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Article

A Theory of Gravity Based on Dimensional
Perturbations of Objects in Flat Spacetime
William Northcutt

Palmyra, Virginia, USA; wnorthcutt@protonmail.com

Abstract: A covariant classical theory of gravity is given assuming absolute flat spacetime and the
strong equivalence principle (SEP). It is shown that adherence to these postulates requires that the
gravitational field “dimensionally perturbs”—induces fractional length and duration changes—all
physical objects at a location universally. Such perturbations are referred to as “gravity shifts,” and it is
found that all gravitational phenomena may be determined by them. Two classes of observers emerge
in “gravity shift theory”—“natural observers” using gravity shifted instruments as is, applicable for
all presently available observations, and “absolute observers” that correct for the gravity shifting
applied to instruments. Absolute observers accurately measure quantities, including the absolute
spacetime metric as it actually is. Natural observers do not accurately measure quantities, but their
system of measurement is observationally consistent, yielding a curved “natural metric” to characterize
spacetime. When a local gravitational system is surrounded by a “background system” with negligible
curvature effects, its gravity shifting induces a diffeomorphism applied to the local system, yielding
satisfaction of the SEP for natural observers. Gravity shift theory is the only existing theory other
than general relativity that fully satisfies the SEP, which is required for successful predictions of
observations. Using the naturally observed inertial form of physical law in free-fall frames, covariant
formulation in all coordinates establishes the natural metric as the universally coupled gravitational
metric in physical law. The unique field equation determining gravity shifts, and therefore the natural
metric, is developed. The resultant bimetric theory is parameterless, complete, and self-consistent.
The field equation yields the observed post-Newtonian natural metric and linearizes to the predictive
linearized Einstein equation, which, along with SEP satisfaction, results in successful prediction of
a wide variety of observed gravitational phenomena. A supplement is provided that extends the
range of prediction verification to include low post-Newtonian order radiation cases, and also the
strong-field cases consisting of the properties of black and neutron stars plus nearby matter and light.

Keywords: absolute spacetime; flat spacetime; bimetric theory; dimensional perturbations; gravity
shifts; diffeomorphism; strong equivalence principle

1. Introduction and Summary
It has long been understood that general relativity is fundamentally incompatible with quantum

theory due to the single utilized metric specifying both the gravitational field and the spacetime
structure, leading to an inconsistent quantization of spacetime when attempting to quantize the field
(see Section 2 for discussion of this issue). Accepting this, a novel classical theory of gravity is presented
here that is posed in absolute flat spacetime, circumventing spacetime quantization if the gravitational
field were later quantized. The provided gravity theory is therefore not fundamentally incompatible
with quantum theory, as is understood for all theories of gravity posed in absolute flat spacetime.
In addition to formulation in flat spacetime, the strong equivalence principle (SEP) applicable for
gravitational systems is assumed to hold due to the extensive observational evidence supporting
its validity, including the observations verifying the contained Einstein equivalence principle (EEP)
applicable for nongravitational systems only (see Will [1], Chaps. 2 & 8). Both absolute flat spacetime
and the SEP are given as postulates from which the theory is based.
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In order to satisfy the Einstein equivalence principle while adhering to flat spacetime, it is found
that on local scales all physical objects necessarily undergo universal dimensional perturbations that are
gravitationally induced, referred to as “gravity shifts” (shown in Section 3.1 using the Schild argument
for observed gravitational redshifting). These local “dimensional perturbations” of objects consist
of fractional changes in their lengths, and fractional changes in durations for the physical processes
occurring within the objects, or equivalently fractional changes in the rates of the processes. Associated
with these purely “dimensional shifts” are additionally shifts in the dynamic properties of objects
such as mass. These “dynamic shifts” indeed result from application of the dimensional shifts. As
gravity shifts are universal, all physical instruments are gravity shifted as well. As will be shown,
measurement of universally gravity shifted objects, as made using gravity shifted instruments, is the
only means by which the equivalence principle may be satisfied assuming flat spacetime.

Gravity shifts may be considered in terms of local “partner objects” over which the shifting may be
approximated as being uniform, with the “unshifted partner” being an object without gravity shifting
applied, and the “shifted partner” being the corresponding gravity shifted object. The “material
content” of the shifted partner object—meaning its matter and nongravitational fields—is identical to
the material content of its unshifted partner. Partner objects “share” then the same material content,
with the only difference between the partners being the dimensional perturbations of the material
content of the shifted object relative to the unperturbed unshifted partner with the same content (the
resultant shifting in dynamic properties does not alter the makeup of the material content). All gravity
shifts may be expressed by the single 1-to-1 linear “partner relation”

dxα
S = Sα

µ̄ dxµ
US (1)

giving the universal gravity shifting between partner infinitesimal spacetime displacements “tied” to
local partner objects, meaning that their endpoints are events that spatially and temporally locate any
of the shared material content, such as the “partner events” occurring for a particular shared particle.
The rank-2 “shift tensor” Sα

µ̄ is the formal quantity that relates local partner objects, where the “bar”
over the second indice indicates conversion from an unshifted partner displacement dxµ

US, and no bar
over the first indice indicates conversion to the corresponding shifted partner displacement dxα

S. The
shifted partner displacements dxα

S are the actual (i.e., existing) absolute manifold displacements dxα

due to the gravitational field being present for the actual case, so dxα
S = dxα, whereas the unshifted

partner displacements dxα
US are the hypothetical displacements obtained if gravitation were removed in

theory. It is found that gravity shifts, as specified by the shift tensor, may be employed to depict the
gravitational field and determine all gravitational phenomena. For this reason, the theory given here is
referred to as “gravity shift theory,” or “GS theory” for short.

The gravity shifts in a system may be determined by using observations and modelling. The effects
of gravity shifting on instruments may then be determined and accounted for, yielding “shift-corrected”
instruments that accurately measure quantities (such as the measurable quantities depicting shifted
objects). The actual values of quantities are therefore obtained. Use of a shift-corrected instrument is the
same as use of its hypothetical unshifted partner, which with the perturbing gravity shifting removed
again accurately measures quantities. Measurement with shift-corrected instruments is referred to
as “absolute measurement,” yielding the class of “absolute observers.” Using shift-corrected proper
frame clocks and rulers, absolute observers accurately measure the proper intervals dsA of the absolute
manifold, expressed by dsA(A)= dsA, where in general (A) designates absolute measurement using
shift-corrected “absolute instruments” (the notation “ds ” is generically used to represent temporal,
spatial, and null proper intervals, with discernment from specifically spatial intervals ds made by
context). Therefore,

ds2
A(A)= ds2

A = aµν dxµ dxν, (2)

so the absolutely measured metric is indeed the absolute metric aµν, yielding an accurate characteriza-
tion of the absolute spacetime manifold, which is the reason for the nomenclature “absolute observers.”
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The class of absolute observers use the absolute inertial frames of the flat spacetime manifold as
their “preferred” frames of reference. This is the case since the absolute metric is the Minkowski
metric ηµν in the global inertial coordinates (ICs) of the absolute inertial frames, yielding absolutely
observed geodesic motion, under the zero-valued absolute metric connection, that is inertial in the
global ICs. An entire “absolute worldview” holds for the class of absolute observers. As an example,
absolute observers conceive of gravitation as an ordinary force due to absolutely perceived gravitational
acceleration of objects relative to their preferred absolute inertial frames.

Measurement made with “raw” gravity shifted instruments that have not been shift-corrected
is referred to as “natural measurement,” as the instruments are used as is. Exclusive use of such
“natural instruments” yields the class of “natural observers.” All presently available observations are
identified then as having been made by natural observers using raw gravity shifted instruments, as
absolute shift-corrected instruments have heretofore not been utilized. Natural instruments, having
been perturbed by gravity shifting, will not accurately measure quantities. But under the universality
of gravity shifting, natural measurement of the gravity shifted objects present is an observationally
consistent system of measurement for natural observers with its own properties. Natural observers use
gravity shifted instruments to measure local shifted objects for the actual “shifted partner case” when
gravitation is present. Whereas when gravitation is removed in theory, the hypothetical “unshifted
partner case” is yielded where the unshifted partners of the instruments make the same measurements
on the unshifted partners of the objects. As instruments measuring local objects gravity shift under
the partner relation (1) the same as the objects, then there is no difference between the shifted and
unshifted partner cases except the universal gravity shifting applied to their shared material content
consisting of both the instruments and the objects being measured. With the shifted partner case just a
dimensionally perturbed version of the unshifted partner case, then for natural observers, any shifted
instrument reading for the shifted partner case, which is the actual case, is the same as the reading from the
unshifted partner instrument for the hypothetical unshifted partner case. This key equivalence for natural
measurement of local partner objects is referred to as the “partner equivalence property,” or “partner
equivalence” for short.

A key example of the partner equivalence property is natural measurement of the partner absolute
manifold proper intervals, ds2

S = aµν dxµ
S dxν

S and ds2
US = aµν dxµ

US dxν
US, for the partner displacements

dxα
S and dxµ

US tied to local partner objects. The natural proper interval standards consist of raw
gravity shifted clocks and rulers utilized as is. Applying partner equivalence, natural measurement
of shifted partner proper intervals, dsS, with these shifted standards, yields values equal to the
naturally measured unshifted partner proper intervals, dsUS, utilizing the unshifted partners of these
standards, as shown in detail later. This property is formally expressed by dsS(N)= dsUS(N), where
in general (N) designates natural measurement. As a hypothetical unshifted instrument accurately
measures quantities due to no perturbing gravity shifting applied to it, then dsUS(N)= dsUS for natural
unshifted proper interval measurement using unshifted proper interval standards. With dxα

S the
actual displacement dxα (from above), then their absolute manifold proper intervals are the same, so
dsS = dsA. Therefore, dsA(N)= dsS(N)= dsUS(N)= dsUS, resulting in

ds2
A(N)= ds2

US = aµν dxµ
US dxν

US

for the natural measurement of actual/shifted proper intervals dsA = dsS for the absolute manifold.
The 1-to-1 partner relation (1) is invertible, yielding the “reverse” partner relation

dxµ
US = Sµ̄

α dxα
S, (3)

where Sµ̄
α is the reverse shift tensor satisfying Sα

µ̄Sµ̄
β = δα

β. Substitution of the reverse partner relation
into above, and applying dxα

S = dxα, yields

ds2
A(N)= gαβ dxα dxβ, (4)
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where gαβ is given by the “metric relation”

gαβ = aµνSµ̄
αSν̄

β. (5)

The quantity gαβ can be seen to be the “natural metric” determining the natural measurements of the
absolute proper intervals dsA for actual displacements dxα. The metric relation is a covariant relation
between the absolute and natural metrics in any coordinates, so the shift tensor determines the natural
metric given the absolute metric aµν. The reverse partner relation (3) is generally not an integrable
condition, so it is not the differential form of a diffeomorphism. As a result, the natural metric gαβ

obtained via the metric relation possesses curvature. Therefore, natural observers perceive the absolute
flat spacetime manifold to be a curved manifold with the metric gαβ. Even though natural observers do
not accurately measure absolute proper intervals since dsA(N) ̸= dsA in general, it can be seen that
observational consistency is yielded due to the resultant emergence of the natural metric to determine
dsA(N) and therefore the self-consistent natural characterization of the absolute flat manifold.

A key property to be shown is that the equivalence principle is satisfied under natural observation,
which as stated above is required, along with universal gravity shifting, for the equivalence principle
to hold assuming flat spacetime. As a result, natural observers perceive the local gravitational free-fall
frames as being inertial. They may form Cartesian local inertial coordinates to map events in the
free-fall frames, with the natural metric given as the Minkowski metric ηµν in these coordinates. The
natural observers therefore use the free-fall frames as their “preferred” frames of reference. Similar to
the arguments used in general relativity, natural observers do not perceive gravitation to be a force due
to a lack of perceived gravitational acceleration in their preferred locally inertial free-fall frames. The
relative accelerations of the various free-fall frames are equated then with “natural curvature”—i.e., the
curvature of the natural metric—in the “natural spacetime” framework. So they equate the perceived
natural curvature with gravitation. As can be seen, the “natural observers” in GS theory are equivalent
to the only “observers” in general relativity, identified using GS theory as natural observers. Therefore,
the entire gravitational worldview in general relativity holds for the class of natural observers in gravity shift
theory, referred to as the “natural worldview.”

Similar to general relativity, all laws of nongravitational physics may be given by first beginning
with free-fall frame natural observations of these laws being identical to their equivalent inertial forms
without gravitation present. Covariant formulation in all coordinates establishes the influence of
gravitation in the nongravitational physics laws, with all gravitational influence explicitly given by
the “gravitational metric” (and its compatible affine connection) that emerges when transforming
from the naturally observed Minkowski metric used in the free-fall frames. The natural metric is
therefore the gravitational metric. Since all nongravitational physics laws may be incorporated into GS
theory via this methodology, GS theory is a complete theory of gravitation (as per discussed in Will
[1], Chap. 2). As in general relativity, the gravitational field may be depicted by the gravitational
metric that emerges via use of the equivalence principle, with all matter and the nongravitational
fields “universally coupled” to the gravitational and therefore natural metric. An example is exclusive
use of the gravitational/natural metric as the field quantity in the “natural” matter stress-energy (SE)
tensor Tαβ utilized to depict the energy-momentum density of matter and the nongravitational fields as
naturally observed, which is the same as in general relativity due to its “observers” identified as natural
observers. As the natural metric is obtained by combining the shift tensor with the absolute metric in
the metric relation (5), then within the flat spacetime background, the shift tensor gives the gravitational
field as depicted using the natural metric. However, it can be seen that the gravitational/natural metric
is a derived quantity, whereas the shift tensor is the fundamental quantity depicting the gravitational
field. The GS theory field equation determines the shift tensor as the field quantity as opposed to the
natural metric, as discussed below.

The concept that universal dimensional perturbations of objects posed in a Euclidean (flat)
space results in observed curvature, by no means is a new one. Extensive philosophical writings
exist on the subject, primarily as part of the Conventionalism school [2], demonstrating how an
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underlying Euclidean spatial or spacetime framework can be perceived as being curved due to
universal dimensional perturbations of objects that vary as a function of location, which includes the
physical instruments utilized to make displacement measurements. The first systematic introduction
of this concept is often attributed to Poincaré in his treatise Science and Hypothesis [3] (Chap. 4), though
earlier Helmholtz as well discussed this concept [4] (Chaps. 1 & 4). After the introduction of general
relativity, the dimensional perturbations of objects and instruments, and the resulting induction of
apparent curvature, are often equated with gravitation, resulting in the “gravity shift concept” as
presented above. This is demonstrated in Reichenbach’s book The Philosophy of Space & Time [5], where
the term “universal forces” is used to refer to gravity shifts. In Concepts of Space [6], Jammer provides
some history on the debate between the gravity shift concept and the presently utilized “curved
geometry” viewpoint for spacetime in general relativity (see pp. 165–174, 207–210, and 221–226), in
which Einstein was a participant. Use of the gravity shift concept has led to formal gravity shift based
theories being given [7–11], in various stages of development. A well known example is the field
theory approach to general relativity, established over decades by a number of particle physicists. The
field theory approach utilizes a gravity shift formulation as a key step in its development (see Feynman
Lectures on Gravitation [12], Lecture 5, for a popular pedagogical rendering), so it may be considered a
gravity shift based theory even though the end result is general relativity, which is devoid of either
explicit gravity shift or explicit absolute flat spacetime expression.

For the available theories, the defined gravity shifts are not given using a rank-2 tensor based
linear transformation relating unshifted and shifted partner objects such as the GS theory partner
relation (1), resulting in significantly different formulations. If the EEP is adhered to in flat spacetime,
however, then necessarily the particular form of gravity shifts used in GS theory is yielded (as will
be shown). For formulation in absolute flat spacetime, the gravity shifting in GS theory is shown to
transform according to the global Lorentz transforms. However, the gravity shifting in the available
theories does not do so either explicitly or implicitly, or the transform properties are left undetermined,
so the given shifting is not explicitly specified as adhering to global Lorentz transforms. The lack
of adherence results in a key “breakdown” in their ability to explicitly adhere to the absolute flat
spacetime postulate. In addition, only in Broekaert’s theory [7] (to the author’s knowledge) is the
explicit recognition made that universal gravity shifting results in the emergence of both absolute and
natural observers as two distinct but related observational classes with their own formulations and
worldviews.

The “bimetric” theories, such as Rosen’s theory [13], commonly utilize the absolute flat metric aµν

for the spacetime metric, and an additional gravitational metric gαβ to give gravitational phenomena
posed in flat spacetime. Due to the use of a flat spacetime metric combined with a gravitational one,
gravity shift theory may be considered a bimetric theory. Elements of the formalism in available bimetric
theory are also present in GS theory, which may be conveniently utilized. As stated above, adherence
to both the EEP and flat spacetime necessarily implies the existence of gravity shifts. However, bimetric
theories are developed using absolute and gravitational metrics given a priori, as opposed to first
constructing gravity shifts in absolute spacetime and then determining the gravitational metric induced
by them. A bimetric theory may contain additional gravitational quantities relating the metrics such
as the vielbein-based metric relation gαβ = aABEA

αEB
β for dRGT massive gravity [14], which can be

seen to be similar to the GS theory metric relation (5). For the available bimetric theories though, the
gravitational quantities used in any metric relations or field equations are not identified or utilized
as gravity shifts, so explicitly given gravity shifting such as the GS theory partner relation (1) is not
provided. This is the case even though some developers recognize gravity shifting being present via
use of the metrics. For example, in his seminal paper (first reference in [13]), Rosen recognizes and
evaluates the gravity shifting taking place in observed gravitational redshifting using only the metrics,
and then reaches the conclusion that the EEP holds as a result of the shifting. Similar to most available
gravity shift based theories, the recognition of the distinct absolute and natural observational classes is
not made and utilized in the available bimetric theories (to the author’s knowledge).
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Unconstrained, the 4 × 4 shift tensor Sα
µ̄ could consist of 16 independent terms with arbitrary

values, which would yield gravity shifting consisting of not only spatial and temporal dimensional
shifts as discussed above, but additionally spatial rotation and shearing, as well as “temporal and
spatial cross shifting.” However, it will be shown that the shift tensor Sα

µ̄ at any location is diagonalizable
in global ICs via Lorentz transformation. Use of the partner relation (1) in such global ICs yields gravity
shifting strictly consisting of three spatial dimensional shifts (i.e., changing lengths), each of which
is parallel to a spatial coordinate axis for the ICs, and a temporal dimensional shift (i.e., a changing
duration) parallel to the IC time coordinate axis, which yields an increase or decrease in the rates of
the physical processes for the matter present. All of these dimensional shifts are therefore orthogonal to
each other in flat spacetime. As a result, the gravity shifting may be depicted by a geometrically invariant
“shift tetrad” S⃗(α) consisting of four vectors parallel to the IC axes giving the four orthogonal directions
of the dimensional shifts, with their lengths relative to unity specifying the amount of shifting in terms
of fractional increase or decrease (a shift tetrad vector may be reversed in direction and still express
the same shift, since a dimensional shift is an expansion or contraction along the given spacetime
direction). Transformation out of these global ICs into other coordinates yields a shift tensor Sα

µ̄ that is
generally no longer diagonal, resulting in an apparent “mixing” of spatial and temporal shifting in
general coordinates. But in actuality, the gravity shifting still consists of the orthogonal spatial and
temporal dimensional shifts depicted by the shift tetrad S⃗(α), so the shift tetrad depicts the “intrinsic”
gravity shifting. When stating above that gravity shifts consist of spatial and temporal dimensional
shifts, it was the intrinsic shifting that was being referred to. For any system, the intrinsic gravity
shifting at all locations may be given by a map of the shift tetrad field, providing a geometrically invariant
complete depiction of the gravitational field.

In absolute flat spacetime, it is considered impossible that gravity shifting could overlap the
spatially distributed matter of an unshifted object on top of itself when shifted, since then an infinite
density “matter singularity” would result. It is also considered impossible that events at different
times tied to a particle in an unshifted object, such as an atom, could occur at the same time when
shifted, since then a “temporal singularity” would be yielded where the frequency of the physical
processes for that particle would be infinite. Separate events tied to an unshifted object are barred
then from overlapping in the shifted partner. This “overlap restriction” implies that when the shift
tensor Sα

µ̄ at a location is diagonalized in global ICs, its diagonal terms giving the dimensional shifts
are always positive (as shown later). This allows each diagonal term to be given by the exponential of
a real number of any finite value, where a positive value yields an increasing shift, a negative value
yields a decreasing shift, and zero yields unity which is no shifting. In general coordinates, the shift
tensor may therefore be given by its “potential form”

Sα
µ̄ = exp(wα

µ), (6)

where exp(wα
µ) is shorthand for the α, µ component of the exponential power series for the “potential

tensor” wβ
ν. In order that the GS theory field equation has shift tensor solutions that adhere to the

overlap restriction, it is assumed that it is the potential tensor wα
µ that is the field operand as opposed

to the shift tensor Sα
µ̄ directly, which is the reason for the nomenclature “potential tensor.” Using the

metric relation (5), any field equation potential solution will therefore yield the natural metric

gαβ = aµν exp(−wµ
α) exp(−wν

β). (7)

The natural metric is devoid of event horizons, since when the potential tensor is diagonalized in global
ICs, application of the Minkowski absolute metric ηµν in (7) yields a diagonal natural metric with
non-zero and finitely large diagonal terms.

The speed of all shifted objects is limited by the shifted light speed cS, which is variable in general.
It will be shown that the shifted light speed is cS = e−2M/R at the surface of a collapsing “black star”
with radius R (renaming from “black hole” since there is no event horizon), so the surface collapse
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speed is limited by a shifted light speed that becomes infinitesimally small exponentially as the black star
collapses towards a singularity. Under this exponential “light speed governor,” it would take an infinite
amount of time for a black star to completely collapse to a singularity, thereby preventing singularity
formation over the finite age of our universe. The exponential light speed dependence comes about due
to the exponential dependence between the potential and the natural metric in (7), where the shifted
light speed cS may be obtained by applying the null condition dsA(N)= 0 to the natural metric line
element (4). The exponential light speed governor applies for collapsing objects in general, resulting in
all collapsing objects remaining finitely large. The exponential potential form (6) for the shift tensor
therefore results in singularities of any kind being barred, whether they be collapse-based singularities or
the gravity shift overlap singularities discussed above.

Gravity shifted objects may not evolve backwards in time, as clearly this would be a causality violation
in absolute flat spacetime. The exponential form (6) bars shifted objects evolving backwards in time as
obtained from unshifted objects (which always evolve forwards in time), since when the shift tensor is
diagonalized in global ICs, via (1) the intrinsic temporal shifting is given by dtS = S0

0̄ dtUS where S0
0̄

is positive. The “null speed” vNull for the absolute manifold is the speed obtained by applying the null
condition dsA = 0 to the absolute spacetime line element (2), yielding vNull = 1 in global ICs (using
geometrized units). This is the IC speed cUS = 1 of unshifted light when gravitation is removed in
theory, the speed limit applicable in special relativity theory. Shifted object motion faster than the null
speed would yield causality violation. With the shifted light speed cS the shifted object speed limit, the
potential solution wα

µ for the field equation must be such that the resultant shifted light speed does
not exceed the manifold null speed, which is the required “energy condition” for the gravitational
source matter used in the field equation. This energy condition is evidently satisfied by the use of
ordinary source matter. Satisfaction of the energy condition, combined with the barring of shifted
objects evolving backwards in time, prevents causality violations of any kind.

Due to explicit formulation in absolute flat spacetime, GS theory is compatible with quantum
theory, as demonstrated below. Then with the elimination of event horizons, singularities, and causality
violations, all physical law and modelling using gravity shift theory is physically plausible. In contrast, general
relativity has serious plausibility issues since it predicts event horizons and singularities, and since it
is fundamentally incompatible with quantum theory due to dual use of the metric gµν to determine
gravitational effects and give the spacetime structure (discussed below).

Consider a finitely large local system posed in an absolute inertial frame of reference with no
surrounding background system present, referred to as the “inertial case.” Now surround the local
system by a background system so that the gravitational field of the background system perturbs the
local system, referred to as the “gravitational case.” As will be shown, so long as the effects of the
background system’s curvature may be considered negligible for the local system, the gravity shifting
of the background system yields a diffeomorphism applied to the inertial-case local system to yield its
gravitational case. This occurs even though the partner relation (1) giving the background system
gravity shifting is generally not a directly integrable condition, so the “morph” (short for “diffeo-
morphism”) formalism does not take the form of the integrated partner relation. Similar to gravity
shifts though, the morph expresses a 1-to-1 field relationship between “unmorphed” and “morphed”
partner events xUM and xM tied to the shared matter and fields of the unmorphed inertial-case and
morphed gravitational-case partner systems. The existence of the partner event field relationship is
established by showing that over a spacetime region where background system curvature may be
neglected, all unshifted paths running from a common “shift origin” X to an arbitrary unshifted event,
xUM, yield partner gravity shifted paths running from X to a single shifted event, xM. Since the morph
is universal, it is also applied to any physical instruments. As a result, for natural observers using
raw physical instruments as is, the naturally observed morphed gravitational case is observationally
indistinguishable from the naturally observed unmorphed inertial case, yielding satisfaction of the equiv-
alence principle. The morph is initially developed utilizing local nongravitational systems so that only
EEP satisfaction is yielded. Then the SEP is invoked as a postulate to infer that the morph is applicable
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for local gravitational systems as well, establishing the morph mechanism as the means for yielding
SEP satisfaction. Morph utilization will be shown in detail to yield both EEP and SEP satisfaction for
natural observers, including the morph-based formulation and use of natural physical law for local
nongravitational systems under background system gravitation, and the morph-based application of
the natural observer utilized gravitational field equation (the “natural field equation,” discussed below)
employed to obtain the potential wα

µ for local gravitational systems under background gravitation.
There are currently no available gravity theories that fully satisfy the SEP other than general

relativity. As discussed in Will [1] (Chap. 3), this is due to coupling of either dynamical elements (such
as field-determined scalars or tensors) or prior geometric elements (such as an absolute metric) to the
gravitational metric gαβ, resulting in SEP violations such as frame or location dependencies. Indeed,
under the introduction of auxiliary dynamical or prior geometric fields that arise in theories other
than general relativity, it is conjectured that only general relativity can satisfy the SEP. However, via
the emergence and application of the local diffeomorphism yielded by gravity shifting, gravity shift
theory fully satisfies the strong equivalence principle, even though the dynamical shift tensor and prior geometric
absolute metric are coupled to the gravitational metric through the metric relation (Eq. (5)). The significance of
GS theory satisfying the SEP cannot be overemphasized, as SEP satisfaction is mandatory for a theory
to successfully predict available observations, which in all cases satisfy the SEP. With the presented GS
theory being the only theory other than general relativity to satisfy the SEP, only gravity shift theory has
the potential capability of competing with general relativity as a successfully predictive theory of gravity.

With the morph-based satisfaction of the equivalence principle established for natural observers,
the subject of absolute and natural observation and formulation may be systematically examined.
This is found to be a deep subject, so only some basics are provided along with examples. Under
EEP satisfaction for natural observers in their preferred infinitesimal free-fall frames of gravitational
systems, natural observers are limited to perceiving matter and the nongravitational fields as universally coupled
to the natural metric. Therefore, natural observers perceive the natural metric gαβ, but they do not
perceive the absolute metric aµν, the shift tensor Sα

µ̄, or the potential tensor wα
µ. On the other hand,

absolute observers perceive all quantities. There exists an absolutely and naturally measured value for
each naturally measurable physical quantity. A “quantity partner relation” exists relating the absolute
and natural values via use of the shift tensor. An example is the above metric relation (5) between
the absolute and natural metrics. In addition, every natural form for a physical law has a “partner”
absolute form for the law, where the partner laws are related to each other via use of the quantity
partner relations for the partner quantities utilized. As a result, partner physical laws are equivalent.
There are, for instance, equivalent partner natural and absolute gravitational laws of motion, with
the natural law simply the usual law of geodesic motion using the natural metric as the gravitational
metric, and the equivalent partner absolute law a force-based law of motion where the gravitational
field imposes the force (developed below). As will be shown, there are two equivalent partner field
equations, the “natural field equation” utilized by natural observers to model gravitational systems,
and the partner “absolute field equation” utilized by absolute observers. Note that the above mentions
of the “field equation” for GS theory refer to the natural field equation in particular, with the reasoning
for this use explained below.

When a gravitational theory posed in flat spacetime is attempting to satisfy the equivalence
principle in some sense, a common problem encountered is the apparent internal contradictions that
arise between the contained flat spacetime satisfying formulation and the contained equivalence
principle satisfying formulation. Some oft-noted examples are the Schild argument, discussed below,
and the conflict between gravitation seen as a force in flat spacetime as opposed to curvature under
satisfaction of the equivalence principle. Such conflicts are resolved in GS theory via the recognition
and use of the gravity shift mechanism as well as the resultant absolute and natural observational
classes that arise due to gravity shifts, yielding the above-discussed equivalencies of what “on the
surface” appears to be the contradicting absolute and natural quantities, laws, and concepts that arise
when respectively adhering to flat spacetime and to the equivalence principle. Therefore, gravity shift
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theory is considered to be a self-consistent theory of gravitation, even though it rigidly adheres to both the
absolute flat spacetime postulate and the strong equivalence principle.

The general formulation of GS theory may be considered a physical deduction based on the absolute
flat spacetime and SEP postulates, since there are essentially no additional “free choices” made during
its development. The “general formulation” means everything except the natural and absolute field
equations and their solutions. This includes the existence and form of the gravity shifts, the resultant
bimetric formulation, the existence and form of the morph utilized to satisfy the SEP, and the emergence
and formulations of the absolute and natural classes of observers, which include the absolute and
natural quantities as well as the partner relations between them. Therefore, the general formulation of
gravity shift theory is uniquely determined from the absolute flat spacetime and SEP postulates. Concluding, if
the absolute flat spacetime and SEP postulates hold, general gravity shift theory must be the valid general
theory of classical gravitation.

The natural field equation is developed using a Lagrangian-based formulation, where from
above, the potential tensor wα

µ is utilized as the operand. The most general possible Lagrangian is
formed under the assumed requirements, which are the well-accepted assumptions for formulation
of Einstein’s equation, and that all explicit wα

µ use must be linear in order to self-consistently yield
SEP satisfaction under morph application (as shown later). For predictive success, the undetermined
constants in the resultant Euler-Lagrange form field equation are set to yield the observed post-
Newtonian natural metric, and also the observationally predictive linearized Einstein equation in the
linearized case. The solution for the constants satisfying these two conditions is unique, resulting in
the unique natural field equation

Hαβ[w; a] = 8π Tαβ, (8)

having started with the most general possible Lagrangian. The quantity Hαβ[w; a] is the “natural
field tensor,” which uses the potential tensor wα

µ as its operand and is dependent on aµν, given in
detailed form later. The resultant natural field equation is parameterless, satisfies the SEP under morph
application, linearizes to the observationally predictive linearized Einstein equation, and yields the
observed post-Newtonian approximation for the natural metric. As is understood, a wide variety
of naturally observed gravitational phenomena are successfully predicted from these observational
properties.

A Lagrangian-based formulation of the absolute field equation is similarly performed, resulting
in the unique Euler-Lagrange form

Hαβ
A [w; a] = 8π Eαβ

A , (9)

having started with the most general possible Lagrangian based on its starting assumptions (given
below). The quantity Hαβ

A [w; a] is the “absolute field tensor,” which uses the potential tensor wα
µ as its

operand and is dependent on aµν, given in detailed form later. The quantity Eαβ
A is the “absolute total

SE tensor” for all matter and fields combined, including the gravitational field.
As discussed above, the absolute field equation is the equivalent absolute partner form of the

natural field equation, and so is specifically developed to achieve this property. However, for most
gravitational systems, the absolute total SE tensor Eαβ

A is not known a priori since it is field dependent.
On the other hand, for general systems, the natural matter SE tensor Tαβ is known by natural observers.
Therefore, the natural field equation is preferable to the absolute field equation for determining the
field for general systems. The natural field equation is also preferable for natural observer use since
it directly predicts naturally observed gravitational phenomena, and is the field equation form for
which morph application yields natural observer SEP compliance, as discussed above. These reasons
are why the above mentions of the GS theory “field equation” refer to the natural field equation. The
absolute field equation is useful though for determining Eαβ

A , and also the “absolute field SE tensor” tαβ
A

giving the energy-momentum density of the gravitational field as absolutely conceived and observed
(natural observers do not detect its presence, preserving satisfaction of the equivalence principle). This
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is accomplished by substituting the potential solution wα
µ from the natural field equation (8) into the

absolute field equation (9).
Summarizing, the “complete” GS theory—comprised of general GS theory and both the natural

and absolute field equations—is uniquely obtained from the flat spacetime and SEP postulates as
well as the additional assumptions made for development of the field equations. Therefore, for
both natural and absolute observers, all observational predictions made using the complete gravity shift
theory are uniquely obtained from its postulates and the additional field equation assumptions. Based on the
assumed physical validity of the postulates and the natural field equation assumptions, then utilizing
the resulting unique natural field equation to predict natural gravitational observations, the provided
complete gravity shift theory is expected to successfully predict all natural observations of classical gravitational
phenomena. As a verification, again a wide variety of naturally observed gravitational phenomena,
discussed below, are successfully predicted from the observational properties utilized to develop
the natural field equation. The accompanying supplemental material [S1]—a paper titled Gravity
Shift Theory Observational Predictions, referred to as the “Supplement” for convenience—extends the
range of verification to cover all presently available natural observations of local systems utilized to test
gravitational theories. The available test cases are categorized in Will [1], plus recent gravity wave
detections using pulsar timing arrays (PTAs) [15].

The Supplement provides comprehensive “gravity shift post-Minkowskian theory” (or “GS PM
theory”) at low order. The post-Newtonian (PN) expansion for near-zone systems is given to 1.5PN
order, which when truncated to 1PN is found to yield the observed post-Newtonian natural metric
utilized to develop the natural field equation, as expected. In addition, the shortwave approximation of
gravitational radiation is given to 1.5PN order (using the “PN” designation system where quadrupole
radiation is set to “1PN”). As is commonly understood, a “successful” prediction is one that “formally
agrees” with its corresponding observation, meaning that it agrees to within the uncertainty range
obtained by combining the specified observation error with any astrophysical modelling uncertainties
encountered (such as the uncertainties in the modelling of neutron stars). As is commonly accepted,
no prediction made with general relativity (utilizing then Einstein’s equation) has been found that
formally disagrees with observation, so all predictions are successful to date. In GS theory, it is
understood that the successful prediction using general relativity (GR) is naturally observable prediction,
since again the only “observers” in general relativity are natural observers. In both the near-zone and
radiation cases, it is shown that the GS PM theory 1.5PN expansions yield the same naturally observable
predictions as the corresponding 1.5PN expansions in GR PM theory, including the predictions utilizing
radiative energy-momentum balance equations for obtaining near-zone system behavior under 1.5PN
radiation losses, such as the secular decay of compact binary orbits. Therefore, for all natural observations
successfully predicted by the GR 1.5PN near-zone and radiation formulation, the corresponding GS theory
1.5PN formulation yields the same successful predictions.

This leaves the observed strong-field cases, which involve black and neutron stars. These
cases require prediction using either analytical modelling, “high-order” (greater than 1.5PN) post-
Minkowskian formulation, or numerical modelling—or a combination of them. Neither high-order
PM formulation nor numerical modelling has been attempted. However, using analytical modelling,
the Supplement provides approximate predictions for the gross observational properties of black and
neutron stars, as well as nearby matter and light when present. Via comparison with the corresponding
successful predictions using general relativity, all approximately predicted gross properties are shown
to either formally agree with their corresponding observations or, at minimum, approximately agree
without formal agreement specified. A key example is the predicted “blackness” of observed black
stars, shown by predicting that they are so faint, present instruments cannot detect them. With the
aid of the approximately predicted gross properties, key cases of black and neutron star systems are
examined demonstrating predictions that formally or approximately agree with their observations,
including predictions for detected gravity waves generated by merging compact binaries. To aid
in establishing agreement of GS theory predictions with observations for the strong-field cases, use
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is made of the 1.5PN agreement of GS theory and GR predictions. As examples under the 1.5PN
agreement, the early “1.5PN parts” of detected gravity waves generated by merging compact binaries
are successfully predicted by GS theory, and the indirect detections of gravity waves using PTAs are
also successfully predicted. Finally, an argument is made concluding with the claim that, with the
exception of the “high-order parts” of detected gravity wave signals generated by merging compact binaries
through merger and ringdown (meaning after the early “1.5PN parts” successfully predicted), all presently
available observations of black and neutron star systems are indeed successfully predicted by GS theory, meaning
again that the predictions formally agree with their corresponding observations to within the combined
observation/modelling uncertainty range for each case. Using analytical modelling, the high-order
parts of gravity waves are “grossly” predicted through merger and ringdown, meaning that their
general features are predicted. So it can at least be said that no direct contradiction with the detected
waves is apparent.

As shown in the Supplement, all available natural observations of local systems utilized to
test gravitational theories, as categorized in Will [1] plus the PTA gravity wave detections [15], are
covered by combining the provided strong-field predictions with predictions made using the 1.5PN
post-Minkowskian formulation. As a result, all available local system test cases are successfully predicted
using gravity shift theory with the exception of the high-order parts of detected gravity waves, which at
least are shown to be grossly predicted using the present analytical modelling. This result provides
extensive verification supporting the above conclusion that the given complete GS theory is expected
to successfully predict all natural observations of classical gravitational phenomena.

The cosmological natural metric must take the form of the Robertson-Walker (RW) metric due to
adherence to the cosmological principle as naturally observed, which is a well-established conclusion
obtained using GR theory and also applicable for GS theory. Natural adherence to the cosmological
principle results in absolutely observed adherence as well. Application of the cosmological princi-
ple assuming an absolute flat spacetime background necessarily implies that the absolutely observed
cosmography of the universe is given by the Milne cosmology. Proof of this key finding may be obtained
by assuming an absolute flat spacetime background, as well as an absolute observer interpretation,
for the cosmography development in Milne’s book Relativity, Gravitation, and World Structure [8]. A
key property of the Milne cosmology can be established by applying the spherical symmetry of the
surrounding universe as absolutely observed from comoving matter, with then no directional gravita-
tional force applied as measured in any instantaneously comoving absolute inertial frame, yielding a
fixed velocity for any comoving matter in all inertial frames (adapting the proof given by [8], Sec. 91).
The naturally observed cosmology, and therefore the natural RW metric, is dependent on the gravity
shifting present on cosmological scales. Starting with the flat RW metric aµν for the absolute Milne
cosmology, the natural RW metric gαβ may be obtained via application of the cosmological shift tensor
Sα

µ̄ in the metric relation (5). Natural cosmological modelling and prediction is not further covered in
this paper (or the Supplement), so the cosmic Sα

µ̄ value is not predicted, leaving the natural RW metric
in its general unspecified form. However, it is assumed that application of the natural RW metric
accounts for cosmological effects in the naturally observed properties of distant local systems, similar
to when using GR theory.

2. Postulates
Classical gravity shift theory is based on two postulates:

• spacetime is absolute and flat,
• the strong equivalence principle holds.

The SEP postulate is satisfied for general relativity due to exclusive use of the gravitational metric gµν

to depict the gravitational field for all formulation, including Einstein’s field equation. But GS theory
has in addition the first postulate assuming that spacetime is absolute and flat. The commonly utilized
covariant formulation is assumed, but this is not elevated to the level of a postulate since in modern
gravitational theory it is understood that virtually any theory may be put into convenient covariant
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form (such as the covariant formulation of Newton’s theory as given in Misner, Thorne, and Wheeler
(MTW) [16], Chap. 12).

Spacetime is assumed to be absolute based on available arguments showing the incompatibility
of quantum theory with the notion of a matter-dependent gravitational field that is equated with
the spacetime structure. What may be considered the most powerful of these are the “circularity
arguments” that arise based on the dual role that the gravitational metric gµν plays as both the quantity
that determines gravitational effects and the quantity that gives the spacetime structure. Quantization
of the gravitational effects then leads to quantization of the spacetime structure. As discussed by
Wald [17] (Chap. 14), the difficulties caused by the dual role of the metric are (quoting) “perhaps best
illustrated” by the simple example involving the commutator of the quantized metric operator ĝab

for spacelike separated events. Then [ ĝab(x), ĝcd(x′)]= 0 must hold for x and x′ spacelike separated
(assuming gravitons are integer-spin quanta, such as the expected spin-2 gravitons). This equation
must hold independently of the value of the metric, but it is unknown if x and x′ are spacelike
separated until the metric is known, yielding a circularity in the use of the commutator that cannot be
resolved. As Wald points out, one cannot assume that classical general relativity applies for gravity
in order to resolve these difficulties, since the indeterminate source matter state generating the field
would yield acausal discontinuous changes in the spacetime structure when the source state “collapses”
upon measurement. Such “duality-based” incompatibilities are taken as unavoidable here. In order to
circumvent these difficulties, it is concluded that the spacetime structure is indeed independent from
the gravitational field, yielding an “absolute” spacetime structure that is not dependent on matter as
the field is. This is a commonly made assumption proposed in gravitational theory in order to resolve
the fundamental incompatibilities with quantum theory that arise when the gravitational field and the
spacetime structure are equated.

Of course the spacetime structure is treated as classical for the classical theory being considered
here. Even if GS theory were quantized at a future time, however, the spacetime structure is considered to
be classical at all scales and precisions, since the spacetime structure is absolute. With all of the successful
quantum formulations of the nongravitational fields posed in classical flat spacetime, it is assumed that
the classical spacetime structure is indeed flat. In particular, the spacetime utilized for the quantized
nongravitational fields is a four-dimensional Riemannian manifold with a Lorentz signature metric that has no
curvature, which is then the specification of the absolute classical flat spacetime manifold assumed for
GS theory. The usual qualifiers accompanying this specification are assumed. For instance, included
in this specification is the acceptance that the affine connection for a physical manifold is the unique
(torsion-free) metric compatible one, with the Riemann curvature tensor obtained then from the
compatible affine connection. It is also of course assumed that the manifold is topologically Euclidean,
being then simply connected and open.

As is well understood, covariant formulation in absolute flat spacetime is the same as in general
relativity, with simply the designation made that the selected curvature for the manifold is globally
zero. Formulation may be given then as covariant tensor calculus using the available coordinates of the
flat manifold, or equivalently in coordinate independent geometric form with all tensor quantities the
invariant geometric objects of the manifold. In order to adhere to the absolute spacetime postulate, all
geometric objects used to depict gravitation, as well as physical objects under gravitation, are subject to
the same rules as any geometric objects in the flat manifold. The sign convention employed throughout
this paper is the “Landau Lifshitz Spacelike Convention” (the same convention as used in MTW).

From the summary, the metric for the absolute manifold is specified by aµν, with the absolute
manifold proper intervals given by

ds2
A = aµν dxµ dxν (10)
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in any available coordinates for the manifold. Formalizing the above specification of the absolute
spacetime postulate, all of the properties of the absolute classical flat spacetime manifold may be
obtained by setting the “absolute curvature tensor” to zero at all locations, expressed by

Rα A
βµν =

∂Aα
βν

∂xµ −
∂Aα

βµ

∂xν
+ Aα

σµ Aσ
βν − Aα

σν Aσ
βµ = 0 (11)

in any available manifold coordinates, where the compatible affine connection for the absolute metric
is provided by the “absolute Christoffel symbol”

Aα
µν =

1
2

aασ(aσν,µ + aµσ,ν − aµν,σ). (12)

The rest of the properties of the absolute (classical) flat manifold follow from this specification, as
is commonly understood. The absolute curvature tensor expression (11) acts as a “field equation”
for the absolute metric, yielding the Minkowski metric ηµν as a constant global solution, with the
coordinates utilized for this solution identified as the Cartesian global ICs of an absolute inertial
frame of reference due to geodesic motion under the zero-valued absolute connection Aα

µν being
inertial in these coordinates. The Minkowski metric solution is preserved under global Lorentz
transforms, yielding the infinite set of absolute inertial frames as specified using their respective global
ICs. The events of the absolute flat manifold therefore adhere to global Lorentz transforms. Viewed
geometrically, all tensors are invariant geometric objects under the global Lorentz symmetry group,
so the entire formulation of physical law in flat spacetime may be said to exhibit “global Lorentz
invariance.” Adherence to global Lorentz invariance as a symmetry for all formulation implies that the
principle of special relativity holds. As understood in modern terms, the “principle of special relativity” is
a symmetry property of the flat spacetime manifold, with the behavior of any (closed) system set up
in one absolute inertial frame being identical to the behavior if the setup is duplicated in any other
inertial frame. It is emphasized here that even when considering gravitation, adherence to global
Lorentz invariance—and therefore the principle of special relativity—is maintained. Any available
coordinate system for the absolute flat manifold must be obtainable via coordinate transform from the
global ICs of an absolute inertial frame, with covariant formulation in any such coordinate system
yielded from global IC given covariant formulation under the transform.

The SEP is postulated due to the extensive observational evidence supporting its validity, includ-
ing the observations verifying the contained EEP for nongravitational systems [1] (Chaps. 2 & 8), as
discussed in the summary. There are a variety of statements of the “equivalence principle” found in
the literature. For GS theory, an “observational form” of the equivalence principle is given: Within
an arbitrary gravitational field, the behavior of all phenomena as observed in any gravitational free-fall frame
of reference, of sufficiently small spacetime extent, is indistinguishable from behavior without the field present
as observed in an absolute inertial frame of reference. This property may be applied to matter and the
nongravitational fields for EEP compliance, and additionally to local gravitational systems for SEP
compliance by identifying the “gravitational field” in the condition with the field provided by a “back-
ground system.” This form of the equivalence principle is consistent with commonly used forms in the
literature. It makes explicit, though, that the observational process is involved in the equivalence of the
gravitational and inertial cases, meaning that the two cases are equivalent as measured by observers
using their instrumentation. This form then does not exclude the possibility that the instruments
themselves are affected by the gravitational field, allowing for the observational process utilizing such
instruments to participate in satisfaction of the equivalence. This form may be applied to conclude that
the local laws of physics applicable in special relativity theory (i.e., in absolute inertial frames without background
gravitation present) are also observationally applicable in the local gravitational free-fall frames, which is a
commonly stated form of the EEP (though the “observation” qualification is typically not stated).
Similar to general relativity, a corollary to the free-fall frame version of the equivalence principle is
the indistinguishability of phenomena as observed in a local frame within the field that is not in free
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fall, from as observed in an accelerating and/or rotating frame without gravitation present. As is well
understood, the equivalence principle only holds if the effects of the background system’s curvature
may be neglected for a local system. The “smallness” qualification for the spacetime extent is provided
in equivalence principle statements for the express purpose of nullifying the effects of background
system curvature on the local system of interest, with it understood that the smaller the local system,
the smaller the effects of the background curvature.

The equivalence principle is of course a statement about the gravitational field, which is expected
to be subject to quantization. The equivalence principle is assumed to hold for the classical conditions
assumed here, but is not expected to hold at the smaller scales or higher precisions that would be
applicable for a quantized formulation of gravity shift theory.

3. Gravity Shifts and the Natural Metric
3.1. The Existence of Gravity Shifts

Using the postulates of GS theory, consider the “Schild argument” evaluating light transmitted at
the bottom of a tower and measured by a receiver at the top (see Schutz [18], Chap. 5, for background).
For the purposes of this discussion, the rotation of the Earth and its revolution around the Sun may
be ignored. Assuming that spacetime is flat, an absolute inertial frame stationary with respect to the
Earth is utilized to evaluate the physical properties for this case, with a global IC system used in order
to map events. The front and rear of a wave train of light with a given number of wavelengths will
respectively take the same amount of IC time to climb the tower. This equality of transit time will hold
even if the speed of light varies along the length of the tower, as the gravitational conditions are static
for light traveling up the tower at all times. So the duration it takes for the wave train to be received at
the top is the same as it takes to be transmitted at the bottom. As the number of wavelengths in the
wave train is fixed, the frequency of the light at the top is the same as at the bottom. In flat spacetime
then, the global IC given frequency of light cannot change as it travels through a static gravitational field. But
in reality, the light at the top is actually measured by the receiver to have a frequency that is slower
than the frequency emitted by the transmitter. This has been shown in the Pound-Rebka experiment
using gamma ray emission and absorption for a particular nuclear transition as the transmitter and
receiver (respectively). The observed frequency change is in agreement with the equivalence principle,
with the equivalent nongravitational case being acceleration of the entire apparatus at 1g relative to
an absolute inertial frame. The contradiction between the observed frequency change, and the lack
of allowed change assuming flat spacetime, may be construed to indicate that spacetime is indeed
curved, as in general relativity.

There is another possibility, however. To consider this possibility, note that both the transmitter
and receiver have “operating frequencies” that are the frequencies of their respective nuclear transitions.
The operating frequency of the transmitter is also the frequency of the transmitted light. The operating
frequency of the receiver is the “reference standard” to which the frequency of the received light is
compared in order to measure it. If it is accepted that spacetime is indeed flat, then again the Schild
argument establishes that there is no gravitational frequency shifting while the light travels up the
tower. Therefore, to explain the observed frequency shift assuming flat spacetime, it must be the case
that the operating frequencies of the transmitter and receiver have been perturbed by the gravitational field,
with the degree of perturbation differing between the bottom and the top of the tower. The difference in the
operating frequencies of these instruments yields the measured shift in the frequency of the light, since
with the frequency of the light arriving at the receiver the same as the transmitter frequency, the shift in
frequency as measured by the receiver is due to the relative difference between its operating frequency
and the transmitter frequency. The relative difference between the instrument operating frequencies
is such as to yield a receiver-measured frequency shift in agreement with the equivalence principle.
Notable is that all of the measured change is due then to the difference in operating frequencies of
the instruments with no contribution made from light frequency shifting while in flight, which is
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“opposite” the assumption made in general relativity that the measured change is entirely due to
frequency shifting of the light while in flight.

The established perturbation in the operating frequencies of the instruments in this case—based
on assuming flat spacetime—is an example of how the gravitational field will “dimensionally perturb”
objects. Here, the dimensional perturbation is “temporal” as it takes the form of a change in operating
frequencies. Dimensional perturbations of objects induced by the gravitational field are referred to as
“gravity shifts,” as previously coined. This example demonstrates how satisfaction of the equivalence
principle relies on natural measurement made with “raw” gravity shifted instruments used “as is”—i.e.,
without corrections made to compensate for the dimensional perturbations applied to the instruments.
This single example indeed proves that satisfaction of the equivalence principle in flat spacetime requires
the existence of gravity shifts and the use of natural observation, as there is evidently no other possibility
available if both the equivalence principle and flat spacetime are accepted. Note that the entirety
of the apparatus used here consists of matter and nongravitational fields, so that satisfaction of the
equivalence principle in this case is specifically satisfaction of the EEP. Assuming then flat spacetime,
only satisfaction of the EEP is required to establish the necessary existence of gravity shifts, as opposed
to additionally requiring the SEP applicable for local gravitational systems.

The operating frequency of an instrument (when it has one) is the “characteristic frequency” of a
physical process occurring within it. In the case at hand, the gravitational field has modified the rates
of the physical processes that establish the transmitter and receiver operating frequencies, nuclear
transitions for the Pound-Rebka experiment. With the rates of the processes changed in the instruments
measuring light frequency shifting, it would be expected that the field would change the rates in other
instruments. Consider the corresponding case where two atomic clocks are synchronized, placed at
the top and bottom of the light experiment tower, allowed to run for a while, and then their times are
compared. Actual experiments with atomic clocks yield a variation in clock times with height that
agrees with the equivalence principle. So the clock times agree with the equivalence principle for the
tower case here, with the equivalent nongravitational case being acceleration of the entire apparatus
at 1g relative to an absolute inertial frame. From the time difference, the fractional difference in the
clocks’ operating frequencies may be determined, and is the same as the measured fractional frequency
change for the light (ratioing the lower clock frequency over the upper frequency), as expected since
the equivalence principle applies in both cases. Assuming flat spacetime, it is concluded that the
rates of the physical processes that establish these clocks’ operating frequencies, in this case atomic
resonances, have been modified by the same degree at each location as for the processes in the light
apparatus. Satisfaction of the equivalence principle in this case is due to natural measurement—i.e.,
the clock readings—using gravity shifted clocks, offering further proof that gravity shifts and natural
observation are required to satisfy the equivalence principle in flat spacetime (particularly the EEP
here).

To establish that the temporal gravity shifting at a location is indeed universal, the equivalence
principle may be invoked. If the gravitational field (gravity) shifted the rates of the processes in various
objects differently, this difference would be perceptible by natural observers, contrary to the equivalent
nongravitational case in which no shifting occurs. For instance, clocks of different constructions would
be naturally observed to keep time differently right next to each other. Therefore, the gravitational field
universally shifts the rates of the physical processes in all objects at a location to the same fractional degree.
Natural observation is again required in order to satisfy the equivalence principle as used here, with
the rates of all processes when measured using gravity shifted clocks, of any construction, the same as
the rates in the equivalent nongravitational case.

Above, the dimensional perturbation examined for objects is the “temporal” one, with the rates of
all processes modified, or equivalently their durations (temporal lengths) modified. Similarly, there
exists the possibility that the field will also dimensionally perturb objects “spatially.” The “spatial”
analog to the temporal dimensional perturbation is a change in the lengths of objects, again referred
to as “gravity shifts.” This possibility is left open and worked with in the subsequent development,
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with then the resultant GS theory utilizing spatial gravity shifts in addition to the temporal shifts.
The predictive success of the resultant GS theory is invoked to establish the existence of spatial gravity
shifts. As in the temporal case, the equivalence principle requires that the gravitational field universally
shifts the lengths of all objects at a location to the same fractional degree. Otherwise, if the gravitational
field shifted the lengths of various objects differently, this difference would be perceptible by natural
observers, contrary to the equivalent nongravitational case in which no shifting occurs. For instance,
length standards of different constructions would be naturally observed to be different right next to
each other. Note that the length perturbations, quantified as a universally applied fractional change in
length, could vary by direction, which is assumed as a possibility in subsequent development. But so
long as the directionally dependent length perturbations are universally applied to all objects, a local
natural observer using gravity shifted length standards, of any construction, will not be able to tell the
difference between this case and the equivalent nongravitational case.

As will be generally shown, and as demonstrated in the examples above, the existence of universal
gravity shifts allows systems to be posed in absolute flat spacetime and yet still yield observation,
specifically natural observation, that adheres to the equivalence principle. Turning this around,
adherence to the equivalence principle in a flat spacetime framework requires the existence of universal
gravity shifts and the use of natural observation, as proven using the temporal examples above. The
gravitational theory presented here is referred to as “gravity shift theory” (as coined above) since
gravity shifts may be used to depict the gravitational field and determine all gravitational phenomena.

3.2. Establishing the Partner Relation and Shift Tensor

As gravity shifts are the dimensional perturbations of objects, then any gravity shifted object
may be considered to be the result of applying gravity shifting to it from an original “unshifted” state.
Indeed, in the above discussion, the notion of dimensional perturbations being applied to objects
presupposes that these objects were originally in an unshifted state and then gravity shifting was
applied. A (gravity) shifted object and its corresponding unshifted counterpart are referred to as being
“partners” (from the summary), with again the “unshifted partner” being an object without gravity
shifting applied, and the “shifted partner” being the corresponding gravity shifted object. Gravity shifts
are defined then in terms of dimensional relationships between partner objects. Under this definition,
the “material content” of the shifted partner object—meaning its matter and nongravitational fields—is
identical to the material content of its unshifted partner. Partner objects “share” then the same material
content, with the only difference between the partners being the dimensional perturbations of the
material content of the shifted object relative to the unperturbed unshifted partner with the same
content. As shown below, gravity shifting alters the dynamic properties of objects but does not alter
the makeup of their material content. The objects actually present in a gravitational field are all gravity
shifted objects, whereas the unshifted partner objects are the hypothetical objects obtained if gravitation were
removed in theory.

The events locating the material content of objects provide both the spatial and temporal locations
of their matter and nongravitational field contributors. For example, the events locating an array
of atoms, idealized as point particles, each consist of an event giving both the spatial location of an
atom and a particular time in its evolution. For a nongravitational field example, events may be
used to locate the beginning and end of a cycle of the electromagnetic field for light. Events locating
the material content of objects are referred to as being “tied” to the material content. Since gravity
shifting consists of dimensional perturbations of the material content of shifted objects relative to their
unshifted partners, then for each “unshifted partner event” xUS tied to a given material component
of an unshifted partner object, a corresponding “shifted partner event” xS is yielded that is tied to
the same component of the shifted partner object, in each case giving the spacetime location of the
shared material component. For the “atom array” example, the unshifted event xUS tied to an atom
in the unshifted partner, giving the atom’s spatial location and evolution time in the unshifted array,
yields the shifted partner event xS tied to the same atom in the shifted partner, now giving the atom’s
spatial location and evolution time in the shifted array. Under the dimensional perturbations of the
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shared material content of partner objects, the spacetime location of an event xUS tied to the material
content of an unshifted object, in general differs from the location of the partner event xS tied to the
same material content in the shifted partner object. As will become evident below, this perturbation in
the locations of events tied to the shared material content of partner objects, universally applied for
partner objects of all constructions, provides a convenient and powerful means of depicting gravity shifts.

As it is the shifted objects that are actually present in a gravitational field, the shifted partner
events xS tied to the shifted objects are the actual events x of the absolute spacetime manifold. This
identification is formally expressed by

xS = x, xα
S = xα, (13)

where the right-hand formula gives their coordinate location equality. On the other hand, the unshifted
partner events, xUS, tied to the unshifted partner objects, are the hypothetical events obtained if
gravitation were removed in theory. For convenience going forward, the substitution of x for xS and
vice versa is automatically assumed for formulations or discussion, unless substitution is explicitly
stated for clarity.

Variations in gravity shifting with location and over time will yield a complex relationship
between extended partner objects, as discussed below. However, if the partner objects are small enough
spatially, and the temporal extents for their evaluation are short enough, the gravity shifting over
their spacetime extents may be approximated as being uniform, meaning both spatially and temporally
constant. Such partner objects are referred to as being “local,” with the uniform gravity shifting over
their spacetime extents referred to as “uniform-scale” gravity shifting. The ability to treat partner
objects as being “local” depends on the context, but it is always possible to use partner objects that
are small enough such that the gravity shifting over their spacetime extents may be approximated as
being uniform.

To obtain a formal expression for uniform-scale gravity shifting, consider infinitesimal spacetime
displacements dx⃗ “tied” to the shared material content of local partner objects, meaning that the
two events x(head) and x(tail) at the “head” and “tail” of each displacement, referred to as the
“displacement event pair,” are both tied to the shared material content. Then an infinitesimal unshifted
partner displacement, dx⃗US = xUS(head)− xUS(tail), tied to the material content of the unshifted
partner object, yields a shifted partner displacement, dx⃗S = xS(head) − xS(tail), tied to the same
material content of the shifted partner object, where xUS(head) and xS(head) are partner events,
and xUS(tail) and xS(tail) are partner events. It can be seen that uniform-scale gravity shifting is
linear, since for example, doubling the span of an unshifted displacement dx⃗US yields a doubling of
the resultant span of the shifted partner displacement dx⃗S. Therefore, the formal relation between
the infinitesimal partner displacements depicting uniform-scale gravity shifting, applicable for local
objects, must be a linear transformation. Writing down the most general possible linear transformation
(utilizing the component forms dxµ

US and dxα
S of the partner displacement vectors) yields

dxα
S = Sα

µ̄ dxµ
US (14)

depicting the most general possible uniform-scale gravity shifting for local partner objects, establishing
the “partner relation” (1) stated in the summary. The quantity Sα

µ̄ providing the linear transformation
implementing the gravity shifting is referred to as the “shift tensor,” since it will be shown to be a
rank-2 tensor. Though the partner relation has the appearance of a differential coordinate transform,
both partner displacements are given in the same coordinates, so a “bar” is conveniently used over
the second indice in Sα

µ̄ to designate conversion from unshifted displacements, and no bar is used
over the first indice to designate conversion to shifted partner displacements. In deep space far from
gravitation, the shift tensor Sα

µ̄ becomes the identity tensor δα
µ̄, expressing the condition of no gravity

shifting.
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As stated above, gravity shifts may be employed to depict the gravitational field and determine
all gravitational phenomena. This is demonstrated by showing that the shift tensor Sα

µ̄ utilized in
the partner relation (14), which formally depicts the gravity shifting, may indeed be so employed as
found throughout all subsequent formulation. Based on this demonstration, this capability is taken as
a “given” in further discussion.

Since the shifted partner events, xS, tied to the shifted objects present in a gravitational system,
are the absolute manifold events x that exist in actuality as per (13), then

dxα
S = dxα (15)

for the shifted displacements dxα
S tied to local shifted objects. On the other hand, the unshifted partner

displacements, dxµ
US, tied to the local unshifted partner objects, are the hypothetical displacements

obtained when gravitation is removed in theory. As shown below, the partner relation (14) is generally
not an integrable condition (as discussed in the summary), so the local unshifted object displacements
dxµ

US in the partner relation cannot in general be integrated over extended regions to yield hypothetical
unshifted events xUS with locations xµ

US.
Using the partner relation in global ICs, if the unshifted partner vector displacement dx⃗US runs

parallel to a spatial axis (designated by n), the spatial gravity shifting along the same spatial axis
direction is given by dxn

S = Sn
n̄ dxn

US (no sum), where Sn
n̄ > 1 yields expansion, Sn

n̄ < 1 yields
contraction, and Sn

n̄ = 1 yields no shifting. If dx⃗US runs parallel to the time axis, the temporal gravity
shifting along the time axis direction is given by dx0

S = S0
0̄ dx0

US. The condition S0
0̄ > 1 yields

“temporal expansion” where the time increases between events occurring in the material content,
resulting in the physical processes slowing down. The condition S0

0̄ < 1 yields “temporal contraction”
resulting in the physical processes speeding up, and S0

0̄ = 1 yields no temporal shifting so the
rates of the physical processes do not change. For the above redshifting and corresponding atomic
clock examples, the light transmitter and receiver, as well as the clocks, may be treated as the shifted
partners of local partner objects over which the shifting may be approximated as being uniform at
their locations of use. Using dx⃗US running parallel to the utilized IC time axis in these examples to
depict their unshifted partner temporal displacements, the temporal gravity shifting of the physical
processes in the transmitter, receiver, and clocks may therefore be expressed by dx0

S = S0
0̄ dx0

US at their
locations. Due to naturally measured adherence to the equivalence principle at each location, both the
light source nuclear resonance and the clock atomic resonance at the bottom of the tower are shifted
by the same S0

0̄(bottom), and both the light receiver resonance and the clock resonance at the top of
the tower are shifted by the same S0

0̄(top). The naturally measured redshifting (using frequency) and
clock rate ratio (bottom over top) are both equal to S0

0̄(top)/S0
0̄(bottom), which is less than unity and

equal to the same ratio obtained if the tower accelerated at 1g relative to an absolute inertial frame of
reference without gravitation present, satisfying the EEP.

As discussed above, the equivalence principle requires that the gravitational field universally
shifts the lengths of all local objects at a location to the same fractional degree in each direction, and
universally shifts the rates of their processes to the same fractional degree, since otherwise differences
between the lengths and/or rates would be naturally perceived, differing from the equivalent inertial
case in violation of the equivalence principle. Prior to constraining the shift tensor Sα

µ̄ (as done below),
it can be seen that universal shifting holds for all possible forms of gravity shifting applied to all local
objects at a location, as required to satisfy the equivalence principle for natural observers. Therefore,
the most general possible uniform-scale gravity shifting, as given by the partner relation (14) with an
unconstrained shift tensor, is universally applicable for all possible local objects placed at any location.

The local unshifted partner event field, xUS, tied to local unshifted objects, may be generated by
running the unshifted partner displacements dx⃗US from their tails xUS(tail) set at a single “unshifted
shift origin” XUS, so xUS = XUS + dx⃗US. Similarly, the local shifted partner event field, xS, tied to
the local shifted partner objects, may be generated by running the shifted partner displacements dx⃗S

from their tails xS(tail) set at a single “shifted shift origin” XS, so xS = XS + dx⃗S. The utilized partner
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displacements dx⃗US and dx⃗S are obtained from the partner relation (14) applied on the uniform scale,
so a fixed shift tensor is used to generate the partner displacements and therefore the local partner
event fields xUS and xS. This method yields a depiction of gravity shifting on the uniform scale using
the local partner event fields xUS and xS tied to the shared material content of local partner objects.

However, the partner relation is specifically a relation between event displacements as opposed to
being a relation between events themselves. As a result, the relative separation XS − XUS between the
partner shift origins is left unspecified by the partner relation, yielding an unspecified overall relative
separation between the local partner event fields xUS and xS. Therefore, under a given shift tensor,
the relationship between all local partner objects is indeterminate by a single overall spacetime translation
that is the separation XS − XUS of the partner shift origins. As previously stated, gravity shifts may be
employed to determine all gravitational phenomena in GS theory. With the partner relation (14) the
formal expression of gravity shifting, then since the relative separation of local partner objects is not
specified by the partner relation, their relative separation plays no part in determining gravitational
phenomena. This is made clear under the above-given recognition that all gravitational phenomena
may be quantified by only the shift tensor Sα

µ̄ in the partner relation, which has the same value
regardless of the relative separation of local partner objects utilized. Therefore, when evaluating
local partner objects for a given shift tensor, the overall separation of the partner objects has no physical
significance, so the indeterminacy of their overall separation is of no consequence. If desired, any arbitrary
separation XS − XUS may be specified for the two shift origins without impacting the physics, yielding
a specific hypothetical local unshifted event field xUS corresponding to the known shifted event field
xS tied to local shifted objects present in actuality. The hypothetical unshifted shift origin XUS may be
placed then at the same location as the actual shifted shift origin XS, yielding local partner event fields
mapped by running partner displacements from a “common shift origin” X ≡ XUS = XS. As the shift
tensor utilized is fixed over the uniform scale utilized, its fixed value may be set to the shift tensor
value Sα

µ̄|X at the common shift origin X. Substituting the component form of dx⃗US = xUS − X and
dx⃗S = xS − X into the partner relation (14), with Sα

µ̄|X as the fixed shift tensor, yields the local “event
partner relation”

(xα
S − Xα) = Sα

µ̄|X(xµ
US − Xµ) (infinitesimal), (16)

applicable in any coordinates. Technically, the event partner relation is generally applicable over
infinitesimally sized spacetime regions, as indicated, since it gives the displacement-based partner relation
(14) in equivalent event-based form with xUS − X and xS − X the infinitesimal partner displacements
dx⃗US and dx⃗S. Therefore, the event partner relation (16) is not obtained by integrating the displacement
partner relation (14), which is indeed not generally integrable (as shown below). Any location of interest
x in an actual shifted system may be used as a common shift origin X = x, with the local partner
event fields mapped over the surrounding infinitesimally sized region with then uniform shifting. The
use of a common shift origin provides a convenient means to compare partner events, displacements,
and objects. This is the practice followed unless otherwise specified, so partner displacements and
infinitesimally sized local partner objects are considered to reside at the same location x = X.

Gravity shifts may be “directly” characterized by the dimensional perturbations of objects them-
selves, referred to as the “object form” of depicting shifts. The object form is less general than the
“event form” developed above, since specific objects are utilized. Due though to the universality of
gravity shifts, the shifting of specific “test objects” may be used to represent the shifts for all objects.
Examples are the use of “rigid” metal rulers to represent spatial shifts of objects, and “fixed resonance”
clocks to represent temporal shifts, which only dimensionally change then under application of gravity
shifts (assuming imposed nongravitational forces are not too severe). The representative test objects
may be used to generate the field of partner displacements and/or events, which may in turn be
utilized to determine the shifting for all objects, establishing an equivalency between the object and
event forms of depicting gravity shifts. The object form may be made more general by using generic
“test matter” as opposed to specific test objects, quantifying gravity shifts in terms of, for instance,
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fractional length and duration changes for any matter. In the development presented here, the event
form and object form of depicting gravity shifts are used interchangeably.

Consider gravity shifting occurring within “extended” objects over which the gravity shifting is
not uniform. Now an extended object under gravitation will in general have gravitational stresses and
strains introduced. Removing gravitation over the entire extended object removes its gravity shifting
as well. The relation between an extended object and its unshifted counterpart will in general then be
nonlinear and complex due to the introduction of stresses and strains when gravitation is introduced.
However, given the stressed and strained state of matter in an extended object under gravitation, if the
gravity shifting were removed for only an infinitesimally sized portion of that object, that portion would
unshift the same as any “isolated” (i.e., not embedded within an extended object) infinitesimal object
at the same location. This must be the case due to the universality of gravity shifting yielded under
uniform-scale application of the equivalence principle. Therefore, for infinitesimal portions of extended
objects, the partner relation (14) holds if the “isolated unshifting condition” is assumed, and similarly the
equivalent local event partner relation (16) holds. For all extended objects, gravity shifting of infinitesimal
portions is evaluated under the isolated unshifting condition unless otherwise specified. This practice
yields universal applicability of the partner relation and the local event partner relation for both local and
extended objects. Along with this, the identification of shifted partner displacements and events with
actual displacements and events, as expressed by (15) and (13), is also universally applicable for both local
and extended objects.

“Gravity shifts” are limited to the possible relations that may occur between partner objects as
given by the partner relation (14) (with the local event partner relation (16) the partner relation in event
form), as this relation is the most general expression that may be formed consistent with the given
characterization of gravity shifts in terms of linear transformations between partner displacements
tied to partner objects. In the absence of any criteria limiting its components, however, the 4 × 4 shift
tensor Sα

µ̄ at each location consists of 16 components that could have any values. Therefore, without
additional criteria being imposed, any possible relations between partners when employing arbitrary
shift tensors are considered to be candidates of “gravity shifts.” Gravity shifts could include then
more than just fractional changes in lengths and durations, such as spatial rotation or shearing, as
well as “temporal and spatial cross shifting.” As shown below though, the absolute flat spacetime and
equivalence principle postulates may be employed to obtain various physical criteria limiting gravity
shifting, resulting in a shift tensor that is highly constrained. Indeed, as discussed in the summary, at
any location the shift tensor Sα

µ̄ may be diagonalized in global ICs using Lorentz transforms, resulting
in “intrinsic” gravity shifting consisting of purely spatial and temporal dimensional shifts, i.e., just
fractional changes in lengths and durations.

3.3. Transformational Properties of Gravity Shifting

In GS theory the flat spacetime structure is “absolute,” meaning that the spacetime structure is
unaffected by the material content (as discussed above). Therefore, the flat manifold of events exists a
priori, unaffected by material content and therefore gravitation. Since all of the events used to characterize
gravity shifted objects are events of the absolute manifold, then their coordinate locations transform
according to the flat spacetime transformational properties. When using the partner relation (14) (or
the equivalent local event partner relation (16)), the shifted partner events xS tied to the material
content of shifted objects are part of the inventory of events used to characterize shifted objects, so
they are events of the absolute manifold as any other events are, transforming then under the flat
spacetime transforms. When gravitation is removed in theory, unshifted objects remain, and again
the events used to characterize them are events of the absolute manifold. The unshifted partner
events xUS tied to the material content of the unshifted objects are also then events of the absolute
manifold, again transforming under the flat spacetime transformations. Therefore, when transforming
between absolute inertial frames, the global IC locations of events tied to partner objects transform
according to the global Lorentz transforms. As a result, the global IC given partner event displacements
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tied to partner objects, formed by using event pairs tied to the objects at the heads and tails of the
displacements, transform according to the global Lorentz transforms as well, or formally

dx̌′ β
S = Λβ′

α dx̌α
S, dx̌′ ν

US = Λν′
µ dx̌µ

US, (17)

where the “check” indicates global IC use for clarity. These transforms may be inverted and substituted
into the partner relation dx̌α

S = Šα
µ̄ dx̌µ

US, as given in the original “unprimed” global ICs, to obtain the

corresponding partner relation dx̌′ β
S = Š′β

ν̄ dx̌′ ν
US in any “primed” global ICs, where

Š′β
ν̄ = Λβ′

αŠα
µ̄Λµ

ν′ . (18)

The gravity shifts, as given by the partner relation and shift tensor, therefore adhere to the global Lorentz
transforms since the events characterizing gravity shifts adhere to the global Lorentz transforms.

As discussed in the summary, a number of gravity shift based theories have been given (at
various stages of completion). These formulations may initially pose gravity shifts in an absolute
inertial frame, but for every available theory the event locations under the specified gravity shifting do
not adhere to the global Lorentz transforms (to the author’s knowledge), either stated explicitly or
implicitly inherent in the formulation such as the “field theory” approach to general relativity [12],
or the transform properties are left undetermined. So the given shifting is not explicitly specified as
adhering to global Lorentz transforms. The lack of adherence to the global Lorentz transforms for the gravity
shifting specified subsequently “breaks down” the ability of a gravity shift based theory to explicitly preserve a
flat, and therefore absolute, spacetime structure. As gravity shifts are a material property, then the lack of
adherence to the global Lorentz transforms yields a materially dependent spacetime structure, thereby
reintroducing fundamental incompatibilities with quantum theory (see the Postulates section 2 for
background). It is imperative then that this adherence be satisfied if it is desired to explicitly preserve
a flat, and therefore absolute, spacetime structure. For the specified gravity shifts in GS theory, the
adherence to the global Lorentz transforms is approached (above) by recognizing that for an absolute
flat spacetime structure, the flat manifold of events exists a priori, unaffected by material content. Then
since a characterization of gravity shifts is given based on events—i.e., partner event displacements
tied to local partner objects—adherence of the specified gravity shifts to the global Lorentz transforms
is established via the materially independent adherence of the depicting events. It can be seen that
the characterization of gravity shifts in terms of events is “very powerful” since it is ideally suited for
establishing that gravity shifts must adhere to the global Lorentz transforms, explicitly maintaining
adherence to the absolute flat spacetime postulate.

Since partner displacements are again displacements running between events of the absolute flat
manifold, then partner displacements transform between arbitrary available flat manifold coordinates
according to

dx′ β
S = Lβ′

α dxα
S, dx′ ν

US = Lν′
µ dxµ

US. (19)

These transforms may be inverted and substituted into the partner relation dxα
S = Sα

µ̄ dxµ
US, as given

in any “unprimed” coordinates, to obtain dx′ β
S = S′β

ν̄ dx′ ν
US in any “primed” coordinates, where

S′β
ν̄ = Lβ′

αSα
µ̄Lµ

ν′ . (20)

It can be seen that the partner relation is manifestly covariant, where the so-called “shift tensor” is indeed
a tensor quantity since Sα

µ̄ transforms as a mixed rank-2 tensor.
With the shift tensor established as a tensor quantity in flat spacetime, its indices may be raised and

lowered using the absolute metric in the usual fashion. For example, Sαµ̄ = aαβSβ
µ̄ and Sαµ̄ = aµνSα

ν̄.
Then Sα

µ̄, Sαµ̄, Sαµ̄, and Sα
µ̄ are equivalent forms of the shift tensor. Taking the determinant of (20)

on both sides, then |S′β
ν̄| = |L||Sα

µ̄||L−1|. Since |L||L−1| = 1, then |S′β
ν̄| = |Sα

µ̄|. The determinant
of the shift tensor Sα

µ̄ is therefore invariant under all coordinate transforms, as is generally the case
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for mixed rank-2 tensors. As with all scalars formed from tensors, the trace Sα
ᾱ of the shift tensor is a

scalar invariant.

3.4. The 1-to-1 Requirement

If two events tied to separate material components of an unshifted object (at arbitrary times)
were then coincident (both spatially and temporally) in the shifted partner, the material components
would “spatially overlap.” Due to the linearity of gravity shifting on the uniform scale, in addition
all unshifted material tied to the “event line” running between the two events would also spatially
overlap in the shifted partner, resulting in an infinite density “matter singularity” considered physically
impossible in flat spacetime. Note that in general relativity, matter can “spatially overlap” on itself at
spacetime singularities to yield infinite densities, such as predicted at the centers of black holes. Infinite
curvature at the spacetime singularities provides an explanation as to how this matter overlap can
occur, allowing the matter overlap via “compaction” of the spacetime structure containing the matter.
But with spacetime assumed to be flat in GS theory, spacetime singularities do not occur, so the infinite
densities that would occur under spatial overlap are considered to be nonphysical. The predicted
singularities in black holes are examples of “spacetime pathologies” in general relativity that allow
matter conditions considered physically impossible in flat spacetime. On the temporal front, if two
events tied to separate occurrences for a process in a single material component of an unshifted object,
such as an atom, were then coincident in its shifted partner, the physical process would run at infinitely
fast rates. Such a “temporal singularity” is considered to be impossible in flat spacetime due to the
absence of any spacetime pathologies allowing for infinitely fast rates. Summarizing, in GS theory,
adherence to the absolute flat spacetime postulate bars the existence of “spacetime pathologies,” so
separate events tied to unshifted objects cannot be coincident in the shifted partners, as this would
result in physically impossible matter and/or temporal singularities. The barring of shifted event
overlap is referred to as the “overlap restriction.”

The tensor partner relation (14) may be given in matrix form by

{dxS} = {S}{dxUS}, (21)

where {dxS} ≡ {dxα
S} and {dxUS} ≡ {dxµ

US} are the column vectors for the partner vector displace-
ments, and {S} ≡ {Sα

µ̄} is the 4 × 4 square matrix for the shift tensor. The formal overlap restriction
barring shifted event overlap is given in matrix form by

{S}{dxUS} = {dxS} ̸= {0} if {dxUS} ̸= {0}. (22)

From linear algebra, this condition is satisfied if and only if the square shift matrix {S} has an inverse
{S−1}, yielding the “reverse” shift tensor Sµ̄

α satisfying the conditions

Sµ̄
αSα

ν̄ = δµ
ν, Sα

µ̄Sµ̄
β = δα

β. (23)

Of course, the invertibility of the shift tensor Sα
µ̄ limits what values the shift tensor components may have.

Applying Sµ̄
α to both sides of the partner relation (14), then

dxµ
US = Sµ̄

α dxα
S, (24)

which is the “reverse” partner relation giving unshifted partner displacements by applying the reverse
shift tensor to shifted partner displacements (establishing (3)). The partner relation (14) is optionally
referred to as the “forward” partner relation for distinguishing it from the reverse partner relation.
Since both partner displacements are given in the same coordinates for both the forward and reverse
partner relations, the “bar” is consistently used to indicate the unshifted displacement indice for both
the “forward” shift tensor Sα

µ̄ and the reverse shift tensor Sµ̄
α used in their respective partner relations,

with no bar indicating the shifted displacement indice for both. Similar to the forward partner relation
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and shift tensor, the partner displacement transforms (19) may be substituted into the reverse partner
relation to show that it is manifestly covariant, as well as to show that Sµ̄

α is indeed a tensor quantity.
Applying Sµ̄

α|X to both sides of the forward event partner relation (16) yields the local reverse event
partner relation

(xµ
US − Xµ) = Sµ̄

α|X(xα
S − Xα) (infinitesimal), (25)

giving the displacement-based reverse partner relation (24) in equivalent event-based form with xUS − X and
xS − X the infinitesimal partner displacements dx⃗US and dx⃗S. Similar to the forward case, the reverse
event partner relation (25) is not obtained by integrating the reverse displacement partner relation (24), which
is indeed not generally integrable (as shown below).

From linear algebra, a square matrix based linear transformation is 1-to-1 if and only if it is
invertible. Therefore, the partner relation (14) is a 1-to-1 relation between partner displacements. Now the
events tied to the material content of partner objects form a continuum for each partner since the material
content does (such as the continuous classical electromagnetic field always present in theory). Since the
events at the endpoints of partner displacements—i.e., the displacement event pairs—are taken from
the continuum of events tied to the material content, the partner displacements in the partner relation
therefore each form a continuum. As the partner relation is a relation between partner displacements
in common coordinates used for both, then the partner relation (14) is formally a homeomorphism (i.e., a
1-to-1 continuous relation in common coordinates) between partner displacements. As a result, the
equivalent local event partner relation (16) is also a homeomorphism, yielding gravity shifting as a 1-to-1
“morphing” between the shared material content of partner objects tied to the local partner event fields.

With the partner relation (14) being a 1-to-1 linear transformation between spaces of the same
dimension, then it is also onto. Indeed, for a given fixed shift tensor obtained by running the shift
tensor at a location over all of spacetime, the domain of all possible unshifted displacement 4-vectors,
which runs over all spacetime, yields the range consisting of all possible shifted displacement 4-vectors
covering all spacetime, and vice versa. Therefore, for a fixed shift tensor running over all of spacetime, the
1-to-1 relation of partner event fields, as obtained from the event partner relation (16), spans all of spacetime for
both fields. With shift tensors for actual systems typically varying with location though, then of course
the application of fixed shift tensor based shifting is limited to the uniform scale.

Using the forward and reverse forms of the partner relation, if a displacement is the zero vector,
its partner is zero as well. Therefore, with the partner relation being 1-to-1, a nonzero displacement
cannot yield a zero vector partner. So separate events tied to either a shifted or unshifted object cannot
overlap in its partner (as established above for forward shifting, here including reverse shifting).

Under the usual exclusion of discontinuity of physical effects in classical physics, the shift tensor
components are considered to be spacetime differentiable to all orders. Therefore, each forward and reverse
shift tensor component is continuous with respect to spacetime location, which is a key physical
limitation.

In order that the partner relation in either forward or reverse form is invertible, then from linear
algebra the determinants of the forward and reverse shift tensor matrices satisfy |S| ̸= 0 and finite and
equivalently |S−1| ̸= 0 and finite. Due to continuity of the shift tensor components, then the forward
and reverse shift tensor determinants are continuous as well. In deep space, the forward and reverse
shift tensors are given by the identity matrix {I} with unity determinant. Now since the shift tensor
in either form can never have a zero determinant, then it can never be negative at any location, as
continuity out to any deep-space location would imply that at some location the determinant would
have to be zero in order to yield the deep-space value of unity. Therefore, since the shift tensor in
either form must have a finite determinant, the forward and reverse shift tensors are limited by the
constraints

0 < |S| < ∞, 0 < |S−1| < ∞. (26)

Either of these equivalent constraints may be used as the single condition required to yield an invertible
1-to-1 partner relation at all locations that is consistent with the deep-space “no shift” condition. It has
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been shown that the determinant of the shift tensor is invariant under coordinate transforms, so the
conditions (26) hold in any coordinates.

3.5. The Natural Metric, and Absolute and Natural Measurement of Absolute Proper Intervals

For establishing the properties of gravity shifts, use of the natural metric is helpful. Fundamental
natural metric formulation and characterization is provided here, which includes use of the abso-
lute metric, as well as evaluation of absolute and natural measurement of absolute manifold proper
intervals dsA to help characterize the natural metric. Absolute and natural measurement cannot be sys-
tematically evaluated until morph-based establishment of the SEP and EEP, but absolute measurement
of absolute proper intervals is straightforward conceptually, and as discussed in the summary, the
partner equivalence property may be employed to evaluate natural measurement of absolute proper
intervals.

The absolute metric line element ds2
A = aµν dxµ dxν (10) gives the absolute manifold proper

interval dsA obtained from an actual displacement dxα. From the summary, the class of absolute
observers uses absolute instruments that have been corrected for the gravity shifting that has been
applied to them, where the use of a shift-corrected instrument is the same as use of its hypothetical
unshifted partner, which is not perturbed by gravity shifting, yielding accurate measurements of
quantities. Using shift-corrected clocks and rulers, then absolute observers accurately measure the absolute
manifold proper intervals dsA, formally expressed by

dsA(A)= dsA (27)

for temporal, spatial, and null absolute intervals. Therefore,

ds2
A(A)= ds2

A = aµν dxµ dxν, (28)

which implies that absolute observers accurately measure the absolute manifold metric aµν. This is the reason
for the nomenclature “absolute observers” (as discussed in the summary).

Using (15) to substitute dxα
S for dxα in the absolute metric line element (10) yields the equivalent

“shifted line element”
ds2

S = aαβ dxα
S dxβ

S = ds2
A, (29)

where the “shifted” proper interval dsS is the absolute manifold proper interval for the shifted partner
displacement dxα

S. Note the equality of dsS and dsA obtained from this derivation, with the shifted
and actual displacement intervals used interchangeably going forward similar to the displacements
dxα

S and dxα. With dsS and dsA the same, their absolute measurements dsS(A) and dsA(A) are the same,
yielding

dsS(A)= dsA(A)= dsA = dsS (30)

via (27). So absolute observers accurately measure the shifted proper intervals dsS = dsA.
The “unshifted” proper interval dsUS is the absolute manifold proper interval for the unshifted

partner displacement dxα
US, given by the “unshifted line element”

ds2
US = aµν dxµ

US dxν
US. (31)

This is the proper interval yielded for the unshifted partner displacement dxµ
US corresponding to

the shifted partner displacement dxα
S, so the unshifted proper interval dsUS is the unshifted partner

of the shifted proper interval dsS. There are therefore two absolute proper intervals of interest for
a shifted/actual event displacement dxα

S = dxα, the shifted/actual proper interval dsS = dsA, and
the hypothetical unshifted partner proper interval dsUS. Note that in general, the proper frames are
different for partner displacements, so the measurement of dsS = dsA, as made by proper-frame
absolute clocks and rulers, is generally in a different proper frame than the hypothetical measurement
of dsUS made by the same standards.
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As discussed in the summary, the class of natural observers uses raw shifted instruments that
have not then been shift-corrected. So the natural proper interval standards consist of raw gravity
shifted clocks and rulers used as is. To evaluate the natural measurement of absolute proper intervals
dsA, infinitesimally sized evaluation regions are utilized so that the shifting may be approximated
as being uniform, with the uniform-scale gravity shifting given by the partner relation (14). The
utilized shifted clocks and rulers are infinitesimally sized as well then (in theory), and may therefore
be treated as the shifted partners of local partner objects under the uniform-scale gravity shifting. In
the summary, the generally applicable partner equivalence property was invoked to imply that the
natural measurement of shifted partner proper intervals, dsS, with these shifted standards, yields
values equal to the naturally measured unshifted partner proper intervals dsUS utilizing the unshifted
partners of these standards, stated by dsS(N) = dsUS(N). This is proven here directly. Consider
first natural measurement of shifted proper intervals dsS when gravitation is removed, yielding the
hypothetical unshifted partner case. Natural measurement of a spatial unshifted proper interval may
be obtained by running between two “tickmarks” for an unshifted proper frame ruler, and natural
measurement of a temporal unshifted proper interval may be obtained by running between two
“clock ticks” for an unshifted proper frame clock, yielding the naturally measured unshifted proper
interval values dsUS(N). When gravitation is reintroduced to obtain the actual gravity shifted case, all
objects present shift the same under the partner relation (14), including the proper interval standards.
So the shifted partner case is just a dimensionally perturbed version of the unshifted partner case,
yielding then the same utilized tickmarks for the rulers and clocks ticks for the clocks. As a result,
natural observers, using the raw shifted partner proper interval standards, will again read the same
hypothetical unshifted partner proper interval values dsUS(N) off the interval standards. However,
in actuality the displacements being spanned by the shifted proper interval standards are the shifted
partner displacements dxα

S, which have absolute manifold proper intervals dsS, given by (29), that are
the shifted partners of the unshifted partner intervals dsUS. So natural measurement of the shifted
partner intervals, utilizing the shifted proper interval standards, yields values dsS(N) equal to dsUS(N),
completing the proof. As a hypothetical unshifted instrument accurately measures quantities due to no
gravity shifting perturbing it, then dsUS(N)= dsUS for natural unshifted interval measurement using
unshifted proper interval standards. Combining these equalities and utilizing dsS = dsA, then

dsN ≡ dsA(N)= dsS(N)= dsUS(N)= dsUS, (32)

stating that natural observers obtain the hypothetical unshifted partner proper interval values dsUS when
measuring the shifted/actual absolute manifold proper intervals dsS = dsA with raw gravity shifted clocks and
rulers used as is. Added to this equality is the definition of dsN , which is convenient shorthand for
dsA(N). This example demonstrates how universal gravity shifting, applied to both the instruments
and the measured objects, yields adherence to the partner equivalence property. The above proof is
applicable for the natural measurement of local objects, as well as for the natural measurement of
infinitesimal regions of extended objects under the isolated unshifting condition, so (32) is universally
applicable.

Combining (32) with (31) yields

ds2
A(N)= ds2

US = aµν dxµ
US dxν

US (33)

for the natural measurement of shifted/actual proper intervals dsS = dsA for the absolute manifold.
Using the reverse partner relation (24) as well as dxα

S = dxα and dsN ≡ dsA(N), then (33) becomes

ds2
A(N)= ds2

N = gαβ dxα dxβ, (34)

where gαβ is the natural metric given by the covariant metric relation

gαβ = aµνSµ̄
αSν̄

β. (35)
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The above formulations, proven in detail here, were given in the summary. Again, the natural metric
gives the naturally measured absolute proper intervals for actual displacements dxα, having then the
values dsA(N) = dsN . Natural observers therefore perceive the absolute flat spacetime manifold to
have the metric gαβ, which yields a naturally perceived curved manifold due to the reverse partner
relation (24) not being an integrable condition in general (as shown below). An examination of (35)
shows that gαβ is a symmetric tensor, as expected for a metric.

The natural proper intervals (34) dictate the timelike, spacelike, and null “interval categories” for
natural observation of the shifted/actual partner displacements dxα

S = dxα. Similarly, the absolute
proper intervals (31) dictate the interval categories for unshifted displacements dxµ

US. Via (32), the
timelike, spacelike, or null natural interval category for a naturally observed shifted/actual displacement,
dxα

S = dxα, is the same as the absolute interval category for its unshifted partner displacement dxµ
US.

From the metric relation (35), the inverse natural metric may be given by the “inverse metric
relation”

gαβ = Sα
µ̄Sβ

ν̄aµν. (36)

This can be seen by forming gαβgαµ, substituting (35) and (36) for gαµ and gαβ, and using the shift
tensor inverse property (23) as well as the absolute metric inverse property aαβaαµ = δα

µ to obtain the
delta tensor δα

µ. An examination of (36) shows that gαβ is a symmetric tensor, as expected for a metric
inverse.

As demonstrated above, the equivalence principle holds for natural observers, which is sub-
sequently proven in detail. So the natural metric gαβ has the Minkowski value ηαβ in the free-fall
frames due to naturally perceived inertial behavior. The natural metric therefore has Lorentz signature
(−,+,+,+) just as the absolute metric does. Again, the Minkowski metric valued natural metric is the
metric exclusively utilized in all nongravitational physics laws when given in their inertial forms
as naturally observed in free-fall frames, resulting in the natural metric acting as the “gravitational
metric” when covariant formulation of the nongravitational laws applicable in all coordinates is made.
Gravity shift theory falls then into the category of a “bimetric” theory, utilizing the absolute metric
aµν to characterize the absolute flat spacetime manifold, and the additional natural/gravitational
metric gαβ to characterize gravitation posed in the flat manifold. But as discussed in the summary,
unlike available bimetric theories where the gravitational metric is given a priori, in GS theory the
natural metric is a derived quantity via the metric relation (35), whereas the shift tensor is considered
the fundamental quantity depicting the gravitational field.

In any coordinates, the metric relation (35) becomes {g} = {S−1}T{a}{S−1} in matrix form,
yielding

|g| = |a||S−1|2. (37)

With 0 < |S−1| < ∞ (26) in any coordinates, and with |a| = |η| = −1 in global ICs, then

−∞ < |g| < 0, −∞ < |g−1| < 0 (38)

in global ICs. Use was made of |g||g−1| = 1 to obtain the range of the inverse natural metric deter-
minant. Using {g′} = {L−1}T{g}{L−1} to transform the natural metric matrix between coordinates
yields |g′| = |g||L−1|2, so the sign of the metric determinant will not reverse itself under any coordi-
nate transforms. Therefore, (38) holds in any coordinates except at coordinate singularities. Similarly
|a′| = |a||L−1|2 for the absolute metric under coordinate transforms, so

−∞ < |a| < 0, −∞ < |a−1| < 0 (39)

holds in any coordinates except at coordinate singularities. At coordinate singularities, both |a| and |g|
are zero or infinite since |L−1| will be so.
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3.6. The Speed, Temporal, and Null Constraints

As unshifted light is yielded when gravity shifting is removed, then in the global ICs of absolute
inertial frames, the unshifted light speed cUS = 1 (in geometrized units) is the Lorentz invariant
speed of light without gravitation present, obtainable by setting the proper interval dsUS to zero in the
unshifted line element (31) with aµν = ηµν. When gravitation is reintroduced, then as will be shown,
application of the partner relation to hypothetical unshifted light yields actual shifted light that does
not move at the Lorentz invariant unshifted light speed (in general). With spacetime postulated to be
absolute and flat, however, the global IC locations of the absolute manifold of events obey the global
Lorentz transforms, even when gravitation is present. Therefore, there exists a Lorentz invariant “null
speed” vNull = 1 for the absolute manifold even when gravitation is present, meaning the IC speed of
particles that yields a zero-valued absolute proper interval dsA for the absolute manifold line element
(10) with aµν = ηµν. Therefore,

vNull = cUS = 1, (40)

expressing the IC equality of the invariant null and unshifted light speeds in any inertial frame. The
“null cone” of the absolute manifold is therefore identical to the unshifted light cone, acting as a Lorentz
invariant cone in all global ICs separating timelike and spacelike event paths, even in the presence of
gravitation.

Since all of the events xS tied to shifted objects present under gravitation are indeed events of the
absolute flat manifold, the usual spacetime limitations of special relativity (theory) hold for gravity shifted
objects. If, for instance, a shifted object moved faster than the null speed in one inertial frame, its
event path would be spacelike for the absolute manifold, so there would exist an inertial frame where
it would be found to move at infinite speed. Infinite propagation speeds are of course considered
an impossibility in flat spacetime. Therefore, the following “speed constraint” holds (stated in the
summary): The speed of all gravity shifted objects in any absolute inertial frame must not exceed the Lorentz
invariant null speed vNull = 1, which is the speed of unshifted light. Adherence to the speed constraint in
one inertial frame implies adherence in all since the IC locations of events obey the global Lorentz
transforms. Speed constraint adherence bars backwards causal temporal evolution in some frames
due to faster than null speed travel in other frames.

Now an unshifted particle moving at a given “unshifted velocity” will yield a shifted particle
moving at a partner “shifted velocity.” To use the partner relation to relate these “partner velocities,”
partner displacements may be selected that give the infinitesimal movement of the particles in in-
finitesimal time. For each partner particle, the two events comprising a displacement event pair are
tied then to different occurrences in the material processes of the particle as it moves, such as different
occurrences in the internal processes of a moving atom, or different occurrences in the cycling of
electromagnetic light. Using such displacement event pairs, the IC partner 3-velocities are given by
(with Latin indices indicating the spatial directions)

vn
US =

dxn
US

dtUS
, vn

S =
dxn

S
dtS

. (41)

The partner relation gives dxn
S = Sn

µ̄ dxµ
US and dtS = S0

ν̄ dxν
US in global ICs, which when substituted

into the right of (41) yields the “velocity relation”

vn
S =

Sn
0̄ + Sn

k̄vk
US

S0
0̄ + S0

l̄v
l
US

. (42)

Expressing the IC 3-velocity by v⃗ = v r̂ for both partners (where v is the speed and r̂ is the unit direction
vector), the velocity relation is also given by

vn
S =

Sn
0̄ + vUSSn

k̄rk
US

S0
0̄ + vUSS0

l̄r
l
US

, (43)
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yielding

vS =
√

vx
S

2 + vy
S

2 + vz
S

2, rn
S = vn

S/vS. (44)

It can be seen that in general, the partner velocities are not the same in either speed or direction (in
deep space, the identity shift tensor yields equal partner velocities, as expected). The velocity relation
may be given in the “reverse” direction as well, with

vn
US =

Sn̄
0 + vSSn̄

krk
S

S0̄0 + vSS0̄
lrl

S
, (45)

yielding

vUS =
√

vx
US

2 + vy
US

2 + vz
US

2, rn
US = vn

US/vUS. (46)

The “reverse” velocity relation (45) may be derived from the (“forward”) velocity relation (43) and
vice versa, so they are equivalent.

As in the shifted object case, the speed of unshifted objects is limited by the null speed vNull

equal to the unshifted light speed cUS, as would be the case for all objects in flat spacetime when no
gravitation is present. So unshifted particles can move at all possible velocities that have a speed not
exceeding the unshifted light speed. Using these as the available set of all unshifted partner velocities
in the velocity relation, the set of all possible shifted particle velocities are obtained for a given inertial
frame. The following “partner form” of the speed constraint results: The velocity relation (43) at each
location, applied to all possible unshifted partner velocities bounded by the unshifted light speed, must yield
the corresponding set of shifted partner velocities such that none exceed the unshifted light speed equal to the
manifold null speed. This is formally given by (in the ICs of any absolute inertial frame)

vS(vUS, r̂US) ≤ cUS = vNull (47)

over the entire range 0 ≤ vUS ≤ cUS of unshifted partner speeds, and over the entire 4π steradian
range of unshifted partner directions r̂US, where vS(vUS, r̂US) is obtained by substituting the velocity
relation (43) into (44). Satisfaction of this condition in one inertial frame guarantees satisfaction in
all, as all speeds are less than or equal to the invariant null speed vNull = cUS = 1 of the absolute
manifold. The partner form of the speed constraint limits the shift tensor components to insure that the
speed constraint is satisfied.

Consider the relation between the IC-given temporal components of the partner displacements
used to quantify the velocities of partner particles. With dtS = S0

ν̄ dxν
US, then dtS = dtUS(S0

0̄ +

S0
n̄vn

US), yielding the “temporal partner relation”

dtS = dtUS(S0
0̄ + vUSS0

n̄rn
US), (48)

where the right-hand side is a function of the shift tensor and the unshifted velocity v⃗US. The
possibility arises that the temporal partners dtS and dtUS could have opposite signs at a location for
some unshifted velocities, referred to as a “temporal inversion.” In this case, an unshifted partner,
with the expected causal evolution forward in time (dtUS > 0), would yield a shifted partner with a
causal evolution backwards in time (dtS < 0). Gravity shifted objects may not evolve backwards in time, as
clearly this would be a causality violation in absolute flat spacetime (from the summary). Therefore,
gravity shifting must adhere to the following “temporal constraint”: Temporal inversions cannot occur
between partner particles.

Application of the temporal constraint to the temporal partner relation, (48), yields the equivalent
“shift (tensor) form” of the temporal constraint given by (in the ICs of any absolute inertial frame)

S0
0̄ + vUSS0

n̄rn
US > 0 (49)
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applicable for all possible vUS and r̂US, thereby limiting the shift tensor. Since vUS can be zero, the shift
form temporal constraint implies that

S0
0̄ > 0 (50)

in any inertial frame. In addition, since vUS can be as large as unity, then

|S0
n̄rn

US| < S0
0̄ for all r̂US (51)

in any inertial frame. Note that the left-hand side of (49) is the denominator in the velocity relation
(43), which is always positive then.

The causal spacetime evolution of a particle adheres to the “null constraint” if its evolution from an
event falls within or on the Lorentz invariant forward null cone of the absolute manifold (the forward unshifted
light cone). In a given inertial frame, adherence to both the speed constraint and temporal constraint
establishes that the evolution of shifted particles adheres to the null constraint, with indeed the null
constraint and the combined speed/temporal constraints being equivalent. The null constraint of
course holds for the unshifted partners when gravitation is removed. Shifted partner adherence to
the null constraint in one inertial frame implies adherence in all, since timelike or null motion in one
inertial frame yields timelike or null motion in all. Under the equivalence of the null constraint and
the combined speed/temporal constraints, then if the speed and temporal constraints both hold in one
inertial frame, they both hold in all. The speed and temporal constraints combined bars shifted particle
backwards causal temporal evolution of any kind, either by temporal inversions or by speeds exceeding the
manifold null speed, which would yield backwards evolution in some absolute inertial frames.

3.7. The Symmetry of the Shift Tensor

The “native” (defined) form of the shift tensor Sα
µ̄ is a mixed form rank-2 tensor. To evaluate

its symmetry, one of its indices must be raised or lowered by a metric to put it into “pure (raised
or lowered indice) form” Sαµ̄ or Sαµ̄. Either the absolute or natural metric may be utilized for this
purpose, but in general the symmetry property of a native mixed rank-2 tensor is dependent on the
metric utilized to put it in pure form. When discussing whether or not the shift tensor is symmetric,
use of it in pure form is assumed. The shift tensor (in pure form) could contain both symmetric and
antisymmetric parts. A symmetric shift tensor is diagonalizable as shown below, which would yield a
significant simplification in the types of gravity shifting that could occur. Gravity shifting would be
greatly simplified then if it can be shown that the shift tensor is symmetric, as will be done here.

Applying Sβ
σ̄ on both sides of the metric relation (35) yields

Sασ̄ = Sσ̄α. (52)

The technique has been employed in (52) where indices raised/lowered from their native positions by
the absolute metric are underscored, whereas no underscoring is used for indices raised/lowered by
the natural metric or left in their native positions. For example, Sσ̄α = aµσSµ̄

α and Sασ̄ = gαβSβ
σ̄. This

“absolute (metric) underscoring” is not required in formulations where only the absolute metric is being
utilized (and clearly identified as such), so absolute underscoring is typically used in “mixed-metric”
cases where both the absolute and natural metrics are employed. Utilizing (52), if the absolute metric
lowered pure form Sσ̄α is symmetric (i.e., Sσ̄α = Sᾱσ), then the natural metric lowered pure form Sασ̄ is
symmetric (i.e., Sασ̄ = Sσᾱ ), and vice versa. This would result in both the raised and lowered pure
forms of both the forward and reverse shift tensors being symmetric utilizing either the absolute or
natural metrics to raise/lower the indices. Therefore, to establish the symmetry for all possible pure
forms of the shift tensor using either metric, symmetry need be established for only a single instance
of a pure form forward or reverse shift tensor using either metric to form it.

No constraints have been found that would “directly” constrain the shift tensor to being symmetric.
The shift tensor is often “paired” with itself when evaluating cases, allowing for a degeneracy and
therefore nonsymmetric shift tensors, such as if the metric relation (35) were used to attempt to
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establish symmetry based on a symmetric natural metric. At present, the only approach found to
establish shift tensor symmetry is via its coupling to its gravitational source as given by a symmetric SE
tensor, which may be considered an “indirect” constraint. Application of this constraint is as follows.

As established above, in GS theory the shift tensor is considered the fundamental quantity
depicting the gravitational field. This assumption infers that at the fundamental level, the gravitational
field generated by the gravitational source is the shift tensor field. In modern gravitational theory, the “charge”
for the gravitational source consists of its energy-momentum components, typically taking the form
of a symmetric rank-2 SE tensor for tensor field theories. With the generated gravitational field in GS
theory being the shift tensor field, it is similarly assumed that the gravitational source charge takes
the form of a symmetric rank-2 SE tensor. This is reflected in the general forms (8) and (9) of both the
natural and absolute field equations, which are equivalent expressions of the shift tensor field being
generated by a symmetric SE tensor charge.

As the fundamental shift tensor field is generated by its source, then it is coupled to its source as
given by a symmetric SE tensor charge. The absolute and natural metrics are symmetric, so at the
fundamental level, the coupling of the shift tensor field to a symmetric SE tensor source charge, with
both in the presence of these symmetric metrics (or at the very least the symmetric absolute metric),
results in a symmetric shift tensor when given in pure form. Either the absolute or natural metric may
be used to obtain the symmetric pure form shift tensor from its native mixed form, since as shown
above the natural metric obtained pure form is symmetric if the absolute metric obtained pure form
is symmetric, and vice versa. The formal statements of the lowered forward and reverse shift tensor
symmetries are

Sασ̄ = Sσᾱ, Sᾱσ = Sσ̄α, Sασ̄ = Sσᾱ, Sᾱσ = Sσ̄α, (53)

with the raised forms readily obtained from these.

3.8. Gravity Shifted Light

An illustrative and helpful example of gravity shifting is gravity shifted light. Utilizing the global
ICs of an absolute inertial frame, for an unshifted light partner with speed cUS = 1 and velocity
c⃗US = cUS r̂US, the velocity of the shifted light partner is

cn
S =

Sn
0̄ + Sn

k̄ck
US

S0
0̄ + S0

l̄c
l
US

(54)

as given by the velocity relation (42), with speed cS and direction r̂S as per (44). Under the variability
of the shift tensor in (54), then the speed cS of light in a gravitational field is variable, generally being a
function of both propagation direction and location. In deep space, where the shift tensor Sα

µ̄ becomes
the delta tensor δα

µ̄, the shifted light speed becomes the fixed unshifted light speed. Note that the
variability of shifted light speed was accounted for when applying the Schild argument to establish the
existence of gravity shifts. The global IC shifted light velocity cn

S is the velocity of light as measured
by absolute observers in their preferred absolute inertial frames, yielding the variable speed cS as
absolutely observed. Under the equivalence principle applicable for natural observers (proven below),
natural measurement of shifted light yields the perception of inertial unshifted light in the local ICs of their
preferred free-fall frames. The naturally observed shifted light speed is therefore the fixed unshifted light
speed cUS = 1 in free-fall frame ICs.

All possible unshifted light motion at a location may be generated by sweeping over the 4π

steradians of direction r̂US in which an unshifted light partner can propagate. This motion may be
depicted by a Lorentz invariant spherical velocity surface in the three spatial IC velocity dimensions (a
“velocity map”), centered on zero velocity for each absolute inertial frame. All possible shifted light
motion at a location may be generated by using (54) and again sweeping over the 4π steradians of
direction r̂US in which an unshifted light partner can propagate. For a given inertial frame and ICs, the
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resulting velocity surface is an ellipsoid. To show this, the equivalent reverse velocity relation (45) may
be applied to light to yield

cn
US =

Sn̄
0 + Sn̄

kck
S

S0̄0 + S0̄
lcl

S
. (55)

Substituting (55) in (46) to obtain cUS, and setting cUS = 1, the natural metric based “light equation”

g00 + 2g0ncn
S + gnmcn

Scm
S = 0 (56)

is yielded for the shifted light velocity, having utilized aµν = ηµν in global ICs as well as the metric
relation (35) to obtain this result. This is as expected, since utilizing the natural metric line element, (34),
in the ICs of the free-fall frames, yields dτN = 0 for shifted light motion naturally perceived as inertial
unshifted light motion with speed cUS = 1. Expressing (34) in global ICs with dτN = 0 yields the light
equation (56). The light equation has the general form of an ellipsoid formula, yielding an ellipsoid for
the shifted light velocity map. With the natural metric gαβ generally having nonzero g0n in global ICs,
and a spatial subspace metric gnm that is not diagonal, the velocity ellipsoid is generally not centered
on zero velocity, and its three axes are not typically aligned with the velocity map IC axes. The use of
arbitrary shift tensors yields natural metric values in the light equation that may result in “pathological”
cn

S solutions that are infinite, complex valued, or yield shifted light overlapping itself. But if the shift
tensor adheres to the above physical constraints, specifically having a nonzero determinant (as per
(26)) to prevent overlap, as well as yielding shifted light velocities that are finite and real valued as
consistent with the speed constraint (47), then the pathological solutions are eliminated, leaving only
the “ordinary” ellipsoid solutions. Additional application of the speed limit cS ≤ cUS obtained from
the speed constraint, (47), yields a shifted light velocity ellipsoid that does not extend beyond the
unshifted light velocity sphere. This property holds in any absolute inertial frame and global ICs
utilized, so the ellipsoidal shape of the velocity map is an invariant property under the global Lorentz
transforms.

With the shifted light velocity map an ellipsoid, light in a general gravitational field behaves as if
it were propagating in an anisotropic crystal at each location due to different reduced propagation speeds
in different directions, with then its velocity ellipsoid not exceeding the “vacuum” unshifted light
velocity sphere in any inertial frame. The wavefront for the shifted light at a location is parallel to the
velocity ellipsoid surface for its given propagation direction, which is generally not perpendicular
to the propagation direction. But under the equivalence principle, when naturally measured in the
free-fall frames, the wavefront is perceived as being perpendicular since inertial unshifted light is
perceived with its spherical velocity surface.

The global IC velocity sphere for unshifted light may be used to generate the corresponding
Lorentz invariant unshifted light cone. Following common practice, the “cone” reference comes from
pictorially mapping all possible unshifted light propagation in spacetime diagrams using any two
IC spatial dimensions and the time dimension, yielding the invariant conical shape (a “hypercone”
is formed in 4-spacetime). Similarly, the shifted light velocity ellipsoid yields a shifted light “cone”
that is actually elliptical in spatial cross section, where in general the light cone is “tilted” relative to
the IC time axis. In general gravitational systems, the parameters depicting the velocity ellipsoid will
vary with location, including variation in its “center velocity,” axis lengths, and axis orientations, as
mapped in a common global IC system. A corresponding variation is yielded in the tilt, axis lengths,
and axis orientations of the elliptical shifted light cone (in any 2+1 dimensions). As the null constraint
must hold for shifted light as for any shifted object, then the shifted light cone at any location cannot
exceed the absolute manifold forward null cone, which is the unshifted light cone. Under the global
Lorentz boosts, the tilt of the shifted light cone changes from one inertial frame to the next, whereas the
invariant null cone maintains no tilt. Note that in some inertial frames, the shifted light cone will not
contain the IC time axis (if its cone is smaller than the null cone in any inertial frame), so the shifted
light will not propagate in all directions.
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Having been shifted, the evolution of all matter and fields is bounded by the shifted light cone.
This includes the gravitational field itself as given by the shift tensor field, which will be shown to have
the same propagation speed as gravity shifted light. As a result, the causal connectedness of a gravitational
system is bounded by its shifted light cone at each location, which cannot exceed the Lorentz invariant forward
null cone of the absolute manifold. Closed timelike curves are therefore barred for gravitational systems.

The unshifted/null light cone is the boundary between timelike and spacelike unshifted displace-
ments dxµ

US as dictated by their absolute proper intervals (31). The shifted partner displacements
dxα

S for the timelike unshifted displacements are contained within the shifted light cone, whereas
the shifted partner displacements for the spacelike unshifted displacements fall outside the shifted
light cone. Via (32), the shifted light cone is the boundary separating natural measurement of shifted/actual
partner displacements dxα

S = dxα being timelike or spacelike, as dictated by their natural proper intervals
(34). Natural measurement of shifted displacements along the shifted light cone yields a null natural
interval dτN = 0, as expected since dτN = dτUS and the unshifted partner displacements along the
unshifted light cone yield dτUS = 0. This result is consistent with dτN = 0 obtained above for shifted
light motion via derivation of the light equation (56) or use of the equivalence principle. Note that
shifted/actual displacements dxα

S = dxα that fall between the shifted and null cones are naturally
measured as being spacelike, but via (28) are absolutely measured as being timelike since they fall
within the null cone, demonstrating that natural and absolute displacement measurement may be
starkly different in character. But if a shifted/actual displacement dxα

S = dxα is naturally measured as
timelike or null (dτN ≥ 0), it is absolutely measured as being timelike or null (dτA ≥ 0) since it falls
within or on the null cone.

3.9. Intrinsic Gravity Shifting

Consider diagonalization of the absolute metric lowered pure form Sβµ̄ of the shift tensor as given
in the global ICs of absolute inertial frames (absolute underscoring is not used here since only the
absolute metric is being utilized). As shown here, since Sβµ̄ is symmetric, it may be diagonalized at any
location using global Lorentz transforms, yielding a diagonalized Sα

µ̄.
The “spatial subspace” of Sβµ̄, consisting of its space-space components Snm̄ = Smn̄, may be

diagonalized using the rotations provided by the (global) Lorentz transforms. This leaves only the time-
space components S0n̄ = Sn0̄, which may zeroed out using the Lorentz boosts provided by the Lorentz
transforms. Note that as is typically the case, if a symmetric tensor is already spatially diagonalized,
application of a Lorentz boost to zero out the time-space components will reintroduce off-diagonal
space-space components, so an additional rotation is applied to spatially rediagonalize. Alternately, a
Lorentz boost may be applied first to zero out the time-space components of a symmetric tensor that
has not been spatially diagonalized, and then a single rotation is applied to diagonalize the spatial
subspace. In either case, the end result is a fully diagonalized Sβµ̄. Since aαβ is the diagonal ηαβ in
global ICs, then when the absolute metric is used to raise the first indice in the diagonalized Sβµ̄ to
obtain its native mixed form Sα

µ̄, the mixed form is also fully diagonal, which is the desired result.
Now the spatial subspace of a symmetric rank-2 tensor, in global ICs, may be readily diagonalized

by a rotation regardless of the values of its space-space components, with this property applicable
then for the symmetric Sβµ̄ with arbitrary space-space component values. However, if the time-space
components of a symmetric tensor are too large relative to its other components, application of Lorentz
boosts Λα′

µ (⃗vB) will not be able to zero them out since the values of the Lorentz boost components
are limited due to the speed for the boost velocity v⃗B being less than the absolute manifold null speed
vNull = 1. For the shift tensor though, the values of its time-space components S0n̄ = Sn0̄ are limited
by the speed constraint (47). Under this constraint, a Lorentz boost will indeed be able to zero out
its time-space components, shown by utilizing gravity shifted light as follows. As shown above, the
IC velocity map for shifted light is an ellipsoid in any absolute inertial frame, with the ellipsoid not
extending beyond the unshifted light spherical velocity surface. Therefore, with the unshifted light
speed cUS equal to the null speed vNull , a single global Lorentz boost may be applied to center the
velocity ellipsoid in a particular inertial frame. In addition, a rotation may be applied to align the IC
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axes with the three ellipsoid axes. This infers that the symmetric Sβµ̄ must have been diagonalized in
the process, since then raising its first indice by the diagonal aαβ = ηαβ yields a diagonal Sα

µ̄, which
when used in the shifted light velocity equation (54) yields the centered and aligned velocity ellipsoid.
Therefore, the time-space components S0n̄ = Sn0̄ are limited by the speed constraint (47) to the extent
that a Lorentz boost will zero them. This limitation was implicitly imposed above in order to obtain
a shifted light velocity ellipsoid limited by the unshifted light spherical velocity surface with speed
cUS = vNull , allowing the ellipsoid to be centered under a Lorentz boost, and with it, S0n̄ = Sn0̄ is
zeroed.

Any global ICs that diagonalize Sα
µ̄ at a location is referred to as an “eigensystem,” since as shown

below, the IC’s basis vectors e⃗(α̃) are eigenvectors of the shift tensor as given in any coordinates. A
tilde is used to indicate quantities given in an eigensystem. An inventory of diagonal quantities in
an IC eigensystem is the shift tensor S̃α

µ̄, its inverse S̃µ̄
α, the absolute metric ãµν = ηµν and its inverse

ãµν = ηµν, as well as the natural metric g̃αβ and its inverse g̃αβ as obtained via the forward and inverse
metric relations (35) and (36). There can be more than one eigensystem at a location, such as in deep
space, where all global ICs in all absolute inertial frames are eigensystems since the shift tensor is
the diagonal identity tensor δα

µ̄ for all. But there always exists at least one IC eigensystem, since
the symmetric shift tensor is always diagonalizable under global Lorentz transforms. As generally
discussed in the summary, applying the partner relation in an IC eigensystem, the gravity shifting
is depicted by strictly dimensional shifts consisting of three spatial dimensional shifts each given by
dx̃n

S = S̃n
n̄ dx̃n

US depicting length change parallel to the n direction IC spatial coordinate axis for the
eigensystem, and a temporal dimensional shift given by dx̃0

S = S̃0
0̄ dx̃0

US depicting duration change
parallel to the IC time coordinate axis, yielding a change in the rates of the physical processes for the
matter present. The specified dimensional shifts are orthogonal to each other in flat spacetime since
they run parallel to the orthogonal IC eigensystem axes. Transformation out of an eigensystem into
other coordinates yields a shift tensor that is generally no longer diagonal, resulting in an apparent
“mixing” of temporal and spatial shifting in general coordinates. But is actuality, gravity shifting may
be considered to “intrinsically” consist of the orthogonal dimensional shifts as given in an eigensystem,
with the apparent mixing in general coordinates an artifact of general coordinate expression of the
intrinsic dimensional shifting.

A means of depicting the intrinsic shifting is use of the shift tetrad S⃗(α) discussed in the summary.
The shift tetrad at a location may be constructed with the aid of an eigensystem. The four tetrad vectors
run parallel to its IC axes, with the magnitude for each given by the scalar “shift factor”

S(α) ≡ S̃α
ᾱ (no sum), (57)

yielding
S⃗(α) ≡ S(α)⃗e(α̃) (58)

defining the shift tetrad vectors, having utilized the unity-length coordinate basis vectors e⃗(α̃) for the
IC eigensystem. Each shift tetrad vector S⃗(α) depicts a dimensional shift along the spacetime direction
of the vector, with the length of the tetrad vector, given by the shift factor S(α), quantifying the shifting
in terms of fractional change relative to unity (S(α)= 1 indicates no change). Since the eigensystem
basis vectors e⃗(α̃) are orthogonal to each other, the shift tetrad vectors are orthogonal as well. Note that
a shift tetrad vector may be reversed in direction and still express the same shift, since a dimensional
shift is an expansion or contraction along its spacetime direction. As can be seen, the shift tetrad S⃗(α)

depicts the intrinsic gravity shifting consisting of the orthogonal spatial and temporal dimensional
shifts along the four IC axis directions for an eigensystem. As the shift tetrad consists of vectors, it
provides a geometrically invariant expression of intrinsic gravity shifting. For any system, the intrinsic
gravity shifting at all locations may be given by a map of the shift tetrad S⃗(α) (utilizing any convenient
coordinate system). Since the gravity shifting providing the field is completely specified by its intrinsic
shifting, then for any system, the shift tetrad map provides a geometrically invariant complete depiction
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of the gravitational field. As can be seen, the shift tetrad map is a convenient and powerful means of
completely depicting the gravitational field.

The reason why a global IC system diagonalizing the shift tensor Sα
µ̄ is referred to as an “eigen-

system,” is that its four coordinate basis vectors e⃗(α̃) are eigenvectors of the shift tensor as given in any
coordinates, with the diagonal terms of the eigensystem shift tensor—i.e., the shift factors S(α) defined
by (57)—being their respective eigenvalues. This is formally expressed in matrix and column vector
form by the “shift eigenvector equation”

{S}{⃗e(α̃)} = S(α){⃗e(α̃)}, (59)

applicable for Sα
µ̄ and the eigensystem basis vectors e⃗(α̃) given in any coordinates. The validity of (59)

may be shown by first evaluating it in an eigensystem, so that {S} is a diagonal matrix, and so that each
{⃗e(α̃)} is a column vector with unity for its α component and zero for the other components. Then (59) is
obtained as a covariant expression by applying arbitrary coordinate transformation to the eigensystem
{S} and {⃗e(α̃)}. The shift eigenvector equation may be interpreted as shifting each eigensystem basis
vector e⃗(α̃) to yield its shifted partner S⃗(α)= S(α)⃗e(α̃) (using (58)) in the same direction, with vectors not
parallel to an e⃗(α̃) generally not shifting along their original directions. Being proportional to e⃗(α̃), the
shift tetrad vectors S⃗(α) are eigenvectors of the shift tensor, with their eigenvalues the shift factors S(α).
Using the eigenvector equation, the “shift secular equation”

|S(α)I − S| = 0 (60)

is obtained, which yields the same four shift factor roots S(α) regardless of the coordinates used. These
roots may then be utilized in the eigenvector equation (59), in any coordinates, to determine the unity
magnitude eigenvectors e⃗(α̃), which when multiplied by their respective S(α) yields the shift tetrad S⃗(α).
Using this “eigenvector method,” the shift tetrad S⃗(α) may be determined from the shift tensor Sα

µ̄

in any coordinates, providing a convenient means of obtaining a map of the intrinsic shifting in any
coordinates. Note that when there is more than one global IC system at a location that diagonalizes the
shift tensor, there will be degeneracy in the eigenvector equation, resulting in the multiple eigensystems
being yielded, as well as possible multiple secular equation solutions S(α) with the same values. For
instance, in deep space, the identity shift tensor δα

µ̄ yields four S(α) = 1 secular equation solutions,
and yields the basis vectors e⃗(α̃) for all global ICs as eigenvector equation solutions. There is therefore
degeneracy in the shift tetrad S⃗(α) when there is eigensystem degeneracy, but the specified intrinsic
shifting is unique under this degeneracy since the multiple shift tetrads specify the same intrinsic
shifting.

Consider a path run from any location of interest in a gravitational system out to deep space,
where an IC eigensystem at each point is utilized so the shift tensor has the eigensystem value S̃α

µ̄.
Under the positive determinant range (26) for the shift tensor in any coordinates, then all of the
diagonal terms of S̃α

µ̄ must be nonzero along the entire path. Since all of the diagonal terms are
positive for the identity eigensystem shift tensor δα

µ̄ in deep space, then under continuity of the shift
tensor components, all of the S̃α

µ̄ diagonal terms must be positive at all path locations, including the
start of the path at the location of interest. Therefore, IC eigensystem shift tensors S̃α

µ̄ must have strictly
positive diagonal terms at all locations, formally expressed by the “shift factor range” (utilizing (57))

0 < (S̃α
ᾱ = S(α)) < ∞ for each α. (61)

Included in the shift factor range is the infinite upper limit imposed by the infinite upper limit of (26).
Adherence to the shift factor range establishes that the shift tensor matrix {S} is positive stable since all
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of its eigenvalues are positive. Using the velocity relation (42) as well as (44), application of the speed
constraint (47) in an eigensystem yields the “shift factor speed constraint”

(S̃n
n̄ = S(n)) ≤ (S̃0

0̄ = S(0)) for each n. (62)

Formation and use of (62) relies on the shift factors being positive.
Specification of gravity shifting as intrinsic shifting consisting of orthogonal dimensional shifts

in flat spacetime, combined with the shift factor range and speed constraints (61) and (62), provides
a clear and compact means of specification such that all previously given shift tensor and gravity
shifting constraints are satisfied, as shown here. Gravity shifting intrinsically consisting of orthog-
onal dimensional shifts in flat spacetime implies the existence of an IC eigensystem where the shift
tensor S̃α

µ̄ is diagonal, yielding a diagonal absolute (Minkowski) metric lowered S̃βµ̄, and therefore
a symmetric Sβµ̄ in any coordinates. Using the shift factor range (61) and the invariance of the shift
tensor determinant, the shift tensor determinant range (26) is automatically satisfied for the forward
shift tensor Sα

µ̄, guaranteeing invertibility of the shift tensor with (26) holding for the reverse shift
tensor Sµ̄

α, and therefore satisfaction of the 1-to-1 requirement for gravity shifting and the prevention
of shifted and unshifted partner event overlap. With S̃0

n̄ = 0 in the eigensystem, use of (61) to obtain
S̃0

0̄ > 0 yields satisfaction of the shift form temporal constraint (49). With both the speed and temporal
constraints satisfied in the eigensystem, then as per above (Sec. 3.6) the null constraint is satisfied,
yielding adherence to the speed, temporal, and null constraints in any absolute inertial frame (with the
speed and temporal constraints given in shift form by (47) and (49), additionally yielding (50) and (51)
from the temporal constraint), completing the proof.

When the partner relation (14) was first formed giving the most general possible gravity shifting
that could occur, the initially unconstrained 4 × 4 shift tensor Sα

µ̄ consisted of 16 arbitrary components.
Via application of the absolute flat spacetime postulate as well as the equivalence principle applicable
for natural observers, the shift tensor has been shown to be constrained as follows: the shift tensor
is symmetric in pure form; the shift tensor Sα

µ̄ may be diagonalized in global ICs using Lorentz
transforms; when diagonalized in global ICs, the diagonal terms S̃α

ᾱ = S(α) satisfy the shift factor
range and speed constraints (61) and (62). As shown, use of the shift tensor with these properties in
the partner relation, (14), yields intrinsic shifting consisting of orthogonal dimensional shifts, three
spatial and one temporal as geometrically depicted by the shift tetrad S⃗(α), with their respective shift
factors S(α) quantifying the fractional length or duration changes again subject to the shift factor range
and speed constraints. All previously established constraints for the shift tensor and gravity shifting,
derived via application of the absolute flat spacetime and equivalence principle postulates, have been
shown to be obtainable from the intrinsic shifting and its constraints. All constraints required for physical
validity are considered to be covered above, completing the effort to constrain the shift tensor Sα

µ̄ and the
uniform-scale gravity shifting as given by the partner relation (14). Summarizing, application of the
absolute flat spacetime and equivalence principle postulates to gravity shifting initially given using a
shift tensor, Sα

µ̄, with 16 arbitrary components, yields the “simple” orthogonal spatial and temporal
dimensional shifts as specified above, severely constraining the types of gravity shifting that may
occur.

3.10. The Potential Tensor

For the potential tensor development, some background on tensor exponentials is helpful. The
exponential power series of a square matrix is defined by

exp{B} ≡
∞

∑
n=0

1
n!
{B}n. (63)
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The equivalent tensor exponential power series, applicable for mixed rank-2 tensors, is defined by

exp(Bα
µ) ≡ δα

µ + Bα
µ +

1
2!

Bα
νBν

µ +
1
3!

Bα
νBν

σBσ
µ + . . . , (64)

where each α, µ component for the “shorthand” expression, exp(Bα
µ), on the left, stands for the α, µ

component of the tensor expansion on the right. As can be seen, a single α, µ component for exp(Bα
µ)

generally involves all of the Bα
µ components in the expansion. Application of arbitrary coordinate

transformation to exp(Bα
µ) yields

Lβ′
α exp(Bα

µ)Lµ
ν′ = exp(Lβ′

αBα
µLµ

ν′). (65)

From matrix analysis [19] (Chap. 6),

e{B}e{C} = e{C}e{B} = e{B+C} if {B} and {C} commute, (66)

applicable for square matrices. Also from matrix analysis, exp{B} may be given as a polynomial of {B}
with an order not exceeding one less than the dimension of {B}, avoiding the need to explicitly work
with its infinite exponential series. The resultant exp{B} matrix is a closed analytic form containing
scalar exponentials of the eigenvalues λ for {B} as the only exponentials present, which are obtainable
from its characteristic equation |λ I − B| = 0.

With each diagonal term S̃α
ᾱ = S(α) for the shift tensor in an IC eigensystem being positive as per

(61), then it may be given by
S̃α

ᾱ = S(α) = exp(w(α)), (67)

the exponential of a real number w(α) of any value (prior to applying the speed constraint (62)), as discussed
in the summary. Again, a positive value for w(α) yields an increasing dimensional shift along the α IC
axis direction for a diagonal term, a negative value yields a decreasing shift, and w(α)= 0 yields unity,
which is no shifting. The property (67) yields the matrix form {S̃} = exp{w̃}, where exp{w̃} is the
exponential power series (63) of the diagonal matrix {w̃}. In tensor form this becomes S̃α

µ̄ = exp(w̃α
µ),

where exp(w̃α
µ) is the exponential power series (64) of the diagonal quantity w̃α

µ. Application of
arbitrary coordinate transformation to S̃α

µ̄ = exp(w̃α
µ), and utilizing (65), results in the covariant

“potential form” of the shift tensor
Sα

µ̄ = exp(wα
µ) (68)

in any coordinates, with exp(wα
µ) the exponential power series of the “potential tensor” wα

µ (establish-
ing (6)). The quantity wα

µ is indeed a tensor, since it transforms as a tensor under coordinate transform
of (68) due to (65) holding.

Since by its definition w̃α
µ is diagonal for the diagonal S̃α

µ̄, then when the shift tensor Sα
µ̄ is

diagonalized via transform to an IC eigensystem, the potential tensor wα
µ is also diagonalized, and vice

versa. With the absolute and natural metrics ãµν = ηµν and g̃αβ (and their inverses ãµν = ηµν and g̃αβ)
also diagonal in an IC eigensystem (from above), then raising/lowering the indices of w̃α

µ by either
metric yields a diagonal potential in pure indice form (such as w̃αβ), resulting in the potential wα

µ

being a symmetric tensor in any coordinates when given in pure form using either metric to raise/lower
its indices (similar to the shift tensor Sα

µ̄).
As can be seen, the quantities w(α) used in (67), referred to as the “potential factors,” are given by

w(α) = w̃α
ᾱ (no sum), (69)

the diagonal values of an eigensystem potential tensor. Similar to (59) holding for the shift tensor, the
“potential eigenvector equation”

{w}{⃗e(α̃)} = w(α){⃗e(α̃)} (70)
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holds in any coordinates, where again use is made of the eigensystem basis vectors e⃗(α̃). So similar to
the shift tensor, the IC eigensystem coordinate basis vectors e⃗(α̃) are eigenvectors of the potential tensor
wα

µ as given in any coordinates, with the diagonal terms of the eigensystem potential tensor—i.e., the
potential factors w(α)—being their respective eigenvalues. An IC eigensystem for the shift tensor Sα

µ̄

is also then the same eigensystem for the potential wα
µ, and vice versa. Similar to (60) for the shift

factors, the potential factors w(α) are the roots of the “potential characteristic equation”

|w(α)I − w | = 0. (71)

Utilizing from above, the potential form Sα
µ̄ = exp(wα

µ) of the shift tensor may be given as a wα
µ

polynomial not exceeding third order, a closed analytic form, with the only exponentials present
consisting of the scalar exponentials of the wα

µ eigenvalues w(α) as given by its characteristic equation
(71). This property may be readily seen, using any coordinates, by transforming the shift tensor Sα

µ̄

and potential wα
µ into an eigensystem, forming the diagonal S̃α

µ̄ = exp(w̃α
µ) where S̃α

ᾱ = exp(w(α))

via (67), and then transforming back to the original coordinates.
The potential form of the reverse shift tensor is

Sµ̄
α = exp(−wµ

α). (72)

To see that the forward and reverse potential forms are inverses of each other, they may be given in
their matrix forms

{S} = exp{w}, {S−1} = exp{−w}, (73)

with exp{w} exp{−w} = exp{0} = {I} via application of (66) where {w} and {−w} commute. In
tensor form this becomes exp(wα

µ) exp(−wµ
β) = δα

β, completing the proof. Note that the inverse of
the potential tensor wα

µ is its arithmetic inverse −wα
µ, as opposed to the inverse of the shift tensor

Sα
µ̄ being its multiplicative inverse Sµ̄

α. It may be readily shown (via an IC eigensystem) that in any
coordinates, the determinants of the forward and reverse shift tensors are

|S| = ew, |S−1| = e−w, (74)

where w is the trace wα
α. So for any finite real-valued wα

µ, the ranges (26) are satisfied.
As stated in the summary, the ability to express the shift tensor Sα

µ̄ as the exponential of the
potential tensor wα

µ is a result of the overlap restriction placed on gravity shifting, which bars forbidden
matter and temporal singularities from occurring in absolute flat spacetime. To prove this, recall that
(Sec. 3.4) the overlap restriction results in the shift tensor determinant |S| being nonzero, which in turn
implies that when diagonalized in an IC eigensystem, the shift tensor S̃α

µ̄ has positive diagonal terms
as specified by the shift factor range (61), yielding the potential form (68). Again, in order that the shift
tensor solutions of the utilized field equation adhere to the overlap restriction, it is assumed that the
potential tensor wα

µ is the field operand as opposed to the shift tensor Sα
µ̄ directly, which is the reason

for the nomenclature “potential tensor.” This is reflected in the potential tensor being the operand in
the general forms (8) and (9) of the equivalent natural and absolute field equations. Substituting (72)
in the metric relation (35), any field equation solution will therefore yield the “potential form” natural
metric

gαβ = aµν exp(−wµ
α) exp(−wν

β) (75)

(establishing (7)). The natural metric is devoid of event horizons, since in an IC eigensystem at a location,
application of the Minkowski absolute metric ηµν in (75) yields a diagonal natural metric with non-zero
and finitely large diagonal terms.
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3.11. The Squared Shift Tensor

Using absolute metric underscoring, the metric relation (35) may be given by gαβ = Sν̄αSν̄
β.

Applying the reverse shift tensor symmetry in (53) yields gαβ = SᾱνSν̄
β, or gαβ = aαµSµ̄

νSν̄
β. So the

metric relation may be given in the “squared form”

gαβ = aαµFµ̄
β, (76)

where the “reverse squared shift tensor” is defined by

Fµ̄
β ≡ Sµ̄

νSν̄
β. (77)

Similarly, the inverse metric relation (36) may be given in the squared form

gαβ = Fα
ν̄aνβ, (78)

where the “forward squared shift tensor” is defined by

Fα
ν̄ ≡ Sα

µ̄Sµ
ν̄. (79)

Utilizing (77), (79), and (23), then

Fµ̄
αFα

ν̄ = δµ
ν, Fα

µ̄Fµ̄
β = δα

β, (80)

so the forward and reverse squared shift tensors are inverses of each other, similar to the forward and
reverse shift tensors.

Note that (76) states that lowering Fµ̄
β by the absolute metric yields Fᾱβ equal to the natural

metric gαβ, and similarly (78) states that raising Fα
ν̄ yields Fαβ̄ equal to the inverse natural metric gαβ.

In an IC eigensystem, F̃α
ν̄ is diagonal since S̃α

ν̄ is. With the absolute and natural metrics ãµν = ηµν

and g̃αβ (and their inverses ãµν = ηµν and g̃αβ) also diagonal in an IC eigensystem (from above), then
raising/lowering the indices of F̃α

ν̄ by either metric yields a diagonal pure indice form (such as Fᾱβ),
resulting in the squared shift tensor Fα

ν̄ being a symmetric tensor in any coordinates when given in pure
form using either metric to raise/lower its indices (similar to the shift tensor Sα

µ̄). Using a similar
argument, the reverse squared shift tensor Fµ̄

β is also a symmetric tensor in any coordinates when given
in pure form using either metric.

Substituting the potential forms (68) and (72) of the forward and reverse shift tensors into (79)
and (77), the potential forms

Fα
µ̄ = exp(2wα

µ), Fµ̄
α = exp(−2wµ

α), (81)

are yielded for the forward and reverse squared shift tensors. Use was made of (66) for commuting
matrices to obtain (81). Using (81) in the squared form metric relations (76) and (78) yields

gαβ = aαµ exp(−2wµ
β), gαβ = exp(2wα

ν)aνβ. (82)

These “(squared) potential forms” for the natural metric and its inverse provide a convenient and
powerful means of expressing them in terms of gravity shifts, since they are compactly provided
in forms such that the overlap restriction and therefore the 1-to-1 gravity shifting is automatically
imposed. Similar to above for (75), the natural metric given by (82) is devoid of event horizons, since
in an IC eigensystem at a location, application of the Minkowski absolute metric ηµν in (82) yields a
diagonal natural metric with non-zero and finitely large diagonal terms.
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3.12. The “Star Case”

The natural field equation is developed such that it yields the observed post-Newtonian ap-
proximation for the natural metric (as discussed in the summary). The PN metric is provided in
the harmonic gauge in Poisson and Will [20] (Chap. 8) (hence referred to as “PW”), along with the
definitions of the utilized potentials. Consider the “star case” giving the field for a static spherically
symmetric mass approximating stars as well as planets. The harmonic gauge PN metric in the star
case may be readily shown to reduce to

ds2
N =

[
−1 + 2M/r − 2(M/r)2]dt2 +

[
1 + 2M/r

]
(dx2 + dy2 + dz2), (83)

where M is the gravitational mass that is yielded when combining the Newtonian potential with the
potentials resulting from pressure, internal energy, and the gravitational potential energy. This is the
post-Newtonian expansion of the Schwarzschild metric from general relativity when given in isotropic
coordinates, and it also serves as the star-case PN metric when given in the standard gauge (see PW [20],
Chap. 13).

Consider the potential form natural metric (82) as given by gαβ = ηαµ exp(−2wµ
β) in global

ICs. With the star case being static, the generated potential field has no time-space components
w0

j or wj
0. Then g00 = − exp(−2w0

0), g0j = 0, and gjk = exp(−2wj
k). Applying the exponential

expansion (64) to second order with w0
j = wj

0 = 0, the temporal metric term g00 is readily shown to
be −1 + 2w0

0 − 2(w0
0)

2. If then w0
0 is set to M/r, the second-order temporal term in (83) is generated.

The temporal term in (83) is assumed then for the star-case PN metric given in global ICs, as generated
using w0

0 = M/r in g00 = − exp(−2w0
0). To obtain the spatial term in (83) utilizing gjk = exp(−2wj

k),
the spatial subspace wj

k of the potential may be set to be diagonal with all diagonal terms equal to
−M/r. This yields 1 − 2wn

n = 1 + 2M/r for the first-order expansion of the spatial diagonal metric
terms gnn = exp(−2wn

n), and zero for the off-diagonal terms. The spatial term in (83) is assumed then
for the star-case PN metric given in global ICs, as generated using the diagonal wj

k = − δj
k M/r in

gjk = exp(−2wj
k). The global ICs are therefore assumed to be isotropic coordinates.

Summarizing the potential components from above, the global IC given potential tensor for the
star case is

wα
µ = diag

[
M/r,−M/r,−M/r,−M/r

]
. (84)

Utilizing the potential metric form (82), and applying the exponential expansion (64) to the star-case
potential, yields the exact star-case metric given by

ds2
N = − exp(−2M/r)dt2 + exp(2M/r)(dx2 + dy2 + dz2), (85)

which is the assumed exact natural metric for the star case when given in global ICs. The natural field
equation is purposely constructed such that it will yield this metric for the star case. This results then
in the natural field equation yielding the observed post-Newtonian approximation (83) of the star-case
metric as its solution. The validity of the star-case natural metric solution is justified by successfully
predicting the “classical tests” in our Solar System consisting of the deflection of light by the Sun, the
Shapiro time delay for radar signals, and the perihelion advance for the orbit of Mercury (where, as
established below, satisfaction of the SEP holds for the natural field equation, so the combined galactic
and cosmological background system may be ignored).

Applying the potential form (68) to (84), the global IC star-case shift tensor is

Sα
µ̄ = diag

[
e M/r, e−M/r, e−M/r, e−M/r ]. (86)

As can be seen, the global ICs utilized for the star case is indeed an eigensystem (though no tilde is used
here). The star-case shift tensor applies for the Earth-generated shift tensor field utilized in the above
Schild argument based evaluation given in global ICs, so the discussed temporal gravity shifting is
intrinsic temporal shifting given by dx̃0

S = S̃0
0̄ dx̃0

US where S̃0
0̄ = e M/r. Use of this value for S̃0

0̄ yields
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the naturally observed frequency shifting for light travelling up the tower with height h, as well as
the corresponding ratio of the bottom clock rate over the top, being given by S̃0

0̄(top)/S̃0
0̄(bottom)

approximated as 1 − gh/c2 in laboratory units. This is the same as in the equivalent inertial case where
the entire apparatus is accelerated at 1g relative to an absolute inertial frame, explicitly demonstrating
equivalence principle satisfaction for the predicted gravitational redshifting. Recall that the Schild
argument for gravitational redshifting was used to establish the existence of temporal gravity shifts,
but the existence of corresponding spatial gravity shifts was only inferred. The spatial gravity shifts in
the star-case shift tensor (86) are required though to obtain the post-Newtonian approximation (83)
of the star-case metric. The successful predictions of the classical tests (and others), made using the
star-case PN metric, are invoked to establish the existence of spatial gravity shifts.

Using dτN = 0 for natural interval measurement of gravity shifted light (from above), then the
star-case metric (85) yields cS = e−2M/r for IC shifted light speed in all directions. Gravity shifted light
outside a static spherical star or planet behaves then as if travelling through amorphous glass with an
index of refraction n = e 2M/r, which may be used to predict the observed bending of light paths by
the Sun, and to obtain the variable light speed in the Schild argument case.

A notable property for the star-case metric is the lack of an event horizon, as expected due to
event horizons being forbidden in general. With the lack of event horizons “closing off” causality,
observed “black holes” are renamed “black stars” when using GS theory to model them. Modelling
of “black stars” is provided in the Supplement, where it is demonstrated that such stars will still be
effectively “black,” justifying their namesake. Similar to when utilizing general relativity to model
them, it is shown that when using GS theory modelling, nongravitational forces are again not sufficient
to prevent complete gravitational collapse of a black star into a singularity. But as discussed in the
summary, the surface of a black star cannot move faster than the shifted light speed cS = e−2M/R

where R is the surface radius (having applied Birkhoff’s theorem for the natural metric outside the star
so it is given by (85)), and it can readily be shown that collapse at this exponentially small light speed
would take an infinite amount of time. Therefore, black stars have finitely large sizes given the finite age
of our universe.

Similar to black stars, for any collapsing object, it may be reasonably inferred that the exponential
relation (82) (or (75)) between the potential wα

µ and the natural metric gαβ results in a shifted light
speed cS at its surface, obtainable using the light equation (56) given in global ICs, that becomes
infinitesimally small exponentially as the object collapses towards a singularity. Under this exponential
“light speed governor” acting to limit collapse speeds, all collapsing objects remain finitely large at
all finite ages, barring singularity formation from collapsing objects in general. This property (discussed
in the summary) is examined in further detail in the Supplement. As can be seen, the exponential
potential form (68) for the shift tensor results in singularities of any kind being barred, whether they be
collapse-based singularities or the gravity shift overlap singularities discussed above.

3.13. Physical Plausibility

As demonstrated below, GS theory is compatible with quantum theory due to explicit formulation
in absolute flat spacetime. Then with the above-established elimination of event horizons, singularities,
and causality violations, all physical law and modelling using gravity shift theory is physically plausible. The
validity of this statement depends on satisfaction of all of the above gravity shifting constraints, which
have been shown to result in gravity shifting such that the “implausibilities”—consisting of event
horizons, singularities, and causality violations—have been barred. The shifting constraints have been
shown to result from application of the absolute flat spacetime and SEP postulates, so adherence to
these postulates bars the implausibilities.

A requirement for the natural and absolute field equations is that, for all cases, they yield solutions
that adhere to the gravity shifting constraints, thereby yielding solutions without the implausibilities.
The physical plausibility of GS theory rests then on the field equation solutions satisfying the shifting
constraints. It will be shown that the provided natural field equation (8) yields real-valued symmetric
potential solutions wα

µ (when given in pure form) such that the shift tensor Sα
µ̄ = exp(wα

µ) generates

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2025 doi:10.20944/preprints202411.0620.v7

https://doi.org/10.20944/preprints202411.0620.v7


41 of 120

gravity shifting that satisfies all of the constraints. This result is achieved so long as the natural matter
(and nongravitational field) sources are limited such that the solutions wα

µ do not yield a shifted light
speed cS that exceeds the null speed vNull , referred to as the “natural energy condition.” (This is the
“energy condition” discussed in the summary prior to identifying the “field equation” as the natural
field equation.) As discussed later, the natural energy condition is evidently satisfied for the commonly
accepted energy condition in general relativity applicable for ordinary natural matter. For any case, the
equivalent absolute field equation utilizes the same potential wα

µ solution as the natural field equation,
so again all gravity shifting constraints are satisfied.

3.14. Gravity Shifted Quantities

The quantities Zµν
US and Zαβ

S are utilized to depict partner properties for unshifted and shifted local
partner objects (which includes the unshifted and shifted local partner regions of extended objects using
the isolated unshifting condition), where “Zαβ ” represents quantities in general. From above, gravity
shifting on the uniform scale may be depicted by using the local partner event fields xUS and xS tied to
the shared material content of local partner objects, with the partner event fields given by the event
partner relation (16). As is well understood, application of a coordinate transform results in tensor
quantities, Zµν, depicting objects (meaning their properties) in the original coordinates, being given
by Z′ αβ = Lα′

µLβ′
νZµν in the new coordinates, where Lα′

µ is the coordinate transform Jacobian matrix.
As can be seen, the event partner relation (16) formally takes the mathematical form of a coordinate
transform. But as opposed to “passive” coordinate transforms where the coordinates are changed but
the locations of events are not, the event partner relation is an “active transform” (as often referred to)
where the locations of events are moved as expressed in common coordinates, so the coordinates are not
changed. As understood in gravitational physics, similar to passive coordinate transforms, application
of an active transform results in tensor quantities, Zµν

UT , depicting “untransformed” objects, being

given by Zαβ
T = Tα

µ̄Tβ
ν̄Zµν

UT depicting the “transformed” objects, where Tα
µ̄ is the active transform

Jacobian tensor. Therefore, application of the event partner relation (16) as an active transform for a
tensor quantity, Zµν

US, depicting an unshifted object, results in Zαβ
S depicting the shifted partner object

as given by the representative tensor “shift quantity (partner) relation”

Zαβ
S = Sα

µ̄Sβ
ν̄Zµν

US (zero order), (87)

where the shift tensor Sα
µ̄ is the active transform Jacobian tensor (the “zero order” indicator is explained

below). Note that since (16) holds only for the infinitesimally sized region about any location x utilized
as the shift origin X = x for (16), then for the quantities Zµν

US, Zαβ
S , and Sα

µ̄ used in (87), their location
x is the shift origin X = x for the active transform (16) applied in order to obtain (87). For instance,
Sα

µ̄(x) = Sα
µ̄(X = x). Similar to the Jacobian matrix Lµ

α′ for the inverse passive coordinate transform
being applied to the lowered indices of tensor quantities to transform them, the Jacobian tensor
Sµ̄

α(X = x) for the reverse event partner relation, (25), is applied to the lowered indices of unshifted
tensor quantities to obtain their shifted partners. For instance, ZS

α = Sµ̄
αZUS

µ .
Technically, the shift quantity relation (87) is only applicable for “zero-order” tensor quantities Zαβ

that do not contain derivatives, as indicated. This is because the event partner relation (16) used to obtain
(87) is a nondifferentiable homeomorphism between partner event fields on the uniform scale, so it
may only be applied to tensor quantities Zαβ that do not contain derivatives. The quantity relation
(87) is applicable then for all zero-order tensor quantities Zαβ utilized to depict object properties that
are subject to gravity shifting. This includes all zero-order native tensor quantities depicting matter
and the nongravitational fields, where a “native” quantity is one that does not contain a metric. An
example is the de Broglie wave 1-form kα for a particle (discussed later), with kS

α = Sµ̄
αkUS

µ relating
its partner values. The displacements tied to objects qualify as zero-order tensor quantities subject to
gravity shifts, so (87) is applicable yielding dxα

S = Sα
µ̄ dxµ

US, recovering the partner relation (14) itself.
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As it is the shifted objects that are actually present in a gravitational field, the shifted quantities
Zαβ

S are the actual such quantities Zαβ. This identification is formally expressed by the “shifted/actual
quantity equality”

Zαβ
S = Zαβ, (88)

which will be shown to hold for all shifted quantities Zαβ
S , including differentiated ones, except those

explicitly containing the shift or potential tensors and their derivatives. The equality (88) is consistent with
the identification of the shifted events with the actual events as stated by (13), so as expected (88) holds
for the shifted displacements as explicitly stated by dxα

S = dxα (15). On the other hand, the unshifted
partner quantities, Zµν

US, depicting the unshifted partner objects, are the hypothetical quantities obtained
if gravitation were removed in theory.

The gravitational field itself may be treated as an object subject to gravity shifting, as follows. Re-
moval of the shifting present implies removal of the actual gravitational field to obtain the hypothetical
partner “unshifted field” with vanishing field strength. The “unshifted (field) shift tensor” Sα US

µ̄ = δα
µ̄

is therefore equal to the delta tensor as stated. So the equivalent “unshifted potential tensor” wα US
µ = 0

is zero as stated. Use of the unshifted shift tensor in the metric relation (35) yields the “unshifted (field)
natural metric” gUS

µν equal to the absolute metric aµν. Application of gravity shifting to the unshifted
field yields the partner “shifted field.” This results in application of the shift quantity relation (87) to
the unshifted metric gUS

µν to yield the partner “shifted natural metric”

gS
αβ = (gUS

µν = aµν)Sµ̄
αSν̄

β = gαβ. (89)

The shifted natural metric gS
αβ is seen to equal the actual natural metric gαβ obtained via the metric

relation (35) (as indicated), satisfying (88). The shifted/actual quantity equality (88) therefore holds for
all zero-order matter and nongravitational field quantities that either are native quantities or contain
the natural metric.

Application of gravity shifting to obtain the partner shifted field also results in application of the
quantity relation (87) to the unshifted shift and potential tensors, yielding SαS

µ̄ = δα
µ̄ for the “shifted

shift tensor,” and wαS
µ = 0 for the “shifted potential tensor.” These have the same vanishing field

strength values as their unshifted partners, so they do not satisfy (88) since the actual values of the
shift and potential tensors are Sα

µ̄ and wα
µ for the actual gravitational system with nonvanishing field

strength. This inequality can be understood in the context of SαS
µ̄ and wαS

µ being the shift and potential
tensors for the shifted partner of an unshifted local gravitational system where the actual system acts
as a “background system” applying the shifting. So SαS

µ̄ and wαS
µ are the shift and potential tensors for

the partner shifted local gravitational system only, which are not then the shift and potential tensors of
the actual system inducing the shifting. But as shown the natural metric gS

αβ for the partner shifted

local gravitational system, obtained by applying (87) to the metric gUS
µν = aµν for the unshifted local

system, does indeed match the metric gαβ of the actual system. Therefore, the only zero-order shifted

quantities Zαβ
S for which the shifted/actual quantity equality, Zαβ

S = Zαβ (88), does not hold, are ones
explicitly containing the shifted shift tensor SαS

µ̄ = δα
µ̄ and/or the shifted potential tensor wαS

µ = 0.
The absolute metric aµν is not subject to gravity shifting, since it is an absolute quantity that does not

depict a property of matter or fields that are tied to the local partner event fields xUS and xS. Since the
absolute metric aµν does not shift, any quantities Zαβ that contain the absolute metric are not considered
shifted quantities Zαβ

S , even if they consist of shifted native matter or nongravitational field quantities
for which the absolute metric has then been applied. However, consider the following. Prior to shift
application, the unshifted natural metric gUS

µν may be substituted for the equal valued absolute metric
aµν for any zero-order unshifted partner quantity Zµν

US containing the absolute metric. Therefore, when
(87) is applied to Zµν

US, (89) is applied to the contained unshifted natural metric gUS
µν = aµν, yielding

the shifted natural metric gS
αβ utilized in place of the absolute metric aαβ. The resultant quantities

formed using this “absolute (metric) replacement method” are therefore shifted quantities Zαβ
S . As can
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be seen, use of the absolute replacement method effectively enables all zero-order quantities to be
subject to shifting, yielding universal applicability of the shift quantity partner relation (87). In applying
the absolute replacement method, the absolute metric aµν contained in any Zµν

US is interpreted as the
unshifted natural metric gUS

µν = aµν. If Zµν
US is aµν itself, use of the absolute replacement method yields

(89) giving the shifted natural metric gS
αβ, which can be seen to also reproduce the metric relation

gαβ = aµνSµ̄
αSν̄

β (35) used to provide the actual natural metric gαβ = gS
αβ. The absolute metric in the

metric relation gαβ = aµνSµ̄
αSν̄

β may be interpreted then as the unshifted natural metric gUS
µν = aµν, so

the actual natural metric gαβ = gS
αβ may be considered to be a shifted quantity Zαβ

S , with again (88)

applicable. Now if the absolute metric is applied to an already formed shifted quantity Zαβ
S , then the

resultant quantity Zαβ is not a shifted quantity due to the presence of aµν.
The global IC given unshifted quantities Žµν

US are inertially valued, since they depict unshifted
objects posed in the absolute inertial frames as given by their global ICs (using a “check” to indicate
global IC use for clarity). The global IC values of the unshifted quantities Žµν

US are therefore their
known inertial values, such as the known inertial values for quantities depicting matter and the
nongravitational fields. The global IC values for the unshifted gravitational field quantities are
ǧUS

µν = ǎµν = ηµν for the unshifted natural metric, and Šα US
µ̄ = δα

µ̄ and w̌α US
µ = 0 for the unshifted

shift and potential tensors. Use of the known inertial global IC values, Žµν
US, for the unshifted partner

quantities, enables a determination of the global IC values Žαβ
S for zero-order tensor shifted quantities

via use of (87). This yields ǧS
αβ = ηµνŠµ̄

αŠν̄
β, ŠαS

µ̄ = δα
µ̄, and w̌αS

µ = 0. The values of the zero-order

shifted quantities, Zαβ
S , in any coordinates, may be obtained then via coordinate transformation from

their known global IC values Žαβ
S . Finally, application of the equality Zαβ

S = Zαβ (88) yields the actual
values for all zero-order tensor quantities subject to gravity shifting, except those explicitly containing
the shift or potential tensors, in which case the actual values Sα

µ̄ and wα
µ may be utilized in the

expressions for the shifted quantities.
All “higher-order” shifted quantities, Zαβ

S , containing derivatives of arbitrarily high order, may be provided

by differentiating zero-order tensor quantities Zαβ
S obtained via use of the shift quantity partner relation (87).

As a result, the shifted/actual quantity equality Zαβ
S = Zαβ (88) holds for all shifted quantities Zαβ

S ,
including differentiated ones, except those explicitly containing the shift or potential tensors and their
derivatives, as stated when (88) was given. Note that due to the actual and shifted event equality (13),
differentiation with respect to the shifted event locations xµ

S is the same as with respect to the actual

event locations xµ, supporting the equality Zαβ
S = Zαβ for differentiated quantities. The differentiated

shifted quantities Zαβ
S are not limited to being tensor quantities, though they must be formed from

zero-order tensor quantities Zαβ
S obtained via (87). A key example is the natural metric compatible

connection given by its Christoffel symbol

Γα
µν =

1
2

gασ(gσν,µ + gµσ,ν − gµν,σ), (90)

where Γα
µν = Γα S

µν as constructed from the zero-order gαβ = gS
αβ. From this the natural metric curvature

tensor Rα
βµν = RαS

βµν may be formed as provided by the usual

Rα
βµν =

∂ Γα
βν

∂xµ −
∂ Γα

βµ

∂xν
+ Γα

σµΓσ
βν − Γα

σνΓσ
βµ = 0. (91)

Differentiation of the zero-order tensor quantities Zαβ
S may be performed using ordinary derivatives,

natural covariant derivatives utilizing the natural metric connection Γα
µν, or absolute covariant deriva-

tives using the absolute metric connection Aα
µν. Since it is not subject to shifting though, absolute

covariant differentiation yields a quantity that is no longer considered a shifted quantity Zαβ
S . To obtain
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then shifted quantities Zαβ
S , differentiation of the zero-order tensor quantities Zαβ

S is limited to use of
ordinary derivatives and natural covariant derivatives.

Application of the shift quantity relation to zero-order scalar quantities yields

ZS = ZUS (zero order), (92)

stating that zero-order scalar shifted quantities have values equal to their unshifted partners. This
is applicable for “intrinsically” scalar quantities such as electric charge, and for zero-order scalar
quantities formed by tensor contractions such as ZαS

α = Sα
µ̄Sν̄

αZµUS
ν = ZµUS

µ .

4. The Local Diffeomorphism and Satisfaction of the Equivalence Principle
4.1. The Local Diffeomorphism

As will be shown, if a finitely large local system is surrounded by a gravitational “background
system,” the background system induces a local diffeomorphism applied to the local system so long as
the effects of background system curvature may be neglected. The local diffeomorphism (“morph”)
between partner event fields takes the form

xα
M = Mα(xµ

UM), (93)

where Mα(xµ
UM) is a continuously differentiable function such that the locations xα

M of the “morphed”
partner events, xM, are in 1-to-1 relation to the locations xµ

UM of the “unmorphed” partner events, xUM,
over the extended spacetime region of the finitely large local system. This implies the existence of a
1-to-1 reverse morph given by

xµ
UM = Mµ̄(xα

M), (94)

with the “bar” over the indice used for M indicating the reverse morph. The resultant differential
forms of the forward and reverse morphs are

dxα
M = Mα

µ̄ dxµ
UM, dxµ

UM = Mµ̄
α dxα

M, (95)

where Mα
µ̄ and Mµ̄

α are the forward and reverse morph Jacobian tensors defined by

Mα
µ̄ ≡ ∂Mα(xρ

UM)/∂xµ
UM = ∂xα

M/∂xµ
UM,

Mµ̄
α ≡ ∂Mµ̄(xσ

M)/∂xα
M = ∂xµ

UM/∂xα
M. (96)

Similar to the shift tensors, the quantities Mα
µ̄ and Mµ̄

α are indeed tensors, since they transform as
tensors when coordinate transforms are applied to the differential morphs (95). Similar to the local
event partner relation (16), the morph (93) formally takes the mathematical form of a passive coordinate
transform, but is instead an active transform where the locations of events are moved as expressed in
common coordinates. However, the event partner relation is a nondifferentiable homeomorphism between
partner event fields over an infinitesimally sized spacetime region, whereas the morph is a continuously
differentiable diffeomorphism between partner event fields over an extended region.

4.2. Lack of Integrability for the Partner Relation and the Induction of Natural Metric Curvature

For background, see Schutz [18] (Chap. 5) for a discussion on integrability conditions for coordi-
nate versus noncoordinate bases treated as the Jacobian matrices for passive coordinate transforms.
Since the math is formally the same, this material is applicable for Mµ̄

α versus Sµ̄
α treated as Jacobian

tensors for the active transforms consisting of the reverse morph (94) and the reverse partner relation
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(24). Adapting this discussion to the morph versus partner relation case, similar to coordinate bases,
Mµ̄

α for the differential form (95) of the reverse morph satisfies the “integrability condition”

∂

∂xβ
M

Mµ̄
α =

∂2xµ
UM

∂xβ
M∂xα

M

=
∂2xµ

UM

∂xα
M∂xβ

M

=
∂

∂xα
M

Mµ̄
β, (97)

having used (96) and the commutivity of partial derivatives. This implies that the differential form
may be integrated to yield the reverse morph (94) itself (see [21], Chap. 4, for mathematical proof), as
expected since the differential form was obtained from the reverse morph. The reverse morph may
then be inverted to yield the forward morph (93).

If the reverse partner relation (24) were integrable, the integrability condition for Sµ̄
α would hold,

obtainable by substituting “S” for “M” throughout (97). However, similar to noncoordinate bases,
Sµ̄

α does not generally satisfy the integrability condition, formally stated by the generally applicable
“nonintegrability condition”

∂Sµ̄
α/∂xβ

S ̸= ∂Sµ̄
β/∂xα

S. (98)

An example of nonintegrability is the star case, where from (86) the reverse shift tensor in global ICs is

Sµ̄
α = diag

[
e−M/r, e M/r, e M/r, e M/r ]. (99)

Then ∂S0̄
0/∂xn

S for the reverse shift tensor equals ∂S0̄
0/∂xn ̸= 0 for any n, where dxn

S = dxn was
utilized to convert from ∂S0̄

0/∂xn
S to ∂S0̄

0/∂xn. But using dx0
S = dx0, ∂S0̄

n/∂x0
S equals ∂S0̄

n/∂x0 = 0.
The nonintegrability condition applies then for the star case, so the reverse partner relation cannot be
integrated over an extended spacetime region to yield a reverse morph in the form of (94), barring then
formation of a forward morph (93) by inverting a reverse morph. The single star case may be used as
a counterexample to establish that the reverse partner relation (24) is not generally integrable, barring its
integration to form a morph in either reverse or forward form (as discussed in the summary).

On a technical note, when examining integrability above, use of the reverse partner relation (24)
was selected in order to utilize the equality, dxµ

S = dxµ, of the shifted partner and actual displacements,

so that ∂Sµ̄
α/∂xβ

S may be conveniently converted to the equal valued ∂Sµ̄
α/∂xβ to take the derivatives

of the reverse shift tensor Sµ̄
α, which is given as a function of the actual event locations xσ (such as

in the reverse star-case shift tensor (99)). On the other hand, attempted use of the forward partner
relation (14) would require taking the derivatives ∂Sα

µ̄/∂xβ
US in order to form the nonintegrability

condition, which is inconvenient since ∂Sα
µ̄/∂xβ

US does not equal ∂Sα
µ̄/∂xβ due to dxµ

US ̸= dxµ. For
this reason, the reverse partner relation, and the corresponding differential form of the reverse morph,
are utilized when evaluating integration.

Consider substitution of Mµ̄
α for Sµ̄

α in the metric relation (35) to form gαβ = aµν Mµ̄
α Mν̄

β. As
this is formally the same as the passive coordinate transform of the absolute metric aµν where Mµ̄

α

is the reverse Jacobian matrix, then the natural metric gαβ in this case has no curvature since the
absolute metric has no curvature. This may be verified by forming the curvature tensor Rα

βµν from
the metric aµν Mµ̄

α Mν̄
β and showing that it vanishes due to Mµ̄

α satisfying the integrability condition
(97) applicable for coordinate transform Jacobians. On the other hand, returning to the actual metric
relation gαβ = aµνSµ̄

αSν̄
β, adherence to the nonintegrability condition (98) for Sµ̄

α results in a nonzero
curvature tensor Rα

βµν. The tedious formal proof of this result is not shown here, but is verified for
the star-case metric (85) obtained from use of the metric relation with a Sµ̄

α that has been shown to
adhere to the nonintegrability condition. As the lack of integrability for the reverse partner relation
(24) is equivalent to the nonintegrability condition, then the lack of integrability for the reverse partner
relation induces natural metric curvature. The lack of partner relation integrability results in the metric
relation gαβ = aµνSµ̄

αSν̄
β not taking the form of a passive coordinate transform for the absolute metric,

as consistent with the induction of natural metric curvature under the nonintegrability condition.
Since natural observers characterize absolute spacetime using the natural metric gαβ due to their use
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of gravity shifted instruments, the lack of partner relation integrability for gravity shifts is the mechanism
underlying natural observers perceiving the absolute flat spacetime manifold as being curved (as stated in the
summary).

4.3. Partner Paths

Even though the partner relation (in either forward or reverse form) cannot in general be integrated
to obtain a diffeomorphism between partner event fields, partner unshifted and shifted event paths can
be constructed. This extends the existence of partner events from the uniform scales for partner event
fields, generally limited to infinitesimal spacetime regions, to extended spacetime regions containing
partner event paths tied to partner shifted and unshifted objects running along the partner paths.

In preparation for the construction of partner paths, the formulation of unshifted and shifted
geodesics is helpful. Consider an “unshifted path” constructed from unshifted displacements dxµ

US,
which is then parameterized by using the unshifted path parameter λUS along its length, yielding an
unshifted curve xµ

US(λUS) (i.e., a parameterized path) with tangent vectors Uµ
US ≡ dxµ

US/dλUS. The
length sUS of the unshifted path is obtained by integrating the unshifted proper intervals dsUS for the
unshifted displacements dxµ

US, as given by the unshifted line element (31), yielding

sUS =
∫

|aµν dxµ
US dxν

US|1/2 =
∫

|aµνUµ
USUν

US|1/2 dλUS. (100)

The “unshifted geodesic” running between two events is the unshifted curve that yields an extremum
for its length sUS, resulting in the unshifted geodesic equation

dUµ
US

dλUS
+ Aµ

ρσUρ
USUσ

US = 0, (101)

where Aµ
ρσ is the absolute metric Christoffel symbol given by (12). As is understood in standard

treatments of this material (such as in MTW [16]), geodesics are curves that parallel transport their own
tangent vectors under the given connection, with the geodesic equation depicting the parallel transport.
This is the case then for the parallel transport of Uµ

US under the absolute metric connection Aµ
ρσ, with

its parallel transport depicted by (101). The parameter λUS becomes an affine parameter for unshifted
geodesics, which may be replaced by sUS for absolutely spacelike geodesics and τUS for absolutely
timelike geodesics, since they are also affine parameters proportional to λUS plus a constant. The
absolutely timelike unshifted geodesics give the geodesic motions of hypothetical unshifted particles
when gravitation is removed, which are dictated then by the absolute metric connection Aµ

ρσ. For the
geodesic motion of unshifted light, the more general λUS is utilized since τUS = 0. With Ǎµ

ρσ = 0 in
global ICs, the geodesic motions of unshifted particles and light are inertial in the global ICs of absolute
inertial frames, and the absolutely spacelike unshifted geodesics are straight lines.

Consider a “shifted path” constructed from shifted displacements dxα
S, which is then parameter-

ized by using the shifted path parameter λN along its length, yielding a shifted curve xα
S(λN) with

tangent vectors Uα
S ≡ dxα

S/dλN . As will be shown, the length of interest for the shifted path is the
naturally measured length sN obtained by integrating the naturally measured shifted proper intervals
dsN = dsS(N) for the shifted displacements dxα

S, as given by the natural metric line element (34),
yielding

sN =
∫

|gαβ dxα
S dxα

S|1/2 =
∫

|gαβUα
SUβ

S |
1/2 dλN . (102)

The “shifted geodesic” running between two events is the shifted curve that yields an extremum for its
natural length sN , resulting in the shifted geodesic equation

dUα
S

dλN
+ Γα

µνUµ
S Uν

S = 0, (103)
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where Γα
µν is the natural metric Christoffel symbol given by (90). Similar to the unshifted geodesics,

the shifted geodesics are curves that parallel transport the tangent vector Uα
S under the natural metric

connection Γα
µν, with its parallel transport depicted by (103). The parameter λN becomes an affine

parameter for shifted geodesics, which may be replaced by sN for naturally spacelike geodesics and
τN for naturally timelike geodesics, since they are also affine parameters proportional to λN plus a
constant. This is the reason for using the natural designation “N” for λN . For the geodesic motion of
shifted light, the more general λN is utilized since τN = 0. The naturally timelike shifted geodesics
depict the geodesic motions of shifted/actual “test particles” (ones that do not modify the field
created by the surrounding gravitational sources) under the action of the gravitational field as given
by the natural metric connection Γα

µν. This result agrees with natural observations of free-particle
gravitational motions, which is the reason why the naturally measured path length sN was utilized
when the principle of least action was applied to obtain the shifted geodesics. When the least action
principle is used to obtain universal geodesic motions for all free-moving test particles, the same
motions are yielded independent of their mass and composition, in agreement with the weak form of
the postulated equivalence principle as required.

To construct arbitrary partner paths running from a common shift origin X, a “segmented con-
struction” technique is employed where partner paths are segmented into partner pairs of infinitesimal
incremental segments δxµ

US and δxα
S. Partner segments are related to each other via parallel transport

back to the common shift origin X, where at X the partner segments adhere to the shift origin partner
relation

δxα
S|X = Sα

µ̄|Xδxµ
US|X , (104)

as is required for partner segments at a single location. The partner paths are constructed then
by adding their respective partner segments. The arbitrary path parameter λUS may be utilized
for unshifted paths, yielding curves where the tangent vectors for the segments δxµ

US are Vµ
US ≡

δxµ
US/δλUS with δλUS the infinitesimal incremental intervals for the segments. The unshifted segment

tangent vectors parallel transport under the absolute directional covariant derivative as given by

DAVµ
US

dλUS
≡

dVµ
US

dλUS
+ Aµ

ρσUρ
USVσ

US = 0, (105)

where Uµ
US = dxµ

US/dλUS is the usual tangent vector, for unshifted path displacements dxµ
US, that

is utilized to form the directional covariant derivative. The form of the unshifted segment parallel
transport equation is consistent with the unshifted geodesic equation (101), as required to yield
unshifted geodesics in the infinitesimal limit where the segment tangent vector Vµ

US = δxµ
US/δλUS

becomes Uµ
US = dxµ

US/dλUS. The arbitrary path parameter λN may be utilized for shifted paths,
yielding curves where the tangent vectors for the segments δxα

S are Vα
S ≡ δxα

S/δλN with δλN the
infinitesimal incremental intervals for the segments. The shifted segment tangent vectors parallel
transport under the natural directional covariant derivative as given by

DNVα
S

dλN
≡

dVα
S

dλN
+ Γα

µνUµ
S Vν

S = 0, (106)

where Uα
S = dxα

S/dλN is the usual tangent vector, for shifted path displacements dxµ
S , that is utilized to

form the directional covariant derivative. The form of the shifted segment parallel transport equation
is consistent with the shifted geodesic equation (103), as required to yield shifted geodesics in the
infinitesimal limit where the segment tangent vector Vα

S = δxα
S/δλN becomes Uα

S = dxα
S/dλN .

The detailed segmented construction of partner paths is developed below, which utilizes the
key “interval constancy property,” established here. Since an unshifted or shifted path segment “δxα ”
parallel transports via D δxα/dλ = 0 the same as any vector under parallel transport, then δλ in the
tangent vector Vα = δxα/δλ must be constant under parallel transport. Therefore, the interval δλ for
an unshifted or shifted path segment δxα does not change when its tangent vector δxα/δλ is parallel
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transported. This is similar to the proper intervals δs for segments δxα remaining constant under
parallel transport using the applicable metric connection, noting that proper path distances s may be
utilized to parameterize any portions of paths that are timelike or spacelike. Summarizing, δλUS for
unshifted segments δxµ

US along an arbitrary unshifted path, and δλN for shifted segments δxα
S along an

arbitrary shifted path, do not change when the tangent vectors Vµ
US = δxµ

US/δλUS and Vα
S = δxα

S/δλN

for these segments are parallel transported under their applicable metric connections via (105) or (106),
regardless of the path parameters λUS and λN utilized.

Up to this stage in the partner path development, the path parameters λUS and λN have been
treated as independent arbitrary parameters. Going forward, the “general interval equality”

δλN |X = δλUS|X (107)

is applied for partner segments δxµ
US and δxα

S when transported back to the shift origin. This equality
is obtained using the partner equivalence property for natural measurement of local partner objects,
where δλUS|X is interpreted as the naturally measured arbitrary interval δλUS(N)|X for δxµ

US|X using
unshifted instruments, and δλN |X is interpreted as the partner naturally measured interval δλS(N)|X
for δxα

S|X using the raw shifted partner instruments. So (107) holds since δλS(N)|X = δλN |X equals
δλUS(N)|X = δλUS|X under partner equivalence. As a verification, when δλUS|X is a proper interval,
(107) yields the expected partner equivalence based proper interval equality δsN |X = δsUS|X (as per
(32)) applicable for partner segments at X.

Utilizing the interval constancy property and the general interval equality (107), the segmented
construction of arbitrary partner paths is as follows. An arbitrary unshifted path is run from the shift
origin, X, and parameterized with an arbitrary parameter λUS to obtain the curve xµ

US(λUS). It is then
divided into infinitesimal incremental segments δxµ

US along its length, each with its interval δλUS so
that the tangent vector Vµ

US = δxµ
US/δλUS may be formed. The first unshifted path segment at X is

shifted, via (104), to form the first shifted path segment δxα
S at X. Application of (107) to the shift origin

partner relation, (104), yields partner tangent vectors Vµ
US|X = [δxµ

US/δλUS]X and Vα
S |X = [δxα

S/δλN ]X
that satisfy the “tangent vector” partner relation

Vα
S |X = Sα

µ̄|X Vµ
US|X . (108)

This provides the tangent vector Vα
S for the first shifted path segment δxα

S, located at X. The second
unshifted path segment, δxµ

US, starting from the head of the first segment, is then parallel transported
using (105) back to the shift origin X, with δλUS for this segment not changing under its parallel
transport via its tangent vector. The shift origin partner relation (104) is applied to the second
segment δxµ

US at X to form the shifted partner segment δxα
S, and then Vα

S = δxα
S/δλN is formed where

δλN = δλUS as per (107), yielding satisfaction of (108). The shifted partner segment at X is then
parallel transported, using (106), so that its tail is joined to the head of the first shifted path segment.
Since δλN for a shifted segment δxα

S does not change when parallel transported via its tangent vector,
then it has the same value δλUS as the second unshifted segment at X and therefore in its original
location. With δλN = δλUS, this second segment for the shifted path is considered to be the shifted
partner of the second segment of the unshifted partner path, since it was obtained by applying the
rules of unshifted and shifted parallel transport combined with uniform-scale gravity shifting at the
shift origin X. This process is repeated for the third unshifted segment and so on, yielding the shifted
partners of the unshifted segments, which are successively added to each other to form the partner
shifted path xα

S(λN) to the arbitrary unshifted path xµ
US(λUS).

As δλN = δλUS for the partner segments along the entire lengths of partner paths, then for a
given unshifted segment δxµ

US located at λUS from the shift origin X, the location of its partner shifted
segment δxα

S has the same value
λN = λUS. (109)
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When the partner paths are exclusively timelike or spacelike, substitution of sN for λN , and sUS for
λUS, yields sN = sUS for the proper path distances to partner segments. This is as expected since both
δsN and δsUS remain constant for partner segments under their respective parallel transports, and
δsN |X = δsUS|X when each unshifted partner segment transported back to X is then shifted to obtain
its shifted partner segment, yielding δsN = δsUS for all partner segments, and therefore sN = sUS

when combined.
Shifted paths, tied to shifted objects running along them, are the paths that actually exist in a

gravitational field, with path locations xα
S(λN) that are the locations xα of actual events x in the absolute

spacetime manifold as per (13). Whereas the unshifted partner paths, tied to the unshifted partner
objects running along them, are the hypothetical paths obtained when gravitation is removed, yielding
path locations xµ

US(λUS) that are the locations of the hypothetical unshifted path events xUS(λUS) that
are partners to the shifted/actual path events xS(λN = λUS) = x with locations xα

S(λN = λUS) = xα.
If an unshifted path is a geodesic satisfying (101), then application of the above segmented

construction yields a shifted partner path that is a geodesic satisfying (103). To see that this is the case,
when each segment δxµ

US for the unshifted geodesic is parallel transported via (105) back to the shift
origin, it runs parallel to the first unshifted segment located at X. When the transported segment at X
is shifted via (104) to yield its shifted partner δxα

S, the shifted partner runs parallel to the first shifted
segment. Therefore, using (106), parallel transporting the second shifted partner segment, initially at X,
to its place beyond the first shifted segment, yields a segment parallel to the first segment as required
for a geodesic. Repeating this for the third shifted partner segment, and so on, yields segments parallel
to their preceding segments as the shifted path is constructed, resulting in a partner shifted path that is
a shifted geodesic satisfying (103). As is generally the case for geodesics, each partner geodesic may be
generated by continuously parallel transporting the first segment at the shift origin X, yielding partner
geodesics in their entirety (they may be run to arbitrarily high lengths) uniquely determined by parallel
transporting the first partner segments at X as “generators.” If the first unshifted partner segment
δxµ

US|X is absolutely timelike with proper interval δτUS|X , then via (32) the first shifted partner segment
δxα

S|X is naturally timelike with interval δτN |X = δτUS|X, resulting in timelike partner geodesics in
their entirety since their generating segments at the shift origin are timelike. Similarly, an absolutely
spacelike δxµ

US|X yields a naturally spacelike δxα
S|X with δsN |X = δsUS|X (here specifically spacelike

intervals), resulting in spacelike partner geodesics in their entirety since their generating segments at
X are spacelike. Finally, an absolutely null δxµ

US|X , with proper interval δτUS|X = 0, yields a naturally
null δxα

S|X with δτN |X = δτUS|X = 0, resulting in null geodesics depicting the motions of partner
unshifted and shifted light. The timelike and null partner geodesics are as expected for partner particles
and light moving from a common shift origin with path segments δxµ

US|X and δxα
S|X related by the

uniform-scale partner relation (104) applicable at a single location. The generation of these expected
partner geodesics by the given segmented construction technique verifies its validity.

4.4. Establishing the Local Diffeomorphism

A “nongravitational system” is a system consisting of matter and nongravitational fields with
weak enough source strength that their contribution to the gravitational field may be considered
negligible (the usual definition). So if a local nongravitational system is posed in the gravitational
field of a surrounding “background system,” the only field present is the background system field. The
background system field is therefore the field for the total system consisting of the background system
and the local nongravitational system combined. This equality is formally stated by

gB
αβ = gαβ, SαB

µ̄ = Sα
µ̄, wαB

µ = wα
µ, (local nongravitational system) (110)

where “B ” is used to indicate the background system field quantities, and the total system field
quantities are unlabeled. When establishing the local diffeomorphism below based on use of local
nongravitational systems, equation (110) is “automatically” utilized to substitute background field
quantities for the total field quantities found in previously given formulations (unless otherwise stated).
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Therefore, for a local nongravitational system, the nongravitational material content is shifted by the
background system shift tensor field SαB

µ̄ , yielding background shifted paths tied to the background
shifted nongravitational material content. Consider the actual “gravitational case” consisting of a
background shifted path tied to the background shifted nongravitational material content of a finitely
large local nongravitational system, as posed in the gravitational field of a surrounding background
system. Removal in theory of the background field yields the hypothetical partner “inertial case”
consisting of the unshifted partner path tied to the same nongravitational material content as the shifted
path, with the partner material content now unshifted. The “inertial case” is referred to as such since
the lack of a background field results in inertial conditions for the unshifted partner path, and for the
unshifted nongravitational material content it is tied to.

Starting with the inertial-case unshifted partner paths utilizing global ICs, then via (105) with a
zero-valued absolute metric connection Ǎµ

ρσ, the IC components V̌µ
US of an unshifted path segment

tangent vector V⃗US = δx⃗US/δλUS remain fixed when parallel transported. With the general interval
δλUS remaining fixed under the interval constancy property when V⃗US is parallel transported, then the
global IC components δx̌µ

US of the unshifted segment vector δx⃗US itself remain fixed. So when parallel
transported back to the shift origin,

δx̌µ
US|X = δx̌µ

US(λUS), (111)

where the segment on the right is at its original unshifted path location λUS.
Any gravitational-case shifted path may be obtained by applying the background system field to

the partner inertial-case unshifted partner path. Using the tangent vector partner relation (108), it may
be readily shown that when parallel transported back to the shift origin, the dot products of different
partner path segment tangent vectors are related via the equality

[
V⃗S

N· W⃗S
]

X =
[
V⃗US

A· W⃗US
]

X , (112)

where N over a dot is the inner product using the natural metric, in this case the background system
natural metric gB

αβ, and A over a dot is the inner product using the absolute metric. Consider arbitrary
unshifted paths in a given global IC system, and their shifted partner paths. At the shift origin, the
tangent vectors e⃗(µ̌)US|X ≡ [δx⃗(µ̌)US/δsUS]X for any unshifted path segments δx⃗(µ̌)US|X running along
the four IC axis directions, as parameterized by their proper displacements δsUS|X (one temporal
and three spatial), are equal to the fixed global IC basis vectors e⃗(µ̌) at all locations. Then with
e⃗(µ̌)US|X = e⃗(µ̌) for a given e⃗(µ̌)US|X , its global IC components are eα̌

(µ̌)US|X = δα
µ. The shifted partner

segments for each of the four δx⃗(µ̌)US|X are designated as δx⃗(µ̂)S|X. The tangent vectors for the four
δx⃗(µ̂)S|X are given by e⃗(µ̂)S|X ≡ [δx⃗(µ̂)S|X/δsN ]X with δsN |X = δsUS|X via (32), where e⃗(µ̂)S|X will be
utilized as coordinate basis vectors below with a “hat” designating their coordinates. This is why the
tetrad designator (µ̂) is used for the shifted partner segments δx⃗(µ̂)S|X . Application of (108), utilizing
the background shift tensor, yields the global IC given “basis vector” partner relation

eα̌
(µ̂)S|X = ŠαB

σ̄ |X eσ̌
(µ̌)US|X (113)

in component form. Substituting δσ
µ for eσ̌

(µ̌)US|X yields the IC values

eα̌
(µ̂)S|X = ŠαB

µ̄ |X (114)

for the shifted basis vectors at X. Summing the products with e⃗(α̌) on both sides of (114), and using the
equality e⃗(α̌) = e⃗(α̌)US|X on the right, results in the basis vector partner relation

e⃗(µ̂)S|X = ŠαB
µ̄ |X e⃗(α̌)US|X (115)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2025 doi:10.20944/preprints202411.0620.v7

https://doi.org/10.20944/preprints202411.0620.v7


51 of 120

in vector form. Finally, substitution of either (113) or (115) into the partner tangent vector dot product
equality, (112), yields the partner basis dot products

[
e⃗(µ̂)S

N· e⃗(ν̂)S
]

X =
[

e⃗(µ̌)US
A· e⃗(ν̌)US

]
X = ηµν (116)

at the shift origin, where use was made of e⃗(µ̌)US|X = e⃗(µ̌), and of e⃗(µ̌)
A· e⃗(ν̌) = ǎµν = ηµν for the global

IC basis vectors.
Utilizing the gravitational-case shifted geodesics run from the shift origin, as given by the shifted

geodesic equation (103) using the background natural metric gB
αβ to form the Christoffel symbol, the

set of naturally orthonormal e⃗(µ̂)S|X (as per (116)) may be used to establish Riemann normal coordinates
such as shown in PW [20] (Chap. 5). The shift origin X is therefore the Riemann coordinate origin. The
quantities e⃗(µ̂)S|X are the Riemann coordinate basis vectors at the coordinate origin X, with Riemann
coordinate values

eα̂
(µ̂)S|X = δα

µ, (117)

justifying the above identification of the shifted partners e⃗(µ̂)S|X to e⃗(µ̌)US|X as coordinate basis vectors.
The utilized “hat” designates then the Riemann coordinates. With their basis vectors e⃗(µ̂)S|X and
e⃗(µ̌)US|X = e⃗(µ̌) being partners, the constructed Riemann coordinates are “partner coordinates” to the
utilized global ICs. As shown in PW, the natural metric near X is given by

ĝB
µν = ηµν −

1
3

R̂B
µανβ|X x̂α x̂β + O(x̂3) (118)

in Riemann normal coordinates, where its Christoffel symbol obeys

Γ̂µB
αβ |X = 0, (∂β̂Γ̂µB

να )X = −1
3
(R̂µB

ναβ + R̂µB
ανβ)X , (119)

noting use of the background natural metric for the formulation being made here. The Riemann
coordinates represent gravitational free-fall frames of reference, specifically the free-fall frames of the
surrounding background systems. The Riemann coordinates provide locally inertial coordinates under
the background natural metric since

ĝB
µν|X = ηµν, (∂β̂ ĝB

µν)X = 0, (120)

and since the shifted geodesics are straight lines when close enough to X that the curvature-induced
change in Γ̂µB

να from zero, as per (119), may be considered to induce negligible “deflections” from
straight lines. The term “Riemann inertial coordinates (ICs)” refers to Riemann coordinates when
specifically utilized to provide locally inertial coordinates (as opposed to “Riemann coordinates” not
limited to being inertial coordinates). The Riemann IC systems provide then locally inertial frames of
reference as concerns the inertial geodesic motions of shifted/actual particles and light.

Consider the actual “gravitational case” consisting of a finitely large local nongravitational system
for which the curvature of the surrounding background system’s field yields negligible “segment
transport effects,” meaning effects on the parallel transport of path segments for shifted paths running
throughout the local system. Then background system locally inertial free-fall frames exist, as provided
by their Riemann ICs, that subtend the finitely large local nongravitational system, with therefore a zero-
valued background natural metric connection Γ̂µB

να over each inertial frame as per (119) with background
curvature neglected. So in any given inertial free-fall frame, via (106) utilizing Γ̂µB

αβ = 0, the components

V̂µ
S of a shifted path segment tangent vector V⃗S = δx⃗S/δλN remain fixed when parallel transported.

With the general interval δλN remaining fixed under the interval constancy property when V⃗S is
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parallel transported, then the Riemann IC components δx̂µ
S of the shifted segment vector δx⃗S itself

remain fixed. So when parallel transported back to the shift origin,

δx̂µ
S |X = δx̂µ

S(λN), (121)

where the segment on the right is at its original shifted path location λN . In summary, for a finitely
large local nongravitational system where background curvature yields negligible segment transport
effects, equation (121) holds in the Riemann ICs of the background system locally inertial free-fall
frames subtending the local system.

Utilizing the methodology in Weinberg [22] (Chap. 3), the “partner coordinate transform” between
the partner global ICs and Riemann coordinates is established as follows. Applying the shifted geodesic
equation (103) in the partner Riemann coordinates, with Γ̂µB

αβ |X = 0 from (119) and Ûµ
S = dx̂µ

S/dτN ,
yields

d2 x̂µ
S

dτ2
N

∣∣∣∣∣
X

= 0 (122)

for the geodesic motions of shifted particles at the shift origin. Transforming this into the partner
global ICs yields [

d2 x̌α
S

dτ2
N

+ Γ̌αB
ρσ

dx̌ρ
S

dτN

dx̌σ
S

dτN

]
X

= 0 (123)

for the geodesic motions as per (103) with Ǔα
S = dx̌α

S/dτN , where via the coordinate transform the
Christoffel symbol may be given by

Γ̌αB
ρσ |X =

[
∂x̌α

S
∂x̂ν

S

∂2 x̂ν
S

∂x̌ρ
S∂x̌σ

S

]
X

, (124)

as opposed to the equal valued Γ̌αB
ρσ |X in metric form (90) with x̌α = x̌α

S and ǧαβ = ǧB
αβ. Multiplying

both sides of (124) by the coordinate transform [∂x̂µ
S/∂x̌α

S]X yields[
∂2 x̂µ

S

∂x̌ρ
S∂x̌σ

S

]
X

= Γ̌αB
ρσ |X

[
∂x̂µ

S
∂x̌α

S

]
X

. (125)

Equation (125) may be utilized as a differential equation to obtain the solution x̂µ
S as a function of x̌α

S in
the neighborhood of X, yielding the form

x̂µ
S = Pµ̂(x̌α

S) = Pµ̂
α̌|X(x̌α

S − X̌α) +
1
2

Pµ̂
ρ̌|X Γ̌ρ B

αβ |X(x̌α
S − X̌α)(x̌β

S − X̌β) + · · · (126)

for the partner coordinate transform, where Pµ̂
α̌|X = [∂x̂µ

S/∂x̌α
S]X is the partner transform Jacobian at

the shift origin.
In order that the Riemann coordinate shifted basis values eµ̂

(α̂)S|X = δµ
α (117) are obtained from

the partner global IC given shifted basis values eµ̌

(α̂)S|X = ŠµB
ᾱ |X (114), then it must be the case that the

partner transform Jacobian at X is
Pµ̂

α̌|X = Šµ̄B
α |X , (127)

since then eµ̂

(α̂)S|X is given by Pµ̂
σ̌|X eσ̌

(α̂)S|X = Šµ̄B
σ |X ŠσB

ᾱ |X = δµ
α as required. Substituting this into

(126) yields the explicitly given partner coordinate transform

x̂µ
S = Pµ̂(x̌α

S) = Šµ̄B
α |X(x̌α

S − X̌α) +
1
2

Šµ̄B
ρ |X Γ̌ρ B

αβ |X(x̌α
S − X̌α)(x̌β

S − X̌β) + · · · , (128)

where if desired the substitutions x̂µ = x̂µ
S and x̌α = x̌α

S (as per (13)) may be made since the actual
and shifted events are the same. The third-order and higher terms in the expansion (not shown)
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provide the partner transform beyond the solution of (125), which holds at the shift origin only, with
these higher-order terms generally dependent on the background system curvature. For instance,
the third-order term contains ∂β̌Γ̌µB

να (X), which is similar to the Riemann coordinate value ∂β̂Γ̂µB
να (X)

given by (119). The explicitly given terms in (128) therefore provide the partner transform between
the global ICs and the partner Riemann ICs, with the Riemann ICs applicable when the background
system’s curvature may be neglected. The absolute inertial frame given by the partner global ICs, and
the background system locally inertial free-fall frame given by the partner Riemann ICs, are referred to
as being “partner inertial frames.”

With the shift origin partner relation (104) given in the partner global ICs by δx̌α
S|X = ŠαB

σ̄ |Xδx̌σ
US|X ,

application of the partner transform Pµ̂
α̌|X = Šµ̄B

α |X on both sides yields the component equality

δx̂µ
S |X = δx̌µ

US|X (129)

of partner path segments at the shift origin, holding when the shifted partner segment components
δx̂µ

S |X are given in the partner Riemann coordinates, and the unshifted partner segment components
δx̌µ

US|X are given in the partner global ICs. Combining (129) with the global IC equality (111) for the
parallel transport of unshifted partner path segments to the shift origin, then δx̂µ

S |X = δx̌µ
US(λUS).

Applying to this the Riemann IC local inertial frame equality (121) for the parallel transport of shifted
partner path segments to the shift origin, the component equality

δx̂µ
S(λN = λUS) = δx̌µ

US(λUS) (130)

is obtained for partner path segments at their original locations, holding for arbitrary partner paths
when the background system’s curvature yields negligible segment transport effects. Note the use of
λN = λUS (109) for the locations of partner path segments in (130). Equation (130) may be integrated
along the partner paths to obtain the key partner path locational value equality

x̂µ
S(λN = λUS) = x̌µ

US(λUS)− X̌µ. (131)

Therefore, over the region subtended by a finitely large local nongravitational system where the
background system’s curvature yields negligible segment transport effects, any unshifted partner path
given in global ICs, as specified relative to the shift origin X̌µ, yields an identically valued shifted partner path
given in the Riemann ICs of a background system locally inertial free-fall frame subtending the region, where
the global and Riemann ICs are related by the partner coordinate transform. Of course the partner paths
themselves are generally not the same event paths, but the global and Riemann IC locations of their
partner events xUS(λUS) and xS(λN = λUS) are the same.

Under conditions such that (131) holds, all possible global IC given unshifted partner paths
running from X out to a selected arbitrary unshifted event location, x̌µ

US, yield identically valued
partner Riemann IC given shifted partner paths running from X out to a single shifted event location x̂µ

S .
As a result, over the region subtended by a finitely large local nongravitational system where the surrounding
background system’s curvature yields negligible effects on the parallel transport of shifted path segments, a local
diffeomorphism is yielded between partner event fields, which may be formally given by

x̂µ
M = x̌µ

UM − X̌µ, (132)

obtained by utilizing (131) for arbitrary partner paths run to their respective partner endpoints

xUM ≡ xUS(λUS), xM ≡ xS(λN = λUS). (133)

The relation between x̌µ
UM and x̂µ

M given by (132) is indeed a diffeomorphism, since (by inspection) it
is 1-to-1 and continuously differentiable, and it is also onto. Below, (132) will be converted into the
usual form of a diffeomorphism given in common coordinates for both xµ

UM and xα
M, with then the
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material in Section 4.1 being applicable. Note that the diffeomorphism (132) itself is specified without
the need of path parameters, as the morph holds as a partner event field relation independent of any
particular paths utilized to establish it. However, as per (133), unmorphed and morphed partner events
xUM and xM have as their origins unshifted and shifted partner events xUS(λUS) and xS(λN = λUS)

obtained by utilizing partner paths. As partner path construction involves the use of metric connection
based parallel transport, the partner path based partner events xUS(λUS) and xS(λN = λUS) are not
obtained by simply integrating the partner relation (14), which has been shown to not be integrable in
general. For this reason, the notation xUM and xM is utilized to specify the unmorphed and morphed
partner events xUM ≡ xUS(λUS) and xM ≡ xS(λN = λUS) obtained via the use of arbitrary partner
paths.

The morph was constructed utilizing partner unshifted and shifted objects running along partner
event paths tied to the partner objects. Therefore, under the morph, unmorphed and morphed partner
objects are yielded where their shared material content is tied to the unmorphed and morphed partner
event fields xUM and xM. The local diffeomorphism therefore extends gravity shifting to finitely large
spacetime regions, but in a form different from the partner relation based shifting. The term “gravity
shifting” applies then to both the morph and partner relation based shifting, with discernment between
the two made by context.

Since the morphed partner events xM are obtained by running shifted paths from X to xM that
consist of infinitesimal shifted increments δxα

S = dxα
S summed together, then the morphed events

xM are the shifted events xS as well, as stated by xM = xS(λN) from (133). In addition, the shifted
events xS are the actual events x obtained when the gravitational field is present as per (13), with the
gravitational field here the background system field. Therefore,

xM = x = xS, (134)

stating that the morphed, actual, and shifted events are the same. The unmorphed events xUM are the
hypothetical events obtained if the gravitational field of the background system were removed in theory.
At first sight, it may be thought that the parallel transported shifted path segments, δxα

S = dxα
S, utilized

to obtain the morph, could not be the same as shifted displacements dxα
S from the partner relation

(14) using SαB
µ̄ , so that xM = xS(λN) obtained by summing the parallel transported shifted path

segments δxα
S = dxα

S could not be the same as xS obtained by summing shifted displacements dxα
S from

the partner relation. However, due to the lack of integrability of the partner relation, for successive
shifted displacements dxα

S added end-to-end along a shifted path, their hypothetical unshifted partners
dxµ

US = Sµ̄B
α dxα

S are “stand-alone” displacements that are not connected end-to-end. This provides
the degree of freedom required to allow the parallel transported shifted path segments δxα

S = dxα
S to

also be shifted displacements dxα
S from the partner relation. Now the unmorphed partner displacement

dxµ
UM to dxα

S = dxα
M is located at the hypothetical unmorphed event xUM. On the other hand, as per

the practice followed for partner relation based gravity shifting, the infinitesimal unshifted partner
displacement to dxα

S, namely dxµ
US = Sµ̄B

α dxα
S, is considered to be located at the shifted/actual event

xS = x where uniform-scale gravity shifting is being evaluated, which via (134) is the morphed event
xM. If desired, xS = xM may be used as the common shift origin X for the partner displacements dxµ

US
and dxα

S, yielding the infinitesimal partner event fields xUS and xS depicting stand-alone uniform-scale
shifting as given by (16) where X = xM and Sα

µ̄ = SαB
µ̄ .

Assuming negligible background curvature segment transport effects, then (134) may be substi-
tuted into the partner coordinate transform (128) to obtain the “morph partner (coordinate) transform”

x̂µ
M = Pµ̂(x̌α

M) = Šµ̄B
α |X(x̌α

M − X̌α) +
1
2

Šµ̄B
ρ |X Γ̌ρ B

αβ |X(x̌α
M − X̌α)(x̌β

M − X̌β) (135)

between the global ICs and the partner Riemann ICs, which is simply the partner coordinate transform
applied to the locations of the morphed events xM. Note that the higher-order curvature-dependent
terms have been dropped from the partner coordinate transform (128), as occurs for morphs since
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the background curvature segment transport effects are considered negligible. The utilized partner
Riemann ICs for x̂µ

M therefore provide the locally inertial frame used to form the morph as given by
(132). So the right-hand side of (135) may be substituted for x̂µ

M in (132), yielding the reverse morph

x̌µ
UM = M̌µ̄(x̌α

M) = X̌µ + Šµ̄B
α |X∆x̌α

M +
1
2

Šµ̄B
ρ |X Γ̌ρ B

αβ |X∆x̌α
M∆x̌β

M (136)

given exclusively in the partner global ICs, where ∆x̌α
M ≡ x̌α

M − X̌α. Finally, inverting (136) yields the
exclusively global IC given forward morph

x̌α
M = M̌α(x̌µ

UM) = X̌α + ŠαB
µ̄ |X∆x̌µ

UM − 1
2

Γ̌αB
ρσ |X ŠρB

µ̄ |X ŠσB
ν̄ |X∆x̌µ

UM∆x̌ν
UM, (137)

where ∆x̌µ
UM ≡ x̌µ

UM − X̌µ. Similar to the reverse morph (136), higher-order terms in the IC-given
forward morph (137) would have curvature dependence, so they do not appear since background
curvature segment transport effects are considered negligible for obtaining the morph.

Equations (137) and (136) are the explicit global IC forms for the generally given forward and
reverse morphs (93) and (94). The forward and reverse morphs, in any coordinates, may be obtained
via application of coordinate transforms to x̌µ

UM and x̌α
M in the global IC forms (137) and (136). Use

of the global IC forward morph form (137) is helpful though for the following reason. Application
of the morph partner transform (135) to the global IC location x̌α

M of a morphed partner event xM, as
given by (137) (and dropping higher-order terms mixing with the curvature-dependent terms being
neglected), yields the partner Riemann IC given location x̂µ

M equal to the global IC location x̌µ
UM − X̌µ

of the unmorphed partner event xUM, recovering the key morph relation (132) equating the morph
partner event locations x̂µ

M and x̌µ
UM − X̌µ. The morph partner transform (135) is therefore a passive

coordinate transform that formally acts to “reverse” the global IC given morph, (137), which is an
active transform between the partner events as given by x̌µ

UM and x̌α
M. Since though the morph partner

transform is not the actual reverse morph (136), it is referred to as the “pseudo-reverse” of the global
IC given morph.

In the infinitesimally sized region surrounding the shift origin X, the morph (137) reduces to
∆x̌α

M = ŠαB
µ̄ |X∆x̌µ

UM. Now the infinitesimal morph partner displacements ∆x̌µ
UM and ∆x̌α

M at the
shift origin may be equated with the first infinitesimal unshifted and shifted partner path segments
δx̌µ

US|X and δx̌α
S|X of the partner paths utilized to construct the morph, which satisfy the shift origin

partner relation (104) using SαB
µ̄ |X. Then ∆x̌µ

UM = δx̌µ
US|X = x̌µ

US − X̌µ and ∆x̌α
M = δx̌α

S|X = x̌α
S − X̌α.

Substitution into ∆x̌α
M = ŠαB

µ̄ |X∆x̌µ
UM yields the local event partner relation (16) given in global ICs, and

therefore in any coordinates under arbitrary coordinate transform (where Sα
µ̄|X = SαB

µ̄ |X). Similarly,
the reverse morph (136) reduces to the reverse event partner relation (25) (where Sµ̄

α|X = Sµ̄B
α |X) in the

infinitesimal region surrounding the shift origin X. Concluding, in the infinitesimal region surrounding
the shift origin X, the morph-given gravity shifting reduces to the event form of partner relation based gravity
shifting, as expected for gravity shifting at a single location.

Applying (96) to (137) and (136), the global IC given morph Jacobian tensors are

M̌α
µ̄ = ŠαB

µ̄ |X − Γ̌αB
ρσ |X ŠρB

µ̄ |X ŠσB
ν̄ |X∆x̌ν

UM,

M̌µ̄
α = Šµ̄B

α |X + Šµ̄B
ρ |X Γ̌ρ B

αβ |X∆x̌β
M. (138)

The differential forms (95) of the forward and reverse morphs may be explicitly given in global ICs
utilizing the Jacobians (138). Note that at the shift origin X, the morph Jacobians become the shift tensors, as
expected for gravity shifting at a single location. With infinitesimal morph partner displacements at
the shift origin shown above to be shift partner displacements, then at the shift origin the differential
forms of the forward and reverse morphs reduce to the forward and reverse partner relations (14) and
(24) (where Sα

µ̄|X = SαB
µ̄ |X), as consistent with the reduction of the event-given morph to the event

partner relation in the infinitesimal region surrounding the shift origin. Unlike the symmetric shift
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tensors, the morph Jacobian tensors are generally not symmetric (away from the shift origin) when
put in pure indice form utilizing the absolute metric or background natural metric. Since the morph
partner (coordinate) transform (135) is the pseudo-reverse of the global IC given forward morph (137)
as an active transform, their Jacobians are in inverse relation as stated by

Pµ̂
α̌ = M̌µ̄

α,

Pα̌
µ̂ = M̌α

µ̄. (139)

Converting Γ̌ρB
αβ |X for the reverse morph Jacobian in (138) into its explicit shift tensor and absolute

metric form, the resultant differential reverse morph (from (95)) is

dx̌µ
UM = Šµ̄B

α |X dx̌α
M +

[
Š

σµ̄

B ŠB
ν̄α(Š

ν̄B
σ,β − Šν̄B

β,σ) + Šµ̄B
α,β

]
X ∆x̌β

M dx̌α
M. (140)

The reverse morph Jacobian M̌µ̄
α = ∂x̌µ

UM/∂x̌α
M, as given by (138), satisfies the integrability condition

(97) where xM = x, as expected since it is derived from the reverse morph (136) itself. So of course the
differential reverse morph (140) may be integrated to yield the reverse morph. If the reverse shift tensor
Šµ̄B

α satisfied the morph integrability condition (97), the quantity Šν̄B
σ,β − Šν̄B

β,σ in (140) would vanish,
yielding a differential reverse morph equal to the first-order expansion of the reverse partner relation
dx̌µ

US = Šµ̄B
α dx̌α

S about X. The lack though of shift tensor integrability, as per the nonintegrability
condition (98), yields a nonzero Šν̄B

σ,β − Šν̄B
β,σ, resulting in a differential reverse morph (140) that is not

the reverse partner relation expansion, explicitly confirming that the reverse morph (136) itself is not
the integrated reverse partner relation. In general then, the local diffeomorphism does not take the form of
the integrated partner relation (which does not generally exist), as stated in the summary.

Due to the presence of background system curvature, the equality δx̂α
S|X = δx̂α

S(λN) (121) for
the transport of shifted path segments is actually an approximation, resulting in a morph x̂µ

M =

x̌µ
UM − X̌µ (132) that is an approximation. The event equality xM = x on the left of (134) is therefore an

approximation. But in the limit where background curvature segment transport effects vanish, such as
for infinitesimally sized local nongravitational systems, the equality (121) becomes exact, yielding the
morph (132) as an exact equality, and therefore xM = x as an exact equality. The morph x̂µ

M = x̌µ
UM − X̌µ,

and also the event equality xM = x, are treated then as equalities under the assumption that the
segment transport effects of background system curvature may be considered negligible, which is the
methodology utilized going forward (unless stated otherwise). The equality x = xS on the right of
(134) is an exact equality applicable at any location, since it repeats the exact equality (13).

4.5. Application of the Morph to Local Systems and the Resultant Equivalence Principle Satisfaction

Consider the actual “gravitational case” where a local system is posed in the gravitational field
of a surrounding background system, where it is assumed that the effects of the background system
curvature are negligible for the local system. The ability to neglect background system curvature
effects is case dependent, depending on the strength of the background curvature, the configuration of
the local system (including its size, which may be finitely large), the phenomena being evaluated, and
the measurement precisions for the observations made on the evaluated phenomena, similar to when
determining equivalence principle applicability under general relativity. The effects of background
system curvature are varied, with the above-discussed background curvature segment transport effects
included in the inventory. Therefore, for any given gravitational case where background system
curvature effects are negligible for a local system posed in the gravitational field of a surrounding
background system, the above-established background system induced diffeomorphism is applicable over the
spacetime region subtended by the local system. If the background system gravitational field acting on
the local system is removed in theory, the hypothetical partner “inertial case” is yielded consisting of
the unmorphed partner local system only, referred to as such since the lack of a background field yields
inertial conditions that the unmorphed partner system is posed in. This implies that when background
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curvature effects may be considered negligible, the actual gravitational case consists of the morphed partner
local system, obtained by applying the background morph to the unmorphed partner local system.

The morph was established above utilizing local nongravitational systems only. As will be shown,
the background system provided morph is additionally applicable for local gravitational systems.
Assuming here morph applicability for local gravitational systems for the sake of discussion, the
general material provided in this section is applicable for all local systems. An unmorphed partner
system may consist then of a local gravitational system, so application of a background system morph
implies that the morph is applied to the gravitational field of the unmorphed partner system when
obtaining the morphed partner system. The discussion and formulation in this section takes this into
account. Since morph application for only local nongravitational systems has been proven at present,
only morph-based gravity shifting for nongravitational partner objects tied to the partner event fields
xUM and xM has been proven, with then their shared material content consisting of only matter and
the nongravitational fields. But since the morph also holds for local gravitational systems as shown
below, the discussion here is applicable for morph-based gravity shifting of all local objects, including
the local gravitational field itself treated as material content tied to the partner event fields xUM and xM.

The quantities Zµν
UM and Zαβ

M are utilized to depict partner properties for unmorphed and morphed
partner objects in morph partner systems (where “Zαβ ” represents quantities in general). Since the
morph is an active transform, its application on an unmorphed tensor quantity, Zµν

UM, is similar to
a passive coordinate transform with the morph Jacobian tensor Mα

µ̄ used in place of the coordinate

Jacobian matrix Lα′
µ, yielding the morphed partner tensor quantity Zαβ

M as given by the representative
“morph quantity (partner) relation”

Zαβ
M = Mα

µ̄ Mβ
ν̄Zµν

UM. (141)

This is similar to the shift quantity partner relation (87) developed in Section 3.14 utilizing the local
event partner relation (16) as the active transform, with the concepts similar for the morph and shift
cases. For example, similar to the shift case utilizing the reverse shift tensor Sµ̄

α, in the morph case the
reverse morph Jacobian Mµ̄

α is applied to the lowered indices of unmorphed tensor quantities to obtain
their morphed partners, such as ZM

α = Mµ̄
αZUM

µ . However, recall that the shift quantity relation (87) is
only applicable for zero-order quantities due to the event partner relation (16) being a nondifferentiable
homeomorphism. In contrast, since the morph (93) is a continuously differentiable diffeomorphism,
the morph quantity relation (141) is applicable for all tensor quantities Zαβ utilized to depict the
properties of objects subject to gravity shifting, including then tensor quantities containing derivatives of
arbitrarily high order. This includes all zero-order and differentiated tensor quantities depicting matter,
the nongravitational fields, and the gravitational field. The gravitational field quantities consist of
the natural metric gαβ, shift tensor Sα

µ̄, and potential tensor wα
µ, as well as their derivatives. When

using the morph quantity relation (141), unmorphed quantities Zµν
UM are given at the unmorphed event

location xUM, and morphed quantities Zαβ
M are given at the morphed event location xM. This requires

that the forward and reverse morph Jacobians applied to Zµν
UM(xUM) are both given as functions of

xUM. This is already the case for the global IC given forward Jacobian in (138), but the reverse Jacobian
must be converted to have xUM dependence. Utilizing (137) to provide ∆x̌α

M in terms of ∆x̌µ
UM for the

reverse Jacobian, then (138) becomes

M̌α
µ̄ = ŠαB

µ̄ |X − Γ̌αB
ρσ |X ŠρB

µ̄ |X ŠσB
ν̄ |X∆x̌ν

UM,

M̌µ̄
α = Šµ̄B

α |X + Šµ̄B
ρ |X Γ̌ρ B

ασ |X ŠσB
ν̄ |X∆x̌ν

UM, (142)

having dropped the higher-order terms mixing with the curvature-dependent terms. Application of
arbitrary coordinate transforms to (142) yields Mα

µ̄ and Mµ̄
α in any coordinates, allowing use of (141)

in any coordinates. Note that the forward and reverse Jacobians M̌α
µ̄ and M̌µ̄

α are inverses of each other
(dropping higher-order terms mixing with curvature dependence), as expected.
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The gravitational field for a morphed nongravitational system is obtained by applying the morph
to the field for the unmorphed partner nongravitational system with vanishing field strength. But as
established above, the background system field is the gravitational field for a local nongravitational
system in the gravitational case. Therefore, the gravitational field for a morphed nongravitational
system is identified as the morphed background system field, obtained by applying the background
morph to the unmorphed partner nongravitational system field identified as the unmorphed background
system field with vanishing field strength. The “unmorphed background (system field) shift tensor”
Sα UMB

µ̄ = δα
µ̄ is therefore equal to the delta tensor as stated. Use of the unmorphed background shift

tensor in the metric relation (35) yields the “unmorphed background (system field natural) metric”
gUMB

µν = aµν equal to the absolute metric as stated. Application of the background morph, to obtain
the morphed background system field from the unmorphed background field, results in application
of the morph quantity relation (141) to the unmorphed background metric gUMB

µν to yield the partner
“morphed background (system field natural) metric”

gMB
αβ = (gUMB

µν = aµν)Mµ̄
α Mν̄

β, (143)

similar to (89) for obtaining the shifted natural metric. Note that similar to the absolute metric, both the
unmorphed and morphed background metrics have no curvature (from Section 4.2, aµν Mµ̄

α Mν̄
β on the right

of (143) has no curvature).
The absolute metric aµν is not subject to the morph, since it is an absolute quantity that does not

depict a property of matter or fields that are tied to the morph partner event fields xUM and xM, similar
to the absolute metric not being subject to partner relation based gravity shifts. Since the absolute
metric aµν does not morph, any quantities Zαβ that contain the absolute metric are not considered morphed
quantities Zαβ

M . However, similar to the shifted case, consider the following. For both nongravitational
and gravitational local systems, the unmorphed background metric gUMB

µν may be substituted for
the equal valued absolute metric aµν for all unmorphed partner system formulation prior to morph
application. Therefore, when the background morph is applied to any unmorphed system to yield
the morphed partner system, the morph quantity relation (141), and therefore (143), is applied to the
unmorphed background metric gUMB

µν = aµν used in the unmorphed system formulation, yielding
the morphed background metric gMB

αβ utilized in place of the absolute metric aαβ for the morphed
partner system formulation. The resultant quantities formed using this “absolute (metric) replacement
method” (as similarly coined for the shifted case) are therefore morphed quantities Zαβ

M . As can be seen,
use of the absolute replacement method effectively enables all quantities to be subject to the morph,
yielding universal applicability of the morph quantity partner relation (141). In applying the absolute
replacement method, the absolute metric aµν contained in any Zµν

UM is interpreted as the unmorphed
background metric gUMB

µν = aµν. Now if the absolute metric is applied to an already formed morphed

quantity Zαβ
M , then due to the presence of aµν the resultant quantity Zαβ is not a morphed quantity.

With the morph partner transform (135) from global ICs to the partner Riemann ICs the pseudo-
reverse of the global IC given morph (137), then application of the partner transform, Ẑµν

M = Pµ̂
α̌Pν̂

β̌Žαβ
M ,

yields the key representative “partner quantity equality”

Ẑµν
M = Žµν

UM (144)

for the partner Riemann and global IC values of morphed and unmorphed partner quantities, having
used the inverse relation (139) for the partner transform and morph Jacobians. The partner quantity
equality is commensurate with the event locational equality (132) for the morph itself. Applying (144)
to relate the morphed and unmorphed background metrics, then

ĝMB
µν = ǧUMB

µν = ǎµν = ηµν, (145)

providing their values for morph partner system formulation in the partner Riemann and global ICs.
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When a morph is applicable (i.e., when background system curvature effects are negligible), the
morphing of objects making up a local system is universal, since the shared material content of all of the
morph partner objects is tied to the unmorphed and morphed partner event fields xUM and xM. The
universal morphing occurs then for any instruments present utilized to make measurements, morphing
along with the objects being measured. So any instrument has both a morphed and unmorphed
partner, which may be utilized to measure morphed and unmorphed partner objects respectively.
Similar to natural measurement under partner relation gravity shifting, natural observers utilize “raw”
morphed instruments “as is” to make measurements of morphed objects. Therefore, natural observers
use raw morphed instruments to measure morphed objects for the actual “morphed partner case”
when background system gravitation is present, whereas when background gravitation is removed in
theory, the hypothetical “unmorphed partner case” is yielded where the unmorphed partners of the
instruments make the same measurements on the unmorphed partners of the objects. As instruments
measuring objects morph the same as the objects, then there is no difference between the morphed
and unmorphed partner cases except the universal morph applied to their shared material content
consisting of both the instruments and the objects being measured. With the morphed partner case just
a morphed version of the unmorphed partner case, then for natural observers, any raw morphed instrument
reading for the morphed partner case, which is the actual case, is the same as the reading of the unmorphed
partner instrument for the hypothetical unmorphed partner case. Therefore, the partner equivalence property,
shown to be applicable for the natural measurement of shifted objects under partner relation gravity
shifting, is similarly applicable for the natural measurement of morphed objects under morph gravity
shifting. Note that in the unmorphed partner case for a local gravitational system, the unmorphed
instruments are still shifted instruments measuring shifted objects, yielding both morphed and shifted
instruments measuring both morphed and shifted objects in the morphed partner case. But with
the unmorphed and morphed partner cases differing by only the morph application, the instrument
readings will be the same for the unmorphed and morphed partner instruments even though shifting
is additionally present for both the instruments and the objects being measured.

The morph partner equivalence property may be applied to (144) to obtain the “naturally mea-
sured partner quantity equality”

Ẑµν

M(N)
= Žµν

UM(N)
, (146)

which states that the natural morphed instrument measurement of a morphed quantity in the locally
inertial free-fall frame of a background system, as specified utilizing the free-fall frame’s Riemann
ICs, yields a value equal to the hypothetical natural unmorphed partner instrument measurement
of the unmorphed partner quantity in the partner absolute inertial frame, as specified utilizing the
inertial frame’s partner global ICs. Note that instrument readings are part of the set of quantities
Zαβ depicting objects. So the readings, Ẑµν

M(N)
and Žµν

UM(N)
, from the raw morphed and unmorphed

partner instruments used by natural observers, are subject to the equality (144) just as any morphed
and unmorphed partner quantities are, justifying the validity of (146).

Consider the actual gravitational case where a natural observer is using raw morphed instruments
to measure a morphed local system in a locally inertial free-fall frame for the background system,
with the measurements specified using the free-fall frame’s Riemann ICs. Removal of the background
system’s gravitational field in theory yields the hypothetical partner inertial case where the natural
observer uses the unmorphed partner instruments to make the same measurements on the unmorphed
partner system in the partner absolute inertial frame, with then the measurements specified using
the inertial frame’s partner global ICs. Under applicability of the partner equivalence property, the
morphed instrument readings for the gravitational case will be identical to the unmorphed partner
instrument readings for the partner inertial case, as per (146). Therefore, so long as the background
system curvature effects are negligible so that a morph is applicable, natural observers perceive (via
measurements) any morphed local system for the actual gravitational case, as posed in a Riemann IC
specified background system locally inertial free-fall frame subtending the local system spacetime
region, as being the same as its hypothetical partner inertial case consisting of the unmorphed partner
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system as posed in the partner global IC specified partner absolute inertial frame, yielding satisfaction
of the equivalence principle for natural observers. The EEP is satisfied then for naturally observed local
nongravitational systems, and the SEP is satisfied for naturally observed local gravitational systems.

Consider an arbitrary coordinate transform applied to a Riemann IC given morphed local system,
so the transform Jacobian Lα′

µ̂ is applied to the morphed tensor quantities Ẑµν
M to obtain their values

Z′ αβ
M in the new “primed” coordinates. Under the equality (144), this operation is equivalent to

applying a formally identical “mirror” coordinate transform to the partner global IC given unmorphed
partner system, with then an identically valued transform Jacobian

Lα′′
µ̌ = Lα′

µ̂ (mirror transform) (147)

applied to the unmorphed partner tensor quantities Žµν
UM to obtain their values Z′′ αβ

UM in the new
“double-primed” coordinates. With the original Riemann and global ICs being partner coordinates,
then under the formally identical mirror coordinate transforms, the new primed and double-primed
coordinates are also partner coordinate systems. Application of the mirror coordinate transforms to their
respective sides of the partner quantity equality, (144), applicable in the partner Riemann and global
ICs, yields the partner quantity equality

Z′ αβ
M = Z′′ αβ

UM (148)

applicable in the partner primed and double-primed general coordinates.
To obtain the absolutely or naturally measured value Z(M) of a quantity given in geometric form,

Z, generally requires selection of a frame of reference as the state of motion for the instrumentation
employed to make the measurement, as well as selection of available coordinates for the frame to give
component values Zαβ

(M)
for the measured quantity (unless it is a scalar, which requires no coordinates),

yielding Z(M) = Zαβ

(M)
. If a quantity is expressed in coordinate form Zαβ though, the practice followed

in this paper is to use the same coordinates and their frame of reference for the instrumentation employed to
perform the measurement, as the coordinates and frame utilized for expressing the quantity, the same practice
as in previous discussion. Following this methodology, when a coordinate transform is applied to
a coordinate-given tensor quantity Zµν to obtain Z′ αβ in the new coordinates, its measured value
is changed to Z′ αβ

(M)
as yielded using the new coordinates and their frame for the instrumentation

employed, as opposed to the measured valued Zµν

(M)
using the old coordinates and frame. As shown

below, the measured value Zµν

(M)
of a tensor quantity does not in all cases “directly” transform as a

tensor the way the tensor quantity Zµν itself does, so

Z′ αβ

(M)
̸= Lα′

µLβ′
νZµν

(M)
(generally) (149)

is applicable. To reliably obtain in all cases the measured value Z′ αβ

(M)
of a tensor quantity Zµν under

coordinate transform, first the quantity is transformed and then measurement is applied in the new
coordinates and frame for the instrumentation, as stated by the representative

Z′ αβ

(M)
= [Z′ αβ](M) = [Lα′

µLβ′
νZµν](M). (150)

Based on the above discussion, the partner Riemann and global IC naturally measured partner
quantity equality, Ẑµν

M(N)
= Žµν

UM(N)
(146), is generally not “directly” transformed under respective

application of mirror coordinate transforms. But with respective partner morphed and unmorphed
instrument measurements on both sides of (144) yielding (146), and with respective mirror coordi-
nate transforms of (144) yielding (148), the respective partner morphed and unmorphed instrument
measurements on both sides of (148) yields the naturally measured partner quantity equality

Z′ αβ

M(N)
= Z′′ αβ

UM(N)
, (151)
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applicable in the partner primed and double-primed general coordinates and their associated frames
of reference. This is as expected under the partner equivalence property applicable for the natural
measurement of morphed objects under morph gravity shifting, so again any raw morphed instrument
reading for the morphed partner case is the same as the reading of the unmorphed partner instru-
ment for the unmorphed partner case, here given in the partner primed and double-primed general
coordinates. Therefore, similar to (146) yielding satisfaction of the “baseline form” of the equivalence
principle as given in the Riemann ICs for the locally inertial free-fall frames of background systems,
the equality (151) yields satisfaction of the equivalence principle in any coordinates, and therefore in any
frames of reference as specified using any coordinates. This establishes the “corollary” to the baseline
free-fall frame form of the equivalence principle: As long as the effects of background system curvature
are negligible so that a morph is applicable, natural observers perceive any morphed local system for
the actual gravitational case, as given in a local frame accelerating and/or rotating with respect to a
background system inertial free-fall frame, as being the same as its hypothetical partner inertial case
consisting of the unmorphed partner system as given in the mirror local frame accelerating and/or
rotating with respect to the partner absolute inertial frame in the same manner. Concluding, equivalence
principle satisfaction for natural observers in gravity shift theory is the same as in general relativity, in that for
both theories, the equivalence principle is satisfied for all local systems given in all coordinates and
frames so long as background system curvature effects are considered negligible.

The general discussion and formulation in this section applies for all local systems, as previously
stated. EEP satisfaction will be examined in further detail below for local nongravitational systems, and
separately SEP satisfaction will be further examined for local gravitational systems. The established
morph, shown above to hold for nongravitational systems, will be shown to be applicable for local
gravitational systems when detailing their SEP satisfaction. As can be seen, for GS theory, there is a
significant amount of gravity shift based “mechanism” underlying the satisfaction of the equivalence
principle as a property of the gravitational field, including the use of raw gravity shifted instrument
based natural observation, as opposed to the much simpler curved spacetime approach for general
relativity. The complexity for GS theory is the “price to pay” to obtain equivalence principle satisfaction
in absolute flat spacetime.

4.6. Satisfaction of the Einstein Equivalence Principle for Local Nongravitational Systems

For a morphed local nongravitational system in particular, the unmorphed partner system has
no partner relation based gravity shifting, since the local gravitational field present has vanishing field
strength. As a result, for a morphed nongravitational system posed in a Riemann IC given locally
inertial free-fall frame for the background system, inertial behavior is yielded for the inertial-case
unmorphed partner nongravitational system as posed in the absolute inertial frame for the partner
global ICs, thereby obeying the laws of special relativity. The global IC given quantities Žµν

UM in the
unmorphed nongravitational system are inertially valued, since they depict unmorphed and unshifted
objects. In addition, the instruments utilized by natural observers in the unmorphed partner case are
both unmorphed and unshifted, so they accurately measure the inertially valued quantities as formally
stated by Žµν

UM(N)
= Žµν

UM. Combining this with (144) and (146) yields

Ẑµν

M(N)
= Ẑµν

M = Žµν
UM = Žµν

UM(N)
. (152)

In its entirety, (152) states that the natural measurement, Ẑµν

M(N)
, of the morphed quantities Ẑµν

M in

a morphed local nongravitational system, yields values equal to the morphed quantities Ẑµν
M themselves,

which are inertially valued since they are equal to the inertially valued partner unmorphed quantities
Žµν

UM in the inertially behaved unmorphed partner nongravitational system, where similarly their
natural measurement Žµν

UM(N)
yields values equal to the unmorphed quantities Žµν

UM themselves. Therefore,
so long as the background system curvature effects are negligible so that a morph is applicable, natural
observers perceive (via measurements) any morphed local nongravitational system for the actual
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gravitational case, as posed in a Riemann IC specified background system locally inertial free-fall
frame subtending the local system spacetime region, as being the same as its hypothetical partner
inertial case consisting of the inertially behaved unmorphed partner nongravitational system as posed
in the partner global IC specified partner absolute inertial frame, yielding satisfaction of the Einstein
equivalence principle for natural observers.

Utilizing (152), some key examples of naturally measured quantities for morphed nongravitational
systems are the natural metric and Christoffel symbol

ĝM(N)
µν = ĝM

µν = ǧUM
µν = ηµν, Γ̂µ M(N)

αβ = Γ̂µ M
αβ = Γ̌µ UM

αβ = 0, (153)

and the displacements and locations

dx̂µ

M(N)
= dx̂µ

M = dx̌µ
UM, x̂µ

M(N)
= x̂µ

M = x̌µ
UM − X̌µ, (154)

where the event location equality is obtained by integrating the displacement equality, recovering (132)
as expected. As the gravitational field over a local nongravitational system in the gravitational case is
the background system field as per (110), then the natural metric gM

αβ for a morphed nongravitational

system is identified as the morphed background metric gMB
αβ , so the unmorphed natural metric gUM

µν is

the unmorphed background metric gUMB
µν = aµν. Their values given by (153) and (145) indeed agree as

expected. Comparison of (153) with (118), which is applicable for actual local nongravitational systems
surrounded by background systems, shows that to first differential order, the Riemann coordinate
Minkowski metric valued morphed natural metric, ĝM

µν, is also the actual natural metric ĝµν given by
the actual background metric ĝB

µν. But at higher order, the morphed natural metric ĝM
µν for a local

nongravitational system has no curvature, since it equals the morphed background metric ĝMB
µν , which

has no curvature as previously shown. In contrast, the actual natural metric ĝµν = ĝB
µν has curvature

as per (118).
Physical law for morphed local systems may be expressed by the representative statement

Zαβ
M = Yαβ

M in any coordinates. Utilizing (152), the natural measurement of physical law for morphed
nongravitational systems, as posed in the Riemann IC specified locally inertial free-fall frames of
surrounding background systems, may be expressed by

Ẑµν

M(N)
= Žµν

UM = Y̌µν
UM = Ŷµν

M(N)
. (155)

The “middle” equality Žµν
UM = Y̌µν

UM represents physical law for the inertial-case unmorphed partner
nongravitational systems exhibiting inertial behavior in the absolute inertial frames for the partner
global ICs. So physical law is inertial for morphed nongravitational systems as naturally observed
in the locally inertial frames, thereby obeying the laws of special relativity. Equation (155) is then a
formal statement of EEP satisfaction for natural observers measuring morphed local nongravitational
systems. Included in this is the use of the naturally measured “inertial” Minkowski metric valued
natural metric, and the resulting naturally measured vanishing Christoffel symbol, as per (153). This
along with the naturally measured displacements and locations (154), results in naturally measured
geodesics being straight lines in the locally inertial free-fall frames, which is inertial behavior as expected
under EEP satisfaction. Due to the inertial form of physical law being yielded for naturally observed
local nongravitational systems so long as background system curvature effects are negligible, the
background system locally inertial free-fall frames are the “preferred” frames of reference for natural
observers, with the utilized Riemann ICs the preferred local “inertial coordinates” due to explicit
inertial expression of nongravitational physical law.

Utilizing the above argument establishing equivalence principle satisfaction for all morphed local
systems in all coordinates and frames, then applied for morphed local nongravitational systems, the
EEP is satisfied for natural observers in all coordinates and frames so long as the effects of background
curvature are negligible. As a result, naturally measured physical law Zαβ

M(N)
= Yαβ

M(N)
for morphed
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nongravitational systems satisfies the EEP in all coordinates and frames, obtainable via application of
(150) to Riemann IC given physical law Ẑµν

M = Ŷµν
M , which when naturally measured yields Ẑµν

M(N)
=

Ŷµν

M(N)
(155) satisfying the EEP in the baseline locally inertial frames (from above). Therefore, when

background curvature effects may be neglected so that a morphed local nongravitational system is
yielded, its behavior, as naturally observed in a frame accelerating and/or rotating with respect to
a locally inertial free-fall frame subtending the system, appears the same as its inertial behavior in
deep space without gravitation present, as observed in a frame accelerating and/or rotating relative to
the partner absolute inertial frame in the same manner. This is the above-established corollary to the
baseline free-fall frame form of the equivalence principle, specialized here for local nongravitational
systems. The EEP corollary holds then for the naturally observed behavior in the Schild argument,
where shifted light, travelling up a tower on Earth, is naturally measured to be redshifted the same as
if the entire apparatus were in deep space and accelerated at 1g. Note that the development has gone
“full circle,” where the Schild argument was combined with the EEP as a postulate (as contained in the
SEP postulate) to establish the existence of universal gravity shifts in the first place, which were then
utilized to establish the existence of a local diffeomorphism yielding the EEP as a deduced property
given the existence of universal gravity shifts.

As is understood in general relativity, for any gravitational system (treated utilizing continu-
ous distributions of matter as is common practice), the local system contained within any selected
infinitesimally sized spacetime region, referred to here as a “micro system,” may be treated as a local
nongravitational system due to its gravitational field strength vanishing in the infinitesimal size limit,
with the surrounding gravitational system treated as the background system for the micro system. In
addition, in the infinitesimal size limit, all background system curvature effects on the micro system
vanish entirely. These same properties can be seen to hold in GS theory, so the morph is always applicable
over the infinitesimal spacetime region subtended by a micro system, with the micro system treated as a morphed
local nongravitational system. The term “micro morph” is used to designate the morph for a micro
system, as opposed to a “local morph,” which may be applicable over an extended spacetime region.
The above local morph formulation, applicable for finitely sized local nongravitational systems when
background curvature effects are negligible, is therefore universally applicable for morph formulation
of any micro system selected from an arbitrary gravitational system. For example, since a micro system
has no gravitational field strength similar to a finitely sized nongravitational system, the gravitational
field over the region of a micro system is the field of the surrounding gravitational system acting as the
background system, which is the actual field for the total system consisting of the background system
plus the micro system. This equality is formally stated by

gB
αβ = gαβ, SαB

µ̄ = Sα
µ̄, (micro system). (156)

Any event may be used as the shift origin X for a micro morph, with the micro morph applied
to a micro system considered to occupy an infinitesimally sized region surrounding the shift origin.
In the applicable infinitesimal size limit, all objects for a micro system are located at the shift origin
location X. So the single event x is used to specify the location of all quantities Zαβ(x) depicting a
micro system’s objects, with x located at the shift origin X, as stated by

Zαβ(x) = Zαβ(x = X) (micro system). (157)

This location specification is assumed for all micro system quantities subsequently given. The micro
morph Jacobian tensor, Mα

µ̄, becomes the background system shift tensor SαB
µ̄ at X as per (138), and

therefore the actual shift tensor for the total system from (156). This equality is formally given at x = X
by [

Mα
µ̄ = Sα

µ̄

]
x = X (micro morph). (158)
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Since a micro system is nongravitational, its partner unmorphed quantities are also unshifted as stated
by [

Zµν
UM = Zµν

US

]
x = X

(micro system), (159)

where this equality of the unmorphed and unshifted values is applicable for quantities of all differential
orders. Recall that for finitely large morphed systems the location of unshifted quantities Zµν

US is
at the morphed event location xM as opposed to the unmorphed event location xUM, but for the
infinitesimally sized micro systems, xM = xUM = X, so Zµν

US is at the same location x = X as Zµν
UM.

For brevity, the term “micro free-fall frame” may be used when referring to an “infinitesimal free-fall
frame.” Combining (159) with (152) applied to micro systems, then[

Ẑµν

M(N)
= Ẑµν

M = Žµν
UM = Žµν

US

]
x = X

(micro system). (160)

So micro free-fall frame natural measurement of quantities, of all differential orders, yields their inertial
unmorphed/unshifted values as given in the partner absolute inertial frame. A key example is light,
which via use of (160) has a naturally measured velocity dx̂n

M(N)
/dt̂M(N) equal to ĉ n

M(N)
= č n

US. This
results in

ĉM(N)= čUS = 1 (micro system), (161)

which establishes that in a micro fee-fall frame, the naturally measured speed of gravity shifted light is
equal to the inertial fixed unshifted light speed, in accordance with the EEP.

Utilizing (158) and (159), application of the morph quantity partner relation, (141), for zero-order
micro system quantities at x = X, yields the shift quantity partner relation (87) with the actual shift
tensor Sα

µ̄|X utilized, where the zero-order unmorphed and morphed partner quantities Zµν
UM and

Zαβ
M in (141) are identified as the unshifted and shifted partner quantities Zµν

US and Zαβ
S . From Section 3.14,

“first-order” shifted tensor quantities Zαβ
S may be obtained by applying the natural covariant derivative

to the zero-order shifted tensor quantities. At the shift origin X for a micro system given in Riemann
ICs, the applicable zero-valued morph connection, (153), for nongravitational systems, is equal to
the shifted/actual connection Γ̂α S

µν = Γ̂α
µν = 0 as constructed from ĝS

µν = ĝµν = ηµν, having used
(118) applicable for local nongravitational systems and gB

αβ = gαβ (156) for micro systems. Therefore,

Ẑµν
M = Ẑµν

S for up to first-order tensor quantities at any location x utilized as a micro morph shift origin

X = x, yielding Zαβ
M = Zαβ

S in any coordinates. Combining this with Zαβ
S = Zαβ (88) yields the tensor

equality [
Zαβ

M = Zαβ
S = Zαβ

]
x = X

(micro system, to 1st order), (162)

where the only metric utilized for the shifted/actual quantities is the natural metric and its connection
(again the right-hand equality does not hold for quantities explicitly containing the shift and potential
tensors). A key example is the equality gM

αβ = gS
αβ = gαβ of the micro-morphed, shifted, and actual

values of the natural metric, as well as their covariant derivatives (using their respective equal metric
connections) which all vanish. The equality (162) generally does not hold for the second-order or
higher micro-morphed quantities, due to background curvature dependence in Zαβ

S = Zαβ that is not

present in Zαβ
M .

With a micro morph always applicable for a micro system, the EEP always holds for natural observers
over any infinitesimally sized locally inertial free-fall frame subtending a micro system selected from
any gravitational system, with the micro system naturally perceived as an inertially behaved nongravitational
system consisting of matter and nongravitational fields exclusively. So in the micro free-fall frames
of gravitational systems, due to EEP satisfaction, the only naturally perceived field presence is the
inertial Minkowski metric valued natural metric universally coupled to matter and the nongravitational
fields. The micro free-fall frames are therefore the universally applicable “preferred” frames of reference
for natural observers due to these properties holding. Now the use of the universally applicable
preferred micro inertial frames, under EEP satisfaction, forms the basis of what is considered “naturally
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observable” in GS theory, similar to establishing what is considered “observable” in general relativity,
with again the “observers” in general relativity identified as natural observers in GS theory. Therefore,
as in general relativity, natural observers in gravity shift theory only perceive matter and the nongravitational
fields as universally coupled to the natural metric gαβ. The natural observers perceive then the natural
metric itself via its coupling to the perceived matter and nongravitational fields, as well as to the
perceived displacements tied to the nongravitational material content. As a result, natural observers
do not perceive any gravitational field action other than the action induced by the natural metric
universally coupled to matter and the nongravitational fields, as discussed further below. Therefore,
natural observers do not perceive the gravity shifting taking place, either in the form of partner relation
based shifting or morph-based shifting, as can be seen under naturally observed EEP satisfaction in the
universally applicable micro free-fall frames. Natural observers do not perceive then the shift tensor
Sα

µ̄ or potential tensor wα
µ, even though they are coupled to matter and the nongravitational fields via

the gravity shifting they dictate. In addition, natural observers do not perceive the absolute metric aµν,
even though it couples to matter and the nongravitational fields as absolutely observed.

As a key example, natural observers do not perceive the absolute metric or shift tensor contained
in the metric relation gαβ = aµνSµ̄

αSν̄
β (35) used to provide the natural metric, so the coupling of aµν

and Sα
µ̄ to matter and the nongravitational fields, via the natural metric given by the metric relation,

is perceived by natural observers as only the natural metric coupling. The natural measurement
based equations given above (everything containing an (N)) only apply for the naturally observable
quantities, consisting then of quantities depicting the naturally observed matter and nongravitational
fields universally coupled to the natural metric. In addition to what is considered observable, for the
identified natural observers in general relativity, the entire worldview is based on the perceived behavior
of gravitational systems as observed from their universally applicable preferred micro free-fall frames,
which is therefore the “natural worldview” for the class of natural observers in GS theory. For example,
since geodesic motion in any micro free-fall frame is dictated by the natural metric connection given
by (119), naturally perceived inertial motion is yielded over the EEP-applicable “inertial region” about
the frame origin. So there does not exist a naturally perceptible “gravitational force,” with perceived
deflection from inertial motion beyond the inertial region considered due to natural metric curvature.
Therefore, as in general relativity, natural observers in GS theory consider natural metric curvature to be
the basis for gravitational action as opposed to a force. The above general properties for natural observers,
established via use of the universally applicable micro systems, were stated (for the most part) in the
summary.

With gravity shifting consisting of dimensional shifts along the global IC axis directions for
eigensystems, the natural measurement of a shifted displacement, dx̃µ

S , running along an IC axis using
a shifted clock or ruler, yields a value dx̃µ

S(N)
equal to the unshifted partner dx̃µ

US running along the

same IC axis, as consistent with the partner equivalence property. For instance, dx̃0
S(N)

= dx̃0
US holds

for the temporal displacements used in the Schild argument, where the global ICs employed is an
eigensystem. Utilizing separate natural measurements along the four orthogonal IC axis directions,
dx̃µ

S(N)
= dx̃µ

US is yielded for shifted displacements running in any directions. Following suit, natural

measurement of a zero-order shifted quantity, Z̃µν
S , utilizing shifted instruments, can be seen to yield

its unshifted value Z̃µν
US, as stated by the representative

Z̃µν

S(N)
= Z̃µν

US (zero order, IC eigensystem). (163)

Combining (163) with (162) and (159) yields Z̃µν

M(N)
= Z̃µν

UM for zero-order micro-morphed quantities

when the partner global ICs are an eigensystem, so Z̃µν

M(N)
̸= Z̃µν

M in general. From this micro morph
based example,

Zαβ

M(N)
̸= Zαβ

M (generally), (164)

stating that for morphed local systems (including finitely large and gravitational ones), the natural
measurement of a morphed quantity, when given in arbitrary coordinates, may not yield a value equal
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to the morphed quantity itself. However, it is always the case that Ẑµν

M(N)
= Ẑµν

M for micro systems
given in the Riemann ICs, as per (160). If then partner Riemann and global ICs are utilized where the
global ICs are an eigensystem, the inequality, Z̃µν

M(N)
̸= Z̃µν

M , for the zero-order micro system quantities
given in the partner global ICs, results in the inequality (149) (applied here for natural measurement) if
Ẑµν

M(N)
= Ẑµν

M was “directly” transformed from the Riemann ICs to the eigensystem partner global ICs.
This example demonstrates that (150) should be used in general to obtain measured tensor quantities
under coordinate transform as opposed to directly transforming them, applicable for both natural and
absolute measurement.

The use of “(N)” in Zαβ

(N)
designates the naturally measured value for a quantity Zαβ in particular,

whereas the use of “N” without the parentheses designates a “natural quantity” Zαβ
N utilized by natural

observers to perform modelling where its origin is obtained via natural measurement. A previous example
of this methodology is the use of the natural proper interval dsN by natural observers to perform
modelling, where the origin of dsN is its equality to the naturally measured absolute proper interval
as designated by dsA(N). Natural measurement of a quantity in practice may be made using any
convenient frame of reference. However, the natural measurement of micro system quantities is best
understood and depicted utilizing the preferred micro inertial free-fall frames, so that their naturally
measured morphed values, Ẑµν

M(N)
, are both their Riemann IC values Ẑµν

M and their global IC inertial

unmorphed/unshifted partner values Žµν
UM = Žµν

US as per (160). Once naturally measured, coordinate

transformation of Ẑµν
M = Ẑµν

M(N)
may be applied to obtain its value Zαβ

N = Zαβ
M as utilized by natural

observers to perform modelling in any coordinates, so Zαβ
N for micro system quantities is given by the

representative
Zαβ

N = Lα
µ̂Lβ

ν̂(Ẑµν
M = Ẑµν

M(N)
) = Zαβ

M (micro system), (165)

noting that Ẑµν
N = Ẑµν

M(N)
in the micro inertial frames. With Zαβ

M(N)
̸= Zαβ

M (164) occurring for micro

morphs, it may be the case that Zαβ

N(N)
= Zαβ

M(N)
̸= Zαβ

M = Zαβ
N for naturally measured micro systems

given in arbitrary coordinates. So though the natural quantities Zαβ
N are utilized by natural observers

to perform modelling, their values in arbitrary coordinates may not be their naturally measured values Zαβ

N(N)
.

Now the micro inertial frame expression, Ẑµν

M(N)
= Ŷµν

M(N)
, contained in (155), is an expression

of nongravitational physics law for matter and the nongravitational fields, since it is law applicable for
the nongravitational micro systems. Using (165), arbitrary coordinate transform from Ẑµν

M(N)
= Ŷµν

M(N)
results in covariantly given “natural” nongravitational physics law

Zαβ
N = Zαβ

M = Yαβ
M = Yαβ

N (166)

utilized by natural observers to model systems in any coordinates. For matter and the nongravitational
fields under the influence of gravitation, all physical law may be given via use of the natural observer
based covariant form, (166), as obtained from transformation of the inertial form (155) of nongravita-
tional physics law applicable for natural observation of local nongravitational systems in micro inertial
free-fall frames. Gravity shift theory is therefore a complete theory of gravitation (as stated in the summary).
As can be seen, the EEP-based “standard formulations,” available in general relativity textbooks, may
also be utilized in GS theory to provide the natural physical laws (166) for matter and the nongravita-
tional fields under gravitation. As is understood in general relativity, differential-form physical laws
for matter and the nongravitational fields may be given using no more than first-order differentials,
which is applicable as well then in GS theory. Therefore, as per (162), the quantities Zαβ

N = Zαβ
M utilized

in the natural physical laws Zαβ
N = Yαβ

N for matter and the nongravitational fields under gravitation, as obtained
via use of micro systems, are the shifted/actual quantities Zαβ

S = Zαβ formed exclusively with the natural

metric and its connection as field quantities. With naturally measured physical law Zαβ

M(N)
= Yαβ

M(N)
for

morphed nongravitational systems satisfying the EEP in all coordinates and frames (from above), then
via Zαβ

N = Zαβ
M (165), natural measurement of the natural physical laws, Zαβ

N = Yαβ
N , for matter and the
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nongravitational fields under gravitation, yields satisfaction of the EEP for their naturally measured
form Zαβ

N(N)
= Yαβ

N(N)
given in any coordinates and frames.

The natural metric is the inertial Minkowski metric η̂
(N)
µν in the micro inertial frame expressions

Ẑµν

M(N)
= Ŷµν

M(N)
of naturally observed nongravitational physics law, as established above for non-

gravitational systems. Coordinate transformation from the micro inertial frames generally yields
“non-inertial” (i.e., non-Minkowski) values for the natural metric gαβ = gN

αβ in the natural nongravita-
tional physics laws (166) given in arbitrary coordinates, resulting in emergent gravitational field action
induced by the natural metric due to its non-inertial values. With then the natural metric universally
coupled to matter and the nongravitational fields obeying the natural nongravitational physics laws,
the generally non-inertial natural metric is identified as the universally coupled “gravitational metric”
providing all naturally perceived action of the gravitational field on matter and the nongravitational fields,
similar to general relativity (as stated in the summary). Since all physical law for matter and the
nongravitational fields may be given via the natural observer based form (166) with universal coupling
to the natural/gravitational metric exclusively, GS theory falls into the category of a “metric theory of
gravity” as commonly understood in gravitational theory, but with the proviso that this is part of the
natural worldview as opposed to the more encompassing absolute worldview, which includes coupling to
the shift tensor and morph fields as well as the absolute metric.

4.7. Satisfaction of the Strong Equivalence Principle for Local Gravitational Systems

As discussed above, the local morph was established where no gravitational source was within
the spacetime region subtended by the morph. The background system provided morph may not
be applicable then for local gravitational systems surrounded by background systems. Now in the
nongravitational limit of local gravitational systems, the morph is indeed applicable as is always the
case for local nongravitational systems assuming negligible background system curvature effects. The
morph is applicable then in the asymptotic limit of a local gravitational system far from the system’s
gravitational sources, since nongravitational conditions are yielded. In addition, the morph is always
applicable in the micro free-fall frames of a local gravitational system combined with a surrounding
background system, since as discussed above, the gravitational source strength vanishes for the micro
system contained within a micro free-fall frame, and background curvature effects vanish. In this
case, the background system consists of the “original” background system combined with the rest
of the local gravitational system surrounding the micro free-fall frame evaluated. With the morph
applicable in all of the different ways nongravitational limits can be reached for local gravitational
systems surrounded by background systems (assuming negligible background curvature effects), it
is not unreasonable to expect that the morph is applicable as well when the gravitational strength
of local gravitational systems is finitely large. Now as shown above, the SEP would indeed hold
for a naturally observed local gravitational system so long as the background system morph were
applicable. Here, the SEP is invoked as a postulate for GS theory to infer that so long as background
system curvature effects are negligible, the established background morph is indeed applicable for any local
gravitational system surrounded by a background system, yielding satisfaction of the strong equivalence principle
for natural observers in agreement with the SEP postulate.

It is then the success of the established morph as a means to achieve the postulated SEP satisfaction,
that is used as a “powerful” basis for inferring the morph’s applicability for local gravitational systems,
with the proven applicability in the nongravitational limit also supporting the inference of morph
applicability. Without the morph applicability, it does not appear possible that the SEP could be
satisfied, since the metric relation (35) based coupling of the absolute metric and shift tensor to the
natural/gravitational metric, which in turn is universally coupled to matter and the nongravitational
fields acting as gravitational source matter, would otherwise be expected to yield a gravitational mass
for a source, as posed in a free-fall frame set up by a surrounding background system, to be dependent
on the absolute metric and shift tensor values in the free-fall frame, and therefore on the background
system field in violation of the SEP (see Will [1], Chap. 3, for background). Assuming that this
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would be the case, then it is required that the background morph be applicable in order to circumvent
gravitational mass sensitivity to the background system field, providing another compelling reason for
morph applicability. The discussion and formulation in Section 4.5 provides the “basics” for morph
application on local gravitational systems and the resultant SEP satisfaction.

If the gravitational field generated by a local gravitational system perturbed the sources of the
surrounding background system, the background system field acting back on the local system would
be perturbed, preventing the formation of a universal diffeomorphism acting on the local system.
It is therefore required that the gravitational field of the local system not perturb the sources of the
background system. This “background (source) nonperturbation requirement” is the same as in general
relativity for the SEP to be in effect, where similarly if the local system field perturbed the background
sources, then a perturbed background field would result that would act on the local system to prevent
SEP satisfaction. In the development that follows, it is assumed that the background nonperturbation
requirement is met as an operating condition unless stated otherwise. The requirement in GS theory
that background system curvature effects on the local gravitational system be negligible for morph
applicability, and therefore SEP satisfaction, is the same as the requirement in general relativity
that background system curvature effects be negligible for SEP satisfaction. Therefore, the required
“SEP conditions” in GS theory for SEP satisfaction, consisting of the background nonperturbation
requirement and negligible background curvature effects, are the same as the SEP conditions in general
relativity. Concluding, satisfaction of the SEP for both theories is “equally applicable” since the required
SEP conditions are the same.

As discussed above, the gravitational field of a morphed local gravitational system is subject to
the morph the same as any matter or nongravitational field. This implies that the field metric, shift,
and potential tensors for a morphed gravitational system adhere to the tensor morph quantity partner
relation (141), yielding

gM
αβ = Mµ̄

α Mν̄
βgUM

µν , Sβ M
ν̄ = Mβ

ᾱ Mµ̄
νSα UM

µ̄ , wβ M
ν = Mβ

ᾱ Mµ̄
νwα UM

µ . (167)

Application of the morph partner (coordinate) transform, (135), to the morphed field tensors given in
the partner global ICs, yields

ĝM
µν = ǧUM

µν , Ŝα M
µ̄ = Šα UM

µ̄ , ŵα M
µ = w̌α UM

µ , (168)

as expected under the morph partner quantity equality (144), stating the equality of the Riemann IC
given field for a morphed gravitational system in the gravitational case, and the partner global IC
given field for the unmorphed partner gravitational system in the partner inertial case. Substituting
the unmorphed background metric gUMB

µν = aµν for the absolute metric in all unmorphed partner
system formulation (as discussed above), use of the metric relation (35) yields the “unmorphed metric
relation,”

gUM
αβ = gUMB

µν Sµ̄ UM
α Sν̄ UM

β , (169)

giving the natural metric for the unmorphed partner system. Application of the morph to the tensors
in the unmorphed metric relation, as per (141), yields the “morphed metric relation”

gM
αβ = gMB

µν Sµ̄ M
α Sν̄ M

β , (170)

having used (167) and (143). As can be seen, the unmorphed and morphed background metrics are
used in place of the absolute metric in the unmorphed and morphed metric relations, as expected since
this follows the absolute replacement method established above.

Similar to the practice followed using general relativity, when evaluating or utilizing SEP sat-
isfaction, the “boundary” of a local gravitational system, when posed in the field of a surrounding
background system, is taken as the “asymptotic (limit) region” far enough away from the local system’s
sources that their gravitational field contribution may be considered negligible, but still close enough
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that the entire local system out to its boundary may be posed in a locally inertial free-fall frame of
the background system. So only the background system contributes to the field at the boundary of
the local system. For the partner inertial case with no background field present, the field strength
is therefore negligible at the boundary of the unmorphed partner local gravitational system, so the
unmorphed system may be treated as having vanishing field strength at its asymptotic region boundary.
The unmorphed shift tensor Sα UM

µ̄ = δα
µ̄ is equal to the delta tensor at the boundary as stated. The

equivalent unmorphed potential tensor wα UM
µ = 0 is therefore zero as stated. For the gravitational

case with the background system present, the shift and potential tensors for the morphed partner
local gravitational system again have the vanishing field strength values Sα M

µ̄ = δα
µ̄ and wα M

µ = 0
at its boundary, as obtained by applying (167) to the boundary values for the unmorphed partner
system. Therefore, they do not approximate the actual values Sα

µ̄ = SαB
µ̄ and wα

µ = wαB
µ of the shift

and potential tensors at the boundary, which are equal to the background system shift and potential
tensors (as indicated) due to the vanishing local system field contribution. With their boundary values
being so different, it can be seen that throughout a morphed gravitational system, the morphed values
of its shift and potential tensors will in general be quite different from their actual values, as stated by

Sα M
µ̄ ̸≈ Sα

µ̄, wα M
µ ̸≈ wα

µ. (171)

These “non-approximations” are due to Sα M
µ̄ and wα M

µ being the shift and potential tensors for the local
morphed partner of the unmorphed local gravitational system only, which are not then the shift and potential
tensors of the actual total system consisting of the local and background system combined. Note the
similarity with the shifted case in Section 3.14, where indeed in the infinitesimal micro-system limit
with then the local system becoming nongravitational, the shifted case is yielded.

Consider an actual local gravitational system as posed in the field of a surrounding background
system. The ability to neglect background curvature effects in an actual system is generally an
approximation, so even in this case there are still “small” background curvature effects for the actual
quantities Zαβ depicting the objects present. Therefore, when background curvature effects may be
considered negligible so that a morphed gravitational system is yielded from the actual system, the
resultant morphed values of quantities are generally approximations of their actual values, as stated by
the representative

Zαβ
M ≈ Zαβ. (172)

Similar to the equality Zαβ
S = Zαβ (88) in the shifted case, the morph case approximation (172) applies

for all quantities subject to shifting except those explicitly containing the shift or potential tensors,
which will generally have significantly different morphed and actual values due to (171) holding.
For the natural metric, gM

αβ ≈ gαβ holds as per (172). As a check, at the local system boundary with
then vanishing local system field contribution, the field is again the background system field, so
ĝµν = ĝB

µν = ηµν for the actual metric in Riemann ICs, and ĝM
µν = ĝMB

µν = ηµν for the morphed metric,
yielding ĝM

µν = ĝµν = ηµν, and therefore gM
αβ = gαβ at the boundary in any coordinates. With their

boundary values being equal, it can be seen that throughout an actual local gravitational system when
background curvature effects may be considered negligible, the resultant morphed value gM

αβ of the

natural metric will indeed approximate its actual value gαβ. Combining the approximation gM
αβ ≈ gαβ

with the morphed and actual metric relations (170) and (35) (and their equivalent potential forms),
then

gMB
µν Sµ̄ M

α Sν̄ M
β = gMB

αµ exp(−2wµ M
β ) = gM

αβ

≈ gαβ = aαµexp(−2wµ
β) = aµνSµ̄

αSν̄
β . (173)

Note that the shift and potential tensors on the bottom line of (173) are for the actual total system
consisting of the local gravitational system combined with the background system, whereas the shift
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and potential tensors on the top line are for the morphed local gravitational system only, with again these
tensors for the actual and morphed cases generally having significantly different values as per (171).

When the natural field equation Hαβ[w; a] = 8πTαβ (8) is utilized by natural observers to model
local gravitational systems surrounded by background systems, the contained field equation quantities
are subject to morph application, via (141), so long as the SEP conditions are met (assumed throughout
this discussion), where as is the case for morph formulation in general, the absolute replacement
method is used so the unmorphed and morphed background natural metrics are used in place of the
absolute metric. Therefore, if the natural field equation (NFE) is utilized in the partner inertial case
consisting of the unmorphed partner local gravitational system as posed in the absolute inertial frame
of the partner global ICs, application of the morph via (141) yields the NFE in the gravitational case
where the morphed partner gravitational system is again given in the partner global ICs. Applying
the morph partner transform, (135), yields the NFE in the gravitational case as given in the partner
Riemann ICs providing the locally inertial free-fall frame of the surrounding background system. As
per (144), the morphed NFE quantities in the gravitational case, when given in Riemann ICs, have
the same values as the partner global IC given unmorphed partner NFE quantities in the inertial case,
such as the key field equalities (168) (their quantities will be utilized in the provided NFE). This results
in the morphed gravitational system modelled by the morphed NFE, and the unmorphed partner
gravitational system modelled by the unmorphed partner NFE, having the same values for all of
their partner quantities when given in their respective partner Riemann and global ICs, as per (144).
Applying (146) yields satisfaction of the SEP for the morphed gravitational system when naturally
observed. Summarizing, assuming the SEP conditions are met, use of the natural field equation by a natural
observer to model a local gravitational system surrounded by a background system, as posed in the Riemann
ICs for a locally inertial free-fall frame of the background system, yields a predicted morphed gravitational
system satisfying the SEP. Based on the above discussion of equivalence principle satisfaction in any
coordinates, under coordinate transformation from the baseline free-fall frame form of SEP satisfaction,
the SEP is satisfied via natural field equation use in any coordinates and frames.

As can be seen from the above discussion, any form for the natural field equation will yield SEP sat-
isfaction for a local gravitational system so long as the SEP conditions are met, since morph application
to any form in the partner inertial case will yield a morphed field equation in the gravitational case,
resulting in SEP satisfaction for the field equation modelled morphed gravitational system. However,
consider use of the NFE Hαβ[w; a] = 8πTαβ for the actual case consisting of the actual local gravitational
system surrounded by the background system. The form for the NFE must be such that its morphed
form may be considered to be the approximation obtained from field equation use in the actual case
when background curvature effects are completely neglected as an approximating assumption. To satisfy
this “morph consistency requirement,” then “in reverse,” when background curvature effects may be
considered negligible, the field equation for the actual case must be able to be put into a form that
approximates its morphed form. As will be shown when developing the natural field equation below,
the morph consistency requirement significantly limits its form. The morph consistency requirement
also applies for the natural nongravitational physics laws under the influence of gravitation, but will
be shown to always hold for such laws without further constraining their forms.

5. Natural and Absolute Observation and Formulation
With morph-based equivalence principle satisfaction established for natural observers, the subject

of natural and absolute observation and formulation may be systematically examined. This is found
to be a deep subject, as is understood for the subject of “observation” in general physics. So only the
basics are provided along with illustrative and useful examples.

5.1. Natural Observation, Quantities, and Formulation

A fair amount of general material has been provided above on the subject of natural observation
and formulation. Summarizing for the development here, natural measurement of gravity shifted
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objects, using then raw shifted/morphed instruments, yields the naturally measured values Zαβ

(N)

of quantities Zαβ depicting the objects, with the naturally measurable quantities consisting of those
depicting matter, the nongravitational fields, and the natural metric gαβ universally coupled to them.

Once the naturally measured value Zαβ

(N)
of a quantity is obtained, coordinate transformation may be

applied to provide its value Zαβ
N as utilized by natural observers to model systems in any coordinates.

In a given arbitrary coordinate system and its specified frame, it may not be the case that Zαβ
N equals

its naturally measured value Zαβ

(N)
(assuming the rule in this paper that natural measurement is made

utilizing the same frame as specified by the coordinates). Natural measurement may be made utilizing
any frames and coordinates. But natural measurement and depiction are best understood when using
the micro free-fall frames due to morph-based EEP satisfaction, forming the basis of the “natural
worldview,” which is therefore the same as the EEP-based natural worldview in general relativity. The
EEP is utilized in the micro free-fall frames in order to formulate the natural physical laws for matter
and the nongravitational fields under the influence of gravitation.

Of interest for general formulation are universally applicable natural quantities Zαβ
N utilized to

perform modelling for any systems. These may be obtained via natural measurement in micro free-fall
frames so that nongravitational micro systems result where the EEP is satisfied due to micro morphs
being universally applicable, yielding the inertially valued

Ẑµν
N = Ẑµν

N(N)
= Ẑµν

M(N)
= Ẑµν

M = Ẑµν
S

= Ẑµν = Ẑµν

(N)
= Žµν

UM = Žµν
US (micro system, to 1st order). (174)

This list of up to first-order quantities is obtained by combining (160), (162), and (165), as well as the
natural measurements of two quantities being the same if the two quantities are equal (using any
coordinates). Coordinate transformation of (174) yields Zαβ

N = Zαβ
M = Zαβ

S = Zαβ in any coordinates.
These up to first-order universally applicable natural quantities are the same as the micro system
based natural quantities developed above in order to formulate the natural nongravitational physics
laws under gravitation. Higher differential order natural quantities Zαβ

N = Zαβ
S = Zαβ may then be

obtained by applying natural covariant derivatives to the up to first-order quantities, but equality
with the second-order and higher morphed quantities Zαβ

M no longer holds due to curvature effects in

Zαβ
N = Zαβ

S = Zαβ that are not present in Zαβ
M . Following this methodology, all universally applicable

natural quantities
Zαβ

N = Zαβ
S = Zαβ (natural metric use) (175)

to arbitrarily high differential order may be obtained, which are shifted/actual quantities Zαβ
S = Zαβ

depicting matter and the nongravitational fields where the only metric utilized is the natural met-
ric as specified. The natural metric use includes gαβ itself and its connection Γα

µν as utilized in the

natural metric based covariant derivatives contained in Zαβ
S = Zαβ. This methodology is the same

as the methodology employed in general relativity where first the EEP is utilized to formulate the
inertial values of up to first-order natural quantities Ẑµν

N in the micro free-fall frames, then coordinate

transformation is used to obtain their values Zαβ
N in any coordinates, and finally natural covariant dif-

ferentiation is applied to obtain higher-order natural quantities. Therefore, the available formulations
of natural quantities in general relativity based on this method are also applicable in gravity shift theory,
providing natural quantities Zαβ

N that are already “known.” This is taken as a “given” in subsequent

formulation. For example, the known natural matter SE tensor, Tαβ = Tαβ
N , developed and employed

in general relativity, is the same in GS theory. The natural metric gαβ and its connection Γα
µν are natural

quantities that may be specified by gN
αβ and ΓαN

µν , but for brevity, gαβ and Γα
µν continue to be used.

The above-established universally applicable natural quantities Zαβ
N are utilized to construct all

general formulations employed by natural observers to model systems, with the only exception being the
natural field equation containing the potential wα

µ as its operand, which is not a natural quantity.
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What is meant by “general” formulations are ones that are universally applicable so that they may be
utilized to perform modelling for any systems. This is the basis for requiring universal applicability
of the natural quantities Zαβ

N . Similar to construction of the universally applicable natural quantities,
the universally applicable general formulations for natural observers may be obtained via natural
measurement of same in micro free-fall frames, so that again nongravitational micro systems result
where the EEP is satisfied due to micro morphs being universally applicable. As the goal is to construct
general formulations utilizing natural quantities Zαβ

N that are shifted/actual quantities Zαβ
S = Zαβ,

then as per (174), use of the EEP to initially construct general formulations limits the contained natural
quantities to first-order quantities. After EEP-based formation, coordinate transformation may be
applied to obtain up to first-order general formulations in any coordinates. Finally, natural covariant
differentiation may be applied to obtain universally applicable natural general formulations containing
natural/shifted/actual quantities Zαβ

N = Zαβ
S = Zαβ of arbitrarily high differential order, which is the

desired goal. As can be seen, the methodology employed is the same as the EEP-based methodology
employed in general relativity to obtain universally applicable general formulations. With all natural
quantities being the same in both GS theory and general relativity, and with the EEP holding for
constructing general formulations in both theories, then with the exception of their respective natural
field equations, all general formulations in gravity shift theory employed by natural observers to model systems
are identical in form to the available such formulations in general relativity. The available general relativity
formulations may be utilized then to provide the natural general formulations in GS theory, as is
subsequently done. Examples of general formulations are the natural physics laws for matter and the
nongravitational fields under gravitation as formed via use of the EEP, which have been shown to be
the available general relativity laws for same due to again EEP-based formation.

5.2. Absolute Observation, Quantities, and Formulation

A major difference between GS theory and general relativity is of course the additional exis-
tence of absolute observers in GS theory, along with then the existence of absolute quantities and
formulations. As previously discussed, absolute observers utilize shift-corrected instruments to make
observations with, which is the same as using hypothetical unshifted instruments, resulting in accurate
measurements. Absolute measurement of gravity shifted objects yields the absolutely measured values
Zαβ

(A)
of quantities Zαβ depicting the objects. The absolutely measured values Zαβ

(A)
of quantities are the

actual values due to accurate measurement. All quantities may be measured by absolute observers, which
includes then those depicting matter and the nongravitational fields, the absolute metric aµν, and all
quantities depicting the gravitational field, which includes the natural metric gαβ, shift tensor Sα

µ̄,

and potential tensor wα
µ. Note that the naturally measured quantities Zαβ

(N)
are included in the “all

encompassing” inventory of measured quantities for absolute observers, since as an option, absolute
observers are free to utilize the same raw shifted/morphed instruments prior to shift-correction as
natural observers use. But here the “explicit” absolutely measured values Zαβ

(A)
of quantities using

shift-corrected instruments are specifically evaluated.
Absolute measurement may be made utilizing any frames and coordinates. However, absolute

measurement is best understood and depicted utilizing the absolute inertial frames for the following
reasons. First and foremost, in the global ICs of absolute inertial frames, the absolutely measured value
of a quantity is the same as its actual global IC value, as formally stated by the representative

Žαβ

(A)
= Žαβ. (176)

Equation (176) includes absolute measurement ǎ(A)
µν = ηµν of the absolute metric yielding its Minkowski

global IC value. This results in “absolute” geodesic motion

dUα
A

dτA
+ Aα

µνUµ
AUν

A = 0, (177)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2025 doi:10.20944/preprints202411.0620.v7

https://doi.org/10.20944/preprints202411.0620.v7


73 of 120

as dictated by the absolute metric connection (where Uα
A ≡ dxα/dτA), to be perceived as being inertial

by absolute observers in the global ICs of absolute inertial frames due to Ǎα
µν = 0. The laws of special

relativity, applicable for all formulation given in absolute inertial frames, are explicitly perceived to hold
for absolute observers measuring all quantities utilizing the absolute inertial frames. The absolute
inertial frames are therefore the “preferred” frames of reference for understanding and depicting
measurement by absolute observers as well as absolutely measured behavior. Similar to the “natural
worldview” being based on naturally measured quantities and behavior utilizing the preferred inertial
free-fall frames for natural observers (the same as in general relativity), the “absolute worldview” is
based on absolutely measured quantities and behavior utilizing the preferred absolute inertial frames
for absolute observers. For example, absolute observers conceive of gravitation as an ordinary force due
to absolutely perceived gravitational acceleration of objects relative to their preferred absolute inertial
frames (as stated in the summary).

Absolute observers perceive the partner relation based gravity shifting (14) taking place, measured as
dx̌α

S(A)
= Šα(A)

µ̄ dx̌µ

US(A)
in their preferred absolute inertial frames. This provides a means by which

absolute observers perceive the shift tensor Sα
µ̄ and therefore the potential tensor wα

µ. Similarly, when
background curvature effects may be neglected for a local system, absolute observers perceive the morph-
based gravity shifting (93) as well, measured as x̌α

M(A)
= M̌α

(A)
(x̌µ

UM(A)
) in their preferred absolute inertial

frames. Therefore, absolute observers perceive all gravity shifting of matter and fields tied to the
partner event fields depicting gravity shifting, which includes gravity shifting of the local gravitational
field by the background field as previously discussed. Any effects of gravity shifting on matter and
fields is also absolutely perceived, such as gravity shifting induced dynamic shifts (discussed below).
The existence, properties, and effects of partner relation and morph-based gravity shifting are therefore part of
the absolute worldview. In contrast, natural observers do not perceive gravity shifting (as previously
established), so its existence, properties, and effects are not part of the natural worldview. The shift
and potential tensors Sα

µ̄ and wα
µ couple to matter and all fields via the gravity shift mechanism, so

absolute observers perceive the coupling of the shift and potential tensors to matter and all fields.
In addition, absolute observers perceive the coupling of the absolute metric aµν to matter and all
fields, as well as the coupling of the natural metric gαβ to matter and the nongravitational fields.
However, as established, natural observers only perceive the natural metric gαβ coupled to matter and
the nongravitational fields.

Once the absolutely measured value Žαβ

(A)
= Žαβ of a quantity is obtained using a preferred

absolute inertial frame, coordinate transformation may be applied to obtain its value Zαβ
A as utilized by

absolute observers to model systems in any coordinates, referred to as an “absolute quantity.” Similar
to Zαβ

N not always equaling Zαβ

(N)
, it may not be the case that Zαβ

A equals its absolutely measured value

Zαβ

(A)
(assuming the rule in this paper that absolute measurement for a coordinate-given quantity Zαβ is

made utilizing the same frame as specified by its coordinates). But with Zαβ
A defined via transform from

the global IC value Žαβ

(A)
, then Žαβ

A = Žαβ

(A)
in the global ICs of absolute inertial frames. Combining this

with (176) yields
Žαβ

A = Žαβ

A(A)
= Žαβ

(A)
= Žαβ, (178)

which includes the recognition that the absolute measurement Žαβ

A(A)
of Žαβ

A equals Žαβ
A itself in the

global ICs. Now the absolute metric ǎµν = ηµν is the metric that is universally utilized in the laws
of special relativity applicable in the absolute inertial frames. With the absolute observers explicitly
perceiving adherence to the laws of special relativity in their preferred absolute inertial frames, then
the absolute metric is utilized for universally applicable metric-incorporating formulation of absolute
quantities Zαβ

A . For absolute observers, the natural metric gαβ is used to depict the gravitational field
only, so it is “just one more quantity” as opposed to the absolute metric universally used for all absolute
quantities Zαβ

A when a metric is required (such as for raising and lowering indices). Beginning with
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(178) in the absolute inertial frames, coordinate transformation yields Zαβ
A = Zαβ in any coordinates.

Following this methodology, all universally applicable absolute quantities

Zαβ
A = Zαβ (absolute metric use) (179)

(to arbitrarily high differential order) may be obtained, which are actual quantities Zαβ where the
absolute metric is utilized for universal formulation as specified. Note that the shifted values Zαβ

S of

quantities are not included in (179) as a general equality, since Zαβ
A may explicitly contain an absolute

metric, in which case it would not be a shifted quantity (from above). The absolute metric aµν and its
connection Aα

µν are absolute quantities that may be specified by aA
µν and AαA

µν , but for brevity, aµν and
Aα

µν continue to be used.

The above-established universally applicable absolute quantities Zαβ
A may be utilized to construct all

general formulations employed by absolute observers to model systems. The universal applicability of general
formulations is the basis for requiring universal applicability of the absolute quantities Zαβ

A . Similar
to construction of the universally applicable absolute quantities, the universally applicable general
formulations for absolute observers may be obtained via absolute measurement of same in absolute
inertial frames, so that again the laws of special relativity hold. Coordinate transformation may then be
applied to obtain general formulations in any coordinates. An option available for absolute observers
is to utilize natural quantities Zαβ

N in absolute formulations, since as discussed above, these are part
of the inventory of quantities available for absolute observers. Their use is more convenient in some
cases, as demonstrated below. However, as will be shown, any natural quantity Zαβ

N may always be

constructed using absolute quantities Zαβ
A , so any absolute formulation utilizing convenient natural

quantities may ultimately be considered to be based on absolute quantities exclusively.

5.3. Partner Quantities and Formulations

There exists what may be considered a “partner” absolute quantity Zαβ
A for every natural quantity

Zαβ
N , which are the respective absolute and natural values for a quantity of a particular type. This

implies the existence of a “quantity partner relation” between any partner absolute and natural
quantities Zαβ

A and Zαβ
N . An example is the absolute metric aµν = aA

µν considered the partner of the
natural metric gαβ = gN

αβ, where the metric relation gαβ = aµνSµ̄
αSν̄

β (35) is the quantity partner

relation between them. Given the known formulation of a natural quantity Zαβ
N such as from general

relativity, the formulation of the partner absolute quantity Zαβ
A may be obtained via their quantity

partner relation. In addition, the values of natural quantities Zαβ
N may be considered “known” due to

their (above-shown) formation via coordinate transformation and natural covariant differentiation
applied to up to first-order inertially valued naturally measured quantities Ẑµν

N = Ẑµν

(N)
= Žµν

US (as per

(174)) in micro free-fall frames. So the value of an absolute quantity Zαβ
A may be obtained from the

known value of the partner natural quantity Zαβ
N by applying their quantity partner relation. Note that

absolute quantities exist that do not have natural partners, such as the shift tensor Sα
µ̄ = Sα A

µ̄ , but again
every natural quantity has an absolute partner. A methodology for formulating partner quantities via
use of quantity partner relations is developed below, along with various absolute quantities provided
via their use given the known natural quantities.

Similar to the partner quantities, there exists a “partner” absolute formulation for every natural
formulation, with the absolute quantities, Zαβ

A , in the partner absolute formulation, the absolute

partners of the natural quantities Zαβ
N in the natural formulation. The construction of a partner absolute

formulation may be made then via application of partner quantity relations to the natural quantities
Zαβ

N contained in the partner natural formulation. Since a physical law is a formulation, partner
physical laws are included when generally discussing partner formulations here. Again, the natural
general formulations in GS theory may be considered the known available natural general formulations
in general relativity. Similar then to absolute quantities, absolute general formulations may be obtained
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from the known partner natural general formulations. Examples are provided below. There exist
though absolute formulations that do not have natural partners, but again every natural formulation,
including then every natural physical law, has an absolute partner.

Consider “native” tensor quantities Zαβ that are defined without the use of a metric, such as
displacements dxα. Native tensor quantities are generally zero-order quantities, since a differentiated
tensor quantity requires use of a metric connection based covariant derivative. Applying (174) yields
Ẑαβ

N = Ẑαβ

(N)
= Ẑαβ

S = Ẑαβ for the zero-order native natural quantities in Riemann ICs, which when

transformed into the partner global ICs results in Žαβ
N = Žαβ

S = Žαβ as per (175) given in global ICs,

where no metric is utilized in Žαβ
S = Žαβ. But according to (178), a partner native absolute quantity

satisfies Žαβ
A = Žαβ

(A)
= Žαβ, where again no metric is utilized in Žαβ. Therefore, Žαβ

A = Žαβ
N = Žαβ

S =

Žαβ for native quantities, yielding in any coordinates or geometrically the “native equality”

Zαβ
A = Zαβ

N = Zαβ
S = Zαβ, ZA = ZN = ZS = Z, (native quantities) (180)

which is the quantity partner relation expressing the equality of partner native (and therefore zero-
order) absolute and natural quantities. The value for a native absolute quantity Zαβ

A is equal then to

the known value of the partner native natural quantity Zαβ
N (assuming it exists).

Applying the native equality (180) to displacements yields

dxα
A = dxα

N = dxα
S = dxα, dx⃗A = dx⃗N = dx⃗S = dx⃗, (181)

so both absolute and natural observers use the native shifted/actual displacements dxα
S = dxα when

modelling. Integrating (181) yields

xα
A = xα

N = xα
S = xα, xA = xN = xS = x, (182)

so both absolute and natural observers model with the native shifted/actual event locations xα
S = xα

as well as the events xS = x themselves. The coordinate systems utilized by absolute and natural
observers are the same, so using (182), their basis vectors e⃗(α)= ∂x/∂xα are the same native quantities
as stated by e⃗ A

(α) = e⃗ N
(α)

= e⃗ S
(α)

= e⃗(α). Similarly, the native coordinate basis 1-forms ω̃(α) = d̃xα are

the same as stated by ω̃
(α)
A = ω̃

(α)
N = ω̃

(α)
S = ω̃(α). Using the basis vector and 1-form equalities in

δα
µ =

〈
ω̃(α), e⃗(µ)

〉
yields the native delta tensor equality δα N

µ = δα A
µ = δαS

µ = δα
µ, as expected from

direct use of (180). For brevity when performing absolute or natural modelling, the actual value Zαβ

for a native quantity may be used in place of its equal absolute or natural values, such as using dxα for
the absolute or natural displacement values for all modelling.

A key native quantity is the “de Broglie 1-form”

k̃A = k̃N = k̃S = k̃, kA
α = kN

α = kS
α = kα, (183)

which is utilized to express de Broglie waves for shifted/actual quanta and particles. A de Broglie
wave may be depicted locally as a native geometric object consisting of a series of evenly spaced
flat parallel surfaces in 4-spacetime—i.e., a geometric 1-form—as discussed in MTW [16] (Chap. 2).
Therefore, the de Broglie wave geometric 1-form on the left of (183) has the same absolute and natural
values as indicated, yielding the coordinate form on the right. The number of de Broglie wave surfaces
“pierced” by a displacement vector is

〈
k̃A, dx⃗A

〉
=

〈
k̃N, dx⃗N

〉
, which is a native scalar quantity that

must therefore have the same absolute and natural values, verifying that k̃A = k̃N since dx⃗A = dx⃗N

from (181). In accordance with the EEP, for natural observers the micro free-fall frame Riemann IC
components of a de Broglie 1-form are

k̂N
µ = k̂(N)

µ = 2π
[
−ν̂(N), r̂ x

(N)/λ̂(N), r̂ y
(N)

/λ̂(N), r̂ z
(N)/λ̂(N)

]
= ǩUS

µ , (184)
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where ν̂(N) = ν̂S = ν̌US is the inertial naturally measured frequency, ˆ⃗r(N) =
ˆ⃗r S = ˇ⃗r US is the inertial

naturally measured unit 3-space travel direction for the de Broglie wave, and λ̂(N)= λ̂S = λ̌US is the
inertial naturally measured wavelength along the travel direction ˆ⃗r(N) (having utilized (174) and thus
the partner absolute inertial frame for the inertial unshifted values). The naturally measured de Broglie
wavefronts run perpendicular to their travel direction ˆ⃗r(N) (in a vacuum). For absolute observers, the
absolute inertial frame global IC components of the same de Broglie 1-form are

ǩA
α = ǩ(A)

α = 2π
[
−ν̌(A), ř x

(A)/λ̂(A), ř y
(A)

/λ̂(A), ř z
(A)/λ̂(A)

]
, (185)

where ν̌(A)= ν̌S is the absolutely measured frequency, ˇ⃗r(A)=
ˇ⃗rS is the absolutely measured unit 3-space

travel direction for the de Broglie wave, and λ̌(A)= λ̌S is the absolutely measured wavelength along
the travel direction ˇ⃗r(A). In general, the absolutely measured shifted de Broglie wavefronts do not run
perpendicular to their travel direction ˆ⃗r(A), as is the case for gravity shifted light (from above).

The de Broglie 1-form is a kinematic quantity. Multiplication by h̄ across (183) converts the de
Broglie 1-form into the “momentum 1-form”

p̃A = p̃N = p̃S = p̃ = h̄k̃, pA
α = pN

α = pS
α = pα = h̄kα, (186)

utilized to depict energy-momentum for shifted/actual quanta and particles, yielding then a native
dynamic quantity. As stated in (183), the geometric de Broglie 1-form is the gravity shifted 1-form k̃S.
Utilizing a coordinate 1-form basis, k̃S may be given by k̃S = kS

αω̃(α), the sum of geometric 1-forms
kS

αω̃(α). Each shifted 1-form component value may be given by kS
α = Sµ̄

αkUS
µ , where kUS

µ are the
component values for the geometric unshifted de Broglie 1-form k̃US = kUS

µ ω̃(µ). As can be seen, the
application of gravity shifting as dimensional shifts applied to the parallel surfaces giving the unshifted
geometric de Broglie 1-form, k̃US, yields the parallel surfaces giving the shifted de Broglie 1-form k̃S,
representing then gravity shifting applied to unshifted de Broglie waves to yield the partner shifted
waves. Under this dimensional shifting of de Broglie waves, the unshifted geometric momentum
1-form p̃US = h̄k̃US is shifted to become the shifted momentum 1-form p̃S = h̄k̃S, noting that the
dimensional shifting for the parallel surfaces of the geometric momentum 1-form is identical to the
de Broglie wave dimensional shifting. Therefore, the dimensional shifting of the de Broglie waves
for quanta and particles has yielded a “dynamic shift,” meaning a shift in a dynamic property, in this
case energy-momentum. Via (186), the various natural and absolute shifted dynamic quantities in
GS theory may be formed via use of the shifted momentum 1-form p̃S = p̃A = p̃N , as is done for the
cases below. Using the dimensional shifting induced dynamic shifting to obtain p̃S as the basis for the
dynamic shifting for all dynamic quantities, in general, dynamic shifts accompany the dimensional shifts of
unshifted objects when obtaining their shifted partners, with the dynamic shifts resulting from application of the
dimensional shifts (as stated in the summary).

The use of wave packets constructed from the de Broglie waveforms (184) and (185), as well as the
use of (186), yields partner natural and absolute formulations of the Heisenberg uncertainty principle

∆ p̂(N)
α ∆x̂α

(N) ≥ h̄ (no sum), ∆ p̌(A)
α ∆x̌α

(A) ≥ h̄ (no sum), (187)

applicable along each IC axis direction (including the time axis direction to yield ∆E∆t ≥ h̄ ) for both
natural and absolute observers in their respective preferred Riemann and global ICs (see Beiser [23],
Chap. 3, for background). The partner absolute uncertainty principle was obtained via quantity
partner relation based conversion of the natural quantities contained in the known natural uncertainty
principle available from EEP-based formulation in general relativity. In the usual manner, the wave
packets depict shifted quanta and particles as they exist in actuality subject to the uncertainty principle.
The naturally measured wave packets have group speeds v̂(N) that do not exceed the fixed natural
light speed ĉ(N) = čUS = 1 (see (161)), whereas a hypothetical single wavelength de Broglie wave
contributor has a natural speed that is not less than the natural light speed. This yields absolutely
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measured wave packets with group speeds v̌(A) that do not exceed the variable absolute light speed
č(A)= čS ≤ 1, where a single wavelength de Broglie wave contributor has an absolute speed that is
not less than the absolute light speed. The momentum 1-form (186) holds for the average energy and
momentum of the wave packets, so this 1-form depicts average energy-momentum for shifted/actual
quanta and particles subject to the uncertainty principle.

The above discussion and formulation demonstrates that not only do the laws of quantum
mechanics hold for natural observers using raw shifted/morphed instruments as expected due to EEP
satisfaction, the quantum mechanics laws also hold in actuality, meaning for gravity shifted quantum
phenomena posed in absolute flat spacetime as accurately measured by absolute observers using
shift-corrected instruments. Employing then both absolute and natural observers in this manner, it can
be seen that the use of gravity shift theory yields adherence to quantum mechanical laws under gravitation in
absolute flat spacetime, while satisfying the equivalence principle.

Consider “metric quantities” formed by applying metrics to native quantities, either by rais-
ing/lowering their indices by metrics or by applying metric connection based covariant differentiation
to the native quantities. What are considered “partner” natural and absolute metric quantities Zαβ

N and

Zαβ
A are ones formed by applying “partner metric operations” to equal partner native quantities, which

are the same metric operations with the natural metric utilized for the natural native quantity Zαβ
N , and the

partner absolute metric utilized for the equal partner native absolute quantity Zαβ
A . In this manner, the

natural metric is the expected metric utilized in the naturally measured partner natural metric quantity
Ẑµν

N(N)
= Ẑµν

N in any micro free-fall frame, and the absolute metric is the expected metric utilized in

the absolutely measured partner absolute metric quantity Žαβ

A(A)
= Žαβ

A in the partner absolute inertial
frame, with the respective naturally and absolutely measured partner metric operations applied then
to the partner native quantities in the same manner. The defined partner metric quantities Zαβ

N and

Zαβ
A therefore result in expected partner metric quantities as measured by “partner” natural and absolute

observers respectively utilizing a micro free-fall frame and a partner absolute inertial frame, justifying the
identification of the defined partner metric quantities as indeed being “partners.” The partner general
formulations discussed above utilize partner quantities Zαβ

N and Zαβ
A consisting of both partner native

and metric quantities.
An example of partner metric quantities is the partner natural and absolute lowered displacements,

dxN
ν = gνα dxα and dxA

ν = aνα dxα, obtained by lowering the equal partner native displacements
dxα

A = dxα
N = dxα. Note that dxA

ν = dxν , demonstrating that “A” labeling for absolute metric
quantities may be utilized in place of absolute underscoring for all raised/lowered indices. Using
metric products, the quantity partner relation between dxN

ν and dxA
ν may be readily shown to be

dxA
ν = aνµgµα dxN

α , yielding
dxA

ν = Fα
ν̄ dxN

α , (188)

having used the squared shift tensor based inverse metric relation (78). The partner metrics gN
αβ = gαβ

and aA
αβ = aαβ themselves may be obtained via a partner metric operation consisting of lowering

the equal partner native delta tensors δα N
µ = δα A

µ = δα
µ. A key example is natural and absolute

proper intervals dsN and dsA, which are partner metric quantities since ds2
N = gαβ dxα dxβ (34) and

ds2
A = aµν dxµ dxν (28). Of interest is their quantity partner relation in the case of naturally timelike or

null shifted particle motion, which is

dτN
dτA

=

√
gαβ dxα dxβ

aµν dxµ dxν
. (189)

This is a coordinate invariant quantity that is dependent on the motion of the particle, which may be
given by its velocity v̌n = dx̌n/dť in global ICs. Recall that if a natural proper interval dsN is timelike
or null, the partner absolute proper interval dsA is also timelike or null, so (189) is real valued for
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naturally timelike or null particle motion. For shifted particle motion that is naturally timelike, and
thus absolutely timelike, the partner 4-velocities are

Uα
N = dxα/dτN , Uα

A = dxα/dτA, (190)

where (189) may be utilized in their quantity partner relation Uα
A = (dτN/dτA)Uα

N to obtain Uα
A given

Uα
N , and vice versa.

Representative partner covariant derivatives of partner quantities are given by

∇N
ν Zα N

µ ≡ Zα N
µ ; ν , ∇A

ν Zα A
µ ≡ Zα A

µ | ν , (191)

where “ ; ” designates natural covariant derivatives using the natural metric connection Γα
µν, and “ | ”

designates absolute covariant derivatives using the absolute metric connection Aα
µν. The quantity

partner relation between the partner covariant derivatives of partner native quantities, Zα N
µ = Zα A

µ =

Zα
µ, may be obtained by adding ∇N

ν Zα
µ −∇A

ν Zα
µ to ∇A

ν Zα
µ to form the representative

∇N
ν Zα

µ = ∇A
ν Zα

µ + Zρ
µ∆α

ρν − Zα
ρ∆ρ

µν, (192)

where the “connection difference tensor”

∆α
µν ≡ Γα

µν − Aα
µν (193)

is a tensor quantity (transforms as a tensor) from bimetric theory [13]. As a result, the quantity partner
relations between partner covariant derivatives of partner native tensor quantities are indeed covariant
tensor relations. If desired, any natural metric quantity Zα N

µ could be substituted throughout (192),
followed by substituting on the right the quantity partner relation between Zα N

µ and its partner absolute
metric quantity Zα A

µ , yielding the covariant quantity partner relation between ∇N
ν Zα N

µ and ∇A
ν Zα A

µ .
Other indice forms of partner metric quantities follow suit. The above examples demonstrate how
quantity partner relations are developed between partner metric quantities.

The partner formulations of the “weak constraint” on shifted particle motion are

U⃗N
N· U⃗N = −1, U⃗A

A· U⃗A = −1, (194)

obtainable from the partner line elements dτ2
N = −gαβ dxα dxβ and dτ2

A = −aµν dxµ dxν, and use of
(190). The absolute weak constraint may be readily derived via quantity partner relation application to
the partner natural quantities in the partner natural weak constraint, and vice versa. Representative
partner directional covariant derivatives of partner quantities are given by

DN
dτN

Zα N
µ ≡ Uν

N Zα N
µ ; ν ,

DA
dτA

Zα A
µ ≡ Uν

AZα A
µ | ν , (195)

where naturally timelike paths are assumed here, which are then absolutely timelike. Applying the
partner directional covariant derivatives to the partner weak constraints yields the partner “acceleration
constraints”

a⃗N
N· U⃗N = 0, a⃗A

A· U⃗A = 0, (196)

where the partner 4-accelerations are given by

aα
N ≡

DNUα
N

dτN
=

dUα
N

dτN
+ Γα

µνUµ
NUν

N , aα
A ≡

DAUα
A

dτA
=

dUα
A

dτA
+ Aα

µνUµ
AUν

A. (197)

To obtain (196), use was made of gαβ ; µ = 0 and aαβ | µ = 0. The right-hand side of the natural 4-
acceleration equation gives the gravitational geodesic motions of shifted particles if set to zero, as
per (103) where Uµ

S = Uµ
N for the particles. So aα

N = 0 under gravitational geodesic motion, but
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aα
N is non-zero if a particle is under a nongravitational force. The right-hand side of the absolute

4-acceleration equation gives the absolute metric based geodesic motions of shifted particles if set to
zero, as per (177). So aα

A = 0 under absolute geodesic motion, but aα
A is non-zero if a particle is under a

force, which includes the absolutely perceived gravitational force as well as any nongravitational force.
Even when forces are present though, using their respective partner metrics, in both the natural and
absolute partner cases the 4-accelerations are orthogonal to the 4-velocities as per their acceleration
constraints (196). The above discussion and formulation establishes adherence to the weak and
acceleration constraints for shifted particle motion in absolute flat spacetime, while adhering to the
weak and acceleration constraints that result under satisfaction of the equivalence principle, with this
self-consistency obtained due to respective use of the absolute and natural classes of observers.

Under EEP satisfaction, the naturally measured 4-momentum of a shifted massive particle,
in a micro free-fall frame, is given by the inertial form p̂ µ

N(N)
= m̂N(N)Û

µ

N(N)
, where as per (174),

m̂N(N) = m̌US is the inertially valued naturally measured rest mass. The naturally measured rest

mass may be obtained via m̂2
N(N)= − p̂ µ

N(N)
p̂N(N)

µ = m̌2
US having used the natural weak constraint in

(194), where p̂N(N)
µ = (ĝ(N)

µν = ηµν) p̂ ν
N(N)

is the naturally measured momentum 1-form. The naturally
measured rest mass m̂N(N)= m̌US of a shifted/actual particle is therefore a fixed scalar invariant equal
to its fixed invariant unshifted rest mass, yielding

mN = mUS (198)

for the fixed natural rest mass in any coordinates. The natural momentum 1-form and 4-vector in any
coordinates are then

pN
α = mNUN

α , p α
N = mNUα

N . (199)

The above momentum and rest mass formulations are available general relativity formulations of same
(if the unshifted rest mass mUS is interpreted as the fixed inertial value of rest mass).

As is understood in general relativity formulation of natural quantities, the “quantum” momen-
tum 1-form pN

α = h̄kα, established above via use of quantum de Broglie waves, equals the “mechanical”
momentum 1-form pN

α = mNUN
α . This equality holds then in GS theory, which may be established us-

ing the EEP in micro free-fall frames. Combining this equality with (186) stating the equality pA
α = pN

α

of partner quantum momentum 1-forms, implies that (186) also holds for the equality of partner natural
and absolute mechanical momentum 1-forms. Therefore, pA

α = pN
α = mNUN

α for the absolute mechanical
momentum 1-form for a shifted particle. Substituting pA

α = aαµ p µ
A and pN

α = gαµ p µ
N into pA

α = pN
α , and

using (76), yields the partner relation
p µ

A = Fµ̄
α p α

N (200)

for the partner mechanical/quantum momentum 4-vectors. With UN
α = dxN

α /dτN and UA
µ = dxA

µ /dτA

the partner velocity 1-forms (obtained by lowering the partner 4-velocities (190) by their respective
metrics), then use of (188) yields UN

α = (dτA/dτN)Fµ̄
αUA

µ . Substituting this partner relation in pA
α =

mNUN
α , and equivalently using p α

N = mNUα
N (199) in (200) where Uα

N = (dτA/dτN)Uα
A, respectively

results in the absolute mechanical momentum 1-form and 4-vector

pA
α = mµ A

α UA
µ , p µ

A = mµ A
α Uα

A, (201)

where
mµ A

α ≡ mN(dτA/dτN)Fµ̄
α (202)

is the “absolute mass tensor” for a shifted/actual particle. Lowering mµ A
α by the absolute metric, and

applying (76), yields mA
βα = mN(dτA/dτN)gβα, so the absolute mass tensor is symmetric when given in

pure indice form. The absolute mass tensor for a shifted particle is field dependent due to the presence
of Fµ̄

α in (202), and is additionally dependent on the particle’s motion due to the (above-discussed)
motion dependence of dτA/dτN given by (189).
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The recognition of absolute mass as a tensor, as opposed to a scalar, is made clear by forming
the scalar invariant −p α

A pA
α = −m2

N(dτA/dτN)
2Fµ̄

αFᾱ
νUA

µ Uν
A, which reduces to the positive-valued

m2
N = m2

US in deep space as expected (using (198)). But within the gravitational field, −p α
A pA

α can be
negative depending on a particle’s motion, as can be shown when using the above star-case field. A
negative −p α

A pA
α would yield an imaginary scalar absolute mass mA that would not then be absolutely

observable. A scalar absolute mass based absolute momentum form p µ
A = mAUµ

A is therefore not
physically valid, requiring instead the tensor mass form p µ

A = mµ A
α Uα

A with a real-valued, and therefore
absolutely observable, absolute mass tensor mµ A

α .
The natural partner to the absolute mass tensor mµ A

α for a shifted/actual particle, as given by
(202), is the “natural mass tensor”

mµ N
α ≡ mNδµ

α. (203)

This is obtainable by taking the weak limit of (202) to yield the unshifted form m̌µ US
α = (mUS = mN)δ̌

µ
α

in an absolute inertial frame (using (198)), applying a micro morph to obtain m̂µ N
α ≡ mN δ̂µ

α in the
partner micro free-fall frame, and then using a coordinate transform to obtain mµ N

α = mNδµ
α in any

coordinates. Utilizing GS theory then, natural mass is understood to be a mass tensor in actuality.
However, in practice, such as making natural mass measurements or modelling naturally observed
systems, the delta tensor for the natural mass mµ N

α given by (203) is always merged with other quantities.
A key example is use of the natural 4-momentum p µ

N = mµ N
α Uα

N , so that p µ
N = mNδµ

αUα
N = mNUµ

N ,
showing the delta tensor δµ

α used in the stand-alone natural mass tensor, mµ N
α , being merged with the

4-velocity in the momentum. As a result, natural mass is historically conceived of as a scalar mN due
to merger of the delta tensor in mµ N

α = mNδµ
α with other quantities in practice. But as a stand-alone

quantity, the natural mass of a shifted/actual particle is actually a tensor assuming GS theory is valid. The
historical practice of convenient scalar conception and use is continued in this paper though, since in
practice the delta tensor in mµ N

α = mNδµ
α gets merged and may therefore be ignored.

The right of (202) for the absolute mass tensor, mµ A
α , may be put exclusively in terms of absolute

quantities by the following: using mN as given by m2
N = −p α

N pN
α where the natural momentum

terms are provided by the quantum momentum 1-form pN
α = h̄kα and vector pα

N = gαµ h̄kµ, using (189)
for dτA/dτN , and then using (76) and (78) to put all instances of the natural metric in terms of the
absolute metric and squared shift tensor. Instead of using the resultant long expression, though, it is
often convenient to use the right of (202) constructed with the natural quantities mN and dτN , which
is allowed for absolute observers since natural quantities are part of their inventory. A technique
from available formulation for “handling” photons (see PW [20], Chap. 4), put into GS theory
terms, is to utilize a fixed ratio mN/dτN while taking the natural light speed limit dτN → 0 (yielding
v̂(N)→ ĉ(N)= 1 in micro free-fall frames), keeping then the natural energy p 0

N = mN dt/dτN fixed as a
naturally massive shifted particle “transitions” to a shifted photon of the same energy. This results in
shifted photons having a zero-valued natural rest mass mN , the same as unshifted photons having
a zero-valued rest mass mUS, as expected under EEP satisfaction. On the other hand, application of
this technique in (202) yields a finitely large absolute mass tensor mµ A

α for shifted/actual photons moving
at less than the unshifted light speed (absolute manifold null speed) in a gravitational field, only
becoming absolutely massless in the deep-space limit where then dτA goes to zero as a shifted photon
becomes a massless unshifted photon moving at the unshifted light speed.

The partner 4-vector “force (based) motion laws” applicable for shifted/actual particle motion are

f α
N =

DN pα
N

dτN
, f α

A =
DA pα

A
dτA

, (204)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2025 doi:10.20944/preprints202411.0620.v7

https://doi.org/10.20944/preprints202411.0620.v7


81 of 120

obtainable from special relativity based force motion laws as measured by natural and absolute
observers in their respective partner micro free-fall and absolute inertial frames. More convenient
forms here for the partner force motion laws are the lowered forms

f N
α =

DN pN
α

dτN
, f A

α =
DA pA

α

dτA
, (205)

since then the 1-form equality pA
α = pN

α (186) may be exploited. Applying the representative (192) and
(195) for these 1-forms yields the “force partner relation”

f A
α =

dτN
dτA

f N
α + ∆ρ

αµUµ
A pA

ρ . (206)

This relation holds for massive shifted particles as well as for shifted light moving in a gravitational
field at less than the unshifted light speed. In a micro free-fall frame, the naturally measured grav-
itational force f̂ N(N)

µ G is zero since D̂N p̂N(N)
µ /dτN(N) = dp̌US

µ /dτUS = 0 under EEP satisfaction when

no nongravitational forces are present, yielding f N
α G = 0 for the natural gravitational force in any

coordinates. Substitution of f N
α G = 0 into (206) yields

f A
α G = ∆ρ

αµUµ
A pA

ρ (207)

when no natural nongravitational force is present, resulting (finally) in the formal expression for
the absolute gravitational force applied to a shifted/actual particle (including shifted light). Absolute
measurement of the absolute gravitational force is given by

f̌ A(A)
α G = Γ̌ρ(A)

αµ Ǔµ

A(A)
p̌A(A)

ρ (208)

in the preferred absolute inertial frames for absolute observers (using (193) with Ǎρ
αµ = 0), confirming

that absolute observers perceive a gravitational force (as stated in the summary). With the rightmost term
in (206) identified as the absolute gravitational force f A

α G, then with no natural gravitational force, the
absolute nongravitational force is given by the partner relation

f A
α NG =

dτN
dτA

f N
α NG. (209)

Therefore, the total absolute force f A
α , given by (206), is simply the sum

f A
α = f A

α NG + f A
α G (210)

of the absolute nongravitational and gravitational forces without then cross coupling between them.
Substitution of (201) into (207) yields

f A
α G = mν A

ρ ∆ρ
αµUµ

AUA
ν (211)

for the absolute gravitational force applied to a shifted particle (including shifted light) based on
its absolute mass tensor. For the star case, the directional absolute force in the slow-moving limit is
radially inward with magnitude FA = GMmN/r2 in laboratory units, the expected Newtonian force in
the weak limit, but remarkably also applicable when the star’s field is strong.

As can be seen, particle motion in absolute flat spacetime is dictated by the usual force-based
law of motion where both the gravitational and the nongravitational fields may apply the force, while
the same motion is also dictated by motion law that adheres to the equivalence principle, which
forbids the existence of a gravitational force, with this self-consistency obtained due to respective use
of the absolute and natural classes of observers. Therefore, equivalent partner natural and absolute
gravitational laws of motion are yielded, with the natural law obtained by using f α

N = f α G
N = 0 in (204)
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(and dropping the fixed mN) simply the usual law of geodesic motion utilizing the natural metric as
the gravitational metric, and the equivalent partner absolute law obtained by using f α

A = f α G
A in (204)

a force-based law of motion where the gravitational field imposes the force. This equivalency resolves
the conflict between gravitation seen as a force in flat spacetime as opposed to curvature without force
under satisfaction of the equivalence principle.

The application of absolute gravitational force, f α G
A , to a particle moving in absolute flat spacetime,

necessarily implies that the absolute gravitational force generally applies absolute work to the particle as
it moves. This in turn implies that the gravitational field transfers absolute energy-momentum to the
particle over the local spacetime region that the particle subtends, so the gravitational field must possess
a definable absolute energy-momentum density as depicted by an “absolute field stress-energy tensor”
tαβ

A . Now natural observers do not detect the presence of tαβ
A , for the following reasons. First, under

satisfaction of the EEP in micro free-fall frames, natural observers do not detect the presence of t̂µν
A ,

only detecting the presence of the naturally observed matter SE tensor T̂µν
N = T̂µν

N(N)
as understood in

general relativity. This includes no naturally perceived exchange of energy-momentum (EM) with
the field and therefore t̂µν

A , since with only T̂µν
N naturally perceived, EEP-based EM conservation is

naturally perceived as ∂
(N)
ν̂ T̂µν

N(N)
= 0, so EM conservation holds “internal” to the naturally perceived

matter without “outside” EM exchange. Second, the absolute field SE tensor tαβ
A is not present as a

source in the natural field equation (8) utilized by natural observers to determine the gravitational field,
so natural observers do not detect the presence of tαβ

A as a field source. These reasons combined implies

that there is no means by which natural observers detect the presence of tαβ
A , so the presence of the

absolute field SE tensor tαβ
A does not violate the equivalence principle (either the EEP or SEP). Self-consistency

is achieved by again using absolute and natural classes of observers.
The partner natural and absolute matter (plus nongravitational field) SE tensors are related by

T µ
α A = |S−1| T µ

α N . (212)

This relation may be obtained by starting with the partner dust SE tensors

T µ
α N = pN

α Nµ
N , T µ

α A = pA
α Nµ

A, (213)

where pA
α = pN

α for the momentum 1-form of a dust particle as per (186), and where the partner particle
flux vectors are given in covariant form by

Nµ
N =

dN√−g dΩ
dxµ, Nµ

A =
dN√
−a dΩ

dxµ. (214)

The quantity dN/dΩ is the number of dust particles per infinitesimal 4-volume element dΩ =

dx0 dx1 dx2 dx3. In the partner micro free-fall and absolute inertial frames for partner natural and
absolute observers, the partner flux vectors both reduce to Nµ = (dN/dV)dxµ/dt where dV =

dx1 dx2 dx3, using
√−η = 1 for both metrics. This yields the usual number flux definition Nµ =

n dxµ/dτ = n Uµ where n is the number density in the inertial frame (in each partner case) where
the dust particles are instantaneously stationary (see Schutz [18], Chap. 4), justifying (214), which is
applicable in any coordinates. Then use of (214) in (213) yields (212) for partner dust SE tensors since√−g =

√
−a |S−1| (via (37)). For consistency with the dust SE tensors, (212) must hold relating the

partner matter SE tensors for all configurations of matter and the nongravitational fields.
Applying metric products, the relation (212) becomes

Tαβ
A = |S−1|Fᾱ

µTµβ
N (215)

in pure raised indice form. Now the natural matter SE tensor Tαβ
N is symmetric. Its symmetry may be

established using the EEP in micro free-fall frames, where then the total naturally measured SE tensor
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is the natural matter SE tensor T̂µν

N(N)
, allowing use of physical arguments for the total SE tensor to

establish its symmetry, such as in Schutz [18] (Chap. 4). However, the right-hand side of (215) is not
generally symmetric even though Tαβ

N is, so the absolute matter SE tensor Tαβ
A is not generally symmetric.

But for absolute observers, the total SE tensor is

Eαβ
A ≡ Tαβ

A + tαβ
A , (216)

which is the sum of the absolute matter and gravitational field SE tensors, both of which are perceived
by absolute observers in their preferred absolute inertial frames. The total SE tensor based physical
arguments discussed above may similarly be applied to establish the symmetry of Ěµν

A(A)
as absolutely

measured in absolute inertial frames, yielding a symmetric “absolute total SE tensor” Eαβ
A in any

coordinates. Since Tαβ
A is not symmetric, then via (216) with Eαβ

A symmetric, the absolute gravitational
field SE tensor tαβ

A is also not symmetric. But the lack of symmetry for Tαβ
A and tαβ

A individually is not an

issue, as only a total SE tensor, such as Tαβ
N or Eαβ

A , must be symmetric to satisfy physical constraints as
discussed in Schutz.

Since it is field dependent, the absolute total SE tensor Eαβ
A is not known a priori for most

gravitational systems. To obtain its value, the absolute field equation Hαβ
A [w; a] = 8πEαβ

A (9) may be

applied given the potential solution wα
µ from the natural field equation Hαβ

N [w; a] = 8πTαβ
N (8). The

value of the field SE tensor tαβ
A may then be obtained using (215) and (216) given the known natural

matter SE tensor Tαβ
N . Alternately, using both the absolute and natural field equations combined with

(212) and (216), t µ
α A may be given by

t µ
α A =

1
8π

{H µ
α A[w; a]− |S−1|H µ

α N [w; a]}, (217)

providing an expression for the absolute field SE tensor in pure field terms.
Partner statements of energy-momentum conservation are

∇N
β Tαβ

N = 0, ∇A
β Eαβ

A = 0. (218)

The natural statement is the usual statement obtainable from required naturally measured total
EM conservation ∇̂N(N)

ν T̂µν

N(N)
= ∂

(N)
ν̂ T̂µν

N(N)
= 0 in micro free-fall frames under EEP satisfaction.

The absolute statement is obtainable from required absolutely measured total EM conservation
∇̌A(A)

ν Ěµν

A(A)
= ∂

(A)
ν̌ Ěµν

A(A)
= 0 in absolute inertial frames. The partner statements (218) establish

that energy-momentum conservation holds locally in absolute flat spacetime for all matter and fields
combined including the gravitational field, while also satisfying the equivalence principle, which
forbids the inclusion of a gravitational field EM density in local EM conservation, with this self-
consistency obtained due to respective use of the absolute and natural classes of observers. There
is no energy-momentum conservation requirement for the individual absolute matter and field SE
tensors Tαβ

A and tαβ
A , so energy-momentum may be exchanged between Tαβ

A and tαβ
A as a system evolves,

as is typical for components making up a total SE tensor (Eαβ
A ). As understood from general relativity,

∇N
β Tαβ

N = 0 may not be integrated in general, so global natural matter energy-momentum is not

generally conserved. However, utilizing any absolute inertial frame, local conservation ∂ν̌Ěµν
A = 0

may be integrated to yield global absolute total EM conservation dP̌α
A /dť = 0 for any system, where

P̌α
A ≡

∫
Ěα0

A dV̌ over all space is the total 4-momentum (with all emitted gravity waves included in the
integral).

As has been demonstrated by multiple examples, self-consistency between formulation that
results due to the absolute spacetime postulate, and formulation that results due to the equivalence
principle postulate, is achieved through respective use of the absolute and natural classes of observers.
The examples selected are ones that are typically examined in gravitational theory to establish in-
consistencies between use of absolute flat spacetime and use of the equivalence principle, including
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the Schild argument evaluated previously. It is through the emergence of universal gravity shifts
that must exist when both postulates are assumed, combined with the recognition of absolute and
natural observers utilizing shift-corrected and raw gravity shifted instruments respectively, that such
potential inconsistencies are resolved (as discussed in the summary). Through the use of partner rela-
tions between partner quantities contained in partner formulations, partner physical laws are equivalent,
establishing their self-consistency. The apparently “diametrically opposed” worldviews that result
when assuming the absolute spacetime postulate, while also adhering to the equivalence principle, are
resolved when recognized as the equivalent worldviews of the absolute and natural classes of observers.
It is concluded that gravity shift theory is a self-consistent theory of gravitation, even though it rigidly
adheres to both the absolute flat spacetime postulate and the strong equivalence principle.

6. The Natural Field Equation
6.1. General Form

As discussed previously, the natural field equation is utilized by natural observers to model
gravitational systems. For predictive success, the NFE is assumed to yield in the linearized case the
same observed natural metric gαβ as predicted by the linearized Einstein equation, as well as yield the
observed post-Newtonian natural metric, which is also predicted by Einstein’s equation. Einstein’s
equation Gαβ[g] = 8πTαβ

N is a relativistic tensor extension of Poisson’s equation ∇2ϕ = 4πρN from

Newtonian gravitation, where the symmetric natural matter SE tensor Tαβ
N is the “most straightforward”

relativistic tensor extension of the natural mass density ρN (see Schutz [18], Chap. 8, for a justification
utilizing commonly accepted arguments). Similarly extending from Poisson’s equation, and with the
above-stated required agreements with Einstein’s equation, the relativistic tensor NFE is therefore
assumed to take the form Hαβ = 8πTαβ

N , where Hαβ is the symmetric natural field tensor functionally
dependent on gravitational field quantities only. As established above, the field equation operand
contained in Hαβ must consist of the potential tensor wα

µ, as required to satisfy the overlap restriction
placed on gravity shifting, which bars forbidden matter and temporal singularities from occurring
in absolute flat spacetime. All gravitational field quantities in GS theory (Sα

µ̄, gαβ, etc.) may be
constructed using the potential wα

µ and the absolute metric aµν. The most general form for Hαβ is
therefore Hαβ[w; a], indicating a functional dependence on wα

µ and aµν with wα
µ as the operand. The

resulting natural field equation takes the general form

Hαβ[w; a] = 8π Tαβ, (219)

where the natural labeling for Tαβ
N has been dropped for convenience (establishing (8)).

As discussed in Section 4.7, when background curvature effects may be considered negligible
for a local system surrounded by a background system, the NFE in the actual case must be able to be
put into a form that approximates its morphed form, so that the morphed form may be considered to
be the approximation obtained from NFE use in the actual case when background curvature effects
are completely neglected as an approximating assumption. This “morph consistency requirement” is
applied here to significantly limit the form of the natural field equation.

To begin with, the natural matter SE tensor may be given in functional form by Tαβ = Tαβ[qλ, g],
depicting native natural matter and nongravitational field quantities qλ = qN

λ universally coupled to
the natural metric gαβ. The quantities qλ are gravity shifted quantities in the actual and morphed cases.
The general form (219) of the NFE may therefore be given by

Hαβ[w; a] = 8π Tαβ[qλ, g] (220)

to indicate this universal coupling. Now as stated by Zαβ
M ≈ Zαβ (172), when background curvature ef-

fects may be considered negligible, all actual case quantities Zαβ subject to gravity shifting approximate
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their morph case values Zαβ
M , with quantities explicitly containing the shift tensors Sα

µ̄ or potentials
wα

µ being the exceptions due to (171) holding. Then

qλ ≈ qM
λ (221)

for the native natural matter and nongravitational field quantities, and gαβ ≈ gM
αβ for the natural

metrics as per (173). Substituting these approximations into the matter SE tensor function Tαβ[qλ, g]
yields

Tαβ[qλ, g] ≈ Tαβ
M [qM

λ , gM] (222)

for the actual and morph case SE tensors. Note that in (222), the “M” label has been added to Tαβ in
the function Tαβ[qM

λ , gM] to clarify that its morphed form Tαβ
M = Tαβ[qM

λ , gM] has been obtained. This
practice is continued below for all functions of morphed quantities. Based on the stated approximations,
if the NFE had the form Hαβ[g] = 8πTαβ[qλ, g], the actual case field equation Hαβ[g] = 8πTαβ[qλ, g]
would indeed approximate the morphed field equation Hαβ

M
[
gM]

= 8πTαβ
M
[
qM

λ , gM]
(where Hαβ

M
[
gM]

is
Hαβ[gM] following the above practice), satisfying the morph consistency requirement. The Einstein
equation Gαβ[g] = 8πTαβ[qλ, g] is an example.

Consider a NFE form where the absolute metric aµν is explicitly expressed in Hαβ[w; a] outside the
natural metric gαβ = aαµ exp(−2wµ

β) = gαβ(w, a). When given in the Riemann ICs of a background
system free-fall frame, the actual case Ĥαβ[ŵ; â] would contain explicit âµν terms that are background
system dependent, whereas use of the absolute metric replacement method yields ĝMB

µν = ηµν in

place of âµν for the morphed case Ĥαβ
M [ŵM; ĝMB]. Therefore, Ĥαβ[ŵ; â] does not generally approximate

Ĥαβ
M [ŵM; ĝMB] when aµν is explicitly expressed in Hαβ[w; a], failing to satisfy the morph consistency

requirement. So any aµν terms in Hαβ[w; a] are assumed to be implicitly contained in gαβ = gαβ(w, a)
terms only, yielding Hαβ[w; a] = Hαβ[w; g(w, a)]. Utilizing (220), the general form for the natural field
equation becomes

Hαβ[w; g(w, a)] = 8π Tαβ[qλ, g(w, a)]. (223)

This is as expected for the field equation utilized by natural observers, since the natural metric is used
exclusively then to raise/lower indices and to form covariant derivatives with, where again the natural
metric gαβ = gαβ(w, a) is universally coupled to the native natural matter and nongravitational field
quantities qλ = qN

λ on the right. The morphed general form for the natural field equation is therefore

Hαβ
M [wM; gM(wM, gMB)] = 8π Tαβ

M [qM
λ , gM(wM, gMB)] with wα M

µ → 0, (224)

where Hαβ
M [wM; gM] is Hαβ[wM; gM] and gM

αβ(w
M, gMB) is gαβ(wM, gMB) following the above “M” la-

beling practice. Note the zero-valued boundary condition for the morphed local system potential wα M
µ .

Both (223) and (224) provide general forms for the actual and morphed form natural field equation
suitable for subsequent formulation.

The natural field tensor, Hαβ[w; g(w, a)], in (223), consists of a sum of terms (or a single term)
where each term is a product of a number of wα

µ and gαβ and/or their partial derivatives, generically
represented by

Hαβ[w; g] = ∑
n

fn(w)hn(g). (225)

This representation includes terms that do not contain wα
µ or alternately gαβ entries, so a term could

be given by hn(g) or fn(w) respectively. With gαβ ≈ gM
αβ (173) and Tαβ[qλ, g] ≈ Tαβ

M [qM
λ , gM] (222),

and Hαβ[w; g(w, a)] given by (225), the only reason why the form (223) would not satisfy the morph
consistency requirement is wα

µ ̸≈ wα M
µ as per (171). Recall that this non-approximation is due to the

actual case wα
µ being the potential for the total system consisting of the local and background system

combined, whereas the morphed-case wα M
µ is the potential for the morphed local system only, with
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wα
µ ̸≈ wα M

µ formally established by utilizing wα
µ = wαB

µ and wα M
µ = 0 at the asymptotic boundary

(region) of the local system.
Consider an Hαβ[w; g(w, a)] form where any explicit instances of the potential wα

µ (i.e., outside of
gαβ(w, a)) are linear in the potential only, so any term fn(w)hn(g) in (225) either has an fn(w) that is
linear in wα

µ, which may be partially differentiated, or does not contain a wα
µ entry so it consists of

hn(g) only. Then Hαβ may be given by

Hαβ[w; g] = Hαβ
g [g] + Hαβ

w [w; g], (226)

where Hαβ
g [g] is the sum of the hn(g) only terms, and Hαβ

w [w; g] is the sum of the fn(w)hn(g) terms
linear in wα

µ. The actual case NFE (223) may therefore be given by

Hαβ[w; g] = Hαβ
g [g] + Hαβ

w [w; g] = 8π Tαβ[qλ, g] with wα
µ → wαB

µ , (227)

where the condition on the right is the asymptotic boundary condition for the total system potential at
the local system boundary. The “linear potential” form (226) for Hαβ allows the actual case potential
wα

µ to be “partitioned” into the sum
wα

µ = wαP
µ + wα H

µ , (228)

where wαP
µ is the solution to the “particular equation”

Hαβ[wP; g] = Hαβ
g [g] + Hαβ

w [wP; g] = 8π Tαβ[qλ, g] with wαP
µ → 0, (229)

and wα H
µ is the solution to the “harmonic equation”

Hαβ
w [wH ; g] = 0 with wα H

µ → wαB
µ . (230)

Utilizing (228), the sum of the particular and harmonic equations is the actual case (227), including
the sum of their boundary conditions being the actual case boundary condition. As a result, starting
with the actual case NFE (227), the harmonic equation (230) may be subtracted, yielding the particular
equation (229).

Now the linear potential form (226) for Hαβ also allows the morphed NFE (224) to be given in
partitioned form as provided by

Hαβ
M [wM; gM] = Hαβ

g [gM] + Hαβ
w [wM; gM] = 8π Tαβ

M [qM
λ , gM] with wα M

µ → 0. (231)

Therefore, the particular equation (229) for the actual case NFE has the same form as the mor-
phed NFE (231), including the zero-valued boundary condition. Then with gαβ ≈ gM

αβ (173) and

Tαβ[qλ, g] ≈ Tαβ
M [qM

λ , gM] (222), the particular equation approximates the morphed equation with a
solution wαP

µ that approximates wα M
µ . Therefore, the morphed equation (231) may be considered

to be the approximation obtained from the particular equation (229) when background curvature
effects are completely neglected as an approximating assumption. Concluding, use of the linear po-
tential form (226) for Hαβ yields a natural field equation that satisfies the morph consistency requirement,
since the morphed equation (231) may be considered to be the approximation obtained from the
actual case NFE (227)—via the particular equation (229) obtained when the harmonic equation (230)
is subtracted—when background curvature effects are completely neglected as an approximating
assumption.

If the functions fn(w) for the Hαβ
w terms fn(w)hn(g) in (225) include various non-linear products

of wα
µ or its derivatives, then the above “partition method” cannot be applied in general, so reduction

of the NFE (223) in the actual case to a particular equation (229) approximating the morphed equation,
(224), is generally not obtainable. A key property of the particular equation is its zero-valued boundary
condition wαP

µ → 0, where with Tαβ → 0, and ĝαβ → ηαβ in the Riemann ICs of background system
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free-fall frames, the boundary conditions for the particular equation (229) have no background system
dependence in agreement with the SEP. Without availability of the partition method to obtain the
particular equation, it is not expected that the actual case NFE (223) would be reducible to a form
where its potential solution would have a zero-valued boundary condition, with instead a non-
zero boundary condition obtained that is background system dependent, violating the SEP, and not
satisfying the morph consistency requirement since the non-zero boundary condition is inconsistent
with the zero-valued morph boundary condition wα M

µ → 0. For this reason, it is concluded that the
natural field equation must be of a form that the partition method is applicable, yielding the particular equation
(229) in the actual case so that the morph consistency requirement is satisfied, as well as boundary
conditions being obtained that are not background dependent in agreement with the SEP. With the
partition method required, it is concluded that the natural field equation must be given by the general
form (223) where any explicit instances of the potential wα

µ (i.e., outside of gαβ(w, a)) in the natural
field tensor, Hαβ[w; g(w, a)], are indeed linear in the potential only.

In order to satisfy the overlap restriction for gravity shifting, the form of the NFE must be such
as to yield real-valued potential solutions wα

µ. Due to the linearity of the explicitly given potential in
Hαβ[w; g(w, a)], use of a given real-valued natural metric gαβ in a NFE of the form (223) will yield real-
valued potential solutions. If instead there were non-linear explicit potential instances, the potential
solutions wα

µ would not be expected to be real valued over the entire range of possible systems
that could be modelled. Therefore, application of the morph consistency requirement prevents this
possibility due to restricting explicit potential instances in Hαβ[w; g(w, a)] to being linear. Even with
this the case, at first sight, there appears to be the possibility that the non-linear use of wα

µ as contained
in the metric relation gαβ = aαµ exp(−2wµ

β) utilized in the NFE, (223), may result in complex-valued
wα

µ solutions. However, use of an iterative technique shows that wα
µ is real valued as follows. Starting

with a given Minkowski metric valued natural metric gαβ in global ICs (equal then to the absolute
metric aαβ = ηαβ), the NFE (223) will yield a real-valued wα

µ solution due to the linearity of the
explicitly given potential in Hαβ[w; g(w, a)]. This solution is used in gαβ = aαµ exp(−2wµ

β) to yield a
real-valued natural metric, which is then reapplied in (223) to yield another real-valued wα

µ solution,
and so on. As it is expected that this iterative process will converge to the exact NFE solution, then the
exact wα

µ solution is real valued since it was so for every iteration. Coordinate transform again yields
a real-valued wα

µ solution for the natural field equation as given in any coordinates.
Summarizing, application of the morph consistency requirement results in the natural field tensor

Hαβ[w; a] being constrained to a form Hαβ[w; g(w, a)] where any explicit instances of the potential
wα

µ are linear in the potential only, resulting in Hαβ being given by Hαβ
g [g] + Hαβ

w [w; g] (226) where

Hαβ
w [w; g] is a sum of terms fn(w)hn(g) with fn(w) linear in wα

µ. The linearity of the explicit potential
instances in Hαβ[w; g(w, a)] yields real-valued potential solutions wα

µ for the NFE (223), as necessary
in order to satisfy the gravity shifting overlap restriction. The initial Hαβ[w; a] could in theory be any
symmetric tensor function formed from wα

µ and aµν such that real-valued solutions wα
µ are obtained

from the NFE as given by (220), resulting in an onerous number of possibilities for Hαβ. Application
of the morph consistency requirement has severely limited the form for Hαβ[w; a], resulting in a
manageable number of possible terms contributing to Hαβ, as shown below.

The morph consistency requirement also applies for the natural nongravitational physics laws
under the influence of gravitation. However, all natural nongravitational physics laws utilize only
the natural metric gαβ universally coupled to the native natural matter and nongravitational field
quantities qλ = qN

λ , so any actual case form approximates its morphed form since qλ ≈ qM
λ (221)

and gαβ ≈ gM
αβ (173). Therefore, all natural nongravitational physics laws satisfy the morph consistency

requirement without further constraining their forms.
A commonly accepted constraint on the field tensor Hαβ is that it consists of “N = 2 terms,” where

N is the total number of derivatives taken on the field quantities in each term. This is established in
Weinberg [22] (Chap. 7) using scaling arguments, with N = 2 coming about for Einstein’s equation via
extension from Poisson’s equation ∇2ϕ = 4πρN for Newtonian gravitation. Therefore, the Hαβ[w; g]
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terms fn(w)hn(g) (225) in the NFE (223) are assumed to be N = 2 terms due to its extension from
Poisson’s equation and the above-stated agreements with Einstein’s equation. Using “w ” and “g ”
to generically represent any raised/lowered index forms for wα

µ and gαβ as well as the scalar wα
α,

and using “gm ” to represent any product of gαβ with itself (including g0 ≡ 1), the list of possible
N = 2 Hαβ[w; g] terms fn(w)hn(g) where fn(w) is at highest order linear in wα

µ is as follows: g,αβ gm,
g,α g,β gm, w g,αβ gm, w g,α g,β gm, w,α g,β gm, and w,αβ gm. Each one of these terms generically repre-
sents multiple possible terms in various index configurations of the contained wα

µ and gαβ, with each
configuration required to have free raised indices α and β to be an Hαβ contributor.

6.2. Lagrangian Formulation

As is commonly assumed for field equations in gravitational physics, the natural field equation
is assumed to result from use of a Lagrangian-based formulation. In particular, in order to satisfy
the requirement that the NFE yields the observed post-Newtonian natural metric, a Lagrangian
formulation is assumed so that as shown in Will [1] (Chap. 4), the predicted PN metric will have the
correct observed “conservation” parameterized post-Newtonian (PPN) parameters α3 ≡ ζ1 ≡ ζ2 ≡
ζ3 ≡ ζ4 ≡ 0 in the standard gauge. A suitable background for the Lagrangian formulation made here
is provided in Carroll [24] (Chaps. 1 & 4), with the NFE formulation patterned similarly. As such, the
“natural action” is defined by

SN ≡ 1
16π

SH + SM, (232)

where SM = SM[qλ, g] is the matter action from general relativity for the naturally observed native
matter and nongravitational fields qλ universally coupled to the natural metric, and SH the “(natural)
field action” defined by

SH ≡
∫ √

−g LH d4x (233)

with LH the “natural field Lagrangian.” With the potential wα
µ the field operand for the NFE

Hαβ[w; g(w, a)] = 8πTαβ (223), the field variation applied to the natural action SN is the potential vari-
ation δwα

µ. Combining the field variation δwα
µ with the variation δqλ for each native nongravitational

quantity, qλ, yields the complete natural action variation

δSN =
∫

d4x
δSN
δwα

µ
δwα

µ +
∫

d4x
δSN
δqλ

δqλ . (234)

Applying the principle of least action, the action variation δSN is set to zero, yielding the natural field
equation as the Euler-Lagrange (EL) equation

δSN
δwα

µ
= 0 (235)

giving the critical point for the natural action SN under the field variation δwα
µ. Similarly, the critical

point for the natural action SN under the variation δqλ for each native natural nongravitational quantity,
qλ = qN

λ , is the EL equation
δSM[qλ, g ]

δqλ
= 0 (236)

giving the natural equation of motion for qλ, where δSN/δqλ = δSM[qλ, g]/δqλ was utilized since the
field action SH has no qλ quantity dependence.

Using (233) to form SH , the natural action functional derivative in the EL equation (235) is given
by

δSN
δwα

µ
=

1
16π

δSH
δwα

µ
+

δSM
δgσρ

∂gσρ(w, a)
∂wα

µ
, (237)

having applied the chain rule to the matter action with functional dependence SM[qλ, g(w, a)] due to
universal coupling of the natural metric gαβ to the native natural matter and nongravitational field
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quantities qλ. The field tensor Hαβ is obtained from the field action derivative δSH/δwα
µ, so the field

action has the functional dependence SH [w; g(w, a)] as required to yield the natural field tensor with
functional dependence Hαβ[w; g(w, a)]. Then from (233) the natural field Lagrangian similarly has the
functional dependence LH [w; g(w, a)]. Using the functional dependence SH [w; g(w, a)] in (237), the
natural action functional derivative becomes

δSN
δwα

µ
=

1
16π

δSH [w; g]
δwα

µ
+

[
1

16π

δSH [w; g]
δgσρ +

δSM
δgσρ

]
∂gσρ(w, a)

∂wα
µ

, (238)

with the “partial derivative rule” used for δSH [w; g]/δwα
µ where the functional derivative is for the

explicit wα
µ terms in SH [w; g] outside of the natural metric, since the implicit functional dependence of

wα
µ in gαβ is not indicated in the utilized functional form SH [w; g]. The commonly utilized relation (see

Carroll)

Tαβ[qλ, g] = −2
1√−g

δSM[qλ, g]
δgαβ

(239)

gives the natural matter SE tensor via the metric functional derivative of the matter action. Using (238)
in (235), and applying (239), yields the EL natural field equation

1√−g
δSH [w; g]

δwα
µ

+

[
1√−g

δSH [w; g]
δgσρ − 8π Tσρ

]
∂gσρ(w, a)

∂wα
µ

= 0. (240)

To evaluate ∂gσρ(w, a)/∂wα
µ where gσρ(w, a) = exp(2wσ

ν) aνρ (82), a “direct” calculation applying
the functional derivative ∂wβ

λ/∂wα
µ = δβ

αδµ
λ to the wβ

λ terms in the expansion exp(2wσ
ν), given by

(64), does not yield a compact closed form for ∂gσρ(w, a)/∂wα
µ. However, use of the action functional

derivative δSN/δwα
µ, as given by (238), in the action variation (234), results in ∂gσρ(w, a)/∂wα

µ being
multiplied by the variation δwα

µ when forming the EL equation (235). Using the relation

∂gσρ(w, a)
∂wα

µ
δwα

µ = δw gσρ(w, a), (241)

where δw gσρ(w, a) is defined as the variation in gσρ(w, a) induced by a variation in wα
µ, enables

∂gσρ(w, a)/∂wα
µ to be given in closed form, as follows. The matrix form of (82) for the inverse metric

is g−1(w, a) = exp(2w) a−1, yielding δw g−1(w, a) = [δw exp(2w)] a−1 for δw gσρ(w, a) in matrix form.
As shown below, the potential tensor wα

µ and its variation δwα
µ commute, as expressed by w δw = δw w

in matrix from. Utilizing this commutivity when varying the expansion (63) for exp(2w), it can be
readily shown that δw exp(2w) = 2 δw exp(2w) (as if w were a scalar). Therefore, δw g−1(w, a) =

2 δw exp(2w) a−1, or compactly δw g−1(w, a) = 2 δw g−1. In tensor form this becomes δw gσρ(w, a) =
2 δw(σ

µ gµρ), where the right side has been symmetrized since gσρ on the left-hand side is symmetric.
Manipulating the tensor expression yields

δw gσρ(w, a) = 2 δ(σα g ρ)µ δwα
µ. (242)

Using (242) to substitute for δw gσρ(w, a) in (241), and with δwα
µ arbitrary, then

∂gσρ(w, a)
∂wα

µ
= 2 δ(σα g ρ)µ (243)

is yielded for ∂gσρ(w, a)/∂wα
µ as contained in the natural action variation (234) with δSN/δwα

µ given
by (238). The closed form (243) is applicable then in the EL natural field equation δSN/δwα

µ = 0. A
key property for this form is that it has strictly a natural metric dependence, so it does not introduce
into the NFE either an explicit potential dependence or most importantly an explicit absolute metric
dependence, with such dependence implicitly contained in gαβ(w, a) only.
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To prove that the matrices w and δw commute, consider the metric gαβ = aαµ exp(−2wµ
β) formed

from the potential wα
µ, and the inverse “varied metric” gαβ

δ ≡ exp(2wα δ
µ ) aµβ formed from the “varied

potential” wα δ
µ ≡ wα

µ + δwα
µ. In the Riemann ICs of any micro free-fall frame the metric ĝαβ is the

diagonal Minkowski metric ηαβ. The inverse varied metric ĝαβ
δ may be diagonalized under a Lorentz

transform while ĝαβ remains the diagonal Minkowski metric. The diagonalization of ĝαβ
δ is possible

since any physically valid variation δwα
µ is limited to yielding a potential wα δ

µ such that the shifted
light speed c δ

S does not exceed the absolute manifold null speed vNull , thereby allowing a Lorentz

transformation to diagonalize ĝαβ
δ (which is generally not ηαβ). With ĝαβ and ĝαβ

δ both diagonalized,
then their matrices commute, as stated by ĝ ĝ−1

δ = ĝ−1
δ ĝ. The squared shift tensor metric relations

(76) and (78) in matrix form are g = a F−1 and g−1 = Fa−1. Since the natural metric is symmetric,
then g = gT = F−1 Ta and g−1 = g−1 T = a−1F T , where the symmetry of the absolute metric was
utilized. Using these relations for the diagonalized metric and varied metric in Riemann ICs yields
F̂−1 T F̂ T

δ = F̂δ F̂−1, noting that F̂−1 and F̂δ are generally not diagonal. Then (F̂δ F̂−1)T = F̂δ F̂−1, so
F̂δ F̂−1 is a symmetric matrix. Utilizing this symmetry, it may be shown that F̂−1 F̂δ = F̂δ F̂−1. This
commutation statement may be given in tensor form and coordinate transformed, yielding the matrix
form F−1Fδ = FδF−1 in any coordinates. Similar to (66), ln{B} ln{C} = ln{C} ln{B} if the square
matrices {B} and {C} commute, and since F−1 = exp(−2w) and Fδ = exp(2wδ) (with wδ the varied
potential wα δ

µ in matrix form), then w wδ = wδ w. Substituting wδ = w + δw yields w δw = δw w,
establishing that w and δw commute.

Using (243) in (240) yields

Hαβ[w; g(w, a)] =
1
2

1√−g
δSH [w; g]

δwα
µ

gµβ +
1√−g

δSH [w; g]
δgαβ

= 8π Tαβ (244)

for the EL natural field equation, having identified the “middle” field action SH based term with the
natural field tensor Hαβ[w; g(w, a)] via comparison with (223) (where all indices are raised/lowered by
the natural metric). Utilizing (239), (243), and (244), it may be readily shown that

Hα
µ[w; g(w, a)] =

1
2

1√−g
δSH [w; g(w, a)]

δwα
µ

, (245)

Tα
µ[qλ, g] = − 1√−g

δSM[qλ, g(w, a)]
δwα

µ
, (246)

which when used in (235) (with SN given by (232)) quickly yields the natural field equation Hαβ =

8πTαβ. The origin of the field action SH functional derivatives in (244) is via their use in the natural
action SN variation (234) where the contained action, SH , is given by (233) utilizing the provided
field Lagrangian LH . As such, to obtain the functional derivatives within (234), the usual variational
techniques are employed (as discussed in Carroll [24], Chap. 4) where integration by parts is applied,
and where Stokes’s theorem is applied to convert divergences to boundary surface integrals that
are then dropped. The generation of the SH functional derivatives from the provided LH therefore
proceeds “automatically” employing the usual techniques, so what remains for the natural field
equation development is to establish the natural field Lagrangian LH . Since the functional derivatives in
(244) are partial derivatives where the implicit wα

µ dependence in gαβ(w, a) is ignored, the Lagrangian
for this exercise need only be given using the functional dependence LH [w; g]. The wα

µ dependence
in gαβ(w, a) has already been accounted for when ∂gσρ(w, a)/∂wα

µ was determined and applied to
obtain (244).

Proceeding with the determination of the natural field Lagrangian LH [w; g], similar to Hαβ[w; g]
given by (225), based on their functional dependence LH [w; g] and SH [w; g] each consist of a sum of
terms of the form fn(w)hn(g), where again the contained wα

µ and gαβ may be partially differentiated.
From above, all Hαβ[w; g] terms fn(w)hn(g) must be N = 2 where fn(w) is at highest order linear in wα

µ.
These same requirements hold for the natural metric lowered field tensor Hαβ[w; g] in (244). Utilizing
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(233) in (244) to obtain Hαβ[w; g], then employing the usual variational techniques as discussed above,
all LH [w; g] terms fn(w)hn(g) must also be N = 2, where again fn(w) is at highest order linear in wα

µ.
Note that δSH [w; g]/δwα

µ in (244), with SH [w; g] given by (233), yields Hαβ[w; g] terms fn(w)hn(g) that
are one factor of wα

µ less than in the “parent” LH [w; g] terms fn(w)hn(g). As such, if LH [w; g] terms
fn(w)hn(g) were present where fn(w) consists of quadratic products of wα

µ, Hαβ[w; g] terms fn(w)hn(g)
would be generated that are linear in wα

µ, as allowed. However, δSH [w; g]/δgαβ in (244) does not
reduce the number of wα

µ products used in the parent LH [w; g] terms fn(w)hn(g), so quadratic wα
µ

products are not allowed since they would generate quadratic wα
µ products for the Hαβ[w; g] terms. An

exception would be a quadratic LH [w; g] term that yields a vanishing Hαβ[w; g] contribution when
δSH [w; g]/δgαβ is applied, so it would contribute to Hαβ[w; g] via δSH [w; g]/δwα

µ application with the
allowed linear wα

µ dependence, without generating a quadratic contribution. However, a check of all
possible quadratic N = 2 LH [w; g] terms shows each would yield a non-vanishing quadratic Hαβ[w; g]
contribution when δSH [w; g]/δgαβ is applied, so indeed no LH [w; g] term may contain quadratic wα

µ

products.
Using “w ” and “g ” to again generically represent any raised/lowered index forms for wα

µ and gαβ

as well as the scalar wα
α, and “gm ” to represent any product of gαβ with itself (including g0 ≡ 1), the list

of possible N = 2 LH [w; g] terms fn(w)hn(g) where fn(w) is at highest order linear in wα
µ is as follows:

g,αβ gm, g,α g,β gm, w g,αβ gm, w g,α g,β gm, w,α g,β gm, and w,αβ gm. This is the same as the above list for
Hαβ[w; g] terms, where similarly each one of these terms generically represents multiple possible terms
in various index configurations of the contained wα

µ and gαβ. However, whereas for Hαβ[w; g] where
each configuration is required to have free raised indices α and β to be an Hαβ contributor, for the
scalar LH [w; g] each configuration is required to have no free indices. This requirement significantly
reduces the number of possible index configurations for each term in the provided list, which is a key
advantage of Lagrangian-based formulation as opposed to constructing a field tensor Hαβ without use
of a Lagrangian (as is well known in gravitational physics). The list of possible terms may be shortened
further by working in the Riemann ICs of a micro free-fall frame, since then the first metric derivatives
ĝ,α vanish, yielding ĝ,αβ ĝm, ŵ ĝ,αβ ĝm, and ŵ,αβ ĝm. This list may be converted to covariant terms as
follows. First, any generic ŵ,αβ is converted to equivalently ŵ ;αβ plus terms consisting of vanishing
ŵ,α Γ̂ products and/or nonvanishing ŵ Γ̂,α products. The generic ŵ Γ̂,α products are terms of the form
ŵ ĝ,αβ ĝm. Then using (118) where ĝB

αβ = ĝαβ (156) for micro free-fall frames, the generic ĝ,αβ may be

given by R̂, so in any coordinates the list of generically given terms becomes the covariant R gm, wR gm,
and w ;αβ gm. Generating the specific LH [w; g] terms from the generic terms, the lists of every possible
independent scalar index configuration for each term in the generic list is as follows: R for R gm, wR
and wα

σRσ
α for wR gm, and w ;σ

σ and wα
σ ;σ

α for w ;αβ gm. Note that index configurations equal to the
given ones are not listed as they would be redundant, such as wασRσα = wα

σRσ
α. As the terms w ;σ

σ

and wα
σ ;σ

α are divergences, their use in (244) (via (233)) yields vanishing SH functional derivatives, so
they may be dropped. The list of possible specific LH [w; g] terms is therefore R, wR, and wα

σRσ
α.

Using the list of possible LH [w; g] terms, the most general natural field Lagrangian that may be
formed is

LH [w; g] = a R + b wR + c wα
σRσ

α, (247)

where a, b, and c are arbitrary constants. This is the most general possible Lagrangian that may be formed
under the assumed requirements consisting of the well-accepted assumptions for formulation of
Einstein’s equation (as applied above), as well as being linear for all explicit wα

µ use (to yield linear
wα

µ in Hαβ) in order to self-consistently yield SEP satisfaction under morph application, i.e., satisfy the
morph consistency requirement.

Substituting (247) into (233) and applying the usual variational techniques as discussed above,
the potential functional derivative of SH in the NFE (244) is given by

1√−g
δSH [w; g]

δwα
µ

= b δµ
αR + c Rµ

α, (248)
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and the metric functional derivative is given by

1√−g
δSH [w; g]

δgαβ
= a Gαβ + b [ gαβ w ;σ

σ − w ;(αβ) + w Gαβ ]

+ c
[

1
2

wαβ ;σ
σ +

1
2

gαβ wσ
λ ;λ

σ − wσ
(α ; β) σ + wσ

(αRβ) σ −
1
2

gαβ wσ
λRλ

σ

]
. (249)

Using these in (244) yields the natural field equation

Hαβ[w; g(w, a)] = a Gαβ + b
[

1
2

gαβR + gαβ w ;σ
σ − w ;(αβ) + w Gαβ

]
+ c

[
1
2

Rαβ +
1
2

wαβ ;σ
σ +

1
2

gαβ wσ
λ ;λ

σ − wσ
(α ; β) σ + wσ

(αRβ) σ −
1
2

gαβ wσ
λRλ

σ

]
= 8π Tαβ[qλ, g], (250)

providing the most general possible form for the natural field tensor Hαβ under the assumed require-
ments (as applied thus far). Note that any explicit potential wα

µ use in (250) is indeed linear, satisfying
the morph consistency requirement.

6.3. Application of the Observational Requirements

As stated above, for predictive success the natural field equation Hαβ = 8πTαβ is assumed
to yield in the linearized case the same observed natural metric gαβ as predicted by the linearized
Einstein equation Gαβ = 8πTαβ, referred to as the “linearized case requirement.” From available
general relativity formulation (such as PW [20], Chap. 5), utilizing the quantity pαβ as defined by
gαβ = ηαβ + pαβ, the linearized Ricci tensor is

Rαβ[p; η] = −1
2
(p, αβ + pαβ ,σ

σ − 2 pσ
(α , β) σ), (251)

yielding as its trace-reverse the linearized Einstein tensor

Gαβ[p; η] = −1
2
(p, αβ + pαβ ,σ

σ − 2 pσ
(α , β) σ) +

1
2

ηαβ

(
p,σ

σ − pσ
λ ,λ

σ

)
, (252)

where all indices are raised/lowered by the Minkowski metric, so for instance, pµ
β = ηµα pαβ. The

linearized Einstein equation is posed as if absolute flat spacetime is being utilized, with the coordinates
the global ICs of an absolute inertial frame, since the Minkowski metric functioning as the “background
metric” is identified with the absolute metric aαβ = ηαβ. The “metric perturbation” pαβ functions as the
quantity depicting the gravitational field posed in flat spacetime, with pαβ very small. So all second-
order or higher pαβ product terms are dropped for linearized formulation. For comparison of linearized
formulation in GS theory with that in general relativity, again the global ICs of an absolute inertial
frame are utilized, with the Minkowski metric valued absolute metric aαβ acting as the background
metric as per usual in GS theory with its postulated absolute flat spacetime. The linearized form of
gαβ = aαµ exp(−2wµ

β) (82) in global ICs is gαβ = ηαµ(δµ
β − 2wµ

β), so again using gαβ = ηαβ + pαβ to
define pαβ, then pαβ and wαβ = ηαµwµ

β for the linearized natural metric are related via

wαβ = −1
2

pαβ . (253)

Utilizing (253), linearized formulation in GS theory based on the potential, wα
µ, as the field quantity,

may be converted to using pαβ as the field quantity, allowing a direct comparison with corresponding
general relativity formulation using solely the natural metric gαβ = ηαβ + pαβ. In addition, purely
natural metric quantities (no explicit wα

µ) may be directly given in pαβ based form, so for instance,
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Rαβ[p; η] and Gαβ[p; η] in linearized GS theory are given by (251) and (252) from linearized general
relativity.

Using the above background, it can be seen that in order for the linearized NFE Hαβ = 8πTαβ

to yield the same observed natural metric gαβ = ηαβ + pαβ as predicted by the linearized Einstein
equation Gαβ = 8πTαβ, then when (253) is applied to convert the wα

µ based linearized form Hαβ[w; η]

for the natural field tensor to its equal valued pαβ based form Hαβ[p; η], the equivalence

Hαβ[p; η] ≡ Gαβ[p; η] (254)

must hold, meaning that their forms must be identical. Only if (254) holds would it be expected that
the linearized NFE would yield for all possible linearized cases the same observed natural metric
gαβ = ηαβ + pαβ as predicted by the linearized Einstein equation, as required. For this reason, there
must exist a set of constants a, b, and c for the natural field tensor Hαβ given by (250) that will satisfy
(254), yielding the linearized Einstein equation from the NFE when linearized. Using (251), (252),
and (253), it may be readily shown that when c = −2b and a is arbitrary, the linearized Hαβ for the
NFE (250) is given by the proportionality Hαβ[p; η] ∝ Gαβ[p; η]. The reason why a is arbitrary is due
to its multiplier Gαβ in (250), so of course any a value yields an Hαβ contribution proportional to
Gαβ. The condition c = −2b is the unique relation between b and c that yields Hαβ[p; η] ∝ Gαβ[p; η],
so this relation is required, but they may both be multiplied by the same arbitrary constant and
maintain Hαβ[p; η] proportionality with Gαβ[p; η]. Before proceeding to obtain the equivalence (254),
the condition c = −2b is applied to simplify the exact form for Hαβ[w; g], which is then fitted to yield
the star-case metric (85) for the NFE solution prior to fitting to (254) as the last step.

The symmetric natural metric based trace-reverse for a symmetric tensor Bαβ is defined by

Bαβ ≡ Bαβ −
1
2

gαβB, (255)

where the scalar B is the trace B = gσαBασ = Bσ
σ. A convenient property of the natural trace-reverse

is Bαβ = Bαβ, so the trace-reverse is its own inverse. Utilizing the trace-reverse, substitution of the
condition c = −2b in (250) yields

Hαβ[w; g(w, a)] = Qαβ[w; g(w, a)] = 8π Tαβ[qλ, g(w, a)] (256)

for the natural field equation, where Qαβ[w; g] is the symmetric “natural potential Ricci tensor” defined
by

Qαβ[w; g] ≡ aRαβ + b [−Rαβ + wRαβ − Kαβ − Pαβ], (257)

with Kαβ and Pαβ the symmetric tensors

Kαβ[w; g] ≡ 2 wσ
(αRβ) σ, (258)

Pαβ[w; g] ≡ w ; (αβ) + wαβ ;σ
σ − 2 wσ

(α ; β) σ. (259)

For convenient reference, the fully determined (natural) potential Ricci tensor, established below, is
given by

Qαβ[w; g] = 2 Rαβ − Pαβ + wRαβ − Kαβ, (260)

which when used in (256) provides the final form of the natural field equation. Even though the
“potential Ricci tensor” Qαβ is not an actual metric Ricci tensor Rαβ, the “Ricci” nomenclature is used
due to its formal use being similar to use of Rαβ, with indeed Qαβ substituted for Rαβ to change from
Einstein’s equation Gαβ = Rαβ = 8πTαβ to the natural field equation. Note that if Pαβ[w; g] is linearized
and then (253) is used, the equivalence

Pαβ[p; η] ≡ Rαβ[p; η] (261)
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is yielded, where Rαβ[p; η] is the linearized metric Ricci tensor given by (251).
As stated above, for predictive success the natural field equation is assumed to yield the observed

post-Newtonian natural metric, referred to as the “PN metric requirement.” As such, the NFE must
yield the observed star-case PN metric given by (83). Recall that in Section 3.12, the potential-form
metric relation (82) was utilized to infer from (83) that (85) is the exact global IC given metric for the
star case, so its PN approximation is the star-case PN metric. Therefore, in order that it yield the
observed PN approximation (83) of the star-case metric as its solution, the NFE must yield the exact
metric (85) for the star case. For this reason, there must exist constants a and b for the potential Ricci
tensor Qαβ, given by (257), such that when utilized in the NFE (256) will yield the metric (85) for the
star case. To aid in this task, the trace-reverse is applied across the natural field equation (256) to obtain
its alternate trace-reversed form

Hαβ[w; g(w, a)] = Qαβ[w; g(w, a)] = 8π Tαβ[qλ, g(w, a)]. (262)

Then in the vacuum outside any source, the natural field equation yields

Qαβ[w; g(w, a)] = 0 (vacuum) (263)

for the potential Ricci tensor, whereas in general relativity Rαβ[g]= 0 for the metric Ricci tensor as ob-
tained from Einstein’s equation. Equation (263) holds then for the field outside a star, so Qαβ[w; g(w, a)]
must vanish for the potential field (84) giving the star-case metric (85).

To conveniently solve for the constants a and b that yield Qαβ = 0 for the star case, the global IC
given star-case potential (84) is first converted to its value

wα
µ = diag[ M/r,−M/r,−M/r,−M/r] (264)

in the inertial spherical coordinates centered on the star, where “inertial spherical coordinates (ISCs)”
are obtained by converting the Cartesian spatial coordinates of absolute inertial frame global ICs to
spherical coordinates. Note that (264) has the same value as when given in global ICs due to wα

µ being
spatially isotropic. Utilizing (264) for the potential field in the tensors making up Qαβ[w; g(w, a)], as
given by (257), yields the following list of ISC values: Rrr = −2M2/r4, wRrr = 4M3/r5, Krr = 4M3/r5,
and Prr = −4M2/r4. All other components are zero. Using these values in (257) uniquely requires the
condition a = 3b to hold in order to yield Qαβ = 0 for the star case. Applying the condition a = 3b in
(257), the potential Ricci tensor form yielding Qαβ = 0 becomes

Qαβ[w; g] = b [ 2 Rαβ − Pαβ + wRαβ − Kαβ], (265)

resulting in the NFE (262) and therefore (256) such that the ISC-given star-case potential (264) is its
solution. Conversion of (264) back to global ICs yields (84) as the NFE global IC solution for the star
case, resulting in the exact natural metric (85), as required to yield the observed star-case PN metric
(83).

As the last step for setting the constants in (250), the constant b is set in (265) such that the required
linearized field tensor equivalence (254) is satisfied. Applying the trace-reverse to both sides of (254)
yields the required equivalence

Qαβ[p; η] ≡ Rαβ[p; η], (266)

having used (262) and Gαβ = Rαβ. Linearizing Qαβ[w; g] given by (265), and substituting (253), yields
Qαβ[p; η] = b Rαβ[p; η], since wRαβ and Kαβ (given by (258)) become second-order or higher in pαβ

(using (251)), and since Pαβ[p; η] ≡ Rαβ[p; η] (261). Then uniquely setting b = 1 yields the required
equivalence (266) and therefore (254), resulting in the linearized natural field equation Hαβ[p; η] =

8πTαβ being the same as the linearized Einstein equation Gαβ[p; η] = 8πTαβ (as stated in the summary).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2025 doi:10.20944/preprints202411.0620.v7

https://doi.org/10.20944/preprints202411.0620.v7


95 of 120

Concluding, as required, for all possible linearized cases, the linearized natural field equation yields the same
observed natural metric gαβ = ηαβ + pαβ as successfully predicted by the linearized Einstein equation.

Applying b = 1 in (265), the fully determined potential Ricci tensor Qαβ is established, as already
provided by (260) where Kαβ and Pαβ are given by (258) and (259). Use of the fully determined Qαβ

completes the establishment of the natural field equation as given by (256) or its trace-reverse form
(262). Using the uniquely determined c = −2b, a = 3b, and b = 1 from above, then the initially
arbitrary constants in the most general possible form of the NFE, given by (250), have been constrained
to be

a = 3, b = 1, c = −2. (267)

Therefore, the resultant natural field equation is unique. Note that it is parameterless.
When applying the PN metric requirement, only the particular star case was utilized when setting

the constants a, b, and c, resulting in values such that the observed star-case PN metric is yielded.
However, as required, the established natural field equation indeed yields the observed PN natural
metric for all possible post-Newtonian cases, as follows. The Lagrangian-based NFE yields a PN metric
with the correct observed conservation PPN parameters α3 ≡ ζ1 ≡ ζ2 ≡ ζ3 ≡ ζ4 ≡ 0 in the standard
gauge, since as discussed above this property holds for Lagrangian-based field equations as shown
in Will [1] (Chap. 4). That proof relies on the existence of an “energy-momentum complex” Θµν that
satisfies the conservation law Θµν, ν = 0 where Θµν reduces to Tµν in the absence of gravitation, which
is shown to exist in Lee, Lightman, and Ni (LLN) [25] for Lagrangian-based metric theories of gravity
such as GS theory. The one caveat to this rule is if the theory contains absolute variables, the symmetry
group applicable for them must satisfy a few basic requirements. However, these requirements are
satisfied for all known metric theories, which is the case as well for the Poincaré group applicable for
the absolute metric aµν (as the sole absolute variable) in GS theory. (These requirements are discussed
in the PPN formulation section of the Supplement, where it is shown that the aµν Poincaré group
satisfies these requirements.) It is also shown in Will [1] (Chap. 4) that if a field equation satisfies
the SEP, the correct observed “preferred-frame” PPN parameters α1 ≡ α2 ≡ α3 ≡ 0 will be yielded
in the standard gauge (note that α3 does “double duty” as both a conservation parameter and a
preferred-frame parameter), as well as the correct observed “preferred-location” parameter ξ ≡ 0.
Therefore, the NFE yields the correct observed preferred-frame and preferred-location PPN parameters
due to SEP satisfaction under morph application. The observed star-case PN metric (83) holds in the
standard gauge as discussed. As such, the observed “spatial curvature” PPN parameter γ ≡ 1 (see
[1], Table 4.1) is “read off” the first-order spatial term in the star-case PN metric, and the observed
“nonlinearity” PPN parameter β ≡ 1 is read off its second-order temporal term, with both parameters
applicable for standard gauge expression of the observed PN natural metric for general cases. Since
the observed star-case PN metric is predicted by the NFE, then it correctly predicts the observed
PPN parameters γ ≡ 1 and β ≡ 1. Summarizing, all ten observed standard gauge PPN parameters
are correctly predicted by the natural field equation, so as required, the natural field equation yields
the observed post-Newtonian natural metric for all possible post-Newtonian cases. This result is verified in
the Supplement by showing that the observed post-Newtonian natural metric is yielded from the
established 1.5PN post-Minkowskian formulation.

Beginning with the most general possible form (250) of the natural field equation utilizing the
arbitrary constants a, b, and c, application of the key observational requirements, consisting of the
linearized case requirement and the PN metric requirement, resulted in uniquely setting their values
to (267). With there being only three arbitrary constants in the most general possible form (250), the
ability to set these constants to yield the observed linearized case metric, and to yield the observed
PN metric, is a “powerful” verification of the validity of (250). Now care was taken to insure that any
“intermediate form” of the NFE, at then any stage in the NFE’s development, was the most general
possible form subject to any assumptions that had been made up to that stage. Therefore, the NFE’s
final form (256) (or its trace-reverse (262)), with Qαβ given by (258)–(260), is the most general possible
form subject to the assumptions made for its development. However, the final form of the NFE has
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been shown to be unique. Therefore, the natural field equation is uniquely obtained from the assumptions
made for its development.

The assumptions made for the NFE’s development are the absolute flat spacetime and SEP
postulates, the morph consistency requirement, the well-accepted assumptions for formulation of
Einstein’s equation, and satisfaction of the linearized case and PN metric requirements. Based on the
assumed physical validity of the NFE’s developmental assumptions, then with the NFE’s final form
uniquely obtained from them, the natural field equation is assumed to be physically valid. As stated in the
summary, the ability of the natural field equation to satisfy the SEP under morph application, linearize
to the observationally predictive linearized Einstein equation, and yield the observed post-Newtonian
approximation for the natural metric, results in a wide variety of natural gravitational observations
being successfully predicted (as discussed below), verifying the field equation’s validity. Again, the
Supplement extends the range of verification to cover all available natural observations of local systems
utilized to test gravitational theories.

Even though the natural field equation Hαβ[w; g(w, a)] = 8πTαβ[qλ, g(w, a)] (256) is utilized by
natural observers to model naturally perceived gravitational systems, the contained potential tensor
wα

µ and absolute metric aαβ are absolutely observable quantities only. The question arises as to whether or
not use of the so-called “natural field equation” is indeed appropriate for natural observers. To answer
this question, consider use of the equivalent morphed form, generally given by (224) representing the
morphed form of (256) constructed using the morphed (258)–(260). For morph applicability, the ability
to satisfy the SEP conditions is not just limited to local systems surrounded by background systems. In
addition, the SEP conditions always hold for any “total system” modelled as a whole, since then the
“background system” is empty, so there are no curvature effects imposed as there is no background
curvature, and there are no background sources to be perturbed. The morphed natural field equation
(224) may therefore be utilized to model any possible system, since either a system may be modelled as
a local system surrounded by a background system when the SEP conditions hold, or a system may
be modelled as a total system so that the SEP conditions automatically hold. The naturally observed
background system free-fall frame may be utilized, in which case the Minkowski metric ηαβ is used for
the naturally observed Riemann IC morphed background natural metric gMB

αβ (equal to aαβ for a total
system, with the Riemann ICs being the global ICs), or any other frame/coordinates may be used with
the value of gMB

αβ known for natural observers via coordinate transform of gMB
αβ = ηαβ from the Riemann

ICs. All of the quantities in the morphed NFE (224) are therefore naturally observable quantities with
the exception of the morphed potential wα M

µ , which is applicable for both local and total systems. For
natural observer use, the morphed potential wα M

µ is treated as a hypothetical quantity utilized to obtain
the naturally observable morphed natural metric solution gM

αβ(w
M, gMB) = gMB

αµ exp(−2w µ M
β ). With

the morphed potential wα M
µ treated as a hypothetical quantity and all other quantities being naturally

observable, use of the universally applicable morphed natural field equation (224) (or its trace-reverse)
is considered appropriate for natural observers. Therefore, use of the natural field equation is considered
to be appropriate for natural observers modelling naturally perceived gravitational systems, since for natural
observer interpretation and use in practice, the “naturally appropriate” morphed form of the NFE,
with wα M

µ treated hypothetically, may always be utilized.

6.4. Solution Properties, the Natural Energy Condition, and Conservation Application

In Section 3.7, the heuristic argument was utilized that at the fundamental level, the coupling of the
shift tensor field to a symmetric SE tensor source charge, with both in the presence of the symmetric
absolute and natural metrics (or at the very least the symmetric absolute metric), results in a symmetric
shift tensor when given in pure (indice) form. As the natural field equation Hαβ[w; g(w, a)] = 8πTαβ

is a formal statement depicting the shift tensor field (using its potential wα
µ) being coupled to the

symmetric natural matter SE tensor Tαβ in the presence of the symmetric absolute and natural metrics,
then the NFE must yield a symmetric shift tensor Sα

µ̄ field when given in pure form, proven as follows.
Utilizing the Tαβ symmetry, the trace-reverse form (262) of the NFE yields a symmetric potential Ricci
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tensor Qαβ. Now regardless of whether or not the potential tensor wα
µ is symmetric in pure form, every

term in Qαβ, given by (258)–(260), is symmetric except for wαβ ;σ
σ in Pαβ. Therefore, wαβ = gαµwµ

β

must indeed be symmetric to yield a symmetric Qαβ. So any potential solution wα
µ for the natural

field equation is symmetric when raised/lowered by the natural metric to yield a pure form. With
Sα

µ̄ = exp(wα
µ), the symmetric potential solution yields a symmetric shift tensor field when using the

natural metric to yield a pure form ( g w = wTg for the matrix form of the symmetry wαβ = wβα where
wαβ = gαµwµ

β, yielding g wn = wn Tg for each term in the matrix expansion S = ew, so g S = S Tg,
which in tensor form is the symmetry Sαβ̄ = Sβᾱ). Utilizing (52), the shift tensor field is also symmetric
when using the absolute metric to yield a pure form, completing the proof. It can be shown that the
potential solution wα

µ is also symmetric when using the absolute metric to yield a pure form. Due to
the symmetry of the potential tensor, the natural field equation Hαβ[w; g(w, a)] = 8πTαβ provides ten
algebraically independent conditions to determine the ten algebraically independent components of the
potential tensor wα

µ.
Prior to discussion of energy conditions below, it is helpful to first examine gravity waves. Similar

to the reduction of Einstein’s equation to its linearized form under SEP application in a micro free-fall
frame, the natural field equation is reduced to its linearized form under morph-based application
of the SEP. The resulting linearized natural field equation, Ĥαβ[p; η] = 8πT̂αβ, in the micro free-fall
frame Riemann ICs, is the same as the linearized Einstein equation Ĝαβ[p; η] = 8πT̂αβ, with the field
tensor equivalence (254) holding. In a vacuum, natural field equation modelled gravity waves adhere,
therefore, to Ĝαβ[p; η] = 0 applicable for Einstein field equation modelled gravity waves (see Schutz
[18], Chap. 9, for a background). The resultant gravity wave propagation speed in a micro free-fall
frame is v̂G = 1 (in geometrized units) the same as the shifted light speed ĉS = 1. So in any coordinates,

vG = cS. (268)

Therefore, the natural field equation in GS theory successfully predicts that gravity waves propagate
at the same speed as (shifted/actual) light, as observed, the same as for Einstein equation prediction in
general relativity. In addition, adherence to Ĝαβ[p; η] = 0 in micro free-fall frames when using the
natural field equation to model gravity waves, yields successful prediction of the observed dual spin-2
polarization states, the same as for Einstein equation prediction.

Without use of an “energy condition” limiting the gravitational sources, the natural field equation
admits to potential solutions wα

µ such that the shift tensor Sα
µ̄ = exp(wα

µ) yields shifted light speeds
cS exceeding the null speed vNull , so the gravity shifting would violate the speed constraint. An
example would be use of a negative gravitational mass M < 0 for the above star case (Sec. 3.12), since
with cS = e−2M/r giving the global IC shifted light speed outside a star, a negative mass would yield
a speed faster than the null speed vNull = 1. Therefore, in GS theory the required “natural energy
condition” for gravitational sources is as follows: The natural energy-momentum of gravitational sources
must be such that the natural field equation solutions produce shifted light speeds cS that do not exceed the
absolute manifold null speed vNull . Using (268), satisfaction of the natural energy condition also prevents
gravitational field propagation speeds vG = cS from exceeding the null speed vNull . Therefore, under
the natural energy condition, causal connectedness of all types is limited by the null speed vNull , preventing
causality violation in absolute flat spacetime. A listing of various popular natural energy conditions
utilized in general relativity based modelling is provided in Carroll [24] (Chap. 4). Though a formal
proof has not been performed, it is evident that the ones that prevent natural energy transport faster
than light in general relativity, utilizing then Einstein’s equation, yield a shifted light speed cS that
does not exceed the null speed vNull when using the natural field equation in GS theory, satisfying
the natural energy condition. These include, for instance, the commonly accepted “Dominant Energy
Condition” applicable for ordinary forms of naturally observed matter, which is the energy condition
discussed previously. For GS theory, any form of matter is considered acceptable so long as the natural
energy condition is satisfied, so the natural energy condition provides a definitive means of deciding if a
particular form of matter may exist.
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Again, the natural field equation yields a symmetric potential wα
µ solution that results in a

symmetric shift tensor field Sα
µ̄ (when put in pure form), and as established above, the NFE yields

a real-valued potential solution wα
µ due to any explicit potential use being linear. Satisfaction of the

speed constraint, under the natural energy condition, enables the global IC given potential wα
µ to

be diagonalized using Lorentz transforms (utilizing its pure form symmetry). This results in an IC
eigensystem shift tensor S̃α

µ̄ = exp(w̃α
µ) that adheres to the shift factor range (61), yielding 1-to-1

gravity shifting satisfying the overlap restriction, as well as shifting satisfying the temporal constraint
(see Section 3.6 for background). As previously established, combining satisfaction of the speed and
temporal constraints yields satisfaction of the null constraint (forward null cone limited evolution).
Therefore, with the assumed adherence to the natural energy condition for gravitational sources, the
natural field equation predicts gravity shifting that adheres to all of the established gravity shifting constraints
(as stated in Section 3.13).

As previously shown, satisfaction of the shifting constraints results in gravity shifting such that
gravity shift overlap singularities are barred, and such that causality violations are prevented from
occurring. In addition, the exponential potential form Sα

µ̄ = exp(wα
µ) (68) for the shift tensor has

been shown to prevent the formation of both event horizons and collapse-based singularities, with
these properties applicable then for the shift tensor formed from the NFE potential solution wα

µ. With
the barring of event horizons, singularities, and causality violations as implausibilities, as well as
explicit formulation in absolute flat spacetime resulting in compatibility with quantum theory (as
demonstrated above), all physical law and modelling is physically plausible when utilizing the natural field
equation to predict the gravitational field.

It can be shown that for an arbitrary potential field wα
µ (symmetric in pure indice form), the

natural divergence of the established natural field tensor Hαβ[w; g(w, a)] is non-zero in general, as
stated by the “non-equivalency”

∇N
β Hαβ[w; g(w, a)] ̸≡ 0 (arbitrary wα

µ). (269)

As shown in LLN [25], for Lagrangian-based metric theories of gravity such as GS theory, a non-zero
divergence is generally expected for gravitational field tensors that contain absolute quantities, so
(269) is expected for Hαβ[w; g(w, a)]. As discussed previously, EEP satisfaction for natural observers
in micro free-fall frames yields energy-momentum satisfaction for the naturally observed matter and
nongravitational fields, as expressed by ∂

(N)
ν̂ T̂µν

N(N)
= 0 utilizing the natural matter SE tensor Tαβ

N = Tαβ.
Therefore,

Tαβ; β = 0, (270)

providing the “natural matter conservation statement” in any coordinates. So in contrast to general
relativity where Tαβ; β = 0 may be obtained from the Bianchi identity Gαβ; β ≡ 0 when applied in the
Einstein equation Gαβ = 8πTαβ, in GS theory Tαβ; β = 0 is a condition exclusively obtained independently
from the natural field equation Hαβ = 8πTαβ. The available Lagrangian-based establishment of Tαβ; β = 0
for metric-based theories applies for GS theory as well. The method employed is to apply coordinate
transformations (or equivalently diffeomorphisms) to the matter action SM utilized in the covariant
matter action principle δSM = 0, obtaining a Bianchi identity such that when the EL natural matter
equations of motion (236) are substituted, Tαβ; β = 0 is yielded. An example suitable for GS theory is
provided in Will [1] (Chap. 3, using δLM/δqλ ≡ δSM/δqλ for the functional derivatives), where it
is explained that Tαβ; β = 0 is obtained as a consequence of universal coupling yielded under micro
free-fall frame EEP satisfaction, independent of gravitational field equations.

Due to its independent origin from the natural field equation, the matter conservation statement
Tαβ; β = 0 (270) acts as an independent “ancillary condition” applied to the NFE Hαβ = 8πTαβ, resulting
in the “natural field constraint” (or “field constraint” for short)

∇N
β Hαβ[w; g(w, a)] = 0 (271)
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acting to constrain the potential field wα
µ used to construct the natural field tensor Hαβ[w; g(w, a)], since

Hαβ; β ̸≡ 0 (269) for arbitrary wα
µ. In general relativity, application of Tαβ; β = 0 to Einstein’s equation

Gαβ = 8πTαβ does not constrain the metric-given field gαβ due to the Bianchi identity Gαβ; β ≡ 0 holding.
This results in the Einstein equation providing only six functionally independent conditions when
matter conservation Tαβ; β = 0 is applied, so four additional coordinate conditions are applied to the
natural metric gαβ, setting the coordinates, in order to fully determine it. On the other hand, in GS
theory, the lack of Hαβ; β ≡ 0 holding as an identity, due to Hαβ; β ̸≡ 0 (269) for arbitrary potential fields
wα

µ, implies that the natural field equation Hαβ = 8πTαβ provides ten functionally independent conditions
for determining the wα

µ field when matter conservation Tαβ; β = 0 is applied, the same as the number of
algebraically independent conditions prior to Tαβ; β = 0 application (from above). This is as necessary
since a priori absolute manifold coordinates (such as global ICs) may be utilized when solving the NFE,
so the coordinates have already been set, requiring the NFE to provide ten functionally independent
conditions when Tαβ; β = 0 is applied in order to fully determine the wα

µ field. For convenience when
referring to the “natural field equation,” the ancillary matter conservation statement Tαβ; β = 0 may be
included, with discernment from the natural field equation Hαβ = 8πTαβ alone made by context.

In general relativity, solution of the Einstein equation, Gαβ = 8πTαβ, requires simultaneous use of
the conservation statement Tαβ; β = 0 due to the Bianchi identity Gαβ; β ≡ 0 yielding Tαβ; β = 0 while
obtaining the solution. In contrast, due to Hαβ; β ̸≡ 0 (269) holding for arbitrary potential fields wα

µ,
the natural field equation Hαβ = 8πTαβ in GS theory may be solved as a “relaxed form” where first it is
solved given a Tαβ[qλ, g] in functional form, and then the conservation statement Tαβ; β = 0 is applied to
determine the field wα

µ as well as the matter and nongravitational field variables qλ as constrained
by Tαβ; β = 0. This is similar to solution of the relaxed wave equation form of Einstein’s equation in
general relativity post-Minkowskian theory (see PW [20], Chap. 6), which is known as a convenient
and powerful solution method.

As shown in Weinberg [22] (Chap. 7), due to satisfaction of the Bianchi identity Gαβ; β ≡ 0 in
Einstein’s equation Gαβ = 8πTαβ, the Cauchy problem in general relativity requires four additional
coordinate conditions to be imposed in order to completely specify the initial conditions necessary for
unique predicted evolution from an initial hypersurface x0 = t. In contrast, due to the lack of Hαβ; β ≡ 0
holding as an identity (as per (269)), in GS theory only the natural field equation Hαβ = 8πTαβ is required
to completely specify the initial conditions for unique evolution from an initial hypersurface x0 = t.
The conservation condition Tαβ; β = 0 is imposed both initially and during system evolution, but the
natural field equation under this constraint again completely specifies the initial conditions, and the
evolution under this constraint is uniquely determined from the initial conditions.

7. The Absolute Field Equation
7.1. General Form

As discussed previously, the absolute field equation is utilized by absolute observers to model
gravitational systems, with it being the partner formulation to the natural field equation Hαβ

N = 8πTαβ
N

utilized by natural observers (for clarity here, the “N” designation is used for natural quantities). As
partner formulations are equivalent, the partner absolute field equation must predict a gravitational
field that is the same as predicted by the natural field equation. So the AFE must have the same real-
valued potential solution wα

µ as the NFE, referred to as the “matched solution requirement.” In the
development that follows, the partner absolute field equation is constructed such that this requirement
is met.

With it being the partner formulation to the natural field equation Hαβ
N = 8πTαβ

N , the absolute field
equation is expected to take the same general form as the NFE, but with a partner “absolute field tensor”
Hαβ

A used in place of the natural field tensor Hαβ
N , and a partner absolute SE tensor used in place of the

natural matter SE tensor Tαβ
N . Now in the NFE, Tαβ

N depicts the total energy-momentum density for all
naturally observed EM contributors combined. Therefore, in the partner AFE, the partner absolute SE
tensor is expected to depict the total EM density for all absolutely observed EM contributors combined,
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as appropriate for the field equation utilized by absolute observers to predict the gravitational field
based on the absolutely observed gravitational sources. As established, the naturally observed EM
contributors consist of only the naturally observed EM for matter and the nongravitational fields,
with the natural matter SE tensor Tαβ

N depicting their total EM density. But as shown in Section 5.3,
the absolutely observed EM contributors consist of the absolutely observed EM for matter and the
nongravitational fields as depicted by the absolute matter SE tensor Tαβ

A (the absolute matter partner

to Tαβ
N ), as well as the absolutely observed EM for the gravitational field as depicted by the absolute

field SE tensor tαβ
A , with then the absolute total SE tensor Eαβ

A ≡ Tαβ
A + tαβ

A (216) depicting the total EM
density for all absolute EM contributors. Therefore, when forming the partner AFE, it is the absolute
total SE tensor Eαβ

A that is identified as the partner to the natural matter SE tensor Tαβ
N . With Hαβ

A and

Eαβ
A used in place of Hαβ

N and Tαβ
N respectively in the natural field equation Hαβ

N = 8πTαβ
N , the partner

absolute field equation is given by Hαβ
A = 8πEαβ

A . Recall that the total SE tensor Eαβ
A is symmetric, so

the absolute field tensor Hαβ
A must be symmetric as well.

In order to obtain a real-valued potential solution wα
µ, then similar to the natural field equation,

the potential must again be the operand in the absolute field equation. For this reason, the general
functional form for the partner absolute field tensor must be given by Hαβ

A = Hαβ
A [w; a], depicting all

possible field tensors that may be formed where wα
µ is the operand, similar to Hαβ

N = Hαβ
N [w; a] as the

initially given general functional form for the natural field tensor as stated by (219). The absolute field
equation therefore takes the general form

Hαβ
A [w; a] = 8π Eαβ

A (272)

(establishing (9)). Due to the morph consistency requirement, the functional form for the natural
field tensor was shown to be Hαβ

N [w; a] = Hαβ
N [w; g(w, a)], as expected since in general, natural for-

mulations utilize the natural metric gαβ to raise/lower indices and to form covariant derivatives.
Since it applies for natural formulations only, the morph consistency requirement does not apply for
the absolute field equation. So as is generally expected for absolute formulations, in the absolute
field equation Hαβ

A [w; a] = 8πEαβ
A the absolute metric aαβ is assumed to raise/lower indices and to

form covariant derivatives. This is consistent with the assumption that the classical absolute field
equation being developed here is the classical limit of an absolute quantum formulation for the field equation.
With the gravitational field treated by absolute observers as an ordinary force field similar to the
nongravitational fields, then in the global ICs of absolute inertial frames, quantum gravitational field
equation formulation is expected to utilize the Minkowski metric valued absolute metric aαβ for all
metric use similar to field equation formulation for the nongravitational fields. With the classical po-
tential wα

µ the operand in the classical AFE, then the quantized potential ŵ α
µ is the gravitational field

quantity coupled to the quantized source term Ê αβ
A in the quantized AFE, with all posed in absolute

flat spacetime using then the classical absolute metric for all metric use. This implies that the absolute
metric is exclusively utilized as the metric in the classical absolute field equation Hαβ

A [w; a] = 8πEαβ
A ,

including raising/lowering the indices of Hαβ
A [w; a] and Eαβ

A , such as to form HA
αβ[w; a] = 8πEA

αβ from

Hαβ
A [w; a] = 8πEαβ

A , and exclusive absolute metric use in the absolute field tensor Hαβ
A [w; a]. The absolute

field tensor Hαβ
A [w; a] consists of a sum of terms (or a single term), where under exclusive absolute

metric use, each term is a product of a number of wα
µ and aαβ and/or their partial derivatives, yielding

the generic representation
Hαβ

A [w; a] = ∑
n

fn(w)hn(a). (273)

The absolute metric aαβ therefore appears explicitly in the absolute field equation, as opposed to being
only implicitly contained within the natural metric gαβ(w, a) when utilized in the natural field equation.
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The internal construction of Eαβ
A was not considered when establishing exclusive absolute metric

use in the absolute field equation Hαβ
A [w; a] = 8πEαβ

A , so exclusive use of aαβ with Eαβ
A pertained to use

external to Eαβ
A . Lowering (216) by the absolute metric, and substituting (212) and (217), yields

E µ
α A = T µ

α A + t µ
α A = |S−1| T µ

α N +
1

8π
{H µ

α A − |S−1|H µ
α N}, (274)

with the functional dependences on the right of (274) given by

T µ
α A[q

A
λ , w, a] = |S−1(w)| T µ

α N [q
N
λ (qA

λ , w), g(w, a)], (275)

t µ
α A[w, a] =

1
8π

{H µ
α A[w; a]− |S−1(w)|H µ

α N [w; g(w, a)]}. (276)

The quantities qA
λ in (275) depict the native absolute matter and nongravitational field quantities, where

each nongravitational quantity qA
λ is the absolute partner of the native natural nongravitational quantity

qN
λ . As such, each pair of native nongravitational partner quantities are related by a purely gravity

shift based partner relation qN
λ = qN

λ (qA
λ , w) (per the discussion in Section 5.3), which is utilized in the

functional form T µ
α N [ qN

λ (qA
λ , w), g(w, a)] for the natural matter SE tensor. Even though qN

λ = qN
λ (qA

λ , w),
this functional dependence does not negate that each native natural nongravitational quantity qN

λ is
universally coupled to the natural metric gαβ. Using the above functional dependences in (274), and

raising by the absolute metric, the functional form for Eαβ
A is given by

Eαβ
A [qA

λ , w, a] = Tαβ
A [ qA

λ , w, a] + tαβ
A [w, a], (277)

which implicitly contains natural metric terms gαβ(w, a) since both T µ
α A[q

A
λ , w, a] and t µ

α A[w, a] do so as
seen on the right of (275) and (276). Note that in addition to containing absolute metric terms implicitly
inside the natural metric gαβ(w, a), Eαβ

A [qA
λ , w, a] contains absolute metric terms explicitly outside the

natural metric, such as occurs for H µ
α A[w; a] in (276) providing t µ

α A[w, a]. Using the functional form

Eαβ
A [qA

λ , w, a] in (272) yields

Hαβ
A [w; a] = 8π Eαβ

A [qA
λ , w, a] (278)

for the general form of the absolute field equation, where again the absolute metric is used exclusively
in Hαβ

A [w; a] for all metric use as per (273), and is used exclusively for external manipulation of

Hαβ
A [w; a] and Eαβ

A [qA
λ , w, a].

The absolute field equation is directly derivable from its natural field equation partner, as follows.
Starting with the NFE in the mixed indice form H µ

α N [w; g(w, a)] = 8πT µ
α N , multiplication by |S−1|

yields 0 = 8π|S−1|T µ
α N − |S−1|H µ

α N . This form of the NFE, combined with natural EM conservation

∇N
µ T µ

α N = 0, yields the complete potential solution wα
µ the same as Hαβ

N = 8πTαβ
N used in conjunction

with ∇N
β Tαβ

N = 0. The absolute field tensor H µ
α A[w; a] is added to both sides to obtain H µ

α A =

8π|S−1|T µ
α N + H µ

α A − |S−1|H µ
α N . Note that the addition of H µ

α A[w; a] to both sides does not interfere with
the NFE solution wα

µ. Finally, application of (274) yields the absolute field equation H µ
α A[w; a] = 8πE µ

α A,

or equivalently Hαβ
A [w; a] = 8πEαβ

A , completing the proof. As can be seen, the absolute field equation is
simply the natural field equation in an alternate form. Recall that the NFE and AFE general forms (219)
and (272) were combined in order to establish (217) originally giving the absolute field SE tensor t µ

α A
in terms of the field tensors H µ

α A and H µ
α N , which is the reason why the AFE may be derived from the

NFE as above.
In the above derivation, any arbitrary Hαβ

A [w; a] form may be utilized where the contained
potential is the NFE wα

µ solution, yielding then the same AFE wα
µ solution as the NFE, satisfying the

matched solution requirement. However, use of an arbitrary Hαβ
A [w; a] form results in an arbitrary

Eαβ
A via the AFE Hαβ

A [w; a] = 8πEαβ
A , contrary to a given system possessing a given physical absolute

total SE tensor Eαβ
A . Due to its field dependence, Eαβ

A is not known a priori for most gravitational
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systems, typically since the field dependent absolute field SE tensor tαβ
A is not known. However, there

are specialized cases where Eαβ
A is known a priori, such as static cases examined below. Whether or

not Eαβ
A for a system is known a priori, it is required that the form for Hαβ

A [w; a] be such as to yield the

system’s Eαβ
A value, via the AFE, when the NFE wα

µ solution is utilized in Hαβ
A [w; a]. This is referred

to as the “total SE (tensor) requirement,” which must be satisfied in order to satisfy the matched
solution requirement while also yielding the given Eαβ

A value for a system. Consider use of the AFE

Hαβ
A [w; a] = 8πEαβ

A as a stand-alone field equation, which is solved for wα
µ based on the given Eαβ

A

value for a system (known a priori or not, so the AFE is being solved in theory). Only if the Hαβ
A [w; a]

form satisfies the total SE requirement will the stand-alone AFE wα
µ solution equal the NFE solution. In the

development that follows, a unique form for Hαβ
A [w; a] is established based on the requirements. It

is then assumed that this form for Hαβ
A [w; a] indeed satisfies the total SE requirement. So via the AFE,

use of the NFE wα
µ solution for a system in the established Hαβ

A [w; a] form is assumed to yield the

system’s Eαβ
A . The established Hαβ

A [w; a] form is tested below for the static star case where Eαβ
A is known

a priori, where it is shown that use of the NFE wα
µ solution in Hαβ

A [w; a] indeed yields the known

Eαβ
A , verifying satisfaction of the total SE requirement. With the total SE requirement assumed to be

met for the established Hαβ
A [w; a] form, then the stand-alone AFE wα

µ solution for a system with a

given Eαβ
A (known or not) is indeed the same as the NFE wα

µ solution, satisfying the matched solution
requirement.

As is well accepted in gravitational physics, in the weak limit the energy-momentum content of
the gravitational field is negligible compared to the EM content of the source matter. This is assumed
then in GS theory, so in the weak limit the field SE tensor t µ

α A is assumed to be negligible compared
with the absolute matter SE tensor T µ

α A given by (275). Working in global ICs, use of (277) therefore
yields E µ

α A[q
N, w, η] = |S−1| T µ

α N in the weak limit. The AFE (278) becomes H µ
α A[w; η] = 8π|S−1| T µ

α N ,
where H µ

α A[w; η] is linearized in wα
µ for the weak limit. With |S−1| = e−w (74), then when expanded

in w and multiplied by T µ
α N , all but the leading unity term in the e−w expansion may be dropped in the

weak limit, yielding the linearized form H µ
α A[w; η] = 8πT µ

α N for the AFE. Using the Minkowski metric
to raise/lower indices in the global IC given weak limit case, and applying the linearized substitution
(253) to utilize pαβ as defined by gαβ = ηαβ + pαβ, then the absolute field equation in the weak limit is
given by the linearized form

HA
αβ[p; η] = 8π TN

αβ . (279)

In order to yield the same field solution pαβ as the natural field equation HN
αβ[p; η] = 8πTN

αβ for all

possible linearized cases in the weak limit, then the linearized absolute field tensor HA
αβ[p; η] must have

the same form as the linearized natural field tensor, as stated by the required equivalence

HA
αβ[p; η] ≡ HN

αβ[p; η] ≡ Gαβ[p; η], (280)

where the equivalence with the linearized Einstein tensor Gαβ[p; η] has been added via (254). Satisfying
this “linearized case requirement,” the weak limit linearized absolute field equation HA

αβ[p; η] = 8πTN
αβ,

natural field equation HN
αβ[p; η] = 8πTN

αβ, and Einstein equation Gαβ[p; η] = 8πTN
αβ are all identical,

yielding the same natural metric solution gαβ = ηαβ + pαβ for all possible linearized cases. Raising by
the Minkowski metric, then H µ

α A[p; η] ≡ H µ
α N [p; η], and with |S−1| = 1 − w = 1 + 2p when linearized

(using (253)), then via (276) the absolute field SE tensor t µ
α A[w, a] vanishes when linearized, as stated by

the equivalent identities
t µ
α A[p, η] ≡ 0, t µ

α A[w, η] ≡ 0. (281)

So the exact t µ
α A[w, a], given by (276) in any coordinates, consists of second-order or higher wα

µ products,
as consistent with the assumption that the absolute field SE tensor t µ

α A becomes negligible compared
to absolute matter SE tensor T µ

α A (and therefore the natural matter SE tensor T µ
α N) in the weak limit.

With this property for the field SE tensor t µ
α A[w, a] established, then when the absolute field equation
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HA
αβ[w; a] = 8πEA

αβ is linearized, it formally has the same form HA
αβ[p; η] = 8πTN

αβ as when the weak
limit is taken, as expected.

The above-established natural field tensor Hαβ
N [w; g] consists of N = 2 terms where again N

is the total number of derivatives taken on the field quantities in each term. The linearized form
HN

αβ[p; η] ≡ Gαβ[p; η] consists then of N = 2 terms as seen in (252), so via (280) HA
αβ[p; η] consists of

N = 2 terms, and using (253) HA
αβ[w; η] does as well. From scaling arguments such as provided in

Weinberg [22] (Chap. 7), then all of the terms in the exact Hαβ
A [w; a] must have the same N, and since

all of the terms in the linearized HA
αβ[w; η] are N = 2, then the exact absolute field tensor Hαβ

A [w; a]

must consist of N = 2 terms. Therefore, the Hαβ
A [w; a] terms fn(w)hn(a) (273), utilized in the absolute

field equation, are required to contain wα
µ and/or aαβ partial derivatives in N = 2 combinations. Now

if an Hαβ
A [w; a] term fn(w)hn(a) was given by hn(a) only, the N = 2 requirement would imply that

contained aαβ would have to be partially differentiated. Such hn(a) may be converted to covariant
form by substituting absolute metric covariant derivatives ∇A

µ for the partial derivatives ∂µ when
given in global ICs, but with ∇A

µ aαβ = 0, the hn(a) vanish. The N = 2 requirement therefore forbids

terms that do not contain wα
µ, so all Hαβ

A [w; a] terms fn(w)hn(a) have an fn(w) that is linear in wα
µ or

consists of higher-order wα
µ products.

Since the established NFE has been shown to yield only real-valued wα
µ solutions as required,

then under the matched solution requirement the absolute field equation must yield only real-valued
wα

µ solutions. Therefore, a key restriction on the form of Hαβ
A [w; a] is that it must yield only real-valued

wα
µ solutions for the absolute field equation Hαβ

A [w; a] = 8πEαβ
A over the entire range of possible systems

that may be modelled, and therefore over the entire range of possible given real-valued source fields
Eαβ

A for the modelled systems. This restriction limits the form of Hαβ
A [w; a], as follows.

Consider first the possible form for Hαβ
A [w; a] prior to restricting the AFE wα

µ solutions to being
real valued. Utilizing global ICs so that the absolute metric aαβ is the Minkowski metric ηαβ, then any

aαβ partial derivatives vanish, yielding possible Hαβ
A [w; a] terms fn(w)hn(a) consisting of products of

the following: wα
µ partial derivatives, undifferentiated wα

µ, and fixed ηαβ. The fn(w)hn(a) may consist
of various index combinations of these contributors so long as free raised indices α and β are obtained
in order to contribute to Hαβ

A [w; a]. The global IC given fn(w)hn(a) may therefore be composed of wα
µ

products of various orders (including being linear in wα
µ) multiplied by fixed constants, where the

wα
µ may be partially differentiated and/or undifferentiated. Applying the real-valued wα

µ solution

restriction, consider an Hαβ
A [w; a] form where any instances of the potential wα

µ are linear in the potential
only, so with no terms allowed that do not contain wα

µ (from above), any term fn(w)hn(a) is linear in

wα
µ (which may be partially differentiated). In this case, the global IC given AFE Hαβ

A [w; a] = 8πEαβ
A

yields a set of coupled linear partial differential equations in the four global IC coordinates, with all
wα

µ multiplied by fixed constants on the left-hand sides, and with the right of each equation consisting

of a generally variable Eαβ
A component (times 8π). Regardless of the given real-valued (continuous)

source field Eαβ
A utilized, a real-valued global IC wα

µ solution is yielded due to the coupled differential
equations being linear, so real-valued wα

µ solutions are yielded over the entire range of possible systems

that may be modelled. Now if instead an Hαβ
A [w; a] form has terms fn(w)hn(a) where some fn(w) are

not linear in wα
µ, the coupled differential equations Hαβ

A [w; a] = 8πEαβ
A may yield a complex-valued

global IC wα
µ solution due to the non-linearity of wα

µ. Indeed, it is expected that non-linearity in the

Hαβ
A [w; a] terms would yield complex-valued solutions in some Eαβ

A cases. Therefore, in order that only
real-valued global IC wα

µ solutions are yielded over the entire range of possible systems that may be

modelled, it is concluded that Hαβ
A [w; a] must consist of terms that are linear in wα

µ exclusively. Note that

achieved real-valued global IC wα
µ solutions, assuming an Hαβ

A [w; a] linear in wα
µ, coordinate transform

to again yield real-valued wα
µ solutions for the absolute field equation given in any coordinates.

Summarizing from above, the Hαβ
A [w; a] terms fn(w)hn(a) are restricted to being linear in wα

µ and
N = 2 only. Using “w ” and “a ” to generically represent any raised/lowered index forms for wα

µ and
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aαβ as well as the scalar wα
α, and “am ” to represent any product of aαβ with itself (including a0 ≡ 1),

all possible global IC given N = 2 Hαβ
A [w; a] terms fn(w)hn(a), with fn(w) linear in wα

µ, take the single
form w̌,αβ ηm, where ηαβ = ǎαβ. Since absolute covariant derivatives ∇A

µ̌ in global ICs are simply partial
derivatives ∂µ̌, then the global IC w̌,αβ ηm may be given in covariant form by w |αβ am, applicable in
any coordinates. The form w |αβ am generically represents multiple possible covariant terms in various
index configurations of the contained wα

µ and aαβ, with each configuration required to have free raised

indices α and β to be an Hαβ
A contributor. As can be seen, the combined requirements of wα

µ linearity

and N = 2 result in a relatively simple form for Hαβ
A [w; a].

As discussed in Section 5.3, required absolutely measured total EM conservation, given by
∂
(A)
ν̌ Ěµν

A(A)
= 0 in absolute inertial frames, yields Eαβ

A | β = 0 (218) in any coordinates. When applied to

the absolute field equation Hαβ
A [w; a] = 8πEαβ

A , then Hαβ
A | β = 0 must hold. Now it may be reasonably

assumed that the vanishing absolute field tensor divergence, ∇A
β Hαβ

A [w; a] = 0, is a condition that

is independent of the natural field equation Hαβ
N [w; g] = 8πTαβ

N , natural EM conservation Tαβ
N ; β = 0,

and the resultant natural field tensor based field constraint ∇N
β Hαβ

N [w; g(w, a)] = 0 (271) obtained

by applying Tαβ
N ; β = 0 to the NFE. Therefore, unless ∇A

β Hαβ
A [w; a] = 0 is an identity, it would act

to apply an additional constraint to the potential field wα
µ that is completely determined by the NFE

Hαβ
N [w; g] = 8πTαβ

N used in conjunction with natural EM conservation Tαβ
N ; β = 0. The potential field

wα
µ would therefore be overdetermined if Hαβ

A | β = 0 were not an identity, contradicting use of the NFE

fully determining wα
µ. It is concluded that Hαβ

A | β = 0 must indeed be an identity, as stated by the
“absolute divergence identity”

∇A
β Hαβ

A [w; a] ≡ 0, (282)

in order that application of absolute total EM conservation Eαβ
A | β = 0 to the absolute field equation

Hαβ
A [w; a] = 8πEαβ

A not contradict use of the natural field equation. Turning this around, accepting
that the absolute divergence identity (282) holds, its application to the AFE yields absolute total EM
conservation in the form of Eαβ

A | β = 0, regardless of the potential solution wα
µ applied in (282) such as

if obtained from the NFE. As shown above, assumed satisfaction of the total SE requirement for the
Hαβ

A [w; a] form yields a stand-alone AFE wα
µ solution (for any given system with then a given Eαβ

A ) that

is the same as the NFE solution, so with the restriction (282) placed on the Hαβ
A [w; a] form, absolute

total EM conservation Eαβ
A | β = 0 is achieved while preserving the same AFE wα

µ solution as for the
NFE.

Since the potential wα
µ consists of ten algebraically independent components (under its pure form

symmetry), then the absolute field equation Hαβ
A [w; a] = 8πEαβ

A provides ten algebraically independent

conditions. The absolute divergence identity ∇A
β Hαβ

A [w; a] ≡ 0 (282) consists of four functionally

independent conditions. As a result, if the AFE Hαβ
A [w; a] = 8πEαβ

A is utilized as a stand-alone

field equation to obtain its solution wα
µ for a system with a given Eαβ

A (known or not), adherence to
the absolute divergence identity implies that the AFE consists of only six functionally independent
conditions for determining wα

µ. This is similar to Einstein’s equation Gαβ = 8πTαβ providing only
six functionally independent conditions for determining gαβ due to the Bianchi identity Gαβ; β ≡ 0
holding. As discussed above, for Einstein equation use four additional coordinate conditions are
applied to the natural metric gαβ, setting the coordinates, in order to fully determine it. On the
other hand, in GS theory, a priori absolute manifold coordinates (such as global ICs) may be utilized
when solving the absolute field equation, so the coordinates have already been set. As a result,
the six functionally independent conditions provided by the AFE under application of the absolute
divergence identity, ∇A

β Hαβ
A [w; a] ≡ 0, are not sufficient for fully determining the potential tensor field wα

µ

consisting of ten algebraically independent components. However, as required, the AFE wα
µ solution must

be the same as the NFE solution. Since the NFE wα
µ solution is subject to the natural field constraint

∇N
β Hαβ

N [w; g(w, a)] = 0 (271), the natural field constraint similarly applies to the AFE wα
µ solution. The
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natural field constraint (271) provides the additional four functionally independent conditions required to fully
determine the potential field wα

µ when using the absolute field equation to determine wα
µ based on a given

Eαβ
A . Since the Hαβ

A [w; a] form is assumed to satisfy the total SE requirement, then when the NFE wα
µ

solution is applied to the AFE Hαβ
A [w; a] = 8πEαβ

A to obtain Eαβ
A for a given system, adherence to the

natural field constraint Hαβ
N ; β = 0 already applies. This implies that “in reverse,” when the natural field

constraint is combined with the AFE Hαβ
A [w; a] = 8πEαβ

A to fully determine the AFE wα
µ solution for a

system with a given Eαβ
A , the AFE wα

µ solution will indeed be the same as the NFE solution, satisfying

the matched solution requirement. The physical significance of applying Hαβ
N ; β = 0 is that adherence to

both natural EM conservation Tαβ
N ; β = 0 and the natural field equation Hαβ

N = 8πTαβ
N is incorporated into

solving the absolute field equation, as both are required to obtain the natural field constraint Hαβ
N ; β = 0. In

discussion above concerning stand-alone AFE wα
µ solution for a system with a given Eαβ

A , application

of the natural field constraint Hαβ
N ; β = 0 was considered to be in effect since the AFE wα

µ solution is
required to be the same as the NFE solution. For convenience when referring to the “absolute field
equation,” the natural field constraint Hαβ

N ; β = 0 may be included, with discernment from the absolute

field equation Hαβ
A = 8πEαβ

A alone made by context.

7.2. Lagrangian Formulation

As is commonly assumed for field equations in gravitational physics, the absolute field equation
is assumed to result from use of a Lagrangian-based formulation. This is expected since the AFE is
both the partner of the NFE and derived from the NFE (as above), with the NFE constructed using a
Lagrangian formulation. In addition, as discussed the classical AFE being developed here is assumed
to be the classical limit of a quantum gravitational AFE where the gravitational field is treated as
an ordinary force field similar to the nongravitational fields, and as such would be expected to be
obtainable from a Lagrangian formulation the same as the field equations for the nongravitational
fields. Since the AFE is the partner of the NFE, the AFE Lagrangian formulation here is constructed as
the partner of the NFE formulation made above. Following this methodology, the “absolute action” is
defined by

SA ≡ 1
16π

SHA + SE, (283)

where SE = SE[qA
λ , w, a] is the “(absolute total) energy action” for all absolutely observed energy-

momentum sources consisting of all matter, all nongravitational fields, and the gravitational field, and
where SHA is the “(absolute) field action” defined by

SHA ≡
∫ √

−a LHA d4x (284)

with LHA the “absolute field Lagrangian.” With the potential wα
µ the field operand for the absolute

field equation Hαβ
A [w; a] = 8πEαβ

A (278), the field variation applied to the absolute action SA is the
potential variation δwα

µ. Combining the field variation δwα
µ with the variation δqA

λ for each native
absolute nongravitational quantity, qA

λ , yields the complete absolute action variation

δSA =
∫

d4x
δSA

δwα
µ

δwα
µ +

∫
d4x

δSA

δqA
λ

δqA
λ . (285)

Applying the principle of least action, the action variation δSA is set to zero, yielding the absolute field
equation as the Euler-Lagrange (EL) equation

δSA
δwα

µ
= 0 (286)
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giving the critical point for the absolute action SA under the field variation δwα
µ. Similarly, the critical

point for the absolute action SA under the variation δqA
λ for each native absolute nongravitational

quantity, qA
λ , is the EL equation

δSE[qA
λ , w, a]

δqA
λ

= 0 (287)

giving the absolute equation of motion for qA
λ , where δSA/δqA

λ = δSE[qA
λ , w, a]/δqA

λ was utilized since
the field action SHA has no qA

λ quantity dependence.
The absolute partner formulations for (245) and (246) are

H µ
α A[w; a] =

1
2

1√
−a

δSHA[w; a]
δwα

µ
, (288)

E µ
α A[q

A
λ , w, a] = − 1√

−a
δSE[qA

λ , w, a]
δwα

µ
, (289)

which are used to define the field action SHA = SHA[w; a] and the energy action SE = SE[qA
λ , w, a], as well

as via (284) to define the absolute field Lagrangian LHA = LHA[w; a]. Note the functional dependencies
for SHA, SE, and LHA are established via these definitions, which apply in the EL equations above.
Substituting SA given by (283) into the EL field equation (286), applying (288) and (289), and lowering
by the absolute metric, yields

HA
αβ[w; a] =

1
2

1√
−a

δSHA[w; a]
δwα

µ
aµβ = 8π EA

αβ (290)

for the EL absolute field equation, with the “middle” term giving HA
αβ[w; a]. The derivation of the AFE

via their use justifies the definitions (288) and (289).
The absolute total energy action may be given by

SE[qA
λ , w, a] = SM[qN

λ(q
A
λ , w), g(w, a)]− 1

16π
{SHA[w; a]− SHN [w; g(w, a)]}. (291)

To show this is the case, applying the wα
µ functional derivative across (291), and using (246) (under

universal natural metric coupling to qλ = qN
λ ), (245), and (288), yields

δSE
δwα

µ
= −

√
−g T µ

α N − 1
16π

{
2
√
−a H µ

α A − 2
√
−g H µ

α N

}
.

Substituting for δSE/δwα
µ via (289), and using

√−g =
√
−a |S−1| (from (37)), readily yields (274) giv-

ing E µ
α A, completing the proof that application of (289) utilizing (291) for the energy action SE[qA

λ , w, a]
yields the absolute total SE tensor E µ

α A[q
A
λ , w, a]. Substituting (291) into (283), and using (232), yields

SA[qA
λ , w, a] ≡ SN [qN

λ(q
A
λ , w), w, g(w, a)], (292)

stating the formal equivalence of the absolute and natural actions. This interesting result comes about
due to the AFE being an alternate form of the NFE as shown above, so the equivalence of their actions
is not so unexpected. But similar to the AFE Hαβ

A = 8πEαβ
A providing new information about a system

that the NFE does not provide, namely, its total SE tensor Eαβ
A and its relation to the gravitational field,

the “parent” absolute action SA = (1/16π)SHA + SE for the AFE again provides new information
about a system that the natural action SN does not provide, namely, its total energy action SE and
similarly its relation to the gravitational field.

Application of (287), utilizing (291) for SE[qA
λ , w, a], yields

δSE[qA
λ , w, a]

δqA
λ

=
δSM[qN

λ(q
A
λ , w), g(w, a)]
δqA

λ

=
δSM[qN

λ, g]
δqN

λ

∂qN
λ (qA

λ , w)

∂qA
λ

= 0. (293)
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As can be seen, the absolute equations of motion (287) based on use of the absolute total energy action,
SE, reduce to absolute motion equations based on the familiar natural matter action SM used in general
relativity and metric-based theories in general (such as above for GS theory), where all that is required
to obtain the absolute motion equations is to use the partner relations qN

λ = qN
λ(q

A
λ , w) in SM[qN

λ, g]
to form SM[qN

λ(q
A
λ , w), g] prior to taking the qA

λ functional derivatives. Equation (293) shows that the
absolute qA

λ functional derivative of the matter action, SM[qN
λ(q

A
λ , w), g], is simply the familiar natural

qN
λ functional derivative of SM[qN

λ , g] multiplied by the partial functional derivative ∂qN
λ(q

A
λ , w)/∂qA

λ ,
with δSM[qN

λ , g]/δqN
λ = 0 the natural equation of motion (236) for the natural nongravitational quantity

qN
λ that is the partner of the absolute quantity qA

λ . Therefore, (293) provides the partner relation
between the partner absolute and natural equations of motion for the partner native nongravitational
quantities qA

λ and qN
λ . Note that adherence to the familiar natural motion equation δSM[qN

λ , g]/δqN
λ =

0 for a natural quantity, qN
λ , yields via (293) adherence to the partner absolute motion equation

δSM[qN
λ(q

A
λ , w), g]/δqA

λ = 0 for the partner absolute quantity qA
λ .

What remains for the absolute field equation development is to establish the absolute field
Lagrangian LHA[w; a] used to construct the field action SHA[w; a] given by (284). The usual variational
techniques (as discussed above for the NFE) are again employed to “automatically” generate the SHA

functional derivative utilized in the EL absolute field equation (290) employed to obtain HA
αβ[w; a].

Proceeding with the determination of LHA[w; a], similar to Hαβ
A [w; a] given by (273), based on their

functional dependence LHA[w; a] and SHA[w; a] each consist of a sum of terms of the form fn(w)hn(a),
where again the contained wα

µ and aαβ may be partially differentiated. From above, all Hαβ
A [w; a]

terms fn(w)hn(a) must be N = 2 where fn(w) is linear in wα
µ. These same requirements hold for

the absolute metric lowered field tensor HA
αβ[w; a] in (290). Utilizing (284) in (290) to obtain HA

αβ[w; a],
then employing the usual variational techniques, all LHA[w; a] terms fn(w)hn(a) must also be N = 2.
Now δSHA[w; a]/δwα

µ in (290), with SHA[w; a] given by (284), yields HA
αβ[w; a] terms fn(w)hn(a) that

are one factor of wα
µ less than in the “parent” LHA[w; a] terms fn(w)hn(a). As such, LHA[w; a] terms

fn(w)hn(a) where fn(w) consists of quadratic products of the potential, wα
µ, will generate HA

αβ[w; a]
terms fn(w)hn(a) that are linear in wα

µ as required. Therefore, the absolute field Lagrangian LHA[w; a]
must consist of N = 2 terms fn(w)hn(a) where fn(w) consists of quadratic wα

µ products only. In
contrast, recall that the natural field Lagrangian LHN [w; g] consists of N = 2 terms that are linear in
wα

µ or do not contain it.
Using “w ” and “a ” to again generically represent any raised/lowered index forms for wα

µ and
aαβ as well as the scalar wα

α, and “am ” to represent any product of aαβ with itself (including a0 ≡ 1),
all possible global IC given N = 2 LHA[w; a] terms fn(w)hn(a), with fn(w) quadratic in wα

µ products,
only take the two forms w̌,α w̌,β ηm and w̌ w̌,αβ ηm, where ηαβ = ǎαβ. Since ∂µ̌ = ∇A

µ̌ in global ICs, then
these forms may be given covariantly by w |α w |β am and w w |αβ am, applicable in any coordinates. Each
of these terms generically represents multiple possible covariant terms in various index configurations
of the contained wα

µ and aαβ, with each configuration required to yield a scalar to be a contributor
for the scalar LHA[w; a]. Each possible LHA[w; a] contributor may be evaluated by using (284) to form
its SHA contribution, and then the wα

µ functional derivative is taken applying the usual variational
techniques, yielding the contributor’s H µ

α A contribution via (288). Using integration by parts and
dropping boundary surface integrals, every possible w w |αβ am configuration for construction of the
Lagrangian, LHA[w; a], yields an H µ

α A contribution that is a sign-reversed form of an H µ
α A contribution

generated by a particular w |α w |β am configuration. Dropping the redundant w w |αβ am terms, only the
“symmetric form” w |α w |β am based terms are utilized for LHA[w; a] construction. Generating the specific
LHA[w; a] terms, every possible independent scalar index configuration for the generic w |α w |β am is as
follows: wα

µ|σwµ
α
|σ, wα

µ|σwσ
α
|µ, wµ

α|µwσ
σ
|α, and wµ

µ|αwσ
σ
|α. Note that index configurations equal to

the given ones are not listed, as they would be redundant. Again due to redundancy, also not listed is
any configuration that yields an H µ

α A contribution proportional to one generated by the provided list.
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Using the list of possible LHA[w; g] terms, the most general absolute field Lagrangian that may be
formed is

LHA[w; a] = a wα
µ|σwµ

α
|σ + b wα

µ|σwσ
α
|µ + c wµ

α|µwσ
σ
|α + d wµ

µ|αwσ
σ
|α, (294)

where a, b, c, and d are arbitrary constants. This is the most general possible Lagrangian that may be
formed under the assumed requirements for formulation of the absolute field equation.

Substituting (294) into (284), and applying the usual variational techniques as discussed above,
the potential functional derivative of SHA is given by

1√
−a

δSHA[w; a]
δwα

µ
= −2 a wµ

α |
σ

σ − b (wσµ
| ασ + wσ

α |
µ

σ)− c (w |
µ

α + δµ
α wσ

λ |
λ

σ)− 2 d δµ
α w |

σ
σ. (295)

Using this in (290) (and utilizing the wαβ symmetry) yields the absolute field equation

HA
αβ[w; a] = − a wαβ |

σ
σ − b wσ

(α | β) σ −
1
2

c (w | αβ + aαβ wσ
λ |

λ
σ)− d aαβ w |

σ
σ

= 8π EA
αβ[q

A
λ , w, a], (296)

providing the most general possible form for the absolute field tensor HA
αβ under the assumed require-

ments (as applied thus far). Note that all of the HA
αβ[w; a] terms take the generic N = 2 form w |αβ am

linear in the potential wα
µ, as expected from above.

7.3. Application of the Linearized Case and Absolute Divergence Identity Requirements, and Verification of the
Total SE Requirement

As established above, the linearized absolute field tensor HA
αβ[p; η] must satisfy the field tensor

equivalence (280) in order that in all possible linearized (and therefore weak limit) cases, the absolute
field equation HA

αβ[p; η] = 8πTN
αβ (279) yields the same field solution pαβ (as defined by gαβ = ηαβ + pαβ)

as the natural field equation HN
αβ[p; η] = 8πTN

αβ and therefore Einstein’s equation Gαβ[p; η] = 8πTN
αβ.

Utilizing global ICs for linearized formulation (as per usual from above), then aαβ = ηαβ, so the
absolute metric covariant derivatives reduce to partial derivatives in (296) giving HA

αβ[w; a], yielding a

global IC HA
αβ[w; η] that is already in linearized form. So the linearized relation (253) may be applied to

yield

HA
αβ[p; η] =

1
2

a pαβ ,σ
σ +

1
2

b pσ
(α , β) σ +

1
4

c (p, αβ + ηαβ pσ
λ ,λ

σ) +
1
2

d ηαβ p ,σ
σ . (297)

A comparison of (297) with (252) giving the linearized Einstein tensor, Gαβ[p; η], shows that in order
for the equivalence HA

αβ[p; η] ≡ Gαβ[p; η] (280) to hold, the constants in (297) must have the unique
values

a = −1, b = 2, c = −2, d = 1. (298)

These values are assumed then, satisfying the linearized case requirement (280).
Using the values (298) for the absolute field tensor in (296), the resultant absolute field equation

is unique. Note that similar to the natural field equation, it is parameterless. The symmetric absolute
metric based trace-reverse for a symmetric tensor Bαβ is defined by

Bαβ ≡ Bαβ −
1
2

aαβB, (299)

where the scalar B is the trace B = aσαBασ = Bσ
σ. A convenient property of the absolute trace-reverse

is Bαβ = Bαβ, so the trace-reverse is its own inverse. Utilizing the trace-reverse, substitution of the
constant values (298) in (296) yields

HA
αβ[w; a] = Q A

αβ[w; a] = 8π EA
αβ[q

A
λ , w, a] (300)
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for the absolute field equation, where QA
αβ[w; a] is the symmetric “absolute potential Ricci tensor”

defined by
QA

αβ[w; a] ≡ w | αβ + wαβ |
σ
σ − 2 wσ

(α | β) σ . (301)

Note that QA
αβ[w; a] has the same form as Pαβ[w; g] (259) contained in the natural potential Ricci tensor

QN
αβ[w; g] (260), but with the absolute metric, as opposed to the natural metric, utilized to raise/lower

indices and form covariant derivatives. Applying the absolute trace-reverse across (300) yields the
alternate trace-reverse form

H A
αβ[w; a] = Q A

αβ[w; a] = 8π E A
αβ[q

A
λ , w, a] (302)

of the absolute field equation. Unlike QN
αβ[w; g]= 0 (263) in a vacuum, QA

αβ[w; a] is generally non-zero

in a vacuum due to E A
αβ = t A

αβ generally being non-zero.

A direct evaluation of Hαβ
A | β = Q αβ

A | β, with Qαβ
A given by (301) raised by the absolute metric,

yields satisfaction of the absolute divergence identity ∇A
β Hαβ

A [w; a] ≡ 0 (282). So as required, the

absolute divergence identity is satisfied for the established absolute field tensor Hαβ
A . Instead of going through

a direct evaluation, satisfaction of Hαβ
A | β ≡ 0 may be understood by using global ICs, in which

case Hαβ
A [w; n] takes a linearized form similar to HA

αβ[w; η] discussed above. This implies that via

the use of (253), Hαβ
A [w; n] ≡ − 1

2 Hαβ
A [p; n] as an equivalence of forms, and with (280) holding, then

Hαβ
A [w; n] ≡− 1

2 Gαβ[p; n]. As the linearized Bianchi identity ∂βGαβ[p; n] ≡ 0 holds in global ICs, then

∂β Hαβ
A [w; n] ≡ ∇A

β Hαβ
A [w; a] ≡ 0 in global ICs, yielding ∇A

β Hαβ
A [w; a] ≡ 0 in any coordinates. Note that

application of the absolute divergence identity as a requirement to constrain the form for HA
αβ[w; a]

given by (296), did not in fact further constrain the form for HA
αβ[w; a] yielded after application of the

linearized case requirement. However, the absolute divergence identity may still be considered to have
been applied, since alternately it may be applied first to partially constrain the constants a through d in
(296), and then the linearized case requirement is imposed to complete constraint application, yielding
again HA

αβ[w; a] given by Q A
αβ[w; a].

The remaining requirement for the HA
αβ[w; a] form is the total SE requirement, which is verified

here for the static star case where the total SE tensor EA
αβ is known a priori for static systems (outside

their sources). To establish EA
αβ for static systems, consider a mass particle moving under the gravi-

tational field of a static system. From general relativity, the temporal component pN
0 of the natural

momentum 1-form for a particle remains constant as it moves through a static field (see Schutz [18],
Chap. 7). In GS theory, with the native absolute and natural momentum 1-forms p̃A and p̃N being
equal (as per (186)), then pA

0 is constant as well. Utilizing global ICs so that the absolute metric is the
fixed Minkowski metric, then the absolute energy EA = p0

A = m0 A
α Uα

A (using (201)) obtained by raising
pA

α by the absolute metric aαβ = ηαβ, is given by EA = p0
A =−pA

0 . So remarkably, the global IC given
absolute energy EA of a mass particle remains constant as it moves through a static gravitational field. The
constancy of EA for a mass particle is commensurate with the constancy of the global IC given EA = hν

for a photon moving through a static field. Now the absolute kinetic energy KA changes as a mass
particle moves, but this is compensated by an equal but opposite change in the absolute mass-energy
EM

A (from all contained energy sources) under the locational change in the gravity shifting applied to
the matter making up the particle (the influence of shifting is quantified by the (dτA/dτN)F0̄

α factor
in (202) giving m0 A

α contained in EA = m0 A
α Uα

A), so the total energy EA = KA + EM
A remains constant.

With EA remaining constant, then when utilizing global ICs, the gravitational field for a static system does
not transfer absolute energy to a mass particle as it moves through the field, and similarly for a photon.

Consider the construction of a static gravitational system by assembling it using the following
process. Utilizing global ICs, an infinitesimally massed particle is set at a particular location. Then
holding this particle at the fixed location, another infinitesimally massed particle is allowed to come in
from an effectively infinite distance, free-falling until it merges with the fixed particle. This merged
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“central mass” is held fixed while another infinitesimally massed particle is allowed to free-fall from an
infinite distance and merge with the central mass. The process is repeated until the desired static system
is yielded, consisting of a finitely sized and massed static central mass source with a surrounding static
field (the central mass may be shaped by controlling the merge locations of the incoming particles as
the central mass is built up). In constructing the system, the original locations of the incoming particles
are all set at an effectively infinite distance from one another in addition to being set an infinite distance
from the central mass location. With each particle having an infinitesimal mass, then the “original state”
consisting of all of the particles combined, but each with an infinite separation from the rest, has a
vanishing gravitational field strength. Therefore, wα

µ = 0 for the original state, so via (276) the absolute

field SE tensor tαβ
A is zero, yielding a zero-valued absolute gravitational field energy EG

A by integrating

tαβ
A over all space. Now since the gravitational field for a static system does not transfer absolute energy

to a mass particle moving through it, then the field energy EG
A remains zero as each incoming particle

comes in through the static field of the central mass then present. This property holds in particular
for the field outside the central mass, as any transfer of energy must come from the local region an
incoming particle is passing through, with all local regions of travel located outside the central mass
once the particle merges with it. Therefore, EG

A = 0 outside the central mass of the assembled static
system, so in general the global IC given absolute gravitational field energy EG

A is zero outside the source mass
of a static system. Note that the total energy ET

A = EM
A (orig) + EG

A of the original state consists of only
the combined rest-mass energy EM

A (orig) of all of the masses, since EG
A = 0 for the entire original state.

Then under absolute energy conservation, the total energy ET
A = EA(central) + EG

A of the assembled
“final state” is the same as EM

A (orig), where EA(central) is the energy of the central mass from all
contained energy sources, and EG

A is the zero-valued field energy outside the central mass. Therefore,
EA(central) = EM

A (orig), as expected since with the absolute energy EA of a particle not changing as it
travels though a static field, then when assembling the static system using the above process, each
incoming particle contributes only its original rest-mass energy EM

A (particle) when it merges with the
central mass.

Gravity wave generation due to mass particle acceleration was not considered in the above
construction, which reduces the kinetic energy KA of an incoming particle and therefore the assembled
central mass energy EA(central). But gravity wave generation may be considered to operate as an
independent energy dissipation mechanism that does not impact the lack of absolute energy transfer
between the static field and the incoming particle, preserving the above EG

A = 0 result outside the
assembled central mass. Note that an incoming particle will generate gravity waves on impact with
the central mass due to sudden deceleration, but this reduces EA(central) without affecting the lack of
energy transfer between the static field and the incoming particle, again preserving the EG

A = 0 result.
It may be reasonably assumed that the global IC given energy component t00

A of the absolute field

SE tensor, tαβ
A , has the same sign at all locations outside the source mass of a static system. Then with

EG
A = 0 for the field energy outside the source mass, t00

A = 0 at all outside locations. Note that inside
the static source mass, the internal stresses and pressures present may result in a non-zero t00

A , with
t00

A → 0 at the surface since t00
A = 0 in the vacuum outside the mass. Since at the quantum level the

gravitational field may be considered to be constructed from virtual exchange (spin-2) gravitons, then
with the graviton field having a zero-valued global IC classical energy density t00

A , it may be inferred

that the other “momentum components” of the classical field SE tensor tαβ
A are zero valued as well

(such as would be expected if the graviton field were treated as a gas with a pressure proportional to
its energy density). With all components of the global IC tαβ

A being zero valued, then tαβ
A = 0 in any

coordinates. Summarizing, for a static system, the absolute field SE tensor tαβ
A is zero (in any coordinates) in

the vacuum outside the static source mass.
Since Tαβ

A = 0 in a vacuum, then the absolute total SE tensor Eαβ
A = Tαβ

A + tαβ
A is also zero in the

vacuum outside the source mass of a static system, as stated by

Eαβ
A = tαβ

A = 0 (vacuum, static system). (303)
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Therefore, Eαβ
A is known a priori for static systems (outside their sources) as claimed above. Also,

Eαβ
A = 0 reasonably approximates the vacuum Eαβ

A = tαβ
A for typical systems with slow-moving sources

such as our Solar System, since their fields may be treated quasi-statically.
Lowering (303) by the absolute metric, then the vacuum EA

αβ is zero for static systems. This implies
that in order to satisfy the total SE requirement, when the natural field equation potential solution
wα

µ for a static system is substituted into the absolute field tensor HA
αβ[w; a], the vacuum HA

αβ[w; a]
must be zero, yielding EA

αβ = 0 via the absolute field equation HA
αβ[w; a] = 8πEA

αβ as required. This is
verified for the static star case as follows. Utilizing ISCs, the vacuum wα

µ field is given by (264), which
is the natural field equation solution as shown above. Substitution of this wα

µ field into the established
HA

αβ[w; a] form (300) indeed yields HA
αβ[w; a] = 0 and therefore EA

αβ = 0, verifying total SE requirement
satisfaction. With the representative star case verifying satisfaction of the total SE requirement, then
under the uniqueness of the established form for HA

αβ[w; a] as obtained from the previously applied
assumptions for the AFE development, it is assumed that the established form for the absolute field tensor
HA

αβ[w; a] (given by (300) with (301) providing QA
αβ[w; a]) satisfies the total SE requirement for general cases,

even when Eαβ
A is not known a priori.

Beginning with the most general possible form (296) of the absolute field equation utilizing the
arbitrary constants a through d, application of the linearized case and absolute divergence identity
requirements resulted in uniquely setting their values per (298). With there being only four arbitrary
constants in the most general possible form (296), the ability to set these constants to yield both the
observed linearized case metric and the absolute divergence identity, and additionally to satisfy the
total SE requirement for the star case, is a “powerful” verification of the validity of (296). Now care was
taken to insure that any “intermediate form” of the AFE, at then any stage in the AFE’s development,
was the most general possible form subject to any assumptions that had been made up to that stage.
Therefore, the AFE’s final form (300) (or its trace-reverse (302)), with QA

αβ given by (301), is the most
general possible form subject to the assumptions made for its development. However, the final form of
the AFE has been shown to be unique. Therefore, the absolute field equation is uniquely obtained from the
assumptions made for its development.

The assumptions made for the AFE’s development are the absolute flat spacetime and SEP
postulates, and the additional assumptions made (above) for establishing the AFE. Based on the
assumed physical validity of the AFE’s developmental assumptions, then with the AFE’s final form
uniquely obtained from them, the absolute field equation is assumed to be physically valid. The AFE’s
validity is verified by it predicting the same potential wα

µ (given use of Hαβ
N ; β = 0 (271)) as the

successfully predictive natural field equation, assuming that the AFE HA
αβ[w; a] = 8πEA

αβ successfully

predicts the total SE tensor EA
αβ using the NFE’s potential solution (one of the AFE’s developmental

assumptions).

7.4. Solution Properties, the Absolute Energy Condition, and Absolute Energy Conservation

As discussed above, due to its field dependence, the absolute total SE tensor Eαβ
A is not known a

priori for most gravitational systems, typically since the field dependent absolute field SE tensor tαβ
A is

not known a priori. Therefore, for most gravitational systems, the absolute field equation Hαβ
A = 8πEαβ

A
may not be utilized to determine the gravitational field. On the other hand, since the natural matter SE
tensor Tαβ

N is known by natural observers, the natural field equation Hαβ
N = 8πTαβ

N is preferable to the
absolute field equation for determining the field for general systems (as stated in the summary). Also,
the natural field equation is preferable for natural observer modelling of gravitational systems, since it
directly predicts naturally observed gravitational phenomena, and is the field equation form for which
morph application yields natural observer SEP compliance. However, given the NFE potential wα

µ

solution for a general system, the absolute field equation Hαβ
A [w; a] = 8πEαβ

A is useful for determining

Eαβ
A . In addition, the AFE’s absolute field tensor Hαβ

A [w; a] is utilized to construct (276) providing the

value of the absolute field SE tensor tαβ
A given the NFE wα

µ solution.
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In Section 3.7, the heuristic argument was utilized that, at the fundamental level, the coupling of the
shift tensor field to a symmetric SE tensor source charge, with both in the presence of the symmetric
absolute and natural metrics (or at the very least the symmetric absolute metric), results in a symmetric
shift tensor when given in pure (indice) form. An evaluation was performed in Section 6.4 for the
natural field equation HN

αβ[w; g] = 8πTN
αβ as a formal statement depicting the shift tensor field being

coupled to the symmetric natural matter SE tensor TN
αβ, where it was shown that wαβ = gαµwµ

β is
symmetric, from which it was shown that the shift tensor Sα

µ̄ is symmetric when given in pure form
using either metric. Similarly, since the absolute field equation HA

αβ[w; a] = 8πEA
αβ is a formal statement

depicting the shift tensor field (using its potential wα
µ) being coupled to the symmetric absolute total

SE tensor EA
αβ in the presence of the symmetric absolute metric, then it must yield a symmetric shift

tensor Sα
µ̄ when given in pure form. Utilizing the EA

αβ symmetry, the trace-reverse form (302) of the

AFE yields a symmetric potential Ricci tensor QA
αβ. Now regardless of whether or not the potential

tensor is symmetric in pure form, every term in QA
αβ, given by (301), is symmetric except for wαβ |

σ
σ.

Therefore, wαβ = aαµwµ
β must indeed be symmetric to yield a symmetric QA

αβ. So any potential
solution wα

µ for the absolute field equation is symmetric when raised/lowered by the absolute metric
to yield a pure form. To prove that Sα

µ̄ is symmetric in pure form based on wαβ = aαµwµ
β symmetry,

the absolute metric may be substituted for the natural one in the above partner NFE proof where Sα
µ̄

symmetry was established based on wαβ = gαµwµ
β symmetry. The symmetry of the potential tensor

was assumed in Section 7.1 in order to state that the AFE provides ten algebraically independent
conditions, providing the basis for requiring application of the natural field constraint (271) to fully
determine the wα

µ solution under satisfaction of the absolute divergence identity (282).
Without use of an “energy condition” limiting the gravitational sources, the absolute field equation

(with use of the natural field constraint (271) assumed) admits to potential solutions wα
µ such that the

shift tensor Sα
µ̄ = exp(wα

µ) yields shifted light speeds cS exceeding the null speed vNull , so the gravity
shifting would violate the speed constraint. Therefore, the required “absolute energy condition” for
gravitational sources is as follows: The absolute energy-momentum of gravitational sources must be such
that the absolute field equation solutions produce shifted light speeds cS that do not exceed the absolute manifold
null speed vNull . Using (268), satisfaction of the absolute energy condition also prevents gravitational
field propagation speeds vG = cS from exceeding the null speed vNull . Therefore, energy transport of all
types is limited by the null speed vNull under the absolute energy condition. The absolute energy condition
limiting the absolute source, Eαβ

A , via use of the absolute field equation, can be seen to be the partner

form of the natural energy condition limiting the partner source Tαβ
N via use of the partner natural

field equation. Since the partner AFE and NFE have the same solution wα
µ, satisfaction of the natural

energy condition yields absolute energy condition satisfaction, and vice versa. For (most) systems
where Eαβ

A is not known a priori, the natural energy condition is applied to limit the known Tαβ
N when

using the NFE to first obtain wα
µ, and then the AFE is applied using this wα

µ to obtain the partner Eαβ
A ,

which automatically satisfies the absolute energy condition. But if a system is modelled using the AFE
assuming a given Eαβ

A , then Eαβ
A must satisfy the absolute energy condition, resulting in a partner Tαβ

N
that satisfies the natural energy condition.

Again, the absolute field equation yields a symmetric potential wα
µ solution that results in a

symmetric shift tensor field Sα
µ̄ (when put in pure form), where as established above, the AFE yields a

real-valued potential solution wα
µ due to potential use being linear. Satisfaction of the speed constraint

under the absolute energy condition enables the global IC given potential wα
µ to be diagonalized using

Lorentz transforms. The same argumentation may be made then as above (Sec. 6.4) for the partner NFE
yielding adherence to the gravity shifting constraints. Therefore, with the assumed adherence to the
absolute energy condition for gravitational sources, the absolute field equation predicts gravity shifting that
adheres to all of the established gravity shifting constraints (as stated in Section 3.13). This is expected since
under assumed satisfaction of the total SE requirement, the AFE yields the same potential solution wα

µ

as the partner NFE yielding adherence. But the evaluation made here also applies for stand-alone use of
the AFE for given Eαβ

A .
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As discussed in Section 6.4, satisfaction of the gravity shifting constraints, combined with the
exponential potential form Sα

µ̄ = exp(wα
µ) (68) for the shift tensor, bars event horizons, singularities,

and causality violations as implausibilities. Then with explicit formulation in absolute flat spacetime
resulting in compatibility with quantum theory (as demonstrated above), all physical law and modelling
is physically plausible when utilizing the absolute field equation to predict the gravitational field. This result,
combined with the similar physical plausibility when using the partner natural field equation, fully
establishes that all physical law and modelling using gravity shift theory is physically plausible (as stated in
Section 3.13 and the summary).

As discussed above, due to satisfaction of the Bianchi identity Gαβ; β ≡ 0 in Einstein’s equation

Gαβ = 8πTαβ
N , the Cauchy problem in general relativity requires four additional coordinate conditions

to be imposed in order to completely specify initial conditions. Similarly, due to the identity Hαβ
A | β ≡ 0

holding in the absolute field equation Hαβ
A = 8πEαβ

A , four additional conditions are required to
completely specify the initial conditions for deterministic evolution from an initial hypersurface
x0 = t. However, these may not be coordinate conditions, since a priori coordinates may be utilized
in GS theory. Instead, the natural field constraint ∇N

β Hαβ
N = 0 (271) provides the four additional

conditions, with evolution under the natural field constraint and AFE uniquely determined from the
initial conditions. The AFE Cauchy problem is the partner to the NFE Cauchy problem discussed
above, with the same deterministic evolution obtained utilizing the partner initial conditions for the
partner AFE and NFE use.

As discussed in Section 6.4, in GS theory, natural matter EM conservation Tαβ
N ; β = 0 is a condition

exclusively obtained independently from the natural field equation Hαβ
N = 8πTαβ

N by utilizing the

available Lagrangian-based establishment of Tαβ
N ; β = 0 for metric-based theories, obtained by applying

coordinate transformations (or equivalently diffeomorphisms) to the matter action SM utilized in the
covariant matter action principle statement, δSM = 0, to yield a Bianchi identity from which Tαβ

N ; β = 0
is yielded. A similar formulation of the Bianchi identity obtained from the energy action SE utilized
in the covariant total energy action principle statement δSE = 0, with SE given by (291), results in a
Bianchi identity where Eαβ

A | β cannot be isolated due to Eαβ
A being coupled to the potential wα

µ via (289),

preventing absolute total EM conservation Eαβ
A | β = 0 from being obtained using the given SE. It is

suspected though that there does exist an action such that its Bianchi identity (or some other variant
of Noether’s theorem) yields Eαβ

A | β = 0, but this has not been further pursued. Therefore, putting

that possibility aside, reliance is made on application of the absolute divergence identity ∇A
β Hαβ

A [w; a] ≡ 0

(282) to the absolute field equation Hαβ
A = 8πEαβ

A to obtain Eαβ
A | β = 0, yielding the required local absolutely

measured total EM conservation ∂
(A)
ν̌ Ěµν

A(A)
= 0 in absolute inertial frames, thereby resulting in global

total EM conservation dP̌α
A /dť = 0 (from Sec. 5.3).

8. Prediction Assessment
Due to the complete GS theory being uniquely obtained from the flat spacetime and SEP postulates

as well as the additional assumptions made for development of the field equations, then for both
natural and absolute observers, all observational predictions made using the complete gravity shift theory are
uniquely obtained from its postulates and the additional field equation assumptions (as stated in the summary).
Again, based on the assumed physical validity of the flat spacetime and SEP postulates as well as the
natural field equation assumptions, then using the resulting unique natural field equation to predict
natural gravitational observations, the provided complete gravity shift theory is expected to successfully
predict all natural observations of classical gravitational phenomena, meaning in each case to obtain a
prediction that “formally agrees” with the corresponding observation to within the uncertainty range
obtained by combining the specified observation error with any astrophysical modelling uncertainties
encountered. Will [1] categorizes the breadth of the available natural observations utilized to test
gravitational theories, with the exception of the additional recent pulsar timing array (PTA) detections
of low-frequency gravity waves [15]. As a verification, the corresponding natural predictions made
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with GS theory are shown here to either formally agree with these available test cases or, at minimum,
to approximately agree without formal agreement claimed. Note that the following evaluation excludes
testing for cosmological prediction other than assumed use of the natural RW metric (as yet unspecified)
to account for cosmological effects when observing distant local systems.

Below, the observational properties utilized to develop the natural field equation are first applied
to establish predictions for a wide range of available test cases. Then predictions from the Supplement
are added, extending the range of predictions to cover all available natural observations of local systems
utilized to test gravitational theories. However, some of the predictions using the NFE observational
properties involve black and neutron stars, with the detailed modelling for these compact objects
provided in the Supplement. The Supplement modelling of black and neutron stars is assumed as
background when predicting test cases involving them using the NFE observational properties. As
discussed, a sizable fraction of most observed black stars have not formed as simply lone “native”
black stars collapsing through their photon spheres undisturbed up to as presently observed, instead
having a history of significant accretion accumulation and/or formation as remnants of earlier black
stars merging below the photon spheres of the remnants. Such a star is referred to as an “accumulated
and/or merged black star (AMBS).” The term “black star assembly (BSA)” refers to the assembly
of matter that forms an AMBS, in particular the assembly of matter below the photon sphere of the
subsequent AMBS. When a BSA is “mature”—meaning that the BSA is old enough that all of its matter
is much smaller than its photon sphere—it is shown to have an appearance and a gravitational metric
(near and above the photon sphere) closely approximating those of a native black star with the same
gravitational mass M as the entire BSA. The same properties hold for a mature AMBS. As shown, a
native black star continually collapses towards a singularity with its surface speed asymptotically
approaching the exponential shifted light speed limit (which from above is cS = e−2M/R for a non-
spinning black star, approximating this light speed if it is spinning), resulting in the singularity never
being reached over the star’s finite age. The speed of accreted matter also asymptotically approaches
the exponential shifted light speed as it approaches a collapsing native black star. Under this behavior,
it is shown that even matter accreted early in the history of an observed native black star may not have
impacted its collapsing surface, so the BSA may not have formed an AMBS yet. Similarly, merging
native black stars may not have actually merged together, so the BSA may not have formed an AMBS
yet. Definitive modelling has not been performed establishing when various BSA configurations form
into AMBSs, so at present it may be the case that an observed AMBS is in actuality its BSA. Based on
this uncertainty, an observed “black star” that is formed via a BSA eventually becoming an AMBS,
but whose current BSA-versus-AMBS status is unknown, is referred to as a “BSA/AMBS.” Going
forward, the term “black star” may refer to either a native black star or a mature BSA/AMBS with an
appearance and a gravitational metric (near and above its photon sphere) closely approximating those of
a native black star, with the meaning discerned by context. Similar to native black stars, the collapse of
BSA/AMBSs is limited by the exponential shifted light speed, so any BSA/AMBS takes an infinite
amount of time to collapse to a singularity. See the Supplement for modelling of BSA/AMBSs.

As is commonly accepted, no prediction made with general relativity, utilizing then Einstein’s
equation, has been found that disagrees with observation. From the GS theory perspective, it is
understood that the successful prediction using general relativity is naturally observable prediction,
since the only “observers” in general relativity are natural observers. To determine if a naturally
observable prediction made using GS theory agrees with its corresponding natural observation, the
prediction may be compared against the successful prediction using GR theory, yielding agreement of
the GS theory prediction with the observation if the predictions for both theories agree. This method is
utilized as a convenient “tool” here and in the Supplement for establishing agreement of GS theory
predictions with natural observations.

The natural field equation was developed so as to satisfy the following observational properties:
satisfaction of the SEP, as obtained under morph application; linearization to the linearized Einstein
equation, so as to yield in the linearized case the same natural metric gαβ as the observationally
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predictive linearized Einstein equation; and prediction of the observed post-Newtonian approximation
for the natural metric. A wide variety of natural gravitational phenomena are successfully predicted
from these observational properties, as listed here via use of the corresponding test cases in Will [1].

To begin with, satisfaction of the SEP implies satisfaction of the EEP for the nongravitational limits
of local systems. The test cases successfully predicted from EEP satisfaction are as follows (see [1],
Chap. 2): tests verifying satisfaction of the Weak Equivalence Principle such as the Eötvös experiments;
tests of Local Lorentz Invariance; and tests of Local Position Invariance, consisting of the gravitational
redshift experiments (including the Pound-Rebka experiment and the clock “redshifting” discussed
above) and the measurements of the constancy of the fundamental nongravitational constants.

As discussed above, NFE prediction of the observed post-Newtonian metric yields successful
predictions of the “classical tests” in our Solar System (see [1], Chap. 7): the deflection of light by the
Sun, the Shapiro time delay for radar signals, and the perihelion advance for the orbit of Mercury. Due
to SEP satisfaction, these successful predictions hold even in the presence of the background system
consisting of our galaxy (with our Solar System orbiting about the galactic center) combined with the
cosmology of our universe.

The following cases are successfully predicted from SEP satisfaction (see [1], Chap. 8): tests
verifying no Nordvedt effect occurring; tests showing no preferred frames or locations for the orbital
motions of bodies; tests showing no preferred frames or locations for the structures of massive bodies,
including a lack of variation of the locally measured gravitational constant GL, and a lack of precession
of the spin axes of massive bodies; and cosmological tests verifying the constancy of Newton’s
gravitational constant G as the universe evolves. These tests are satisfied not only for weak-field
cases—such as in our Solar System—where the predicted observed PN metric is accurate, but also for
the strong-field cases involving black and neutron stars, including involving “black stars” consisting
of mature BSA/AMBSs. For the strong-field cases, the predictive Einstein-Infeld-Hoffman (EIH)
formalism for GR theory (see [1], Chap. 10) is also applicable for GS theory, since the NFE satisfies the
SEP and yields the observed PN metric. See the “Gravity shift post-Minkowskian and post-Newtonian
theory” section in the Supplement, referred to as the “PM work,” detailing establishment of the EIH
formalism. Use of the EIH formalism yields satisfaction of the SEP motion tests involving black and
neutron stars (including mature BSA/AMBSs).

Prediction with the NFE also satisfies the other tests of observed post-Newtonian gravity (see
[1], Chap. 9). Tests on spin effects include geodetic and frame-dragging precessions, consisting of the
Gravity Probe B experiment and binary pulsar precessions, and tests of spin effects on orbits using
Earth-orbiting satellites. The Earth-Moon de Sitter precession is successfully predicted. The tests of
conservation laws for observed PN gravity are satisfied, consisting of laboratory measurements on
Earth, and both lunar and binary pulsar observations. The successfully predictive EIH formalism
applies for the binary pulsar conservation cases.

Linearization of the NFE to the linearized Einstein equation, combined with satisfaction of the
SEP, results in the predicted speed and polarization of gravity waves being the same as in GR theory.
As shown in Will [1] (Chap. 11), the GR-predicted wave speed equals the speed of light, and the
polarization is E(2) class N2 with then two polarization modes of helicity ±2. These same derivations
are applicable for GS theory using the linearized NFE, with it understood that gravity waves move
at the shifted light speed, which in the free-fall frames is naturally measured as the fixed unshifted
light speed. These derivations are discussed above and in the PM work (in the “Gravitational waves”
section). The equality of the gravity wave and light speeds has been verified [26] (as discussed in [1],
Chap. 12), as well as the E(2) class N2 polarization [27], so both the GS and GR theories successfully
predict the observed wave speed and polarization. If the gravitational field were to be quantized, both
theories would predict naturally massless spin-2 gravitons moving at light speed.

Beyond the above-discussed wide variety of natural gravitational phenomena successfully pre-
dicted from the observational properties utilized to develop the natural field equation, the Supplement
extends predictive verification to cover the rest of the test cases for local systems discussed in Will [1]
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(Chap. 12) plus the PTA gravity wave detections, extending then the range of verification to cover all
available natural observations of local systems utilized to test gravitational theories. The Supplement’s
PM work provides a comprehensive post-Minkowskian formulation for GS theory, given to 1.5PN
order both for near-zone systems and for gravitational radiation (using the “PN” designation system
where quadrupole radiation is set to “1PN”). The section “Observational properties of black and
neutron star systems,” referred to as the “BNS work,” provides strong-field predictions for black and
neutron stars (including mature BSA/AMBSs), as well as nearby matter and photons when present.
These works combined give the predictions extending coverage to all available test cases. The Sup-
plement also provides (in the PM work) detailed developmental discussion for some of the above
material: development and use of the post-Newtonian natural metric for near-zone systems, the EIH
formalism for compact objects, and the gravity wave speed and polarization.

In both the near-zone and radiation cases, it is shown (in the PM work) that the GS PM theory
1.5PN expansions yield the same naturally observable predictions as the corresponding 1.5PN expansions in GR
PM theory. These include the predictions utilizing the radiative EM balance equations for obtaining
near-zone system behavior under 1.5PN radiation losses, such as the secular decay of compact binary
orbits. Therefore, for all successful naturally observable predictions made using the 1.5PN near-zone and
radiation formulation in GR PM theory, the same predictions using the 1.5PN formulation in GS PM theory are
also successful.

As the near-zone 1PN post-Newtonian theory is embedded within the near-zone 1.5PN formula-
tion given in the PM work, and the linearized NFE was evaluated as part of the PM work, some of the
predictions in the PM work have already been listed above. The PM work extends near-zone predic-
tions from 1PN to 1.5PN, and radiation predictions from only linear NFE predictions to additionally
include 1.5PN predictions for both the radiation and the near-zone systems generating the radiation.
Available test cases added by this extension only include cases involving black and neutron stars
(including mature BSA/AMBSs), since the weak-field cases not involving compact objects are success-
fully predicted using only the 1PN post-Newtonian theory (to the author’s knowledge), noting that
the radiation test cases verifying the linearized NFE [26,27] utilize compact objects as the sources. As a
result, the PM work extension only adds three available test cases, which are successfully predicted (as
shown in detail): the orbital decays of observed binary pulsars due to radiation losses, the early “1.5PN
parts” (as defined in the PM work) of the detected gravity wave signals generated by inspiralling
black and neutron stars (including mature BSA/AMBSs), and the PTA detected low-frequency gravity
waves generated by (the commonly assumed) supermassive black star binaries (which are actually
BSA/AMBSs). (Note the PTA case is evaluated in the BNS work, but is shown to be successfully
predicted using the 1.5PN PM theory.) These are key cases though, as most available gravitational
theories fail to be predictive when these cases are encountered.

All of the test cases listed above in this section are successfully predicted by use of the linearized
NFE and the GS post-Minkowskian theory given to 1.5PN, combined with use of the SEP/EEP. As can
be seen, these cover an extensive range of naturally observed gravitational phenomena.

Only the strong-field cases predicted in the BNS work remain. The strong-field cases consist
of naturally observable properties of black and neutron star systems, including systems containing
mature BSA/AMBSs as “black stars.” The predicted observable properties of the systems consist
of the gross observational properties of the black and neutron stars themselves (including mature
BSA/AMBSs), as well as the observable properties of nearby matter and photons when present.
Included is the prediction of detected gravity waves generated by compact star mergers through
merger and ringdown.

Prediction of the strong-field cases required structural modelling of black and neutron stars,
including BSA/AMBSs. The GS theory neutron star structural modelling is shown to fairly well
approximate the successfully predictive modelling using GR theory, so that given the present significant
modelling uncertainties for the material properties of neutron stars, it was concluded that the GS theory
modelling of neutron stars predicts appearances and observable structural properties that formally
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agree with their corresponding observations to within the present observation and modelling combined
uncertainty range for each case. The GS theory native black star and BSA/AMBS structural modelling
is shown to significantly differ from the GR modelling of black holes. However, the GS theory
predictions of the resultant observable properties of “mature” native black stars and BSA/AMBSs
(meaning again ones that are old enough to have collapsed to be much smaller than their respective
photon spheres), as well as the observable properties of nearby matter and photons, are shown to
formally or approximately agree with observations.

As shown, GS theory modelling successfully predicts the observed “blackness” of mature native
black stars and BSA/AMBSs, since they are predicted to be far fainter than presently available
instruments can detect, including remaining effectively black under any possible impact heating due
to accreted matter impacting them. As stated, the presently available modelling for both accretion
disks and astrophysical jets has significant modelling uncertainties, similar to the material properties of
neutron stars having significant modelling uncertainties. As established, due to the severe “darkening
mechanisms” (see the BNS work for detailed modelling and discussion of them) that set in below the
photon spheres of black stars (including mature BSA/AMBSs), predictions for observed phenomena are
limited to near and above the photon spheres (excluding the black star effective blackness predictions).
The gravitational metric of a mature BSA/AMBS closely approximates the metric of a native black
star near and above its photon sphere. Near and above the photon sphere of a native black star or
mature BSA/AMBS, the non-spinning star-case natural metric in GS theory closely approximates the
GR theory star-case Schwarzschild metric, resulting in the closeness of various gross observational
properties of mass particles and photons (as depicted by various figures in the BNS work). Again,
the 1.5PN PM formulations for the GS and GR theories yield the same predictions, including the
1.5PN natural metrics being the same. With the mature BSA/AMBSs included when predicting the
gravity waves generated by merging compact binaries, use of the linearized NFE is again shown to
yield the same successful predictions for the measured gravity wave speed and polarization [26,27],
through merger and ringdown, as use of the linearized Einstein equation. It is commonly assumed
that GR modelling successfully predicts the observed properties of black and neutron star systems,
including the observable properties of the black and neutron stars themselves, as well as the observable
properties of nearby matter and photons.

Utilizing the above-listed properties, an argument is made claiming that, with the exception of the
“high-order parts” (beyond the early “1.5PN parts”) of detected gravity wave signals generated by merging
compact binaries through merger and ringdown, when made to the required accuracies, gravity shift theory
predictions for all of the presently available observations of black and neutron star systems, including systems
containing mature BSA/AMBSs as “black stars,” formally agree with the corresponding observations to within
the presently encountered observation/modelling uncertainty range for each case, establishing these predictions
as being successful. This conclusion holds then for the available strong-field test cases discussed in
Will [1] plus the PTA gravity wave detections. The successfully predicted strong-field cases examined
in the BNS work are listed here (repeating those discussed above): the appearances and observed
structural properties of neutron stars; the observed effective blackness of mature native black stars and
BSA/AMBSs, including remaining effectively black under any possible impact heating due to accreted
matter impacting them; the observed behaviors of masses and photons near black and neutron stars
(including mature BSA/AMBSs); the observed motions of stars about most observed supermassive
black stars (MOSPMBS), such as about Sgr A* at our galactic center, noting that MOSPMBS are actually
mature BSA/AMBSs (as discussed in the BNS work); the observed properties of accretion disks and
astrophysical jets about black and neutron stars (including mature BSA/AMBSs); the accretion disk
based images of Sgr A* and M87* (both mature BSA/AMBSs), including the sizes of the effectively black
disk-shaped gravitational images of their photon spheres; the observed gravitational imaging yielded
by black and neutron stars (including mature BSA/AMBSs), for sources beyond them; observations
of near-zone phenomena sensitive to the structural properties of neutron stars; the observed orbital
decays of binary pulsars; the early “1.5PN parts” of detected gravity waves generated by merging
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compact binaries, which consist of native black stars, neutron stars, and mature BSA/AMBSs; the PTA
detected low-frequency gravity waves generated by (the commonly assumed) supermassive black star
binaries (which are actually BSA/AMBSs); and the measured speed and polarization, through merger
and ringdown, for gravity waves generated by merging compact binaries.

The last examined BNS case is the “high-order parts” of detected gravity wave signals generated
by merging compact binaries through merger and ringdown, meaning the detector signals (individual
detector outputs, not providing then information on wave polarization obtained by examining the
correlated signals from multiple detectors) later than the early 1.5PN parts of the signals successfully
predicted. Without the as yet performed numerical and high-order PM modelling required to accurately
predict the high-order parts of gravity wave signals, formal agreement of GS theory predictions with the
full detected waves remains unverified. Using though the established analytical modelling, it is shown
that, at minimum, the high-order parts of gravity waves are “grossly” predicted, meaning that their
general features are predicted. Specifically, the general amplitude behavior is grossly predicted, from
increasing amplitude during inspiral, to amplitude peak during merger, through smooth transition
from merger to ringdown, and finally exponentially decreasing amplitude during ringdown. In
addition, the evolution of the continually increasing frequencies of the quadrupole and higher modes
is at minimum grossly predicted. So it can at least be said that no direct contradiction with the detected
waves is apparent. Due to the expected agreement of all GS theory predictions with observations,
it is expected that if the required numerical and high-order PM modelling is performed, GS theory
will indeed successfully predict the entire detected signals, but only gross predictive agreement at
minimum is claimed here. Again, the early 1.5PN parts of detected gravity waves are accurately
predicted, so it is only the high-order parts of gravity wave signals where the present claim of only
gross prediction applies. Again, the measured E(2) class N2 polarization state throughout the entire
measured waves is predicted, and the speed-of-light wave speed is predicted.

The above complete listing in this section covers all of the available test cases for local systems,
as categorized in Will [1] plus the PTA gravity wave detections. In each case, it has been shown
that the prediction either formally agrees with the observation to within the presently encountered
observation/modelling uncertainty range for the case or, at minimum, approximates the observation
without formal agreement claimed. The latter case is only encountered for the high-order parts (beyond
the early 1.5PN parts) of detected gravity wave signals generated by merging compact binaries through
merger and ringdown, where using the established analytical modelling, only gross prediction at
minimum is claimed.

Concluding, all available local system test cases are successfully predicted using gravity shift theory
with the exception of the high-order parts of detected gravity wave signals, which at least are shown to be
grossly predicted using the present analytical modelling. This result provides extensive verification
supporting the above conclusion that the given complete GS theory is expected to successfully predict
all natural observations of classical gravitational phenomena. Again, it is assumed that application of
the natural RW metric, as yet unspecified, accounts for cosmological effects in the naturally observed
properties of distant local systems.

As discussed in the PM and BNS works, assuming that the given GS theory will successfully
predict all natural gravitational phenomena, it is predicted that once high PN order and numerical
modelling are performed, the detected gravity wave signals generated by black star mergers will be
better predicted by GS theory (characteristically higher S/N ratios when using template matching)
than by GR theory, observationally proving the validity of gravity shift theory over general relativity.

9. Discussion
The provided gravity shift theory has been shown to be a physically plausible classical theory

of gravity that successfully predicts all available local system test cases for naturally observed grav-
itational phenomena, with the exception of the high-order parts of detected gravity wave signals
generated by merging compact binaries, which at least are shown to be grossly predicted using the
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present analytical modelling. As such, gravity shift theory is proffered here as a possible replacement for
general relativity theory.

Indeed, GR theory has serious plausibility issues. As discussed above, due to dual use of the metric
gµν to determine gravitational effects and give the spacetime structure, GR theory is fundamentally
incompatible with quantum theory. In addition, GR theory predicts the existence of event horizons,
which concerning their plausibility are problematic (such as the classically predicted loss of entropy for
objects passing through an event horizon), and more seriously predicts the existence of singularities,
which are highly implausible. In contrast, due to explicit formulation in absolute flat spacetime,
GS theory is compatible with quantum theory, as demonstrated above. Also, no event horizons or
singularities are predicted in GS theory. In light of the GR theory plausibility issues versus the absence
of them in GS theory, it is concluded that gravity shift theory is preferred over general relativity theory as a
classical theory of gravity. This conclusion of course hinges on GS theory continuing to be predictive
as further prediction and observational testing are performed, such as obtaining high S/N ratios for
detected gravity waves generated by black and neutron star mergers/ringdowns once high PN order
and numerical modelling are performed (hopefully the researchers geared to this work will take this
on).

Given the acceptance of both the absolute flat spacetime and strong equivalence principle pos-
tulates, it is concluded that the general GS theory uniquely obtained from these postulates—i.e.,
everything other than the field equations and their predictions—is indeed valid, with no future
changes anticipated. The additional natural and absolute field equations required for the complete
GS theory are developed utilizing additional assumptions, and as such are subject to change if it is
deemed that one or more of these assumptions is not physically valid. If this is found to be the case,
such as if needed to maintain successful prediction, a future version of the complete GS theory would
utilize the modified field equations, but the contained general GS theory would remain unchanged.
Therefore, regardless of any future field equation changes, general gravity shift theory depicts the workings
of the classical gravitational field without future changes anticipated.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org. S1: W. Northcutt, Gravity Shift Theory Observational Predictions, (2025).
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