

# Histamine antagonists to temper the cytokine overproduction in gastrointestinal cells infected by SARS-CoV-2

A data / text mining study guided by biochemical knowledge

Han Geurdes<sup>1</sup> and Ivoyl Koutsaroff<sup>2</sup>

## Abstract

The premise regarding COVID-19 disease is that it is a spectrum which begins with infection with viral SARS-CoV-2 exposure via airborne or oral virus particles. The individual response to it depends on many factors including co-morbid conditions. An important aspect of SARS-CoV-2 virus infection is the cytokine storm that develops after the infection. The immuno-chemical chaos created in this cytokine storm is to the benefit of the virus. In this meta analysis the authors explore ways to let the cytokine storm die down by looking into the role of histamine. Histamine is a metabolic product of the essential aminoacid histidine. Histamine has 4 known receptors: H1, H2, H3 and H4.

The immunoglobulines IgE and IgM are indicative for a COVID-19 infection. This immune response is related to inflammation. Inflammation, in turn, runs mainly via histamine after e.g. virus inoculation. The goal of the meta-study is to gather evidence to primarily block the H4 receptor (H4R) in gastrointestinal cells to diminish the cytokine overproduction in the ≈ 30% of the patients suffering from gastrointestinal problems caused by SARS-CoV-2.

Our concept is as follows. If we can strike a careful balance between hampering the gastrointestinal spreading of the virus and histamine antagonists to tackle the cytokine storm, then the natural immunity can later on come on line again and attack the virus without being led astray by cytokine chaos. We will concentrate on H4R but also look at H1R and H2R related effects. The proposed substances in our systemic approach can be balanced for an effective early treatment. The nature of our work is by its method and results theoretical. In that respect we also may note the structural chemistry indol skeleton resemblance among a number of different drugs.

## Highlight

With our approach we found e.g. JNJ-7777120 being capable to suppress cytokine overproduction via histamine. With indomethacine we are likely able to hamper the nonstructural protein nsp7 route of infection. In the gastrointestinal cells, the H4R antagonist JNJ7777120 repairs the damage done by indomethacine.

**Keywords:** *Cytokine storm; IL-1 and IL-6 production via SARS-CoV-2; gastrointestinal H4R receptor antagonists*

34 Addresses:

35 <sup>1</sup> Independent data analyst / Chemical engineer GDS Appl Math BV, C. vd Lijnstraat 164 2593, NN Den Haag,  
36 Netherlands han.geurdes@gmail.com

37 <sup>2</sup> Technical Advisor, ACS member, Mishimaoka 2-30-4-209, Ibaraki Osaka, Prefecture 567-0021,  
38 Japan, ikooutsar@earthlink.net

39 Acknowledgments:

40 The authors wish to thank A. Popper, MSc, B.T. vd Bos, BSc

## 42 1 Introduction

43 The illness COVID-19 is caused by the virus SARS-CoV-2. SARS-CoV-2 is a single-stranded  
44 RNA virus. Viruses are very tiny infectious agents that don't have metabolism or can  
45 replicate exclusively on their own. Following infection of a host (e.g., a cell), a virus can  
46 direct the cell machinery to produce viral proteins and produce more viruses. SARS-CoV-2  
47 is, not only in name, closely related to a bat coronavirus SARS-CoV [F. Wu *et. al.* (2020)].  
48 The spike S structure of SARS-CoV-2, i.e. the machinery with which the virus injects its  
49 RNA into the host, shows resemblance to RaTG13 bat virus [C. Zhang *et. al.* (2020)].  
50 There has been significant discussion about the origin of the SARS-CoV-2 for example see  
51 [K.G. Andersen (2020)]. SARS-CoV-2 and SARS-CoV likely do differ in drug sensitivity  
52 profile [D. Bojkova *et. al.* (doi 024257)].

53 In this paper we will focus on a treatment with antihistamines to let the cytokine over-  
54 production, i.e. the storm [A. George(2020)], die down. It is remarkable that a systemic  
55 antihistamine route with supporting substances to fight the physiological consequences of  
56 the virus appears to be largely ignored in the treatment of COVID-19.

57 We believe that a systemic approach can exist next to direct attack approaches such as the  
58 use of antiparasitic ivermectine [L. Caly *et. al.* (2020)] and [S. Omura and A. Crump (2004)],  
59 to eliminate the virus. In a previous study in Parasitology, [M. S. Sajid *et. al.* (2006)], it  
60 was reported that pro-inflammatory interleukin IL-1 $\beta$  was most likely increased in human  
61 material tested in vitro after treatment with ivermectin. The interleukines IL-1 and IL-6  
62 are the cytokines that are generated via the virus to create cytokine chaos and to sneak  
63 through the immunity defenses. Moreover, IL-6 induces the overexpression of ACE2 re-  
64 ceptors [S. Wassermann *et. al.* (2004)] on the host cell. So the ACE2 route of infection  
65 can be furthered by interleukin production. Histamine can influence the production of IL-1  
66 in the lung tissue [J. Sirois *et. al.* (2000)]. The mechanism of action of ivermectin is its  
67 resemblance to gamma-amino butyric acid (GABA) [N.E. Scott (2008)]. Additionally, there  
68 can be clinical toxicity problems associated with ivermectine, like e.g. ataxia and bradycar-  
69 dia [N.E. Scott(2008)]. It is used in HIV-1 treatment and can, therefore, count as support  
70 substance to histamine in the attempt let the cytokine storm die down. The latter is the  
71 first pillar in our system theoretical treatment approach.

## 72 2 Inflammation

73 A major aspect of the SARS-CoV-2 infection is the occurrence of inflammation. An inflam-  
74 matory response is the coordinated activation of signaling pathways that regulate inflamma-  
75 tory mediator levels in resident tissue cells and inflammatory cells recruited from the blood.  
76 The inflammation reactions can depend on local cellular environmental surroundings but  
77 they all share 1) cell surface pattern receptors recognize detrimental stimuli; 2) inflamma-  
78 tory pathways are activated; 3) inflammatory markers are released; and 4) inflammatory  
79 cells are recruited [L. Chen *et. al.* (2018)].

80 In [M.D. Hayes *et. al.* (doi 78285)], inflammation of tumour growth is described that  
81 shows epithelial cell growth and differentiation partly through IgE, histamine H1 and H4  
82 engagement. The amount of natural IgE and of histamine are related. IgE is one of  
83 the immunoglobulins that can be used to recognize viral material and finally neutral-  
84 ize it. One of the interleukines ( IL-33 ) strongly potentiates IgE-mediated activation  
85 [E.Rönnberg *et. al.* (2019)]. If IgE is not guided to eliminate the virus then IL-33 will  
86 be at best ineffective.

87 Let us recapture the importance of histamine. We mention upfront a study where his-  
88 tamine is coupled to the immunoregulation of HIV infected patients

[Z.I. Akhmedjanova *et. al.* (2012)]. During inflammation, histamine is released from pre-formed stores in and basophils. mast cells Histamine acts on vascular smooth muscle cells and endothelial cells, leading to vasodilation and an increase in vascular permeability [R. L. Thurmond *et. al.* (2008)]. Histamine has multiple effects on both the direct as well as the indirect immune response. To be more precise we recall [M. S. Sajid *et. al.* (2006)]: The direct mechanism of immunomodulation involves interaction of an immunomodulator and/or its metabolite with a component of the immune cell itself. This can be investigated *in vitro*. The indirect mechanism of immune modulation involves interaction of the immunomodulator and/or its metabolite with a component of a non-immune cell. This depends on *in vivo* connections and is more difficult *in vitro*.

In the paper we will focus on the role of histamine outside the central nervous system. This is the reason why we not go very deep into the histamine 3 receptor (H3R). Obviously we are not excluding effects of antihistamines on the central nervous system microglia [P. Zhou *et. al.* (2019)]. Moreover, histamine H3 receptors (H3R) are also present in lung tissue and play an inhibitory role in the production of pro-inflammatory cytokine. There is increasing evidence suggesting that histamine is involved in the regulation of cytokine networks. More strongly: histamine can inhibit, next to IL-1, also inhibit the release of IL-2, IFN- $\gamma$ , and TNF (1115) and increase the release of IL-5, IL-6, and IL-8 [J. Sirois *et. al.* (2000)].

Therefore, it depends which histamine receptor one targets in suppression and in which tissue it resides. Histamine H3 receptors (H3R) are involved in gastric mucosal defense, inhibition of enteric neurotransmission and feedback regulation of histamine release [G. Coruzzi *et. al.* (2012)]. A large body of evidence has unraveled the occurrence of histamine H4 receptors (H4R) in the gastrointestinal tract [G. Coruzzi *et. al.* (2012)].

## 2.1 H1R

Concerning the role of the histamine H1 receptors (H1R) let us look e.g. at levocetirizine. This substance blocks the histamine H1R. In [M. Staevska(2009)] it is demonstrated that levocetirizine helps to fight difficult urticaria. It is in that respect interesting to mention the fact that this substance inhibits the cytokine expression and viral replication of rhino virus [Y.J. Jang *et. al.* (2009)]. Closely related to the rhino infection we may note that levocetirizine inhibits Inter Leukine 6 (IL-6) which also occurs in SARS-CoV-2 infection. The SARS-CoV-2 virus furthers the synthesis of IL-6 and along a.o. this route makes a cytokine storm. Note: The pathophysiology of SARS-CoV-2 is complex and largely unknown but is associated with an extensive immune reaction triggered by the excessive production of interleukin 1 beta (IL-1 $\beta$ ), interleukin 6 (IL-6) and others [N. Kumar *et. al.* (2020)]. Both cetirizine (a metabolite of hydroxyzine) and levocetirizine are H1 receptor antagonists. Levocetirizine (pubchem/compound/1549000) and citirizine (pubchem/compound/2678) are stereochemically related. In [M.C. Jung *et. al.* (2016)] we can read that levocetirizine can imply iatrogenic complications. We surmise that this, because of similarities between the two molecules, most likely is also true for citirizine.

## 2.2 H2R, the usnic acid / usneate case

Usno or benzylidimethyl-(2-[2-(p-1,1,3,3-tetramethylbutylphenoxy)ethoxy]ethyl)ammonium usneate, is a substance that can be found in lichens. We refer to pubchem/compound/5646. In already older studies it was found to have a biological action [S. Huneck(1968) , pp. 306-308]. In this latter study molecular information is readily available. Considering the biochemistry, M. Cocchietto, points at the fact that Usno is inhibitory against leukotriene biosynthesis [M. Cocchietto *et. al.* (2002)]. Leukotrienes and histamine are physiologically

related. The relationship is also expressed in the response of the H2 receptor behavior. The production of leukotrienes is most of the time accompanied by the production of histamine and prostaglandines [J.A. Salmon and G.A. Higgs (2007)].

Leukotrienes are a family of lipid inflammatory mediators produced in leukocytes (white blood cells). They are the metabolic oxygenation of arachidonic acid by the enzyme 5-lipoxygenase (5-LO). For an overview of the biosynthesis of leukotrienes viz. [A. Jo-Watanabe *et. al.* (2019), fig. 1]. Leukotrienes use lipid signaling to perform a regulation of immune response. Interestingly enough it was reported in [N. Flamand *et. al.* (2004)] that the cellular signal substance cAMP, suppresses 5-OL. The leukotrienes exert their biological effects by binding to G - protein - coupled receptors (GPCRs) [A. Jo-Watanabe *et. al.* (2019)]. The histamine receptors, including H4R, are G - protein based. E.g. the particular leukotriene LTB<sub>4</sub> is a strong attractant for many immune cells.

By the cAMP suppressive action for the synthesis of leukotrienes, it looks as though cAMP might take priority in cellular signaling. Furthermore, H2R activation runs most likely via stimulating cAMP synthesis. Referring back to the co-synthesis of histamine and leukotrienes and with an eye on the role of cAMP and leukotrienes under infection, we may note [N. Flamand *et. al.* (2004)] that histamine suppresses the biosynthesis of leukotrienes. This is what both cAMP, histamine and Usno have in common. Human polymorphonuclear leukocytes (PMN) carry H2 receptors and are activated by the leukotriene LTB<sub>4</sub>. H2 receptor antagonists like cimetidine abrogate the suppression of leukotriene biosynthesis. The inhibition of LT biosynthesis by histamine was characterized by decreased arachidonic acid release and 5-lipoxygenase translocation to the nuclear membrane [N. Flamand *et. al.* (2004)]. An H4 receptor blocker like e.g. thioperamide *does not* influence the biosynthesis of leukotrienes. This is in slight contrast to the fact that leukotrienes bind to G-protein receptors and H4R is of G-protein type.

Despite this unclarity it could be worthwhile to employ H4 blockers without affecting the synthesis of leukotrienes on the human PMN. Should one want to slightly block the leukotrienes biosynthesis then e.g. Usno can be employed [M. Cocchietto *et. al.* (2002)]. Usno is toxic however (pubchem/compound5646) and therefore might show iatrogenic difficulties. Nevertheless the stereo-chemical similarity to a 2,5-dihydroxyquinone "nucleus" in polyporic acid is most likely the active center [S. Huneck (1968), pp. 307]. This is perhaps a good starting point for altering the molecule to a less toxic level. The mechanisms of the antibiotic activity of usnic acid (viz. Usno) against Gram-positive bacteria were attributed to its role as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of adenosine triphosphate [M. Kosanić and B. Ranković (2019), pp. 101]. The same review reveals that usnic acid delivers apoptosis through the enabling of more protonated molecules to cross the membrane and release protons into the cell. As a result, the intracellular pH decreases and lead to the death (apoptosis) of the cells. This would in particular be interesting for therapies like with Zn where there is the suspicion that viral particles survive in infected cells.

### 2.3 H4R

H4R is the newest of the four known histamine receptors. It belongs to the group of G - proteins and is coupled to the  $G_{i/o}$  protein [Y. Ikawa *et. al.* (2008)]. H4Rs have been detected in different cell types of the gut, including immune cells, paracrine cells, endocrine cells and neurons. Moreover, H4R expression was reported in human colorectal cancer specimens [G. Coruzzi *et. al.* (2012)]. A systematic list of H4R contains cells like mast cells, eosinophils, leukocytes, monocytes, CD8+T cells, basophils, dendritic cells, spleen and bone marrow [C.M. Marson (2011)]. The H4 receptor is expressed throughout the gastrointestinal tract as well as in the liver, pancreas and bile ducts [A. Deiteren *et. al.* (2014)]. H4Rs to

185 modulate the function of mast cells, T cells, dendritic cells and eosinophils, it is natural to  
186 foresee a therapeutic potential of H4R antagonists in inflammatory disorders of the GI tract  
187 [G. Coruzzi *et. al.* (2012)].

188 Eosinophils are stimulated by histamine and so the H4 receptor (H4R) plays an interfering  
189 role in generating the eosinophils that can attack intruding agents. In gastrointestinal SARS-  
190 CoV-2 infection [F. Xiao *et. al.* (2020)], we can look at the H4 receptor as one of the  
191 sources of the cytokine storm. The hypothesis is: *to block the H4R in gastrointestinal cells*  
192 *and let the cytokine overproduction, i.e. cytokine storm dies down.*

193 In this respect we note the following. There are mast cells that can fire the cytokine  
194 storm via interleukine, [E.Rönnberg *et. al.* (2019)]. The latter study was performed with  
195 interleukine 33 (IL-33). We note that SARS-CoV-2 furthers the production of interleukine  
196 6 (IL-6) and this also is able to fire and is in fact part of, the cytokine storm. This route of  
197 generating the storm is operative without the interference of H4 receptor in gastrointestinal  
198 infected epithelial cells. In a medical treatment with an H4R blocker it represents a shunt  
199 and is a logical sense bypass to the blocking. It is an interesting question how much the  
200 mast cells that employ the interleukine H4R blocking shunt fires the cytokine storm.

201 An interesting case of an H4 receptor influence is the case of indomethacin. Functional  
202 characteristics of the H4R in fibroblasts are associated with inflammatory disorder. This is related to e.g. dermal dexametasone [E. Zampelli and E. Tiligada (2009), table  
203 1]. Apparently indomethacin can also have a direct anti-inflammatory effect by inhibiting  
204 the synthesis of prostaglandins, the signaling molecules. Further, H4R expression occurs in numerous immune and inflammatory reactions and in e.g. gastric acid secretion  
205 [Y. Ikawa *et. al.* (2008)]. Indomethacin is presently under study for fighting COVID-19  
206 [D.E. Gordon, *et. al.* (2020), entry PTGES2, table 1a]. Concerning toxicity, it is most likely  
207 that indomethacin is expected to have a low iatrogenic impact [B. Polat *et. al.* (2010)] The  
208 target protein in SARS-CoV-2 is one of the nonspecific proteins, nsp7. The nsp7 is a co-  
209 factor in the expression of the viral RNA [Y. Gao *et. al.* (2020)]. The occurrence of an  
210 anti-inflammatory agent in the larger study, supports our quest for studying the role of H4  
211 blocking treatment that can be experimentally researched further.

212 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ-7777120) is a specific H4R  
213 antagonist. An experimental study of Ballerini [C. Ballerini *et. al.* (2013)] suggest that autoimmunity diseases are furthered by JNJ-7777120 H4R antagonist and furthered an increase  
214 of inflammation. There might be iatrogenic problems in the use of JNJ-777120. Another appropriate  
215 not too toxic H4R antagonist is JNJ-10191584 (VUF 6002) [M. Zhang *et. al.* (2006)].

## 219 2.4 Supportive substances and/or synthetic derivatives.

220 **Usno & target leukotrienes** Usnic acid is a secondary metabolite of lichen  
221 [M. Kosanić and B. Ranković (2019)]. Usno is also a substance obtained from lichen. Leukotrienes  
222 synthesis can perhaps also be a target of therapeutic intervention with e.g. Usno. General  
223 references to leukotriene targets are to be found in [J.N. Sharma and L.A. Mohammed (2006)]  
224 and [A. Jo-Watanabe *et. al.* (2019)]. Direct anti-viral activity to the influenza virus is also  
225 present in both (+) and (-) Usno / usnic acid [D.N. Sokolov *et. al.* (2012)]. Evidence for  
226 anti-viral effect where usnic acid is a repressor of RNA transcription was given early 2000,  
227 see: [A. A. S. Araujo *et. al.* (2015)]. This aspect next to the anti-inflammatory activity,  
228 could make usnic acid a proper supportive substance for diminishing the cytokine storm  
229 with histamine response suppression. There is the already mentioned connection between  
230 Usno and H2R.

231 **Atranorin & protolichesterenic acid** Another lichen substance, atranorin, is effective  
232 against hepatitis C (HC) virus [T. H. Vu *et. al.* (2015)]. In this study, the aldehyde group

of atranorin was demonstrated to hamper the entry of the HC virus into the host. It is worth while to investigate if atranorin is a direct antiviral to SARS-CoV-2. A related matter is the possible blocking of HIV reverse transcription [M. Phillips and J. Svärd, (2015), pp.5-7]. If a similar mechanism of reverse transcription is employed in SARS-CoV-2, then the lichen derived protolichesterenic acid is a not toxic frustration for the virus to create nascent DNA from its RNA. This hampers the spreading infection of the virus. In this respect, the authors wonder why the paper [P. Pradhan et. al. (2020)] was retracted that suggested HIV elements in SARS-CoV-2. If that is true then perhaps a similar mechanism of infection as in HIV is employed by SARS-CoV-2. Using protolichesterenic acid can be a supportive substance for the blocking of the histamine fired cytokine storm. The opposite paper [C. Zhang et. al. (2020)] that questions the conclusions of [P. Pradhan et. al. (2020)] is referred to as well. From the latter we read that the HIV elements are short sections that are not unique to SARS-CoV-2 and HIV. It must be noted that the presence of gp120 on the S spike protein of SARS-CoV-2 is not denied by Zhang cum suis. Therefore looking at how HIV infects, [M. Phillips and J. Svärd, (2015), pp. 4], we may still hold that SARS-CoV-2 behaves in some ways similar, cit: "At the initial stage, HIV comes into contact with a CD4-expressing cell (such as a helper T cell or macrophage). The main glycoprotein needed for this interaction is gp120 on the virion surface, which forms a trimer together with a transmembrane component, gp41". If people call the [P. Pradhan et. al. (2020)] study shoddy then to our minds the [C. Zhang et. al. (2020)] study is perhaps credited too much. It is also noted that the rejection of HIV elements on the spike S protein of SARS-CoV-2 obviously does not refute the possibility of SARS-CoV-2 using reverse transcription in the process of replication.

**Indomethacin** This substance interferes with one of the nonspecific proteins involved in the SARS-CoV-2 transcriptase complex. Moreover, indomethacin [C. Amici et. al. (2006)] has a potent antiviral effect against the SARS-CoV virus from begin 2000. Indomethacin targets the nsp7 protein of the SARS-CoV-2 virus and is a prostaglandin E2 synthase inhibitor [D.E. Gordon, et. al. (2020)].

**HIV gp120 blocker** Recently Pradhan et al claimed that there are HIV elements in the S spike protein of the SARS-CoV-2 virus [P. Pradhan et. al. (2020)]. In a paper by Zhang [C. Zhang et. al. (2020)] it was contested that such "inserts" were proof of an engineered virus. If we leave that discussion for what it is, then, we note that [C. Zhang et. al. (2020)] does not deny that gp120 is present on the S spike of the virus. [M. Phillips and J. Svärd, (2015)] informs us that gp120 is the main protein needed by the virus to make contact with CD4+ type of cells (helper T cells and macrophage cells). The protein gp120 forms a trimer with the transmembrane gp41 and in this way a virus carrying gp120 can insert its RNA into the host [M. Phillips and J. Svärd, (2015), figs. 1 & 2, pp. 5]. Because SARS-CoV-2 carries this structure it is likely that it is used in the infection. We explicitly note that [C. Zhang et. al. (2020)] did not demonstrate that the gp120 segments on the S spike are not active. Therefore CD4+ binding disturbing substance like maraviroc may hamper the SARS-CoV-2 virus propagation / multiplication [M. Phillips and J. Svärd, (2015), pp. 5]. Interestingly, concerning CD4+ cells we may observe the role of fenbendazole. Fenbendazole is a member of benzimidazole group of anthelmintics like ivermectin (pubchem/compound 6321424). In [M. S. Sajid et. al. (2006)] we read that the administration of fenbendazole to healthy mice stimulated the proliferative response of T- and B-cells to non-specific polyclonal activators, but partially inhibited the CD4+, CD8 percentage of and +T-lymphocytes. If gp120 in the S spike of SARS-CoV-2 actually targets CD4+, then fenbendazole might hamper the CD4+ infection route. The treatment of nematode infected mice considerably stimulated the proliferative response of B-cells in comparison with T-cells.

282 **Zinc** Zinc possesses direct antiviral properties, e.g. against influenza. Zinc is captured in  
283 vivo in metallothioneins and it should be noted that metallothioneins, although highly re-  
284 sponsive to zinc, have long been classified as interferon (IFN) stimulated genes. IFNs are im-  
285 munostimulatory cytokines secreted from infected cells and nearby immune cells that induce  
286 the expression of hundreds of antiviral genes [S.A. Read *et. al.* (2019)]. Zn avoids the apo-  
287 toxisis of cells that contain virus material. Some metallothioneins [S.A. Read *et. al.* (2019)]  
288 are generated by some viruses as a response to Zn. Not all metallothioneins fire IFN or pre-  
289 vent apoptosis of infected cells but the authors wonder if Zn is not too complicated where  
290 we are trying to let a cytokine storm die down.

291 **ACE2 receptor antagonism** The, on the host cell residing, angiotensin converting en-  
292 zyme 2 is recognized as one of the receptors of the S spike of SARS-CoV-2 RNA infec-  
293 tion of the host. Generally angiotensin converting enzyme is related to blood pressure  
294 regulation [A. Michaud *et. al.* (1997)]. ACE2 is accountable for human-human infection  
295 [Y. Wan *et. al.* (2020)]. In Gordon's research of  $\approx 300$  protein interactions, captopril  
296 [D.E. Gordon, *et. al.* (2020)] is considered a modulator / competitive inhibitor of the ACE2  
297 binding. It decreases the level of angiotensin 2. A search on pubchem showed that there are  
298 other competitive inhibitors of ACE2 binding like e.g. fosinopril. Like captopril, fosinopril  
299 competitively inhibits ACE thereby it decreases the formation of the potent vasoconstrictor,  
300 angiotensin 2. The latter is one of the main factors in hypertension induced tissue damage  
301 (pubchem/compound 172198) and [S. A. S. Farhadi and K. F. Dizaye (2019)]. Diminishing  
302 the angiotensin 2 production with supressing its production implicitly also lowers the  
303 cytokine production and the synthesis of new ACE2 receptors  
304 [S. Wassmann and G. Nickenig (2006)].

### 305 3 Conclusion & discussion

306 Histamine has a direct modulating effect.

307 In our theoretical paper we focused on histamine 1,2 and 4 receptor types. Although  
308 histamine 3 receptor also occurs in lung tissue and neuro-endocrine gastrointestinal tissue,  
309 we have not inspected it very deeply. H3 receptors are more associated to neuro or neuro  
310 endocrine tissue. This will most likely warrant a subsequent study.

311 Looking at a possible gp120 to CD4+ infection route of SARS-CoV-2, the lowering of  
312 histamine is immediately hampering CD4+ activity. Perhaps it is too simple to say *in vivo*;  
313 less histamine less CD4+ and therefore less gp120-CD4+ infection. However, the direct  
314 influence already shows the importance of antihistamines in hampering SARS-CoV-2.

315 In the analogous virus, SARS-CoV, the RNA genome replication is a crucial step in  
316 SARS-CoV propagation and is mediated by the RNA replicase [D. G. Ahn *et. al.* (2014)].  
317 The S spike of SARS-CoV-2 also contains the replicase necessary cofactor nsp7. So it makes  
318 sense to believe that the virus propagation can run similar to SARS-CoV. From the study  
319 done by [C. Zhang *et. al.* (2020), fig. 1] we may observe that SARS-CoV does not contain  
320 the HIV elements such as SARS-CoV-2. It therefore makes sense to hypothesize that SARS-  
321 CoV-2 also has ways to propagate that differ from SARS-CoV. Nevertheless, interference  
322 with indomethacin therewith targeting cofactor nsp7 is a genuine possibility to hamper  
323 SARS-CoV-2 virus propagation.

324 The role of histamine in the generation of interleukins IL-1 and IL-6 that also may  
325 further the possibility of infection via ACE2 is another more indirect effect of histamine and  
326 provides reason to look at the possibility of antihistamines next to competitive inhibitors of  
327 ACE2. Competitive antiangiotensins also may suppress the creation of ACE2 receptors on  
328 the host cell.

329 We note here that indomethacin (pubchem/compound 3715) shares a 2D structural indol  
330 resemblance with serotonin (pubchem/compound 160436). In this case we are looking at the  
331 indol skeleton *and* the OH substitute at the same 2D indol structure. Interestingly enough  
332 in HIV-1 we have LEDGF/p75 integrase inhibitors; a strong binding partner of HIV-1 inte-  
333 grase [M. Phillips and J. Svärd, (2015), pp. 23]. There are a group of rationally designed  
334 small molecules containing the indol skeleton [V. Hann and M. Ashton (2015)] that targets  
335 the LEDGF/p75-IN. All of those molecules, like e.g. CHIBA-3000, have an indole skeleton  
336 [V. Hann and M. Ashton (2015), pp. 232, fig. 27]. In the indol (Fig. 1) the OH group  
337 resides at another position relative the N than serotonin and indomethacin. Perhaps that  
338 the indol (Fig. 1) sharing also points to the use of the CHIBAn molecules in SARS-CoV-2  
339 originally targeted for LEDGF/p75-IN (integrase) in HIV-1. LEDGF/p75 is by far the most  
340 extensively studied co-factor in HIV study. It is a 74kD protein ubiquitously expressed,  
341 chromatin associated protein in HIV-1 infection. Because certain HIV elements are on the S  
342 spike of SARS-CoV-2, it could pay to look at substances that hamper the gp120 binding of  
343 the virus to CD4+ cells. It is noted here that the N-terminal domain structure (aminoacids  
344 1-49) of the HIV-1 IN protein resemble the zinc finger [S.A. Read *et. al.* (2019)] with a  
345 His, Cys, Cys combination [M. Phillips and J. Svärd, (2015), pp.189]. The S of cystine  
346 provide the binding place for e.g. Mg<sup>2+</sup> or Zn<sup>2+</sup>, There is a connection with the LEDGF  
347 approach to hamper the integrase in which in HIV-1 the IN protein participates. With  
348 this way of looking at an alternative binding via the gp120 on the S spike (confirmed by  
349 [C. Zhang *et. al.* (2020)]) we are obviously not forgetting the ACE2 binding but merely  
350 mention other possible ways of infection. Before entering more deeply into the possibilities  
351 of antihistamines, we note that there already existed in the literature, objections against  
352 what is called the non-steroidal anti-inflammatory drugs (NSAIDs). No conclusive evidence  
353 against their use could be concluded however [B. Russell1 *et. al.* (2020)].

354

355 The more general aim of the study was:

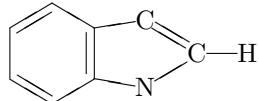
356

- (1) Find means to let the cytokine storm for at least gastrointestinal infection die down
- (2) To provide supportive substances that hamper the virus replication.
- (3) Use e.g. IgE 'trained' to attack the virus when the attack is most effective. To our  
357 minds it is most effective after the cytokine chaos is resolved or a situation is created  
358 where the chaos cannot arise.

361

362 We studied possible routes. E.g. it is possible to (1) suppress H4R in gastrointestinal  
363 cells with JNJ-7777120, to use (2) maraviroc to hamper infection via gp120 and use (3)  
364 IgE trained cells to eradicate the SARS-CoV-2 virus. In table-1 we present a number of  
365 combinations that may look interesting for further experimental research. Another route  
366 is to replace (2) with indomethacin and keep (3) as it is. Obviously JNJ-7777120 can be  
367 replaced with thioperamide. Therefore we can obtain a combinatorial matrix of possibilities  
368 (table-1). It is noted that substances like atranorin and usnic acid can also play a role in (2).  
369 Concerning the supportive substances we mention the following. Lichen substances show  
370 weak antiviral activity. Furthermore, the role of Zn is somewhat confusing. Especially the  
371 role of metallotrieenes needs to be sorted out further. (1) lowers or prevent the cytokine storm  
372 with H4R antagonists, (2) hampers the virus multiplication and (3) eliminates the virus. If  
373 necessary, (1) can be supplemented with cetirizine or levocetirizine to block the H1R and  
374 we may also look at leukotrienes. (2) can be supplemented with atranorin to hamper other  
aspects of virus multiplication. Most likely there are also other ways to obtain (3).

375


376 Concerning (3) we acknowledge that this aspect is not studied very deeply either. The  
role of IgE, IgM and IgA might also necessitate a follow up if it is possible.

377 Interestingly, Adami [*M. Adami and G. Coruzzi (2014)*] found that the H4R antagonist  
378 JNJ-7777120 is able to undo the gastric damage of indomethacin. The "ok" in the tox  
379 column of table-1 is based on their finding. Perhaps that a similar situation is valid for  
380 JNJ-10191584. It is hence possible to block the cytokine storm, hamper the nsp7 guided  
381 infection and undo the damage of indomethacin. Contrary to JNJ-7777120, the H4R ant-  
382 agonist thioperamide does not have an indol (Fig.1) skeleton. Moreover, there are two N  
383 atoms in the five ring and this ring is not connected to a benzene structure. Thioperamide  
384 allow LTB4 and there is most likely a larger role for the H4 receptor in LTB4 production  
385 [*K. Takeshita et. al. (2003)*]. It must be noted that we did our theoretical study in the  
386 field of applying non-steroidal anti-inflammatory drugs. Although there are sceptical re-  
387 actions towards this approach we believe that it is a valid one in early treatment to prevent  
388 the cytokine overproduction. There is literature to support this [*P. Ioannou (2020)*].

389 We end this discussion section by noting that to our minds the structural 2D resemblance  
390 with an indol (Fig. 1) skeleton between some of the antiviral substances for SARS-CoV-2  
391 and HIV-1, explored in this paper on the one hand and serotonin on the other cannot be  
392 altogether accidental. Especially because nsp7 is a cofactor in the polymerase of the en-  
393 zyme. The chemical similarity between the indol skeleton of indomethacin and the indol  
394 skeleton of CHIBA-3000 can be an indication of a similar way of stages of the SARS-CoV-2  
395 virus propagation and the HIV virus. Perhaps this allows us to gain insight into possible  
396 other ways of infection besides the ACE2 route. Of course quantum chemical electron cloud  
397 density studies, e.g. [*Han Geurdes (1987)*], or e.g. hydrogen bonding in DNA base pairs  
398 [*L. Rodriguez et. al. (2010)*] can provide more insight into the idea of indol skeleton simi-  
399 larity.

400

401



**Fig 1.** Basic Indol structure.

Table 1: Some H4 antagonists with supportive substances and remarks made on 2D structural chemistry and a column, deisgnated tox, which is only indicative for what the authors know about the combination of those substances. ok is explained in the text, ? is we don't know.

| H4R substance<br>(1)                        | supportive substance<br>(2) | remarks                                                                                                                                                                                         | tox |
|---------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| JNJ-7777120                                 | indomethacin                | blocks c-storm & hampers nsp7 infection.<br>indol shared structure                                                                                                                              | ok  |
| JNJ-10191584                                | indomethacin                | blocks c-storm & hampers nsp7 infection.<br>no indol shared structure                                                                                                                           | ?   |
| Thioperamide                                | indomethacin                | blocks c-storm & hampers nsp7 infection.<br>double N 5 ring twisted but<br>related to JNJ-10191584                                                                                              | ?   |
| JNJ-7777120<br>JNJ-10191584<br>Thioperamide | atranorin                   | c-storm blocking & hampers infection.<br>aldehyde group demonstrated to hamper<br>the entry of the Hepatic C virus.<br>no 2D structural relatedness (1) & (2).<br>atranorin furthers apoptosis. | ?   |
| JNJ-7777120                                 | CHIBA-3000                  | blocks c-storm & interferes with<br>integrase in HIV-1 LEDGF.<br>indol shared structure.                                                                                                        | ?   |
| antihistamine<br>like JNJ-7777120           | captopril                   | interferes with ACE2 production<br>via cytokine IL-6 similar as H4R antagonist<br>N containing 5 ring is not indol like                                                                         | ?   |
| antihistamine<br>like JNJ-7777120           | fosinopril                  | interferes with ACE2 production<br>via cytokine IL-6 similar as H4R antagonist<br>N containing 5 ring is not indol like<br>similar to captopril                                                 | ?   |

## 402 References

403 [K.G. Andersen (2020)] The proximal origin of SARS-CoV-2 , Nature Medicine, 26,  
404 450455, 2020.

405 [A. George(2020)] A. George, Cytokine storm, an overreaction of the body's immune system  
406 New Scientist, <http://www.newscientist.com/term/cytokine-storm>.

407 [L. Caly et. al. (2020)] L. Caly, J. D. Druce, M. G. Catton, D. A. Jans, K. M. Wagstaff,  
408 The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro ,  
409 Antiviral Research 178, 104787, 2020, doi.org/10.1016/j.antiviral.2020.104787.

410 [S. Omura and A. Crump (2004)] S. Omura and A. Crump, The life and times of  
411 ivermectin-a success story , Nature, tropical and infectious disease, 2, 984- 989, 2004.

412 [R. L. Thurmond et. al. (2008)] R. L. Thurmond, E. W. Gelfand and P. J. Dunford, The  
413 role of histamine H1 and H4 receptors in allergic inflammation: the search for new  
414 antihistamines , Nature Reviews, Drugs Discovery, 7, 41-53, 2008.

415 [M. S. Sajid et. al. (2006)] M. S. Sajid, Z. Iqbal, G. Muhammad and M. U. Iqbal, Im-  
416 munomodulatory effect of various anti-parasitics : a review , Parasitology, 132 301-3113,  
417 2006 doi:10.1017/S0031182005009108.

418 [N.E. Scott (2008)] N.E. Scott *Ivermectine toxicity* , In: Small animal critical care  
419 medicine, Ed.: D. Silverstein and K. Hopper, Elsevier, pp. 392-393, 2008  
420 [veteriankey.com/ivermectin-toxicity](http://veteriankey.com/ivermectin-toxicity) .

421 [P. Zhou et. al. (2019)] P. Zhou, J. R. Homberg, Q. Fang, J. Wang, W. Li, X. Meng, J.  
422 Shen, Y Luana, P. Liao, D. F. Swaab, L. Shan and C. Liu, *Histamine-4 receptor antag-*  
423 *onist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of*  
424 *Parkinson-like pathology and behaviour in a rat model* , Brain, Behavior, and Immunity,  
425 76, 61-73, 2019.

426 [J. Sirois et. al. (2000)] J. Sirois, G. Ménard, A. S. Moses and E. Y. Bissonnette, *Impor-*  
427 *tance of Histamine in the Cytokine Network in the Lung Through H2 and H3 Receptors:*  
428 *Stimulation of IL-10 Production* , J Immunol, 164,2964-2970, 2000.

429 [S. Wassermann et. al. (2004)] S. Wassmann, M. Stumpf, K. Schmidt, B. Schieffer, B.  
430 Böhm and G. Nickenig, *Interleukin-6 induces oxidative stress and endothelial dysfunc-*  
431 *tion by overexpression of the angiotensin 2 type 1 receptor* , Circ. Res. 5, 534-541, 2004,  
432 doi:10.1161/01.RES.000115557.25127.8D.

433 [M. Staevska(2009)] M. Staevska, T.A. Popov, T. Kralimarkova, C. Lazarova, S. Kraeva, et  
434 al *The effectiveness of levocetirizine and desloratadine in up to 4 times conventional*  
435 *doses in difficult to treat urticaria* doi:10.1016/j.jaci.2009.11.047

436 [Y.J. Jang et. al. (2009)] Y.J. Jang, J.H. Wang, J.S. Kim, *Levocetirizine inhibits*  
437 *rhinovirus-induced ICAM-1 and cytokine expression and viral replication in airway ep-*  
438 *ithelial cells* , Antiviral Reserach 81, 226-2233, 2009.

439 [M.C. Jung et. al. (2016)] M.C. Jung, J.K. Kim, J.Y. Cho, J.W. Song, B. Lee J.W. ParkJ.  
440 Sea and S.E. Kim, *A case of levocetirizine-induced liver injury* Clinical and Molecular  
441 hepatology, 22, 495-498, 2016.

442 [N. Kumar et. al. (2020)] N. Kumar, B. Mishra, A. Mehmood, M. Athar & M. Shahid  
443 Mukhtar, *Integrative Network Biology Framework Elucidates Molecular Mechanisms*  
444 *of SARS-CoV-2 Pathogenesis* , <https://doi.org/10.1101/2020.04.09.033910>.

445 [F. Wu et. al. (2020)] F. Wu, S. Zhao, B. Yu, Y.M. Chen1, W. Wang, Z. Song, Y. Hu, Z.W.  
446 Tao, J. Tian, Y.Y. Pei1, M.L. Yuan, Y.L. Zhang, F. Dai1, et al. *A new coronavirus*  
447 *associated with human respiratory disease in China* <https://doi.org/10.1038/s41586-020-2008-3>

449 [D. Bojkova et. al. (doi 024257)] D. Bojkova, J.E. McGreig, K.M. McLaughlin, S.G. Mas-  
450 terson, M. Widera, V. Krähling, et al, *SARS-CoV-2 and SARS-CoV differ in their cell*  
451 *tropism and drug sensitivity profiles* , biorxiv doi.org/10.1101/2020.04.03.024257.

452 [L. Chen et. al. (2018)] L. Chen, H. Deng1, H. Cui1, J. Fang, Z. Zuo1 J. Deng1, Y. Li1,  
453 X. Wang and L. Zhao, *Inflammatory responses and inflammation-associated diseases*  
454 *in organs* , Oncotarget, 9, 7204-7218, 2018.

455 [M.D. Hayes et. al. (doi 78285)] M.D. Hayes, S. Ward, G. Crawford, R.C. Seoane,  
456 W.D.Jackson et al *Natural IgE promotes epithelial hyperplasia and inflammation-driven*  
457 *tumour growth* biorxiv, doi.org/10.1101/782805.

458 [S. Huneck(1968)] S. Huneck, *Lichen Substances* , In: Progress in Phytochemistry, Vol 1  
459 Ed.: L. Reinhold and Y. Liwschitz, pp. 223-346 Interscience Publishers, John Wiley  
460 London, NY Sydney, 1968.

461 [G. Coruzzi *et. al.* (2012)] G. Coruzzi, M. Adami and C. Pozzoli, *Role of histamine H<sub>4</sub>*  
462 *receptors in the gastrointestinal tract*, Frontiers in Bioscience S4, 226-239, 2012

463 [C.M. Marson (2011)] C. M. Marson *Targeting the Histamine H<sub>4</sub> Receptor*, Chemical Re-  
464 views, 111, 7121-7126, 2011, dx.doi.org/10.1021/cr900166w.

465 [A. Deiteren *et. al.* (2014)] A. Deiteren, J. G. De Man, P. A. Pelckmans and B. Y. De  
466 Winter, *Histamine H<sub>4</sub> receptors in the gastrointestinal tract*, British Journal of Phar-  
467 macology, 172, 1165-1178, 2014.

468 [F. Xiao *et. al.* (2020)] F. Xiao, M. Tang, X. Zheng, Y. Liu, X. Li and H. Shan *Evi-  
469 dence for Gastrointestinal Q3 Infection of SARS-CoV-2* Gastroenterology doi:  
470 10.1053/j.gastro.2020.02.055

471 [J.A. Salmon and G.A. Higgs (2007)] J.A. Salmon and G.A. Higgs, *Prostaglandins and*  
472 *leukotrienes as inflammatory mediators*, British Medical Bulletin, 43, 285-296, 2007,  
473 doi:10.1093/oxfordjournals.bmb.a072183.

474 [M. Cocchietto *et. al.* (2002)] M. Cocchietto, N. Skert, P. Nimis and G. Sava, *A review on*  
475 *usnic acid, an interesting natural compound*, Naturwissenschaften, 89, 137-146, 2002.

476 [M. Kosanić and B. Ranković (2019)] M. Kosanić and B. Ranković *Lichen Secondary*  
477 *Metabolites as Potential Antibiotic Agents*, In: Lichen Secondary Metabolites, Bioac-  
478 *tive Properties and Pharmaceutical Potential*, Ed: B. Ranković, pp. 99-128, Springer,  
479 2019 10.1007/978-3-030-16814-8.

480 [P. Pradhan *et. al.* (2020)] P. Pradhan, A. K. Pandey, A. Mishra, P. Gupta, P. K. Tri-  
481 *pathi, M. B. Menon, J. Gomes, P. Vivekanandan and B. Kundu, Uncanny similarity*  
482 *of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag* biorxiv,  
483 doi.org/10.1101/2020.01.30.927871.

484 [C. Zhang *et. al.* (2020)] C. Zhang, W. Zheng, X. Huang, E. W. Bell, X. Zhou, and Y.  
485 *Zhang, Protein Structure and Sequence Reanalysis of 2019-nCoV Genome Refutes*  
486 *Snakes as Its Intermediate Host and the Unique Similarity between Its Spike Protein*  
487 *Insertions and HIV1*, J. Proteome Research, 19, 13511360, 2020.

488 [N. Flamand *et. al.* (2004)] N. Flamand, H. Plante, S. Picard, M. Laviolette and P.  
489 *Borgeat Histamine-induced inhibition of leukotriene biosynthesis in human neutrophils:*  
490 *involvement of the H<sub>2</sub> receptor and cAMP*, British Journal of Pharmacology, 141, 552-  
491 561, 2004.

492 [S.A. Read *et. al.* (2019)] S. A. Read, S. Obeid, C. Ahlenstiel, and G. Ahlen-  
493 *stiel, The Role of Zinc in Antiviral Immunity*, Adv Nutr 0, 115, 2019,  
494 doi.org/10.1093/advances/nmz013.

495 [J.N. Sharma and L.A. Mohammed (2006)] *The role of leukotrienes in the pathophysiology*  
496 *of inflammatory disorders: Is there a case for revisiting leukotrienes as therapeutic*  
497 *targets?*, Inflammopharmacology, 14, 10-16, 2006, doi.org/10.1007/s10787-006-1496-6.

498 [A. Jo-Watanabe *et. al.* (2019)] A. Jo-Watanabe, T. Okuno and T. Yokomizo, *The Role*  
499 *of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders*, Int. J. Mol.  
500 Sci., 20, 3580-3601, 2019, doi.org/europepmc.org/article/pmc/pmc6679143.

501 [D.N. Sokolov *et. al.* (2012)] D.N. Sokolov, V.V. Zarubaev, A.A. Shtro, M.P. Polovinka,  
502 O.A. Luzina, N.I. Komarova, N.F. Salakhutdinov and O.I. Kiselev, *Anti-viral activity*  
503 *of (-)- and (+)- usnic acids and their derivatives against influenza virus A(H1N1)2009*,  
504 *Bioorganic & Medicinal Chemistry Letters*, 22, 7060-7064, 2012.

505 [A. A. S. Araujo *et. al.* (2015)] A. A. S. Araujo, M. G. D. de Melo, T. K. Rabelo, P. S.  
506 Nunesa, S. L. Santosa, M. R. Serafinic, M. R. V. Santos, L. J. Quintans-Junior and  
507 D. P. Gelain, *Review of the biological properties and toxicity of usnic acid* , Natural  
508 Product Research, 2015, dx.doi.org/10.1080/14786419.2015.1007455.

509 [T. H. Vu *et. al.* (2015)] T. H. Vu, A. Le Lamer, C. Lalli, J. Boustie, M. Samson, F. Lohzic-  
510 Le Dvhat and J. Le Seyec, *Depsides: Lichen Metabolites Active against Hepatitis C*  
511 Virus , PLOS One, DOI:10.1371/journal.pone.0120405, 2015.

512 [E.Rönnberg *et. al.* (2019)] E.Rönnberg, A.Ghaib, C. Ceriol, M. Enoksson, M. Arock, J.  
513 Säfholm, et al, *Divergent effects of acute and prolonged interleukin 33 exposure on mast*  
514 *cells IgE mediated functions* Frontiers in Immunology, doi:10.3389/fimmu.2019.01361  
515 and biorxiv doi.org/10.1101/463950.

516 [E. Zampelli and E. Tiligada (2009)] E. Zampelli and E. Tiligada, *The role of histamine H<sub>4</sub>*  
517 *receptor in immune and inflammatory disorders* , British Journ of Pharmacology, 157,  
518 24-33, 2009, doi:10.1111/j.1476-5381.2009.00151.

519 [M. Phillips and J. Svärd, (2015)] M. Phillips and J. Svärd, *Antiretroviral Drugs: Current*  
520 *Therapy, Recent Developments and Future Perspectives* , In: Frontiers in Clinical Drug  
521 Research: HIV (Volume 1) Ed: Atta-ur-Rahman, pp. 3- 57, Bentham Science Publ,  
522 2015.

523 [V. Hann and M. Ashton (2015)] V. Hann and M. Ashton *HIV Integrase Biology and*  
524 *Inhibitor Design* , In: Frontiers in Clinical Drug Research: HIV (Volume 1) Ed: Atta-  
525 ur-Rahman, pp. 185-265, Bentham Science Publ, 2015.

526 [Y. Ikawa *et. al.* (2008)] Y. Ikawa, K. Shiba, E. Ohki, N. Mutoh, M. Suzuki, H. Sato and  
527 K. Ueno, *Comparative study of histamine H<sub>4</sub> receptor expression in human dermal*  
528 *fibroblasts* , J. Toxicol. Sci., 33, 503-508, 2008.

529 [A. Michaud *et. al.* (1997)] A. Michaud, T. A. Williams, M. Chauvet, and P. Corvol, *Sub-*  
530 *strate Dependence of Angiotensin I-Converting Enzyme Inhibition: Captopril Displays*  
531 *a Partial Selectivity for Inhibition of N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Hydrolysis*  
532 *Compared with That of Angiotensin I* , Molecular Pharmacology, 51, 10701076, 1997.

533 [S. A. S. Farhadi and K. F. Dizaye (2019)] S. A. S. Farhadi and K. F. Dizaye, *Aliskiren,*  
534 *Fosinopril, and Their Outcome on Renin-Angiotensin-Aldosterone System (RAAS) in*  
535 *Rats with Thyroid Dysfunction* , International Journal of Endocrinology, Article ID  
536 5960563, 9 pages, 2019 doi.org/10.1155/2019/5960563

537 [S. Wassmann and G. Nickenig (2006)] S. Wassmann and G. Nickenig, *Patophysiological*  
538 *regulation of the AT1 receptor and 8implications for vascular disease* , J. Hypertens.  
539 Suppl. 24, 15-21, 2006.

540 [Y. Wan *et. al.* (2020)] Y. Wan, J. Shang, R. Graham, R. S. Baric and F. Li, *Receptor*  
541 *Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-*  
542 *Long Structural Studies of SARS Coronavirus* , Journal of Virology, 94, e00127-20,  
543 2020, doi.org/10.1128/JVI.00127-20.

544 [D.E. Gordon, *et. al.*(2020)] D.E. Gordon, G.M. Jang, M. Bouhaddou, J. Xu, K.  
545 Obernier, M.J O'Meara, J.Z. Guo, et al *A SARS-CoV-2-Human Protein-*  
546 *Protein Interaction Map Reveals Drug Targets and Potential Drug- Repurposing* ,  
547 doi.org/10.1101/2020.03.22.002386.

548 [B. Polat et. al. (2010)] B. Polat, H. Suleyman and H. H. Alp, *Adaptation of rat gastric*  
549 *tissue against indomethacin toxicity*, *Chemico-Biological Interactions*, 186, 82-89, 2010.

550 [Y. Gao et. al. (2020)] Y. Gao, L. Yan, Y. Huang, F. Liu, Y. Zhao, L. Cao, T. Wang,  
551 Q. Sun, Z. Ming, L. Zhang et al, *Structure of RNA-dependent RNA polymerase from*  
552 *2019-nCoV, a major antiviral drug*, *biorxiv* doi.org/10.1101/2020.03.16.993386.

553 [D. L. Boyle et. al. (2019)] D. L. Boyle, S. E. DePrimo, C. Calderon, D. Chen, P. J. Dun-  
554 ford, W. Barchuk, G. S. Firestein and R. L. Thurmond, *Toreforant, an orally active*  
555 *histamine H4-receptor antagonist, in patients with active rheumatoid arthritis despite*  
556 *methotrexate: mechanism of action results from a phase 2, multicenter, randomized,*  
557 *double-blind, placebo-controlled synovial biopsy study*, *Inflammation Research*, 2019,  
558 doi 10.1007/s00011-019-01218-y.

559 [C. Ballerini et. al. (2013)] C. Ballerini, A. Aldinucci, I. Luccarini, A. Galante, C.  
560 Manuelli, P. Blandina, M. Katebe, P. L. Chazot, E. Masini and M. B. Passani, *An-*  
561 *agonism of histamine H4 receptors exacerbates clinical and pathological signs of exper-*  
562 *imental autoimmune encephalomyelitis*, *British Journal of Pharmacology*, 170, 67-77,  
563 2013.

564 [M. Zhang et. al. (2006)] M. Zhang, R.L. Thurmond and P.J. Dunford *The histamine H4*  
565 *receptor: A novel modulator of inflammatory and immune disorders*, *Pharmacology &*  
566 *Therapeutics* 113, 2006, doi.org/10.1016/j.pharmthera.2006.11.008.

567 [C. Amici et. al. (2006)] C. Amici, A. Di Caro, A. Ciucci, L. Chiappa, C. Castilletti, V.  
568 Martella, N. Decaro, C. Buonavoglia, M. R Capobianchi and M G. Santoro, *In-*  
569 *domethacin has a potent antiviral activity against SARS coronavirus*, *Antiviral Therapy*  
570 11, 10211030, 2006.

571 [M. Adami and G. Coruzzi (2014)] M. Adami and G. Coruzzi, *The Histamine H4 Re-*  
572 *ceptor: A Novel Target for Safe Anti-inflammatory Drugs?*, *Gastro*, 1, 7-12, 2014,  
573 dx.doi.org/GOJ/GOJ-1-103.

574 [K. Takeshita et. al. (2003)] K. Takeshita, K. Sakai, K. B. Bacon and F. Gantner, *Critical*  
575 *role of Histamine 4 receptor in leukotriene B4 production and mast cell-dependent*  
576 *neutrophil recruitment induced by zymosan in vivo*, *J. Pharmacol. Exp. Ther.* 307, 1072-  
577 1078, 2003.

578 [B. Russell1 et. al. (2020)] B. Russell1, C. Moss, A. Rigg and M. Van Hemelrijck, *COVID-*  
579 *19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in*  
580 *the clinical setting?*, *ecancer*, 14, 1023-1026, 2020, doi.org/10.3332/ecancer.2020.1023.

581 [Z.I. Akhmedjanova et. al. (2012)] Z.I. Akhmedjanova, M.V. Zalyalieva and R.R. Begi-  
582 sheva, *Influence of histamine on the immunoregulation of HIV-infected patients*, *Int.*  
583 *J. of Collab. Research on Internal Med. & Publ. Health*, 4, 1084-1091, 2012.

584 [D. G. Ahn et. al. (2014)] D. G. Ahn, J. K. Choi, D. R. Taylor and J. W. Oh, *Biochem-*  
585 *ical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA*  
586 *polymerase capable of copying viral RNA templates*, *Arch Virol* 157, 20952104, 2012.

587 [P. Ioannou (2020)] P. Ioannou, *Non-steroidal anti-inflammatory drugs and covid-19*,  
588 *BMJ*, letter to the editor, doi.org/10.1136/bmj.m1185, 2020.

589 [L. Rodriguez et. al. (2010)] L. Rodriguez, M. Noguera J. Bertran and M. Sodupe, *Hydro-*  
590 *gen bonding and proton transfer in ionized DNA base pairs, amino acids and peptides*  
591 *In: Quantum Biochemistry*, Ed.: C.F. Matta, pp. 219-243, Wiley Publ. 2010.

<sup>592</sup> [Han Geurdes (1987)] Han Geurdes, *Master thesis quantum chemical modelling of Vasopressine and Oxytocine*, Leiden University 1987.