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Abstract: This work presents a linear smoothing scheme over high-order triangular elements in the 

framework of a cell-based strain smoothed finite element method for two-dimensional nonlinear 

problems. The main idea behind the proposed linear smoothing scheme for strain-smoothed finite

element method (S-FEM) is no subdivision of finite element cells to sub-cells while the classical S-FEM

needs sub-cells. Since the linear smoothing function is employed, S-FEM is able to use quadratic 

triangular or quadrilateral elements. The modified smoothed matrix obtained node-wise is evaluated.

In the same manner with the computation of the strain-displacement matrix, the smoothed stiffness

matrix and deformation graident are obtained over smoothing domains. A series of benchmark tests

are investigated to demonstrate validity and stability of the proposed scheme. The validity and 

accuracy are confirmed by comparing the obtained numerical results with the standard FEM using

2nd-order triangular element and the exact solutions.

Keywords: Cell-based smoothed finite e lement m ethod; q uadratic t riangular e lement; linear 

smoothing function; hyperelasticity13

1. Introduction14

A strain smoothing approach in the framework of finite element approximation (S-FEM) was15

introduced to handle the known difficulties of simple finite elements, which are prone to locking and16

highly sensitive to heavily distorted meshes ([1,2]). These limits often harm the accuracy and stability17

of finite element method (FEM) results when nearly- and full-incompressible material problems are18

considered. Since Liu et al. [3] introduced four different S-FEM approaches, i.e. cell-based S-FEM19

(CS-FEM), edge-based S-FEM (ES-FEM), node-based S-FEM (NS-FEM) and face-based S-FEM (FS-FEM),20
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several approaches have been widely used in various engineering fields: plate (Nguyen-Xuan et al.21

[4]), shell (Nguyen-Thanh et al. [5]), nearly-incompressible elasticity (Lee et al. [6] and Ong et al. [7]),22

and coupled with extended FEM (Bordas et al. [8,9]). Moreover, selective S-FEM [10], the hybrid23

S-FEM [11] and enriched-S-FEM [6] were introduced to improve conventional S-FEMs.24

Among various S-FEMs, CS-FEM provides an almost identical accuracy as FEM with simple25

elements. However, Natarajan et al. [12] found that cell-based strain smoothing approach over26

arbitrary polytopes resulted in less accuracy than FEM for polygonal elements. Francis et al. [13]27

introduced modified linear smoothing in cell-based smoothed-strain scheme for arbitrary polygonal28

cells and showed improved accuracy and convergence.29

In their work, the modified cell-based linear smoothing scheme was employed by dividing the30

arbitrary polygons into triangular/tetrahedral sub-cells where the stiffness matrix is calculated. The31

transformation of quadratic serendipity shape functions introduced by Rand et al. [14] was used to32

obtain shape functions for polygonal cells. Wachspress rational basis functions for polygons were33

chosen as the barycentric shape functions where the functions are converted into serendipity shape34

functions that satisfies the Lagrange property.35

In the present work, the linear smoothing scheme was employed for the quadratic triangular36

element. Unlike the cell-based linear smoothing scheme for arbitrary polytopes or the standard37

CS-FEM, the proposed approach does not need to divide finite element cells into sub-cells. Namely,38

quadratic triangular cells are target cells and smoothing domains; thus no further intervention to39

construct sub-cells is needed. The linear polynomial basis function is selected as the linear smoothing40

function for CS-FEM whereas the conventional CS-FEM has the constant linear smoothing function.41

Using the smoothing function, the modified shape functions are computed and the node-wise modified42

strain-displacement are evaluated over each smoothing domain.43

In Section 2 of this paper, cell-based strain smoothing approach in nonlinear approximation is44

briefly revisited. In the subsequent section, the linear smoothing function in the context of CS-FEM is45

introduced, which illustrated the computation of the strain-displacement matrix. In Section 4, several46

numerical tests are studied to validate the proposed method in quasi-incompressible limits (Poisson’s47

ratio). In the final section, the performance of the proposed method was conclude and some possible48

future works were prawn related to the present method.49

2. Method50

2.1. Nonlinear cell-based smoothed finite element method approximation51

In this section, the basic idea behind cell-based-smoothed strain finite element method (CS-FEM)52

is briefly introduced (Liu and Nguyen [3]). The main features of CS-FEM are the subdivision of a finite53
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element cell and numerical integration. In CS-FEM, a finite element is divided into three sub-cells that54

called a smoothing domain as shown in Figure 1. Over the smoothing domain, the strain-displacement55

and the stiffness matrices are constructed, viz. strains and stresses are smoothed on smoothing domain,56

and not on an element.57

Figure 1. The subdivision of a finite element cell into sub-cells and construction of smoothing domain
in CS-FEM.

Another distinguished feature is the numerical integration. In strain-smoothing approach, the58

numerical integration performs on the boundaries of smoothing domains as the line integration while59

it performs in the element in FEM. Note that since the numerical integration is performed globally in60

the proposed method, the Jacobian matrix is not required. To compute the strain-displacement matrix,61

one Gauss point on the middle of the boundary of smoothing domain and outward normal vectors62

are used. Figure 2 illustrates the integration scheme in CS-FEM with the location of Gauss points and63

outward normal vectors.64

Figure 2. The numerical integration of the strain smoothing method. Sub-cell 412C is smoothing
domain of CS-FEM. White square C is a centroid of the element and black circles are element nodes.
Red circles are Gauss points located on the mid-point of the boundary of smoothing domain. Black
arrows are the outward normal vectors at Gauss points.

For the nonlinear CS-FEM approximation, the following smoothed infinitesimal strain tensor over65

smoothing domain Ω is given as [6]:66
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∀x ∈ Ωs
k, ε̄h (xk) =

∫
Ωs

k

εh (x)Φ (x)dΩ, (1)

where a point xk is located in smoothing domain and Φ (x) is the weight function. Using the divergence67

theorem, the smoothed strain can be rewritten as:68

ε̄h =
1

As
k

∫
Ωs

k

εh (x)dΩ =
1

As
k

∫
Γs

k

n (x) uh (x)dΓ, (2)

where As
k is the area of smoothing domain, Γs

k is the boundary of smoothing domain and n is the69

outward normal vector in the form of the following matrix in two dimensions:70

n (x) =


n1 0

0 n2

n2 n1

 . (3)

The details of the method are given by Lee [15]. However, brief information of the smoothed71

Galerkin weak form and its linearization is given as follows:72

∫
Ω

∂W
∂F̄

(X, F̄ (u)) : ∇vdΩ =
∫

Ω
f · vdΓ +

∫
ΓN

g · vdΓ, (4)

where v is the set of admissible test function and F is the smoothed deformation gradient evaluated73

over each smoothing domain. Equation (4) can be expressed with the energy functionR (u) and its74

directional derivatives DR (u) · u:75

R (u) =
∫

Ω

∂W
∂F̄ij

(X, F̄ (u))
∂vi
∂Xj

dΩ−
∫

Ω
fividΩ +

∫
ΓN

gividΓ, (5)

DR (u) · u =
∫

Ω

∂2W
∂F̄ij∂F̄kl

(X, F̄ (u))
∂vi
∂Xj

dΩ, (6)

where i, j, k, l ∈ {1, 2} for tow dimension and W is the stored strain energy function.76

To find an approximate solution to Equation (4), the Newton-Raphson iterative method is77

employed. At iteration iter + 1, knowing the displacement uiter from iteration iter, find r iter that78

satisfies:79

DR (uiter) · riter = −R (uiter) . (7)

Therefore Equations (5) and (6) can be rewritten as follows:80
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R (u) =
∫

Ω
2

∂W
∂C̄ij

F̄ki
∂vk
∂Xj

dΩ−
∫

Ω
fividΩ +

∫
ΓN

gividΓ, (8)

and81

DR (u) · r =
∫

Ω

(
∂2W

∂C̄ij∂C̄kl
F̄pi

∂vp

∂Xj
F̄sk

∂vs

∂Xl
+ 2

∂W
∂C̄ij

∂rk
∂Xi

∂vk
∂Xj

)
dΩ, (9)

where C̄ is the smoothed right Cauchy-Green deformation C̄ = F̄TF̄.82

The global system of equations at each iteration can be written as:83

K̄iterriter = b̄iter, (10)

thus, the displacement u is obtained by the iteration method: ūiter+1 = ūiter + riter.84

2.2. Linear smoothing function in the framework of CS-FEM approximation85

In the conventional strain smoothing method, the smoothing function f is a constant, that is f (x) =86

1. This smoothing function is suitable for the strain smoothing approach with linear quadrilateral or87

triangular elements. However, when the quadratic elements are used in S-FEM, the given smoothing88

function cannot be used (Francis et al. [13]). Therefore, to use quadratic elements, the following linear89

polynomial basis is chosen as the linear smoothing function:90

f (x) =
[

0 x1 x2

]
, (11)

and its derivative is f,j (x) =
[

0 δ1j δ2j

]T
.91

The right hand side of Equation (1) with the smoothing function would yield the basis function92

derivatives level, which can be expressed as follows:93

∫
Ωs

k

Ψa,j f (x)dΩ =
∫

Γs
k

Ψa f (x) njdΓ−
∫

Ωs
k

Ψa f,j (x)dΩ, (12)

where Ψ is the set of the shape functions. Note that in this work, Lagrange basis functions are used as94

shape functions. For two dimensional problems, Equation (12) with the linear smoothing function (see95

Equation (11)) can be expanded as follows:96
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∫
Ωs

k

Ψa,1 f (x)dΩ =
∫

Γs
k

Ψan1dΓ∫
Ωs

k

Ψa,1x1dΩ =
∫

Γs
k

Ψax1n1dΓ−
∫

Ωs
k

ΨadΩ∫
Ωs

k

Ψa,1x2dΩ =
∫

Γs
k

Ψax2n1dΓ,

(13)

and97

∫
Ωs

k

Ψa,2 f (x)dΩ =
∫

Γs
k

Ψan2dΓ∫
Ωs

k

Ψa,2x1dΩ =
∫

Γs
k

Ψax1n2dΓ∫
Ωs

k

Ψa,2x2dΩ =
∫

Γs
k

Ψax2n2dΓ−
∫

Ωs
k

ΨadΩ,

(14)

for Ψa,1 and Ψa,2, respectively.98

The cell-based smoothing domains are also used for the numerical integration for Equations (13)99

and (14). Figure 3 shows the numerical integration scheme for the proposed cell-based strain-smoothed100

method. In the proposed method, the finite element cell does not require to be divided into sub-cells101

as the conventional CS-FEM. Namely, the finite element cell is the target cell and smoothing domain in102

this case.103

Figure 3. The construction of smoothing domain and numerical scheme in CS-FEM with the linear
smoothing function for the quadratic triangular mesh. The interior Gauss points are black triangles
while Gauss points on the boundaries are red circles. The outward normal vectors are depicted as black
arrows.

Another feature that can be found in Figure 3 is the number of Gauss points. The proposed scheme104

has two different Gauss point locations: first location can be found on the boundaries of smoothing105

domains and another is the interior Gauss points. Three interior Gauss points and two Gauss points106
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on the boundaries are required to compute for the smoothed stiffness matrix. Therefore, the following107

system of equations is applied to evaluate the smoothed strain-displacement matrix:108

Wdj = f j, j ∈ {1, 2} , (15)

where109

W =


1W 2W 3W

1W 1x1
2W 2x1

3W 3x1

1W 1x2
2W 2x2

3W 3x2

 , (16)

f1 =



3
∑

k=1

2
∑

g=1
Ψa

(
g
k s
)

kn1
g
k v

3
∑

k=1

3
∑

g=1
Ψa

(
g
k s
)

g
k s1 kn1

g
k v−

3
∑

m=1
Ψa (mr) mw

3
∑

k=1

2
∑

g=1
Ψa

(
g
k s
)

g
k s2 kn1

g
k v



f2 =



3
∑

k=1

2
∑

g=1
Ψa

(
g
k s
)

kn2
g
k v

3
∑

k=1

3
∑

g=1
Ψa

(
g
k s
)

g
k s1 kn2

g
k v

3
∑

k=1

2
∑

g=1
Ψa

(
g
k s
)

g
k s2 kn2

g
k v−

3
∑

m=1
Ψa (mr) mw


,

(17)

and110

dj =

[
1dj

2dj
3dj

]T
=

[
Ψa,j

(1r
)

Ψa,j
(2r
)

Ψa,j
(3r
) ]T

. (18)

The coordinates of the mth interior Gauss points are defined as mr = (mr1, mr2) and their weights111

are given as mw. On the other hand, the coordinates of gth Gauss points g
k s =

(
g
k s1, g

k s2

)
and their112

weights g
k v are given at the kth boundaries of smoothing domain. The outward normal at the kth

113

boundary of smoothing domain is given as kn = (kn1, kn2). Equation (18) denotes the solution vector114

of Equation (15). The jth basis function derivatives are obtained at the three interior Gauss points115

in each smoothing domain (Figure 3). Using the obtained solution vector, the modified smoothed116

strain-displacement matrix can be obtained:117

B̄
(

kr
)
=

[
B̄1

(
kr
)

B̄2

(
kr
)
· · · B̄n

(
kr
) ]

, k ∈ {1, 2, 3} , (19)

where the nodal strain-displacement matrix evaluated at the kth interior Gauss points is expressed as:118
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B̄a

(
kr
)
=


kd1 0

0 kd2

kd2
kd1

 . (20)

3. Results119

In this section, the validity and stability of the proposed linear smoothing function for the120

quadratic triangular elements in nonlinear problems are demonstrated. The following series of121

benchmark tests are studied: 1) simple shear deformation with Dirichlet and mixed Dirichlet and122

Neumann boundary conditions (BCs), 2) uniform extension with lateral contraction with Dirichlet and123

mixed Dirichlet and Neumann BCs, 3) “Not-so-simple” shear deformation with Dirichlet BCs and 4)124

bending of a rectangular block with Dirichlet BCs.125

For nonlinearity, a neo-Hookean hyperelastic model is used [16]:126

W =
1
2
(lnJ)2 − µlnJ +

1
2

µ (trC− 3) , (21)

where Lamé’s first parameter λ = κ− (1/2) µ is defined using the shear modulus µ and bulk modulus127

κ in two dimensions. The Jacobian is given as J = detF. The present CS-FEM is compared with the exact128

solutions and quadratic triangular elements in FEM. The details of numerical tests, i.e. implementation129

of boundary conditions and exact solutions in strain energy can be found in References [6] and [15].130

Note that benchmark tests are considered as the dimensionless.131

3.1. Discussion132

3.1.1. Simple shear deformation133

First, simple shear deformation with two different types of boundary conditions are considered:134

1) Dirichet BCs and 2) mixed Dirichlet and Neumann BCs. Figure 4 depicts the initial and deformed135

shapes of the unit square for the problem.136

Figure 4. Initial and deformed shapes of simple shear deformation with Dirichlet boundary conditions.
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To impose Dirichlet and Neumann BCs for simple shear deformation, the following deformation137

gradient and first Piola-Kirchhoff stress tensor are defined, respectively:138

F =


1 k 0

0 1 0

0 0 1

 , (22)

and139

P =


0 kµ 0

kµ 0 0

0 0 0

 , (23)

where k > 0 and its strain energy using Equation (21) is given as:140

W =
µ

2
k2. (24)

The present work uses k = 1 for the deformation gradient. To compute the strain energy, the141

shear modulus µ = 0.6 and bulk modulus κ = 100 are used, which is equivalent to Poisson’s ratio142

ν = 0.497. Hence, the strain energy for simple shear deformation is determined to be W = 0.3. Tables 1143

and 2 provide the detailed values of displacement relative error for FEM and proposed CS-FEM with144

the quadratic 6-node node triangular (T6) element. It can be found that the proposed method shows145

the exact solution down to machine precision.146

Table 1. Displacement relative error (×10−12) for simple shear deformation with Dirichlet BCs.

DOFs FEM with T6 CS-FEM with T6

50 0.00057 0.10846
162 0.00144 0.15607
338 0.00185 0.01571
578 0.00199 0.14690
880 0.00214 0.14206

Table 2. Displacement relative error (×10−12) for simple shear deformation with Dirichlet and
Neumann BCs.

DOFs FEM with T6 CS-FEM with T6

50 0.10186 0.13922
162 0.10172 0.14249
338 0.10038 0.13953
578 0.09941 0.13973
880 0.09647 0.14025
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3.1.2. Uniform extension with lateral contraction147

The next test is uniform extension with lateral contraction using Dirichlet and mixed Dirichlet148

and Neumann BCs. The geometry and material properties used are the same as the simple shear149

deformation. The deformation gradient and non-zero components of the first Piola-Kirchhoff stress150

tensor are:151

F =


λ1 0 0

0 λ2 0

0 0 λ2

 , (25)

and152

P11 =
σ11

λ1
= µ

(
λ1 −

1
λ1

)
= −P22, (26)

where λ1 = 1.15, λ2 = 1/λ1 and λ3 = 1. Hence P11 = −P22 = 0.16826087 and the strain energy is153

W = µ
2

(
λ2

1 +
1

λ2
1
− 2
)
≈ 0.02359.154

Figures 5 and 6 illustrate the deformed shapes of uniform extension with lateral contraction using155

Dirichlet and mixed Dirichlet and Neumann BCs, respectively. Figure 7 shows the convergence of the156

displacement relative errors of FEM and proposed CS-FEM with linear smoothing for the problem157

with Dirichlet and mixed Dirichlet and Neumann BCs. As shown in Figure 7, a fraction is within158

machine precision with portion 10−14 for FEM and 10−12 for the present method.159

Figure 5. Deformed shapes of uniform extension with lateral contraction with Dirichlet BCs: (a) FEM
with T6. (b) the proposed CS-FEM with T6.
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Figure 6. Deformed shapes of uniform extension with lateral contraction with mixed Dirichlet and
Neumann BCs: (a) FEM with T6. (b) the proposed CS-FEM with T6.

Figure 7. Convergence of the displacement relative errors of FEM and CS-FEM for uniform extension
with lateral contraction with Dirichlet and mixed Dirichlet and Neumann BCs.

3.1.3. “Not-so-simple” shear deformation160

This test is a non-homogeneous deformation example known as “Not-so-simple” shear161

deformation with Dirichlet BCs. As shown in Figure 8, the geometry of this problem is (0, 2)× (0, 2)162

and its deformation gradient is given in Equation (27).163

Figure 8. The geometry and deformations of “Not-so-simple” shear deformation.
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F =


1 2kX2 0

0 1 0

0 0 1

 , (27)

where k > 1. The exact solution in strain energy is given as W = µ
2 (2kX2)

2 = 2µk2X2
2 = 1.6 since the164

shear and bulk moduli are the same as simple shear deformation.165

Figure 9 depicts the deformed shapes of “Not-so-simple” shear deformation with Dirichlet BCs166

for FEM and the proposed scheme.167

Figure 9. Current configuration of “Not-so-simple” shear deformation with Dirichlet BCs: (a) FEM
with T6. (b) proposed CS-FEM with T6.

As given in Figure 10a, the displacement error for FEM and proposed CS-FEM is almost identical.168

The convergence of relative error in strain energy is given in Figure 10b. In this case, the present169

method is more accurate than FEM.170

Figure 10. Convergence of displacements and strain energy relative errors: (a) relative error in
displacements. (b) relative error in strain energy given as Wrelative error = Wnumerical/Wexact.

3.1.4. Bending of a rectangular block171

Lastly, an additional non-homogeneous deformation such as bending of a rectangular block is172

investigated. For this problem, shear modulus µ = 0.6 and bulk modulus κ = 1.95 equivalent to173

Poisson’s ratio ν = 0.36 are used. The geometry of the block is given in Figure 11.174
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Figure 11. The geometry of the rectangular block for bending test. In this work, the length on x-axis
A = 2, A = 3 and length on y-axis B = 2 are used.

For the implementation of Dirichlet BCs, the following cylindrical coordinates in Cartesian175

coordinates are defined:176

x = r cos θ =
√

2αX cos
Y
α

y = r sin θ =
√

2αX sin
Y
α

z = 0,

(28)

where (x, y, z) are the current Cartesian coordinates and (X, Y, Z) are the initial Cartesian coordinates.177

Thus the deformation gradient for this test can be obtained as:178

F =


f ′ (X) 0 0

0 f (x) g′ (Y) 0

0 0 1

 , (29)

where f (X), g (Y), f ′ (X) and g′ (Y) are:179

f (X) =
√

2αX

f ′ (X) =

√
2α

2
√

X

g (Y) =
1
α

Y

g′ (Y) =
1
α

,

(30)

where the bending factor α = 0.9 is used for this work. Hence, the exact strain energy can be computed180

as follows:181
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W =
∫ 3

2

∫ 2

−2

{
µ
(0.9− 2X)2

3.6X

}
dV ≈ 4.485618. (31)

Figure 12 illustrates the deformed shapes of the present example for FEM and proposed linear182

smoothing function scheme. In this study, two cases categorized by different of numbers of elements183

along each side are used: 1) case 1 is 2× 4, 2× 8, 2× 12, 2× 16, 2× 20, 2× 24, 2× 28, 2× 32 and 2)184

case 2 is 4× 4, 4× 8, 4× 12, 4× 16, 4× 20, 4× 24, 4× 28, 4× 32. When the bending factor α is bigger,185

the deformed shape becomes a circle as shown in Figure 12.186

Figure 12. Deformed shapes of the rectangular block for bending problem: (a) FEM with T6. (b)
CS-FEM with T6.

Figure 13 provides the convergence of displacements and strain energy relative errors in two187

cases. For both FEM and CS-FEM, relative errors in displacements are almost the same in two cases188

as shown in Figure 13a. However, the strain energy relative error for the proposed method in two189

different cases is identical and more accurate than FEM.190

Figure 13. Convergence of displacements and strain energy relative errors in two cases for bending of
the rectangular block: (a) relative error in displacements. (b) relative error in strain energy given as
Wrelative error = Wnumerical/Wexact.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2019                   doi:10.20944/preprints201912.0091.v1

https://doi.org/10.20944/preprints201912.0091.v1


15 of 16

4. Conclusions191

In this paper, the linear smoothing function is employed to the cell-based strain-smoothed finite192

element approximation for the problem of two-dimensional nonlinear hyperelasticity. Unlike the193

conventional S-FEM, the proposed scheme does not require to the division of finite element cells into194

sub-cells. Namely, the quadratic triangular element used the smoothing domain itself. Moreover, no195

further intervention for subdivision is required. Hence, this leads to an increase in the implementation196

efficiency for the proposed method code. The present CS-FEM with the linear smoothing scheme197

needs two Gauss points on the boundaries of smoothing domains and three interior Gauss points in198

the domain. The smoothed strain-displacement matrix is evaluated at the interior Gauss points.199

The present CS-FEM is examined by a series of numerical tests to validate its accuracy and200

stability. The obtained results are compared with the exact solutions. From the results carried out201

in numerical tests, the following conclusions are obtained: 1) in the homogeneous deformation202

problem, the proposed CS-FEM with the linear smoothing scheme is able to reproduce machine203

precision in displacement relative error that is identical to the strain energy relative error and 2) in204

the non-homogeneous deformation problem, the present scheme shows more accurate results than205

FEM with fast convergence rate to the exact solution. In future work, the proposed linear smoothing206

functions to edge-based and node-based strain smoothing approximation will be employed which207

would effectively handle locking and are less sensitive to distorted meshes than the CS-FEM.208

Author Contributions: Conceptualization, C.L. and S.N.; methodology, C.L. and S.N.; software, C.L.; validation,209

C.L. and S.N.; formal analysis, C.L.; writing–original draft preparation, C.L.; writing–review and editing, S.N.;210

visualization, C.L.; supervision, S.N.; funding acquisition, C.L.211

Funding: This research was funded by National Research Foundation (NRF) of Korea through Ministry of212

Education under the grant number No. 2016R1A6A1A03012812.213

Conflicts of Interest: The authors declare no conflict of interest.214

References215

1. Liu, G.R.; Dai, K.Y.; Nguyen, T.T. A smoothed finite element method for mechanics problems. Computational216

Mechanics 2007, 39(6), 859–877.217

2. Liu, G.R.; Nguyen, T.T.; Dia, K.Y.; Lam, K.Y. Theoretical aspects of the smoothed finite element method218

(SFEM). International Journal for Numerical Methods in Engineering 2007, 71(8), 902–930.219

3. Liu, G.R., Nguyen, T.T. Smoothed Finite Element Methods, CRC Press: Boca Laton, Florida, USA; 2010.220

4. Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J.; A smoothed finite element method for plate221

analysis. Computer Methods in Applied Mechanics and Engineering 2008, 74, 175–208.222

5. Nguyen-Thanh, N.; Rabczuk, T.; Nugyen-Xuan, H.; Bordas, S.P. A smoothed finite element method for shell223

analysis. Computer Methods in Applied Mechanics and Engineering 2008, 198, 165–177.224

6. Lee, C.K.; Angela Mihai, L.; Hale, J.S.; Kerfriden, P.; Bordas, S.P.A. Strain smoothing for compressible and225

nearly-compressible finite elasticity. Computers & Structures 2017, 182, 540–555.226

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2019                   doi:10.20944/preprints201912.0091.v1

https://doi.org/10.20944/preprints201912.0091.v1


16 of 16

7. Ong, T.H.; Heaney, C.E.; Lee, C.K.; Liu, G.R.; Nguyen-Xuan, H. On stability, convergence and accuracy227

of bES-FEM and bFS-FEM for nearly incompressible elasticity. Computer Methods in Applied Mechanics and228

Engineering 2014, 285, 315–345.229

8. Bordas, S.; Natajaran, S.; Kerfriden, P.; Augarde, C.; Mahapatra, D.; Rabczuk, T.; Pont, T. On the performance230

of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM).231

International Journal for Numerical Methods in Engineering, 2011, 86, 673–666.232

9. Bordas, S.P.; Rabczuk, T.; Nguyen-Xuan, H.; Nguyen, V.P.; Natarajan, S.; Bog, T.; Quan, D.M.; Hiep, N.V.233

Strain smoothing in FEM and XFEM. Computational & Structures 2010, 88, 1419–1443.234

10. Jiang, C.; Zhang, Z.Q.; Han, X.; Liu, G.R. Selective smoothed finite element methods for extremely235

large deformation of anisotropic incompressible bio-tissues. International Journal for Numerical Methods236

in Engineering 2014, 99(8), 587–610.237

11. Natarajan, S.; Bordas, S.P.A.; Ooi, E.T. Virtual and smoothed finite elements: a connection and its application238

to polygonal/polyhedral finite element method. International Journal for Numerical Methods in Engineering239

2015, 104, 1173–1199.240

12. Natarajan, S.; Ooi, E.T.; Chiong, I.; Song, C. Convergence and accuracy of displacement based finite element241

formulation over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon242

formulations. Finite Elements in Analysis and Design 2014, 85, 101–122.243

13. Francis, A.; Ortiz-Bernardin, A.; Bordas, S.P.A.; Natarajan, S. Linear smoothed polygonal and polyhedral244

finite elements. International Journal for Numerical Methods in Engineering 2017, 109, 1263–1288.245

14. Rand, A.; Gillette, A.; Bajaj, C. Quadratic serendipity finite elements on polygons using generalized246

barycentric coordinates. Mechanics of Computations 2014, 83, 2691–2716.247

15. Lee, C.K. Gradient smoothing in finite elasticity: near-incompressibility. PhD, Cardiff University, Cardiff,248

Wales, UK, 2015.249

16. Belytschko, T.; Moran, B.; Liu, W.K. Nonlinear Finite Element for Continua and Structures; John Wiley & Sons250

Ltd: Chichester, UK, 2000.251

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2019                   doi:10.20944/preprints201912.0091.v1

https://doi.org/10.20944/preprints201912.0091.v1

