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1 Abstract: This work presents a linear smoothing scheme over high-order triangular elements in the
= framework of a cell-based strain smoothed finite element method for two-dimensional nonlinear
s problems. The main idea behind the proposed linear smoothing scheme for strain-smoothed finite
+ element method (S-FEM) is no subdivision of finite element cells to sub-cells while the classical S-FEM
s needs sub-cells. Since the linear smoothing function is employed, S-FEM is able to use quadratic
s triangular or quadrilateral elements. The modified smoothed matrix obtained node-wise is evaluated.
»  In the same manner with the computation of the strain-displacement matrix, the smoothed stiffness
s  matrix and deformation graident are obtained over smoothing domains. A series of benchmark tests
s are investigated to demonstrate validity and stability of the proposed scheme. The validity and
10 accuracy are confirmed by comparing the obtained numerical results with the standard FEM using

1 2nd-order triangular element and the exact solutions.

1= Keywords: Cell-based smoothed finite e lement m ethod; q uadratic t riangular e lement; linear

1z smoothing function; hyperelasticity

s+ 1. Introduction

"

1 A strain smoothing approach in the framework of finite element approximation (S-FEM) was
16 introduced to handle the known difficulties of simple finite elements, which are prone to locking and
1z highly sensitive to heavily distorted meshes ([1,2]). These limits often harm the accuracy and stability
1= of finite element method (FEM) results when nearly- and full-incompressible material problems are
1o considered. Since Liu et al. [3] introduced four different S-FEM approaches, i.e. cell-based S-FEM
20 (CS-FEM), edge-based S-FEM (ES-FEM), node-based S-FEM (NS-FEM) and face-based S-FEM (FS-FEM),
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z several approaches have been widely used in various engineering fields: plate (Nguyen-Xuan et al.
22 [4]), shell (Nguyen-Thanh et al. [5]), nearly-incompressible elasticity (Lee et al. [6] and Ong et al. [7]),
= and coupled with extended FEM (Bordas et al. [8,9]). Moreover, selective S-FEM [10], the hybrid
2 S-FEM [11] and enriched-S-FEM [6] were introduced to improve conventional S-FEMs.

25 Among various S-FEMs, CS-FEM provides an almost identical accuracy as FEM with simple
26 elements. However, Natarajan et al. [12] found that cell-based strain smoothing approach over
2r  arbitrary polytopes resulted in less accuracy than FEM for polygonal elements. Francis et al. [13]
2s introduced modified linear smoothing in cell-based smoothed-strain scheme for arbitrary polygonal
20 cells and showed improved accuracy and convergence.

30 In their work, the modified cell-based linear smoothing scheme was employed by dividing the
a1 arbitrary polygons into triangular/tetrahedral sub-cells where the stiffness matrix is calculated. The
sz transformation of quadratic serendipity shape functions introduced by Rand et al. [14] was used to
33 obtain shape functions for polygonal cells. Wachspress rational basis functions for polygons were
s chosen as the barycentric shape functions where the functions are converted into serendipity shape
ss  functions that satisfies the Lagrange property.

36 In the present work, the linear smoothing scheme was employed for the quadratic triangular
sz element. Unlike the cell-based linear smoothing scheme for arbitrary polytopes or the standard
;s CS-FEM, the proposed approach does not need to divide finite element cells into sub-cells. Namely,
3o quadratic triangular cells are target cells and smoothing domains; thus no further intervention to
s construct sub-cells is needed. The linear polynomial basis function is selected as the linear smoothing
a1 function for CS-FEM whereas the conventional CS-FEM has the constant linear smoothing function.
«2 Using the smoothing function, the modified shape functions are computed and the node-wise modified
a3 strain-displacement are evaluated over each smoothing domain.

a In Section 2 of this paper, cell-based strain smoothing approach in nonlinear approximation is
s briefly revisited. In the subsequent section, the linear smoothing function in the context of CS-FEM is
s introduced, which illustrated the computation of the strain-displacement matrix. In Section 4, several
«z  numerical tests are studied to validate the proposed method in quasi-incompressible limits (Poisson’s
s ratio). In the final section, the performance of the proposed method was conclude and some possible

a0 future works were prawn related to the present method.

so 2. Method

s1  2.1. Nonlinear cell-based smoothed finite element method approximation

52 In this section, the basic idea behind cell-based-smoothed strain finite element method (CS-FEM)

ss  is briefly introduced (Liu and Nguyen [3]). The main features of CS-FEM are the subdivision of a finite
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s« element cell and numerical integration. In CS-FEM, a finite element is divided into three sub-cells that
ss called a smoothing domain as shown in Figure 1. Over the smoothing domain, the strain-displacement
s« and the stiffness matrices are constructed, viz. strains and stresses are smoothed on smoothing domain,

s and not on an element.

Smoothing domain

Target Cell

Figure 1. The subdivision of a finite element cell into sub-cells and construction of smoothing domain
in CS-FEM.

58 Another distinguished feature is the numerical integration. In strain-smoothing approach, the
ss numerical integration performs on the boundaries of smoothing domains as the line integration while
e it performs in the element in FEM. Note that since the numerical integration is performed globally in
a1 the proposed method, the Jacobian matrix is not required. To compute the strain-displacement matrix,
e2 one Gauss point on the middle of the boundary of smoothing domain and outward normal vectors
es are used. Figure 2 illustrates the integration scheme in CS-FEM with the location of Gauss points and

sa outward normal vectors.

¢ n
J=! 2
y, RN
~N
1€ l 2
ni

Figure 2. The numerical integration of the strain smoothing method. Sub-cell A12C is smoothing
domain of CS-FEM. White square C is a centroid of the element and black circles are element nodes.
Red circles are Gauss points located on the mid-point of the boundary of smoothing domain. Black
arrows are the outward normal vectors at Gauss points.

o5 For the nonlinear CS-FEM approximation, the following smoothed infinitesimal strain tensor over

e smoothing domain () is given as [6]:
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Wx e, & (x)= /Q eh (x) @ (x) dQ, (1)

s
k

where a point x; is located in smoothing domain and @ (x) is the weight function. Using the divergence

o
~

o

s theorem, the smoothed strain can be rewritten as:

h_ 1 h _ 1 h
g _Alsc/ﬂie (X)dQ_A,i/r n (x)u" (x)dr, ()

S
k

3

o where Aj is the area of smoothing domain, I} is the boundary of smoothing domain and n is the

70 outward normal vector in the form of the following matrix in two dimensions:

ni 0
n(x)=10 mny |- ®)
ny m
7 The details of the method are given by Lee [15]. However, brief information of the smoothed

2 Galerkin weak form and its linearization is given as follows:

~

W -
Qa—F(X,F(u)).Vdef/Qf-vdFvL/rNg-vdF, @)

73 Where v is the set of admissible test function and F is the smoothed deformation gradient evaluated

7o over each smoothing domain. Equation (4) can be expressed with the energy function R (u) and its

~

s directional derivatives DR (u) - u:

- ow = a?)i
R ()= [ o, 0F (W) 5ta0 [ foda+ [ gor, 5)
82W = alii
DR(u).u_/QaFijaFkl(X,F(u))a}ng, ©)

where i,j,k,1 € {1,2} for tow dimension and W is the stored strain energy function.

~
)

77 To find an approximate solution to Equation (4), the Newton-Raphson iterative method is

employed. At iteration iter 4+ 1, knowing the displacement ujs, from iteration iter, find r iter that

~
©

o satisfies:

~

DR (uiter) ‘Tier = —R (uiter) . ()

80 Therefore Equations (5) and (6) can be rewritten as follows:
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oW _ 8vk
R(w) = [ 255 Byskdo— [ foda+ [ godr, 8
(u) 0 aCij ki an Qflvz + Ty &iVi (8)
a1 and
W . 9v, . v W dry dvug
DR -:/ e Fpiot Fgoe + 2= o5 | dQ, 9
(u) ' Q (E)Ci]-ackl bt aX] SkaXI 8C1] 8Xl- BX] ( )
s2 where C is the smoothed right Cauchy-Green deformation C = F'F.
o3 The global system of equations at each iteration can be written as:
KiterTiter = Diter, (10)
sa thus, the displacement u is obtained by the iteration method: Qjter+1 = Qiter + Fiter-
es 2.2. Linear smoothing function in the framework of CS-FEM approximation
86 In the conventional strain smoothing method, the smoothing function f is a constant, thatis f (x) =

ez 1. This smoothing function is suitable for the strain smoothing approach with linear quadrilateral or
ss triangular elements. However, when the quadratic elements are used in S-FEM, the given smoothing
s function cannot be used (Francis et al. [13]). Therefore, to use quadratic elements, the following linear

so polynomial basis is chosen as the linear smoothing function:

f(x)={0 X1 xz}, (11)

T
o1 and its derivative is f; (x) = [ 0 & 0Oy ] .
02 The right hand side of Equation (1) with the smoothing function would yield the basis function

o3 derivatives level, which can be expressed as follows:

/Oi ¥,if (x)dO = /rk ¥, f (x) njdl“—/ﬂi‘{’af,j (x)dO, (12)

sa  Where ¥ is the set of the shape functions. Note that in this work, Lagrange basis functions are used as
s shape functions. For two dimensional problems, Equation (12) with the linear smoothing function (see

9 Equation (11)) can be expanded as follows:
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/ ¥, f (x)dQ = / ¥, 71,dT
0 Ty
/ ¥, 12dQ = / ¥, xympdl — / ¥,d0 (13)
0 Ty 0
/ ¥, 10d0 = / ¥, xomdT,
0 Ty
o7 and
/ ¥, (x)dQ = / ¥ npdl
O T
/ Ta,ledﬂ = / Tuxlnzdl“ (14)
0 T
/ T,LQXQdQ = / TaXQledF — / Tudﬂ,
0 T O
e for ¥, ; and ¥, , respectively.
% The cell-based smoothing domains are also used for the numerical integration for Equations (13)

10 and (14). Figure 3 shows the numerical integration scheme for the proposed cell-based strain-smoothed
11 method. In the proposed method, the finite element cell does not require to be divided into sub-cells
102 as the conventional CS-FEM. Namely, the finite element cell is the target cell and smoothing domain in

103 this case.

2

Target cell/Smoothing domain

Figure 3. The construction of smoothing domain and numerical scheme in CS-FEM with the linear
smoothing function for the quadratic triangular mesh. The interior Gauss points are black triangles
while Gauss points on the boundaries are red circles. The outward normal vectors are depicted as black

arrows.

108 Another feature that can be found in Figure 3 is the number of Gauss points. The proposed scheme
15 has two different Gauss point locations: first location can be found on the boundaries of smoothing

10s domains and another is the interior Gauss points. Three interior Gauss points and two Gauss points
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10z on the boundaries are required to compute for the smoothed stiffness matrix. Therefore, the following

10s  system of equations is applied to evaluate the smoothed strain-displacement matrix:

Wd; = f;, je{l,2}, (15)
100 where
'w W w
W= | 1wly, 2W2x; 3W3x |, (16)
1W1XZ ZWZXZ 3W3x2
3 2 7
E )
3 3 2\ g g 3
fi= Y. L Y (ks) ps1kmgo— L Ya ("r) "w
k=1g=1 m=1
3 2
kZ ):1 ¥, (}ES) 850 k150
=19¢=
- § § (17)
3 2 7
L ¥a(fs) oo
=1g=
SR 8.\ 8 4
f2 = kgl ggl Y, (ks) kS1kM230 ,
3
Y X Y. (fs) Ssppmafo— ¥ Yo ("r)"w
k=1g=1 m=1 i
10 and
T T
dj = { 1dj Zdj 3dj ] = [ ¥, (11’) ¥, (21’) ¥, (31’) } . (18)
1 The coordinates of the m'™ interior Gauss points are defined as "7 = ("ry, ;) and their weights

1z are given as "w. On the other hand, the coordinates of g" Gauss points ‘Es = (‘gsl, fsz) and their
us  weights ‘}:U are given at the k" boundaries of smoothing domain. The outward normal at the k'
ue  boundary of smoothing domain is given as yn = (y111, xn2). Equation (18) denotes the solution vector

us of Equation (15). The j basis function derivatives are obtained at the three interior Gauss points

i

ue in each smoothing domain (Figure 3). Using the obtained solution vector, the modified smoothed

» strain-displacement matrix can be obtained:

-
"

B(kr) - { B, (kr) B, (kr) .. B, (kr) ] ke {1,2,3}, (19)

kth

s where the nodal strain-displacement matrix evaluated at the k™" interior Gauss points is expressed as:
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Ydi 0
Bo(*r)=1] 0 *a |- (20)
kdy kdy
1us 3. Results
120 In this section, the validity and stability of the proposed linear smoothing function for the

11 quadratic triangular elements in nonlinear problems are demonstrated. The following series of
122 benchmark tests are studied: 1) simple shear deformation with Dirichlet and mixed Dirichlet and
123 Neumann boundary conditions (BCs), 2) uniform extension with lateral contraction with Dirichlet and
12« mixed Dirichlet and Neumann BCs, 3) “Not-so-simple” shear deformation with Dirichlet BCs and 4)
125 bending of a rectangular block with Dirichlet BCs.

126 For nonlinearity, a neo-Hookean hyperelastic model is used [16]:

W =

N~

(In])* — uln] + %y (trC —3), (21)

12z where Lamé’s first parameter A = x — (1/2) u is defined using the shear modulus y and bulk modulus
12 & in two dimensions. The Jacobian is given as | = detF. The present CS-FEM is compared with the exact
120 solutions and quadratic triangular elements in FEM. The details of numerical tests, i.e. implementation
130 of boundary conditions and exact solutions in strain energy can be found in References [6] and [15].

1;1 Note that benchmark tests are considered as the dimensionless.

132 3.1. Discussion

133 3.1.1. Simple shear deformation

134 First, simple shear deformation with two different types of boundary conditions are considered:
135 1) Dirichet BCs and 2) mixed Dirichlet and Neumann BCs. Figure 4 depicts the initial and deformed

136 shapes of the unit square for the problem.

(0,1) (1,1) (k,1) (k+1,1)

—

(0,0) (1,0) (0,0) (1,0)

Figure 4. Initial and deformed shapes of simple shear deformation with Dirichlet boundary conditions.


https://doi.org/10.20944/preprints201912.0091.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 December 2019 d0i:10.20944/preprints201912.0091.v1

90of 16
137 To impose Dirichlet and Neumann BCs for simple shear deformation, the following deformation
1s  gradient and first Piola-Kirchhoff stress tensor are defined, respectively:
1 k0
F=101 0], (22)
0 01
130 and
0 ku O
P=1|ku 0 0/, (23)
0 0 0
140 where k > 0 and its strain energy using Equation (21) is given as:
w= K2, (24)
2
141 The present work uses k = 1 for the deformation gradient. To compute the strain energy, the

12 shear modulus y = 0.6 and bulk modulus x = 100 are used, which is equivalent to Poisson’s ratio
13 v = 0.497. Hence, the strain energy for simple shear deformation is determined to be W = 0.3. Tables 1
1es and 2 provide the detailed values of displacement relative error for FEM and proposed CS-FEM with
s the quadratic 6-node node triangular (T6) element. It can be found that the proposed method shows

s the exact solution down to machine precision.

Table 1. Displacement relative error (x 10712) for simple shear deformation with Dirichlet BCs.

DOFs FEM with T6 CS-FEM with T6

50 0.00057 0.10846
162 0.00144 0.15607
338 0.00185 0.01571
578 0.00199 0.14690
880 0.00214 0.14206

Table 2. Displacement relative error (x10712) for simple shear deformation with Dirichlet and
Neumann BCs.

DOFs FEM with T6 CS-FEM with T6

50 0.10186 0.13922
162 0.10172 0.14249
338 0.10038 0.13953
578 0.09941 0.13973

880 0.09647 0.14025
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1z 3.1.2. Uniform extension with lateral contraction

148 The next test is uniform extension with lateral contraction using Dirichlet and mixed Dirichlet
1o and Neumann BCs. The geometry and material properties used are the same as the simple shear
150 deformation. The deformation gradient and non-zero components of the first Piola-Kirchhoff stress

151 tensor are:

A0 O
F=10 A 0 |, (25)
0 0 A
152 and
Pp="0 =y (a— L) = p (26)
11_)\1_” 1 A = 22/

153 where Ay = 1.15, A = 1/A; and A3 = 1. Hence Pj; = —P» = 0.16826087 and the strain energy is
s W=14 (A% + xl-f - 2) ~ 0.02359.

155 Figures 5 and 6 illustrate the deformed shapes of uniform extension with lateral contraction using
16 Dirichlet and mixed Dirichlet and Neumann BCs, respectively. Figure 7 shows the convergence of the
157 displacement relative errors of FEM and proposed CS-FEM with linear smoothing for the problem
1se  with Dirichlet and mixed Dirichlet and Neumann BCs. As shown in Figure 7, a fraction is within

1 machine precision with portion 10~!* for FEM and 10~!? for the present method.

uy

-005 0.0e+00
-

uy
13601 01 005 00e+00 13601 0.1

- -
(a) FEM (b) CS-FEM

Figure 5. Deformed shapes of uniform extension with lateral contraction with Dirichlet BCs: (a) FEM
with T6. (b) the proposed CS-FEM with Té6.
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13601 0.1 005 00e+00

-13e01 0.1 005

N N N N N N N N N N

(b) CS-FEM

(a) FEM
Figure 6. Deformed shapes of uniform extension with lateral contraction with mixed Dirichlet and
Neumann BCs: (a) FEM with T6. (b) the proposed CS-FEM with Té6.

-1251
A
----------------- S S
_* ________ :2
13 L] L L L]
£-135f
S —6~FEM T6 (Dirichlet)
& -@-FEM T6 (Dirichlet & Neumann)
3 ~A—CS-FEM T6 (Dirichlet)
=) -4~ CS-FEM T6 (Dirichlet &
B -14F
-14.5 /——e‘e\e\o
15 . . . . . . .
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Jlog(1/h)|

Figure 7. Convergence of the displacement relative errors of FEM and CS-FEM for uniform extension

with lateral contraction with Dirichlet and mixed Dirichlet and Neumann BCs.

10 3.1.3. “Not-so-simple” shear deformation
161 This test is a non-homogeneous deformation example known as “Not-so-simple” shear

deformation with Dirichlet BCs. As shown in Figure 8, the geometry of this problem is (0,2) x (0,2)

163 and its deformation gradient is given in Equation (27).

(kX3,2) (2+kX3,2)

(0,2) (2,2)

(0,0) (2,0) (0,0) (2,0)

Figure 8. The geometry and deformations of “Not-so-simple” shear deformation.
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1 2kX, 0
F=10 1 0/, (27)
0o 0 1

ws  where k > 1. The exact solution in strain energy is given as W = & (2kX,)? = 2uk®X3 = 1.6 since the

1

s shear and bulk moduli are the same as simple shear deformation.
166 Figure 9 depicts the deformed shapes of “Not-so-simple” shear deformation with Dirichlet BCs

167 for FEM and the proposed scheme.

AAAAA

(a) FEM (b) CS-FEM

Figure 9. Current configuration of “Not-so-simple” shear deformation with Dirichlet BCs: (a) FEM

with T6. (b) proposed CS-FEM with Té.
168 As given in Figure 10a, the displacement error for FEM and proposed CS-FEM is almost identical.
1o The convergence of relative error in strain energy is given in Figure 10b. In this case, the present

170 method is more accurate than FEM.

2251 0

—8—FEM T6 A A A A
—A—CS-FEM T6 L0002}

-0.004 -

231
_-0.006 -

EE -0.008 -

-0.01

N
i
5

[—— Exact
~@—-FEM T6
|—A— CS-FEM T6|

relative error)

-0.012

log(U
o
=
Jog(wmme

-0.014

-0.016 -

-0.018 -

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Jlog(1/m)]| log(1/h)]

(a) Displacements (b) Strain energy

Figure 10. Convergence of displacements and strain energy relative errors: (a) relative error in
displacements. (b) relative error in strain energy given as Wrelative error  yynumerical /yyexact,

i 3.1.4. Bending of a rectangular block

172 Lastly, an additional non-homogeneous deformation such as bending of a rectangular block is
s investigated. For this problem, shear modulus y = 0.6 and bulk modulus ¥ = 1.95 equivalent to

17a  Poisson’s ratio v = 0.36 are used. The geometry of the block is given in Figure 11.
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Figure 11. The geometry of the rectangular block for bending test. In this work, the length on x-axis
A =2, A =3 and length on y-axis B = 2 are used.

175 For the implementation of Dirichlet BCs, the following cylindrical coordinates in Cartesian

176 coordinates are defined:

Y
x =rcosf = \/ZaXcosE
y =rsinf = vV2aX sin% (28)

z=0,

17z where (x,y,z) are the current Cartesian coordinates and (X, Y, Z) are the initial Cartesian coordinates.

~N

17 Thus the deformation gradient for this test can be obtained as:

f1(X) 0 0
F=1 0 f@g®) 0} (29)
0 0 1

1o where f (X), g (Y), f/ (X) and g’ (Y) are:

~~
e’
I

1 (X) =
(%) o )
8(Y):&Y
§M =1,

=
@

o where the bending factor « = 0.9 is used for this work. Hence, the exact strain energy can be computed

;1 as follows:
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(09—2x%)
W= / / { o }dV~4.485618. (31)

162 Figure 12 illustrates the deformed shapes of the present example for FEM and proposed linear
13 smoothing function scheme. In this study, two cases categorized by different of numbers of elements
e along each side are used: 1) case 1is2 x 4,2 x 8,2 x 12,2 x 16,2 x 20,2 x 24,2 x 28,2 x 32 and 2)
s case2is4 x4,4x8,4x12,4x16,4x20,4 x 24,4 x 28,4 x 32. When the bending factor « is bigger,

16 the deformed shape becomes a circle as shown in Figure 12.

-4.4e+00 -3 -2 -1 -10e01 -4.4e+00 3 2 -1 -10e-01
e

-—ceee - -

(a) FEM (b) CS-FEM

Figure 12. Deformed shapes of the rectangular block for bending problem: (a) FEM with Té. (b)
CS-FEM with Té.

167 Figure 13 provides the convergence of displacements and strain energy relative errors in two
1es  cases. For both FEM and CS-FEM,, relative errors in displacements are almost the same in two cases
180 as shown in Figure 13a. However, the strain energy relative error for the proposed method in two

100 different cases is identical and more accurate than FEM.

- - ~Exact
—@— FEM T6 (case 1)
—8—FEM T6 (case 2)
|—A— CS-FEM T6 (case 1)
| ——CS-FEM T6 (case 2)

relative err

log(U,

—@—FEM T6 (case 1) -0.025
—8—FEM T6 (case 2)
A |—A— CS-FEM T6 (case 1)|
| —%—CS-FEM T6 (case 2)
24 L L L T s 0,03 L L L L s
0 0.5 1 15 2 25 0 0.5 1 15 2 25
Jlog(1/h)| Jlog(1/h)]

(a) Displacements (b) Strain energy

Figure 13. Convergence of displacements and strain energy relative errors in two cases for bending of

the rectangular block: (a) relative error in displacements. (b) relative error in strain energy given as
relative error _ ypynumerical Jwexact,
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101 4. Conclusions

102 In this paper, the linear smoothing function is employed to the cell-based strain-smoothed finite
103 element approximation for the problem of two-dimensional nonlinear hyperelasticity. Unlike the
1s  conventional S-FEM, the proposed scheme does not require to the division of finite element cells into
105 sub-cells. Namely, the quadratic triangular element used the smoothing domain itself. Moreover, no
10 further intervention for subdivision is required. Hence, this leads to an increase in the implementation
17 efficiency for the proposed method code. The present CS-FEM with the linear smoothing scheme
s needs two Gauss points on the boundaries of smoothing domains and three interior Gauss points in
190 the domain. The smoothed strain-displacement matrix is evaluated at the interior Gauss points.

200 The present CS-FEM is examined by a series of numerical tests to validate its accuracy and
=201 stability. The obtained results are compared with the exact solutions. From the results carried out
202 in numerical tests, the following conclusions are obtained: 1) in the homogeneous deformation
203 problem, the proposed CS-FEM with the linear smoothing scheme is able to reproduce machine
204 precision in displacement relative error that is identical to the strain energy relative error and 2) in
20s the non-homogeneous deformation problem, the present scheme shows more accurate results than
20s FEM with fast convergence rate to the exact solution. In future work, the proposed linear smoothing
207 functions to edge-based and node-based strain smoothing approximation will be employed which
20e  would effectively handle locking and are less sensitive to distorted meshes than the CS-FEM.
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