [33]. In systems employing massive MIMO 
technology, where the transmitter and receiver are equipped with multiple antennas, the utilization 
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of ML for signal detection, 𝑥𝑥�𝑀𝑀𝑀𝑀 , is not a viable option due to the significant increase in computational 
load.  

                 𝑥𝑥�𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ‖𝑦𝑦 − 𝐻𝐻𝑥𝑥�‖2                            (4) 
The transmitted symbol estimations that are generated by linear MIMO detectors are based on 

a linear modification of the received signal vector y. Despite their low computational complexity, 
their performance is significantly inferior to that of ML detector. In modern communication systems, 
linear MIMO detection techniques are preferred due to their straightforward methodology and high 
computing efficiency [34]. These techniques circumvent the computationally demanding exhaustive 
search that more sophisticated nonlinear techniques necessitate by decoding signals emitted and 
received by numerous antennas using straightforward mathematical procedures. These approaches 
effectively isolate and decode each signal by employing linear algebraic techniques on matrices and 
vectors that represent the transmitted and received signals. Many communications systems where 
speed and efficiency are critical consider linear MIMO detection techniques as a viable option due to 
their balance between performance and computational simplicity. The most potent technique in this 
group is the Minimum Mean Square Error (MMSE), 𝑥𝑥�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , which increases its effectiveness by 
utilizing both noise variance and channel information. 

     𝑥𝑥�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝐻𝐻𝐻𝐻𝐻𝐻 + 𝛿𝛿2𝐼𝐼𝑁𝑁𝑡𝑡)
−1𝐻𝐻𝐻𝐻𝑦𝑦                        (5) 

The performance of advanced MIMO wireless communication frameworks are greatly enhanced 
by non-linear detection approaches, especially in areas of challenging channel conditions. On the 
other hand, non-linear techniques such as Maximum Likelihood (ML), Belief Propagation (BP), and 
Sequential Interference Cancellation (SIC) provide more complex computations that can better deal 
with interference. Iterative methods such as Newton Iteration (NI), Conjugate Gradient (CG), and 
Sphere Decoder (SD) become crucial as we move towards more complex strategies. These techniques 
work well by iteratively, as shown in Figure 3, improving signal estimates, using feedback and 
previous data to increase detection accuracy without the need for extensive computation.  

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2024                   doi:10.20944/preprints202408.0644.v1

https://doi.org/10.20944/preprints202408.0644.v1


 7 

 

 

Figure 3. Iterative detection scheme. 

 

The Conjugate Gradient (CG) method, introduced by Hestenes and Stiefel in 1952 [35], is an 
iterative algorithm for solving systems of linear equations. CG as an iterative method is particularly 
useful in situations where direct methods are infeasible due to the large dimensions of the matrices 
involved. This section highlights the CG method's superiority over the Steepest Descent method, 
demonstrating its efficacy in the context of MIMO detection. The Steepest Descent method minimizes 
a function 𝑓𝑓(𝑥𝑥) by iteratively moving in the direction of the negative gradient −∇𝑓𝑓(𝑥𝑥). This approach 
continues until convergence is achieved. However, it often suffers from slow convergence, especially 
in poorly conditioned problems, due to its propensity to zigzag within narrow valleys of the error 
surface. The CG method starts similarly to the Steepest Descent method by moving in the direction 
of the negative gradient. However, after the first step, it proceeds in conjugate directions rather than 
continuing in the steepest descent direction. This strategic adjustment allows the CG method to 
leverage information from previous iterations, thereby reducing the number of iterations required 
for convergence. For a linear system 𝐴𝐴𝐴𝐴=𝑏𝑏, where 𝐴𝐴 is a symmetric and positive definite matrix, 
solving 𝐴𝐴𝐴𝐴=𝑏𝑏 minimizes the quadratic function: 

 𝑓𝑓(𝑥𝑥)= 1
2
𝑥𝑥𝑇𝑇𝐴𝐴𝐴𝐴 + 𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑐𝑐                    (6) 

The gradient condition ∇𝑓𝑓(𝑥𝑥)=0 leads to 𝐴𝐴𝐴𝐴−𝑏𝑏=0. This equivalence aligns well with the MIMO 
channel model, where the goal is to solve for the transmitted signal vector 𝑥𝑥 given the received signal 
vector 𝑏𝑏 and the channel matrix 𝐴𝐴. Consequently, the CG method is particularly effective for MIMO 
systems, offering an efficient and robust solution for signal detection. CG detector’s working 
principle is summarized in Algorithm 1. 
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Algorithm 1 starts with the provided inputs, the channel matrix, the noise variance and the 
received signal, the algorithm initializes the relevant matrix and vectors. The search direction vector, 
the residual vector and the solution vector are set first. At each iteration, the solution vector is 
updated by calculating the step size α, which indicates how far to go in the current search direction. 
The new solution estimate is then reflected in the residual vector. The algorithm determines a 
coefficient, β, which modifies the search direction to maintain efficiency in subsequent iterations. This 
iterative process continues until the desired number of iterations is reached or the solution is 
sufficiently accurate. The technique, which ultimately provides the estimated transmitted signal 
vector, effectively solves MIMO detection problems. 

2.4. Deep Unfolded MIMO Detection 

Through the use of deep unfolding technique on iterative detection procedures, deep learning 
can be applied to MIMO systems. Deep unfolding combines neural networks and conventional signal 
processing, using domain knowledge to build reliable models. By combining deep learning with 
conventional signal processing models, deep unfolded MIMO detection, Figure 4. offers a number of 
benefits, including improved interpretability for simpler troubleshooting, computational efficiency 
from fewer parameters, and resilience to changing circumstances. Furthermore, this method, so 
called deep unfolding, ensures faster convergence, higher generalization within modelled 
behaviours, and requires less training data, rendering it an optimal solution for situations where 
computational resources are scarce or when system interpretability is of paramount importance. The 
most notable achievement in MIMO detection has been the development of deep unfolding 
techniques, including the sophisticated LCG network and the earlier DetNet, each of which has made 
a unique contribution to the field. 

Algorithm 1: MIMO Detection with CG 

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰:𝒚𝒚,𝑯𝑯,𝜹𝜹𝟐𝟐  
 Output : Transmitted signal vector estimation 𝒔𝒔� 
1: Initialization:  
 𝑨𝑨 =  𝑯𝑯𝑯𝑯𝑯𝑯 + 𝜹𝜹𝟐𝟐𝑰𝑰𝑵𝑵𝑻𝑻, 𝒃𝒃 = 𝑯𝑯𝑯𝑯𝒚𝒚  
 𝒙𝒙𝟎𝟎 = 𝟎𝟎, 𝒓𝒓𝟎𝟎 = 𝒃𝒃, 𝒑𝒑𝟎𝟎 = 𝒓𝒓𝟎𝟎    
2:  for i = 0,…,K do 
3:        𝛼𝛼𝒊𝒊 = 𝒓𝒓𝒊𝒊𝑻𝑻𝒓𝒓𝒊𝒊/𝒑𝒑𝒊𝒊𝑻𝑻𝑨𝑨𝒑𝒑𝒊𝒊  
4:         𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒊𝒊 + 𝜶𝜶𝒊𝒊𝒑𝒑𝒊𝒊 
5:         𝒓𝒓𝒊𝒊+𝟏𝟏 = 𝒓𝒓𝒊𝒊 − 𝜶𝜶𝒊𝒊𝑨𝑨𝒑𝒑𝒊𝒊  
6:         𝜷𝜷𝒊𝒊 = 𝒓𝒓𝒊𝒊+𝟏𝟏𝑻𝑻 𝒓𝒓𝒊𝒊+𝟏𝟏/𝒓𝒓𝒊𝒊𝑻𝑻𝒓𝒓𝒊𝒊   
7:         𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒓𝒓𝒊𝒊+𝟏𝟏 − 𝜷𝜷𝒊𝒊𝒑𝒑𝒊𝒊    
8:    end for 
9: return 𝒔𝒔� = 𝒙𝒙𝒊𝒊+𝟏𝟏 
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Figure 4. Deep unfolding detection scheme. 

2.4.1. DetNet  

DetNet is the first deep unfolded detection technique, integrating channel data with received 
signals to handle varying channels [16]. Unlike data-driven methods, it adapts using projected 
gradient descent, improving performance in static and Rayleigh fading channels with trainable 
parameters. 

DetNet’s iterative form: 

           𝑧𝑧𝑡𝑡 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊1𝑡𝑡[𝐻𝐻𝑇𝑇 𝑥𝑥�𝑡𝑡 𝐻𝐻𝑇𝑇𝐻𝐻𝑥𝑥�𝑡𝑡 𝑣𝑣𝑡𝑡  ] +  𝑏𝑏1𝑡𝑡)   (7) 

                                  𝑥𝑥�𝑡𝑡+1 = 𝜑𝜑𝑘𝑘𝑡𝑡(𝑊𝑊2𝑡𝑡𝑧𝑧𝑡𝑡 + 𝑏𝑏2𝑡𝑡)                    (8) 

              𝑣𝑣�𝑡𝑡+1 = 𝑊𝑊3𝑡𝑡𝑧𝑧𝑡𝑡 + 𝑏𝑏3𝑡𝑡                              (9) 
The ReLU function, defined as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑥𝑥, 0}, with 𝑥𝑥�0 = 0, and the soft sign operator 

𝜑𝜑𝑘𝑘𝑡𝑡(. )  parameterized by 𝑘𝑘𝑡𝑡, are used in DetNet. 𝐻𝐻𝑇𝑇𝑦𝑦  and 𝐻𝐻𝑇𝑇𝐻𝐻𝑥𝑥�𝑡𝑡  serve as detection statistics. 
Trainable parameters  {𝑊𝑊1𝑡𝑡 , 𝑏𝑏1𝑡𝑡 ,𝑊𝑊2𝑡𝑡 ,𝑏𝑏2𝑡𝑡 ,𝑊𝑊3𝑡𝑡 ,𝑏𝑏3𝑡𝑡 , 𝑘𝑘𝑡𝑡: 𝑡𝑡 = 0, … ,𝑇𝑇 − 1}  are tuned via a loss function. 
DetNet's performance degrade in large-scale MIMO systems due to high data requirements and 
complexity [36]. 

2.4.2. Learned Conjugate Gradient 

Incorporating deep learning techniques to adaptively find the optimal parameters during 
iterations ensures that the Learned Conjugate Gradient method (LCG) [28] has higher performance 
over the traditional CG method. The LCG method, shown in Figure 5, modifies the conjugate gradient 
algorithm by making the step size and search direction coefficient parameters, denoted by α and β 
respectively, modifiable through training instead of mathematically calculating them on the relevant 
data sets. The method can now adaptively adjust its step sizes and directions, which enhances 
detection performance in MIMO systems and facilitates more effective convergence. The limitations 
of fixed-parameter approaches can be overcome by LCG through the utilization of data-driven 
insights, thereby providing a robust foundation for the management of the complex and variable 
conditions of wireless communication channels. As explained in detail in [28], two types of LCG 
approaches were introduced namely scalar, LCG-S, and vector, LCG-V. Scalar trainable parameters 
α and β are used by LCG-S. By eliminating the requirement for matrix-vector multiplications and 
divisions, these scalar parameters simplify computations. Alternatively, vector trainable parameters 
𝛼𝛼𝒊𝒊 and 𝛽𝛽𝒊𝒊 are used by LCG-V. These vector step-sizes improve detection performance in complex 
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next-generation communication network scenarios by allowing LCG-V to learn and adapt more 
effectively to the data characteristics. It is highlighted in the work [28] that LCG-V requires storing 
more parameters even though its computational complexity is almost the same as that of LCG-S for 
its operations.  

. 

Figure 5. LCG algorithm in 𝑖𝑖𝑡𝑡ℎ layer 

3. Proposed Method 

Tikhonov regularization, also known as ridge regularization, is a method for solving ill-posed 
problems or preventing overfitting in linear regression. It involves adding a regularization term to 
the solution. Penalizing the magnitude of the coefficients in the loss functionwe are attempting to 
minimize is the core idea behind Tikhonov regularization. In its simplest version, Tikhonov 
regularization penalizes solutions with large magnitudes by adding a regularization term to the 
objective function being reduced [37]. The solution is more resilient to varying conditions thanks to 
this regularization term, which also helps to avoid overfitting. Several applications in engineering 
and physics lead to the following types of linear least-squares problems: 

        𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥𝑖𝑖+1 ∈ 𝑅𝑅𝑑𝑑2  ‖𝐴𝐴𝑥𝑥𝑖𝑖+1 − 𝑏𝑏𝛿𝛿‖,    𝐴𝐴𝐴𝐴𝑅𝑅𝑑𝑑1𝑥𝑥𝑑𝑑2 ,   𝑏𝑏𝛿𝛿𝜖𝜖𝑅𝑅𝑑𝑑1                             
(10) 

Matrix A is of ill-determined rank; that is, its singular values gradually decay to zero without a 
noticeable gap, and the measured data tainted by an unknown error 𝑒𝑒 𝜖𝜖𝑅𝑅𝑑𝑑1  of norm constrained by 
δ > 0 is represented by 𝑏𝑏𝛿𝛿. Least-squares problems, also referred to as discrete ill-posed problems, 
require this kind of matrix. An exact approximation of the minimal norm solution 𝑥𝑥+ =  𝐴𝐴+𝑏𝑏 for the 
error-free least-squares problem associated with (10) is sought after. 𝐴𝐴+  represents the 
pseudoinverse of Moore–Penrose in this case. Due to the error in 𝑏𝑏𝛿𝛿  and the clustering of A's 
singular values near the origin, the solution 𝐴𝐴+𝑏𝑏𝛿𝛿 of (10) is usually not a reasonable approximation 
of 𝑥𝑥+. Changing the minimization problem to a nearby problem whose solution is less vulnerable to 
the error in 𝑏𝑏𝛿𝛿 is one method to overcome this problem (10). This substitution is sometimes referred 
to as regularization. 

                                𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥𝑖𝑖+1 ∈ 𝑅𝑅𝑑𝑑2  {‖𝐴𝐴𝑥𝑥𝑖𝑖+1 − 𝑏𝑏𝛿𝛿‖2 + 𝜆𝜆‖𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖‖2}                                      
(11) 

The regularization parameter 𝜆𝜆  > 0 in this case 
controls how sensitive the solution of (11) is to the error e 
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in 𝑏𝑏𝛿𝛿 as well as how near the solution is to the target vector 
𝑥𝑥+ . It is generally known that by substituting an 
appropriate regularization matrix for the Tikhonov 
minimization problem (11), it is frequently possible to 
increase the quality of the 𝑥𝑥+ approximation determined 
by Tikhonov regularization 𝐿𝐿. 

  𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥𝑖𝑖+1 ∈ 𝑅𝑅𝑑𝑑2 {‖𝐴𝐴𝑥𝑥𝑖𝑖+1 − 𝑏𝑏𝛿𝛿‖2 + 𝜆𝜆‖𝐿𝐿(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)‖2}                (12) 
where 𝐿𝐿𝐿𝐿𝑅𝑅𝑑𝑑3𝑥𝑥𝑑𝑑2  is a suitable regularization matrix. 
The regularization matrix encodes the extra restrictions or previous knowledge about the 

solution x in (12) and λ is a regularization parameter that governs the trade-off between fitting the 
data and meeting the regularization term.  

The particular problem and the body of prior knowledge at hand determine which 
regularization matrix L to use. Adding supplementary constraints or information to the 
regularization term in generalized Tikhonov regularization can result in more pertinent and accurate 
solutions to inverse problems. This is especially useful in situations where the standard Tikhonov 
regularization might not be adequate. However, to get the best results, domain expertise and careful 
tuning are frequently needed when selecting the regularization matrix L and regularization 
parameter λ. In order to promote desired properties like smoothness, sparsity, or spatial structure, 
the regularization term in generalized Tikhonov regularization must take into account constraints or 
prior knowledge about the solution x. This is made possible by the choice of regularization matrix L. 
L and the parameter λ work together to balance data fidelity and regularization strength by directly 
influencing the behavior of the regularization term. The process of choosing L is critical to obtaining 
precise and reliable solutions to ill-posed inverse problems since it requires domain-specific 
knowledge and iterative refinement. This process frequently involves experimentation and model 
selection techniques to optimize regularization for meaningful solutions [38]. 

3.1. Deep Unfolded Tikhonov Regularized Conjugate Gradient Algorithm 

We utilize Tikhonov regularization in the CG algorithm to improve performance on different 
types of channels, addressing issues such as noise sensitivity and ensuring convergence in high-
dimensional MIMO systems. The CG technique effectively tackles the complexity of high-
dimensional MIMO systems, improving performance and signal estimates when paired with 
Tikhonov regularization. This integration demonstrates the importance of scalability for future high-
speed wireless networks. When incorporated into model-driven MIMO detection frameworks, 
Tikhonov regularization appears to be an effective method for improving robustness and 
performance. Tikhonov regularization is a technique for stabilizing the solution of ill-posed problems 
that involves adding a regularization term to the optimization objective. This method involves 
adding a term 𝐿𝐿 to the system matrix in the context of MIMO detection. This regularization term 
improves the robustness and accuracy of the detection process by reducing the effects of noise and 
bad conditioning in the channel matrix 𝐻𝐻. In this work, the proposed method is dynamically 
adjusting the detection strength by the model during training thanks to the trainable parameters 
regularization matrix 𝐿𝐿, alpha, and beta. It is noteworthy that, unlike   

the original Tikhonov regularization approach shown in (12), which represents the parameters 
𝜆𝜆 and 𝐿𝐿 individually, our proposed method combines them into a single matrix 𝐿𝐿, which is the 
product of the scalar 𝜆𝜆 and the matrix 𝐿𝐿. By treating the multiplication of these elements as a single 
matrix, the network streamlines the computation and improves the flexibility of the model for 
different channel conditions. The pseudocode of the proposed method have been shown in 
Algorithm 2. 
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The convergence stability and overall detection accuracy of this approach is enhanced by using 
the trainable regularization matrix 𝐿𝐿. This process is tuned to the MMSE criterion, which keeps the 
detection approach reliable and efficient in challenging situations. The iterations of the Tikhonov-
regularized CG algorithm are unrolled to create the proposed Deep Unfolded Tikhonov Regularized 
Conjugate Gradient (DU-TCG), a deep learning architecture in which each layer is associated with an 
algorithm iteration as shown in Figure 6. 

. 

Figure 6. DU-TCG algorithm in 𝒊𝒊𝒕𝒕𝒕𝒕 layer 

Using this method, the model can be trained to find the best parameters for improved 
performance in a range of channel situations. Along with the 𝛼𝛼 and 𝛽𝛽 parameters, the DU-TCG 
algorithm adds a new trainable parameter called, the regularization, 𝐿𝐿 which is in matrix form. This 
combination allows for dynamic modification of the regularization strength during training and 
simplifies computation as it is processed by the network as a single matrix. 

To guide the training process, DU-TCG's loss function is designed to assess the difference 
between the transmitted signal and the predicted output. For this purpose, the Mean Squared Error 

Algorithm 2: Tikhonov Regularized Conjugate Gradient Algorithm 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰:𝒚𝒚,𝑯𝑯,𝜹𝜹𝟐𝟐  
 Output : Transmitted signal vector estimation 𝒔𝒔� 
1: Initialization:  

 𝑨𝑨 =  𝑯𝑯𝑯𝑯𝑯𝑯 + 𝜹𝜹𝟐𝟐𝑰𝑰𝑵𝑵𝑻𝑻, 𝒃𝒃 = 𝑯𝑯𝑯𝑯𝒚𝒚  

𝒙𝒙𝟎𝟎 = 𝟎𝟎, 𝒓𝒓𝟎𝟎 = 𝒃𝒃, 𝒑𝒑𝟎𝟎 = 𝒓𝒓𝟎𝟎    
2:  for i = 0,…,K do 
4:         𝒓𝒓𝒊𝒊+𝟏𝟏 = 𝒓𝒓𝒊𝒊 − 𝜶𝜶𝒊𝒊𝑨𝑨𝒑𝒑𝒊𝒊  
5:         𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒓𝒓𝒊𝒊+𝟏𝟏 − 𝜷𝜷𝒊𝒊𝒑𝒑𝒊𝒊    
6:         𝒙𝒙� = 𝒙𝒙𝒊𝒊 + [(𝑯𝑯𝑯𝑯𝑯𝑯 + 𝑳𝑳)−𝟏𝟏 ∗ (𝑯𝑯𝑯𝑯 ∗ (𝒚𝒚 − 𝑯𝑯𝒙𝒙𝟎𝟎))] 

8:        𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 =  𝟏𝟏
𝑵𝑵𝑻𝑻

 ‖𝒙𝒙� − 𝒙𝒙‖𝟐𝟐    

9:          train {𝜶𝜶,𝜷𝜷,𝑳𝑳} 
10:        𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙� + 𝜶𝜶𝒊𝒊𝒑𝒑𝒊𝒊 
11:    end for 
12: return 𝒔𝒔� = 𝒙𝒙𝒊𝒊+𝟏𝟏 
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(MSE) loss function is used as shown in Algorithm 2. The mean squared difference between the 
expected and actual values is quantified by the MSE loss function, giving the network a specific target 
to minimise during training. The network increases the resilience and accuracy of detection by 
iteratively updating the parameters 𝛼𝛼, 𝛽𝛽, and 𝐿𝐿 to minimise this loss. 𝑖𝑖𝑡𝑡ℎ iteraion of CG algorithm 
corresponds to the 𝑖𝑖𝑡𝑡ℎ layer of DU-TCG detector. The layer dependent trainable parameters of DU-
TCG detector is represented with 𝛩𝛩𝑖𝑖 = {𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖 , 𝐿𝐿𝑖𝑖} into the i-th layer of the network and learn 𝛼𝛼 and 
𝛽𝛽  step size, search direction coefficient and 𝐿𝐿  regularization matrix from training samples 
{(𝑦𝑦,𝐻𝐻), 𝑥𝑥}𝑡𝑡=1

𝑁𝑁𝑇𝑇  by minimizing mean square error as shown: 

              𝐿𝐿𝑇𝑇−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝛩𝛩1, … ,𝛩𝛩𝐿𝐿) = 1
𝑁𝑁𝑇𝑇
∑ ‖𝑥𝑥 − 𝑥𝑥�𝐿𝐿(𝑦𝑦,𝐻𝐻;𝛩𝛩1, … ,𝛩𝛩𝐿𝐿)‖2 𝑁𝑁𝑡𝑡
𝑡𝑡=1        (13) 

L denotes number of layers, 𝑥𝑥�𝐿𝐿(𝑦𝑦,𝐻𝐻;𝛩𝛩1 , … ,𝛩𝛩𝐿𝐿)  denotes output of DU-TCG with 𝑦𝑦  and 𝐻𝐻 
inputs. 

This work combines Tikhonov regularization and CG technique with deep unfolding, which 
significantly improves MIMO signal detection under various MIMO layouts, modulation orders, and 
channel conditions. The proposed method inserts a regularization term to the system, which 
improves the stability and generality of the solution. In particular, when there are noisy or imperfect 
data conditions, this regularization helps the CG converge more consistently. Thus, the approach 
efficiently handles the complexity present in high-dimensional MIMO systems while iteratively 
improving its signal estimates. 

3.2. Training Details 

The TensorFlow library with the Adam optimizer [39] is used to create the proposed DU-TCG 
network in Python, and channel matrices are generated using MATLAB. The test and training data 
sets, {(𝑦𝑦𝑚𝑚,𝐻𝐻𝑚𝑚), 𝑥𝑥𝑚𝑚}𝑚𝑚=1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and {(𝑦𝑦𝑛𝑛 ,𝐻𝐻𝑛𝑛), 𝑥𝑥𝑛𝑛}𝑚𝑚=1
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , are created randomly based on equation (2) 

with different noise levels. The transmitted symbols, 𝑥𝑥, are chosen from particular modulation 
schemes such as BPSK and 16-QAM. Different channel models, like the Kronecker channel [28], 
Rayleigh fading channel, and TDL-A, TDL-E MIMO channels [29], have different random generators 
for their channel matrices. The transmitted symbols, 𝑥𝑥’s, are selected from specific modulation 
schemes including BPSK and QAM16. Different channel models such as Kronecker channel, Rayleigh 
fading channel, TDL-A, and TDL-E MIMO channels have different random generators for the channel 
matrices. The training process uses 5𝑥𝑥104 samples with an SNR of 25 𝑑𝑑𝑑𝑑. In order to increase the 
robustness of the detector to noise, descending SNR values were included in the training process, 
although no significant performance improvement was observed. All trainable parameters are 
initially set to zero. Subsequently, 5𝑥𝑥105 samples are used for training with SNR values ranging 
from 0 to 20 𝑑𝑑𝑑𝑑, incremented by 2 𝑑𝑑𝑑𝑑. This wider range of SNR values allows a comprehensive 
evaluation of the detector's performance. The learning rate is first set to 10−3 and is fine-tuned by 
halving it after each epoch, so that the detection is more robust. The average loss's point of 
discontinuity determines the stopping criterion. Also, to ensure a fair comparison under identical 
conditions, the number of layers used in deep unfolded methods was chosen as the same. The 
training method is computationally efficient, taking about two hours on a normal Intel i7-7500U 
processor, because the model has just three trainable parameters and works well with a small number 
of layers. It is anticipated that the training time will rise in proportion to larger MIMO systems or 
models with more trainable parameters. 

4. Simulation Results 

Within this section several MIMO layouts over different channel conditions and modulation 
orders are discussed to demonstrate the performance of the proposed DU-TCG detection method. In 
particular, the simulation results highlights the detection performance improvement of the DU-TCG 
over well-known approaches such as the MMSE, CG, and LCG. Unless otherwise stated, BPSK 
modulation is used for the sake of simplicity. Bit error rate (BER) and normalized mean square error 
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(NMSE) metrics are employed to illustrate the superiority of the proposed method over the discussed 
other methods. 

Figure 7 compares the BER performance of the propoposed DU-TCG method with other 
methods, namely MMSE, CG, LCG, and ideal ML detector over a Rayleigh fading channel for a BPSK 
modulated 10x10 MIMO system. 

 

Figure 7. BER performance for a 10x10 MIMO system. 

Figure 7 shows that although the ML detector offers the lowest bit error rates, proposed DU-
TCG can perform better than other gradient-based techniques such as MMSE, CG, and LCG which 
makes it a promising candidate for practical applications. The proposed DU-TCG method has 
approximately 4 dB SNR gain over CG and LCG methods at BER values of 10−3. Since DU-TCG can 
guarantee high-quality detection while maintaining reasonable computational requirements 
compared to ML detection, it is believed to be well suited for next-generation wireless networks, 
where efficiency and performance must be balanced. 

   Figure 8 shows that the proposed DU-TCG method outperforms CG and LCG for different 
number of layers in the 10x10 MIMO layout. 

. 

  (a)                          (b) 
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Figure 8. BER performance for different number of layers: (a) 5 layers; (b) 15 layers. 

As shown in Figure 8, DU-TCG exhibit better BER performance with both 5 and 15 layers, 
compared to the CG and LCG methods. Although the performance of the CG and LCG improves 
when the number of layers is increased by 3 times, DU-TCG still outperforms these methods. 
However, as the complexity of the system is directly related by the number of layers, the results 
shows that DU-TCG is a better candidate in terms of system cost. 

Besides the conventional MIMO scheme and channel models discussed above, in Figure 9 we 
also compare the performance of DU-TCG with Kronecker, TDL-A and TDL-E channel models for 
32x64 MIMO scheme with BPSK modulation. Since the channel conditions are challenging, 15 layers 
are used here in the training process.  

. 

Figure 9. BER performance over different channel models: Kronecker, TDL-A, and TDL-E. 

For Kronecker, TDL-A, and TDL-E channel models, both the proposed DU-TCG and existing 
LCG methods do not have a sufficient detection performance. However, DU-TCG still outperforms 
the LCG for all three channel models. DU-TCG has employed the benefit of Tikhonov regularization's 
superiority at the ill-posed problems and DU-TCG's sophisticated regularization mechanism 
significantly improves the detection process compared to the LCG method. 

Figure 10 gives the BER performance of CG, LCG, and the proposed DU-TCG methods for BPSK 
and QAM16 modulation types for a 32x128 MIMO layout in TDL-A channel. 
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 (a)                          (b) 
Figure 10. BER performance for different modulation types: (a) BPSK; (b) QAM16. 

It is well known that the performance of iterative detection methods increases significantly when 
the number of receiving antennas is much greater than the number of transmitting antennas, and this 
effect is reflected in our simulation results using the DU-TCG, LCG and CG methods. Figure 10 shows 
the results of the system with such a MIMO structure. The detection performance of LCG is close to 
DU-TCG for lower order modulations in a difficult channel condition such as TDL-A, while DU-TCG 
outperforms LCG for a higher order modulation. The figure demonstares that the BER of DU-TCG is 
up to 1.2 times better than LCG when using BPSK modulation under TDL-A fading and up to 8.3 
times better when using QAM16 modulation. The superior performance of DU-TCG for difficult 
conditions such as a high-order modulation system suggests that integrating a regularization term 
into a deep-unfolded method will help convergence stability and hence improve detection 
performance. 

In Figure 11, we compare the detection performace of the proposed DU-TCG method with 
DetNet over a range of MIMO layouts. 
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Figure 11. BER performance between DU-TCG and DetNet in various MIMO systems. 

Known for its creative use of deep learning models to improve signal detection accuracy, DetNet 
is considered one of the pioneering efforts in deep unfolding MIMO detection. DetNet has a large 
number of trainable parameters, which can increase computational complexity and resource 
requirements. This is one of the main challenges of DetNet. These high computational demands mean 
that, despite its success, DetNet often struggles with scalability, resulting in longer training times and 
higher computational costs. DU-TCG, on the other hand, consistently outperforms DetNet in a wide 
range of MIMO configurations and maintains a lower BER as system complexity increases. For the 
32x128 configuration, DU-TCG's BER remains up to 2.9 times lower than DetNet's, demonstrating its 
strong performance even at higher antenna counts. While the number of trainable parameters in 
DetNet are eight for each layer,  𝛩𝛩𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷={𝑊𝑊1𝑙𝑙 , 𝑏𝑏1𝑙𝑙 ,𝑊𝑊2𝑙𝑙 , 𝑏𝑏2𝑙𝑙 ,𝑊𝑊3𝑙𝑙 , 𝑏𝑏1𝑙𝑙 , 𝛿𝛿1𝑙𝑙, 𝛿𝛿2𝑙𝑙}, it is three for proposed 
DU-TCG method, 𝛩𝛩𝐷𝐷𝐷𝐷−𝑇𝑇𝑇𝑇𝑇𝑇 = {𝛼𝛼𝑙𝑙 ,𝛽𝛽𝑙𝑙 ,𝐿𝐿𝑙𝑙} . Thanks to its simplified methodology and elaborated 
regularization technique, DU-TCG strikes a balance between computational efficiency and 
performance.  DU-TCG's greater ability to manage dynamic and diverse modern communication 
channels, particularly in high-density and complex signal environments, is demonstrated by the 
reduced BER it achieves. These results highlight the usefulness of DU-TCG, providing better 
performance without excessive computational cost and demonstrating its effectiveness as a flexible 
detection technique for next-generation communications systems. 

The NMSE performance of the proposed DU-TCG and LCG methods, shown in logarithmic 
scale, for scalar and vector parameterization, is illustrated in Figure 12 for a 32x64 MIMO layout.  
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(a)                    (b)  
Figure 12. NMSE performance: (a) scalar parameterization; (b) vector parameterization. 

Figure 12 shows that how scalar and vector parameterization affect the NMSE. As the simulation 
results show, in the case of scalar parameterization, the NMSE decreases with increasing SNR values 
for both DU-TCG and LCG methods, which indicates that the signal detection performance of the 
system increases. On the other hand, in the case of vector parameterization, the increase of SNR 
values for LCG does not affect the NMSE values after a point, while the NMSE value of the proposed 
DU-TCG continues to decrease. This shows that the performance of the LCG in complex situations 
remains constant after a certain level and cannot learn effectively. In addition, the NMSE values for 
vector parameterization approaches are much smaller than those for scalar parametrization, 
indicating improved detection performance. Therefore, in case of vector parameterization, the effect 
of regularization on NMSE performance is higher, resulting in better BER performance. 

After discussing the effect of scalar or parameterization techniques on the model-driven 
approaches above, we will show the impact of the same techniques on BER values in Figure 13.  

. 

Figure 13. BER performance with scalar and vector parameterization in 32x64 Rayleigh channel. 
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 In terms of BER values, in scalar parameterization DU-TCG and LCG have similar detection 
performance. Besides, LCG-V outperforms the DU-TCG-S. However, when we employ the vector 
parameterization with Tikhonov regularization in DU-TCG, more than 1 dB SNR gain is achieved at 
the 10−3 BER value compared to LCG-V.  

Discussion 

In this study, unlike traditional techniques, a method was proposed that integrates the iterative 
conjugate gradient method with Tikhonov regularization. The regularization matrix, step size and 
search direction coefficients are used as trainable parameters in a deep unfolding approach. Extensive 
simulation results that demonstrate the superiority of the proposed method over existing methods 
were presented. 

The results of this study clearly demonstrates that the proposed method, DU-TCG, is an 
improved detection strategy for MIMO systems, outperforming both state-of-the-art deep learning 
techniques such as DetNet and LCG, as well as traditional approaches such as MMSE and CG. 
Combining conjugate-gradient method with Tikhonov regularization approach in a deep learning 
design successfully reduces the degrading effects of channel conditions and higher order modulation. 

The scalability of DU-TCG is demonstrated by its consistent performance in both large (32x128) 
and small (10x10) MIMO systems, providing broad applicability to MIMO configurations of varying 
size and complexity. Besides, outperforming performance of the DU-TCG is also shown under 
various channel conditions such as Kronecker, TDL-A, and TDL-E channel models, which are widely 
used in advanced communication systems. This research also reveals that DU-TCG surpasses DetNet 
in various MIMO topologies when system complexity increases. Simulation results also show that 
the proposed method provides up to 4 dB SNR gain compared to CG with considerably less iterations. 
In addition, DU-TCG stays ahead of CG and LCG as the number of layers increases, and surpasses 
LCG's high-layer performance even with fewer layers. Ultimately, as compared to the vector 
parameterization of LCG, the NMSE and BER performance of DU-TCG are superior. For both scalar 
and vector parameterization, DU-TCG decreased the NMSE values.  

Consequently, this study highlights the advantages of the proposed DU-TCG method for MIMO 
detection over different scenarios. As a future work, combining Tikhonov regularization with other 
iterative detection algorithms for MIMO systems may be considered. Besides, reducing 
computational complexity of model-driven approaches is also another challenge that needs to be 
discussed in the area of deep-unfolded algorithms. 
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