

Article

Not peer-reviewed version

Early Signal Detection in GLP-1 Receptor Agonists in Spain: A Comparative Bayesian Disproportionality Analysis in 2024 and 2025

Maria-Isabel Jimenez-Serrania *

Posted Date: 1 August 2025

doi: 10.20944/preprints202508.0011.v1

Keywords: GLP-1 receptor agonists; pharmacovigilance; adverse drug reactions; early signal detection; semaglutide; liraglutide; dulaglutide

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Early Signal Detection in GLP-1 Receptor Agonists in Spain: A Comparative Bayesian Disproportionality Analysis in 2024 and 2025

Maria-Isabel Jimenez-Serrania

ADViSE Research Group. Department of Health Sciences, Faculty of Health Sciences, Miguel de Cervantes European University (UEMC), Spain; ijimenez@uemc.es

Abstract

Background: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly prescribed for type 2 diabetes mellitus and obesity. Their expanding use, including off-label indications, raises ongoing concerns regarding their evolving safety profiles. Objective: To identify and compare early positive safety signals associated with GLP-1 RAs in Spain during 2024 and 2025 using a Bayesian disproportionality approach adapted from the WHO-Uppsala Monitoring Centre. Methods: Spontaneous adverse drug reaction (ADR) reports submitted to the Spanish Pharmacovigilance System and involving GLP-1 RAs (ATC A10BJ) were analyzed. Reports up to June 2024 and June 2025 were included. A Bayesian Confidence Propagation Neural Network (BCPNN)-based model was used to estimate signal strength. Positive signals were defined as those with a false discovery rate (FDR) < 0.05 and relative risk (RR) ≥ 1. Signals were classified as new, reinforced, diminished, unchanged, or disappeared between the two years. Results: We analyzed 5,322 reports in 2024 and 6,746 in 2025. New signals identified in 2025 included intestinal obstruction (dulaglutide), acute pancreatitis (exenatide), and urticaria at the injection site (liraglutide). Several previously identified signals diminished or disappeared, suggesting dynamic changes in GLP-1 RA risk profiles. Conclusions: This comparative Bayesian pharmacovigilance analysis highlights the evolving safety landscape of GLP-1 RAs. Early signal detection can inform timely regulatory interventions and support safer clinical use.

Keywords: GLP-1 receptor agonists; pharmacovigilance; adverse drug reactions; early signal detection; semaglutide; liraglutide; dulaglutide

1. Introduction

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of incretin-based therapies that mimic the action of endogenous GLP-1, stimulating insulin secretion and inhibiting glucagon release in a glucose-dependent manner. These agents have gained widespread acceptance for the management of type 2 diabetes mellitus (T2DM) due to their efficacy in improving glycemic control, promoting weight loss, and offering cardiovascular protection [1,2].

Several GLP-1 RAs—such as liraglutide, dulaglutide, exenatide, semaglutide, and lixisenatide—have shown superiority over other antidiabetic agents in clinical trials, especially in reducing HbA1c levels and achieving significant weight reduction [3,4]. Notably, large cardiovascular outcome trials (CVOTs) like LEADER, SUSTAIN-6, and REWIND demonstrated cardiovascular benefits beyond glycemic effects, leading to broader therapeutic indications in high-risk populations [5–7]. Consequently, their use has expanded rapidly, including off-label use in individuals with obesity without diabetes [8].

However, the growing use of GLP-1 RAs also raises safety concerns, particularly regarding gastrointestinal, pancreatic, thyroid, and renal adverse effects [9,10]. Rare but serious adverse events (AEs)—such as pancreatitis, gallbladder disease, and injection site reactions—have been reported in both clinical trials and post-marketing surveillance [11–13]. Moreover, recent real-world studies have highlighted the importance of early detection of adverse drug reactions (ADRs) that may not have been captured during the pre-approval phases [14].

Pharmacovigilance systems, including spontaneous reporting databases, remain essential tools for detecting potential drug safety signals. However, traditional disproportionality methods such as the proportional reporting ratio (PRR) or reporting odds ratio (ROR) may produce false positives due to multiplicity or sparse data [15,16]. Bayesian approaches—such as the Bayesian Confidence Propagation Neural Network (BCPNN) developed by the WHO-Uppsala Monitoring Centre—provide a more robust framework by accounting for uncertainty and prior probabilities [17].

The concept of "early signal detection" refers to the identification of statistically significant drugevent combinations before widespread recognition, potentially enabling earlier regulatory or clinical interventions [18]. The implementation of false discovery rate (FDR) control methods, such as the Benjamini-Hochberg procedure, further improves signal reliability in large datasets with multiple comparisons [19].

This study aims to perform a comparative Bayesian disproportionality analysis of suspected ADRs involving GLP-1 RAs in Spain during the first semesters of 2024 and 2025. By identifying new, reinforced, unchanged, diminished, or disappeared safety signals, this work contributes to the understanding of evolving drug safety profiles and supports timely pharmacovigilance efforts.

2. Results

2.1. Overview of ADR Reports

A total of 5,322 adverse drug reactions (ADRs) associated with GLP-1 receptor agonists (GLP-1 RAs) were reported to the Spanish Pharmacovigilance System in the first half of 2024, increasing to 6,746 reports in the same period of 2025.

This increase may reflect:

- Higher prescription rates and broader indications;
- Greater pharmacovigilance awareness among healthcare professionals;
- Potential real changes in the risk profile of GLP-1 RAs.

2.1.1. Signal Classification by Year

Safety signals were categorized based on their status in 2024 and 2025 using Bayesian disproportionality analysis with false discovery rate (FDR) correction (see Appendix 1: Table A1; Table A2). The following classifications were applied:

- 1. **New signals:** drug-event pairs newly detected in 2025;
- 2. **Reinforced signals:** previously detected signals with increased risk or statistical strength;
- 3. **Disappeared signals:** reduced statistical strength or FDR;
- 4. Unchanged signals: present with similar strength in both years;
- 5. **Disappeared signals:** present in 2024 but not detected in 2025. The summary of newly identified or altered signals is detailed in Table 1.

2.1.2. Notable New Signals in 2025

Several new positive signals meeting the predefined Bayesian criteria (FDR < 0.05; RR \geq 1) emerged in 2025:

- Dulaglutide: intestinal obstruction;
- Exenatide: acute pancreatitis and skin mass at injection site;

- Liraglutide: urticaria at the injection site and device administration malfunction;
- Semaglutide: inadequate diabetes control.

These signals may reflect either increased true incidence, expanded patient use, or improved ADR reporting.

2.1.3. Disappeared Signals

Several drug-event combinations detected in 2024 were either absent or statistically weaker in 2025:

- Lixisenatide: dizziness—signal disappeared;
- Liraglutide: minor weight loss—signal diminished.

The disappearance of these signals could indicate changes in clinical use patterns, underreporting, or shifts in the underlying patient population.

2.2. Tables and Signal Summary

All relevant signals and corresponding information from the Summary of Product Characteristics (SmPC) are compiled in Table 1, titled: Table 1. Safety Signal evolution and fact sheet comments for GLP-1 Receptor Agonists between 2024-2025. This table includes:

- The GLP-1 RA involved;
- The preferred term (PT) of the reported adverse event;
- Whether the ADR is described in the corresponding SmPC.

All signals listed in Table 1 were extracted using MedDRA coding and analyzed using Bayesian methods as described in the Methods section.

Table 1. Safety Signal evolution and fact sheet comments for GLP-1 Receptor Agonists between 2024-2025.

Drug	Event Effect (PT)	Fact sheet Comments	Signal evolution
Dulaglutide	Blood glucose abnormal	Hypoglycemia in combination with other medications	New
Dulaglutide	Injection site haematoma	Not reported	New
Exenatide	Renal failure	Withdrawn from market in 2024	New
Liraglutide	Incorrect dose administered by a medical device	Not reported	New
Liraglutide	Injection site bruise	Not reported	New
Liraglutide	Product quality issue	Not reported	New
Liraglutide	Skin reaction	Not reported; skin and subcutaneous tissue disorders reported	New
Semaglutide	Extra dose administered	Not reported	New
Semaglutide	Diarrhoea	Reported as very common	New
Semaglutide	Off-label use	Not reported	New
Semaglutide	Vomiting	Reported as common	New
Dulaglutide	Decreased appetite	Reported as common	Reinforce
Dulaglutide	Hypoaesthesia	Not reported	Reinforce
Dulaglutide	Accidental overdose	Not reported	Reinforce
Exenatide	Retching	Withdrawn from market in 2024	Reinforce
Exenatide	Nodule	Withdrawn from market in 2024	Reinforce
Liraglutide	Injection site rash	Not reported	Reinforce
Liraglutide	Drug ineffective	Not reported	Reinforce
Liraglutide	Injection site swelling	Not reported	Reinforce
Liraglutide	Injection site hypersensitivity	Not reported	Reinforce
Liraglutide	Injection site pruritus	Not reported	Reinforce
Liraglutide	Injection site reaction	Reported as common	Reinforce
Lixisenatide	Hypoglycaemia	Withdrawn from market in 2024	Reinforce

Lixisenatide	Urticaria	Withdrawn from market in 2024	Reinforce
Semaglutide	Incorrect technique in product use procedure	Not reported	Reinforce
Semaglutide	Use of product for unapproved indication	Not reported	Reinforce
Exenatide	Asthenia	Withdrawn from market in 2024	Diminished
Semaglutide	Dyspepsia	Reported as common	Diminished
Semaglutide	Drug intolerance	Not reported	Diminished
Semaglutide	Nausea	Reported as very common	Diminished
Semaglutide	Weight decreased	Reported as common	Diminished
Semaglutide	Gastrointestinal disorder	Reported without specification	Diminished
Dulaglutide	Incorrect dose administered	Not reported	Unchanged
Dulaglutide	Injection site pain	Not reported	Unchanged
Dulaglutide	Blood glucose increased	Not reported	Unchanged
Dulaglutide	Injection site haemorrhage	Not reported	Unchanged
Dulaglutide	Intestinal obstruction	Reported, frequency unknown	Unchanged
Dulaglutide	Dose omission issue with the product	Not reported	Unchanged
Exenatide	Erythema	Withdrawn from market in 2024	Unchanged
Exenatide	Injection site induration	Withdrawn from market in 2024	Unchanged
Exenatide	Skin mass	Withdrawn from market in 2024	Unchanged
Exenatide	Injection site nodule	Withdrawn from market in 2024	Unchanged
Exenatide	Pancreatitis	Withdrawn from market in 2024	Unchanged
Exenatide	Acute pancreatitis	Withdrawn from market in 2024	Unchanged
Liraglutide	Injection site erythema	Not reported	Unchanged
Liraglutide	Minor weight loss	Not reported	Unchanged
Liraglutide	Problem with drug delivery device system	Not reported	Unchanged
Liraglutide	Injection site urticaria	Reported as uncommon	Unchanged
Dulaglutide	Limb pain	Not reported	Disappeared
Exenatide	Renal failure	Withdrawn from market in 2024	Disappeared
Liraglutide	Injection site bruising	Not reported	Disappeared
Lixisenatide	Dizziness	Withdrawn from market in 2024	Disappeared
Semaglutide	Inadequate diabetes mellitus control	Not reported	Disappeared
Semaglutide	Overdose	Not reported	Disappeared
Semaglutide	Use of a medicine off-label	Not reported	Disappeared
			-

3. Discussion

This comparative pharmacovigilance study reveals dynamic changes in the safety profile of GLP-1 receptor agonists (GLP-1 RAs) in Spain between 2024 and 2025. The detection of new positive signals—particularly for gastrointestinal and pancreatic adverse events—underscores the importance of continuous post-marketing surveillance in this therapeutic class.

The identification of **intestinal obstruction** with dulaglutide and **acute pancreatitis** with exenatide aligns with previous concerns raised in both preclinical and post-marketing reports [9,10,20]. GLP-1 RAs slow gastric emptying, which may theoretically contribute to mechanical or functional obstruction in predisposed individuals [21]. Although these effects are well known, their clinical significance is still being debated, especially as real-world evidence accumulates.

The signal for **inadequate diabetes control** with semaglutide may reflect inappropriate off-label use or administration errors. This finding is clinically relevant given the increasing popularity of GLP-1 RAs for weight management, sometimes self-administered without medical supervision

[8,22]. In this context, improper dosing or skipping injections could lead to subtherapeutic effects or glycemic instability.

Furthermore, several **injection-site reactions** (e.g., urticaria, bruising, or device malfunction) were newly identified or reinforced in 2025. Although often considered mild, these events can affect treatment adherence, particularly in patients self-injecting long-acting agents [23].

On the other hand, the **disappearance or attenuation** of some previously detected signals—such as dizziness with lixisenatide—may indicate a reduced use of certain molecules following market withdrawal (as in the case of lixisenatide and exenatide in Spain) or improved risk minimization measures [24].

Our study demonstrates the added value of Bayesian methods, particularly when combined with false discovery rate (FDR) adjustment, in improving signal reliability over traditional disproportionality metrics [17,19]. The use of the Bayesian Confidence Propagation Neural Network (BCPNN) provides a probabilistic framework that is robust to data sparsity and supports regulatory prioritization of signals [18,25].

It is worth noting that some signals correspond to **events not described in the official Summary of Product Characteristics (SmPC)** at the time of analysis. This suggests the utility of pharmacovigilance data in identifying emerging or evolving ADRs that may not have been observed during clinical development [13,26].

3.1. Strengths and Limitations

The main strengths of this study include:

- The use of a standardized Bayesian algorithm based on WHO-UMC methodology;
- Comparison across two consecutive years using real-world data from a national database (see Appendix 1: Table A1; Table A2);
- Adjustment for multiple testing via FDR, reducing the likelihood of spurious signals.
 However, several limitations should be acknowledged:
- Spontaneous reporting systems are subject to underreporting, missing data, and reporting bias [14,27];
- Causality cannot be established signal detection is hypothesis-generating;
- Changes in the number of users per drug are not available, limiting calculation of true incidence rates.

Future studies using **analytical epidemiological designs**, such as cohort or case-control studies with prescription databases, are warranted to confirm these preliminary signals [28].

4. Materials and Methods

4.1. Data Source

This study is based on spontaneous reports of suspected adverse drug reactions (ADRs) submitted to the Spanish Pharmacovigilance System for Human Use Medicines (FEDRA®), managed by the Agencia Española de Medicamentos y Productos Sanitarios (AEMPS). Data were extracted from public releases corresponding to reports received up to 30 June 2024 and 30 June 2025.

All included reports referred to drugs within the ATC group A10BJ (GLP-1 receptor agonists), specifically dulaglutide, exenatide, liraglutide, lixisenatide, and semaglutide. Data extraction and preprocessing were performed using R®v3.4.1. R Foundation for Statistical Computing and PhViD® v1.0.8 package for the detection of positive signals [29].

Spontaneous reporting systems are widely used for signal detection and early risk identification, though they are subject to limitations such as underreporting and reporting bias [14,27,30]. Nevertheless, national databases like FEDRA® provide an essential source of real-world evidence for regulatory pharmacovigilance [31].

4.2. ADR Coding and Drug Selection

Adverse events were coded using the Medical Dictionary for Regulatory Activities (MedDRA), specifically the Preferred Term (PT) level. MedDRA is internationally recognized and ensures consistency and comparability in safety signal analysis [32].

GLP-1 RAs included in this study were:

- Dulaglutide (Trulicity®),
- Exenatide (Byetta®, Bydureon®),
- Liraglutide (Victoza®, Saxenda®),
- Lixisenatide (Lyxumia®),
- Semaglutide (Ozempic®, Rybelsus®, Wegovy®).

Drugs that had been withdrawn from the Spanish market by mid-2024, such as exenatide and lixisenatide, were retained for analysis to enable year-to-year comparisons of signal persistence and disappearance.

4.3. Bayesian Disproportionality Analysis

We implemented a Bayesian Confidence Propagation Neural Network (BCPNN) model adapted from the WHO-Uppsala Monitoring Centre (UMC) [17,18,25]. This method estimates the Information Component (IC), a logarithmic metric of disproportionality that accounts for statistical shrinkage and prior probability distributions.

The BCPNN approach is well suited for early signal detection because:

- 1. It handles sparse data more robustly than frequentist methods;
- 2. It generates probabilistic outputs, such as credibility intervals;
- 3. It is less sensitive to extreme values and data volatility [33].

The BCPNN model computes a posterior distribution for each drug-event pair, and signal strength is typically summarized by the IC025, the lower bound of the 95% credibility interval. An IC025 > 0 indicates disproportionate reporting.

4.4. False Discovery Rate and Signal Thresholds

To address the problem of multiple testing—a frequent challenge in pharmacovigilance analyses involving thousands of drug-event pairs—we applied the Benjamini-Hochberg procedure to control the False Discovery Rate (FDR) [19]. Each p-value derived from the Bayesian model was adjusted, and a signal was considered statistically significant if:

- FDR < 0.05, and
- Relative Risk (RR) ≥ 1 .

This dual threshold approach ensures that detected signals are not only statistically robust but also clinically meaningful [34].

4.5. Signal Classification

Signals detected in both years were further classified into five categories based on their FDR change over time:

- New: signal appeared only in 2025;
- Reinforced: signal was present in both years with increased strength or lower FDR in 2025;
- Diminished: signal persisted but with reduced statistical strength;
- Unchanged: signal remained stable;
- Disappeared: signal was present in 2024 but absent in 2025.

This classification facilitates trend interpretation and regulatory prioritization of evolving safety issues [35].

5. Conclusions

This study provides updated evidence on the evolving safety profile of GLP-1 receptor agonists (GLP-1 RAs) in Spain, applying a Bayesian disproportionality analysis with FDR control to detect

early signals of adverse drug reactions (ADRs) in 2024 and 2025. The results highlight newly emerging risks—including intestinal obstruction, acute pancreatitis, and injection-site reactions—as well as the disappearance or attenuation of other signals over time.

The dynamic nature of these signals underscores the importance of continuous post-marketing surveillance, especially as the clinical use of GLP-1 RAs expands beyond their original indications, often to populations not represented in pivotal clinical trials. The appearance of signals related to off-label use and administration errors, such as inadequate diabetes control, suggests a need for greater awareness and patient education regarding proper drug use.

Bayesian pharmacovigilance approaches, particularly when combined with false discovery rate correction, offer a robust framework for early signal detection in real-world data. These methods enhance the reliability of signal prioritization, helping to inform regulatory decisions and guide further epidemiological research.

Future studies should validate these findings using analytical designs such as cohort or nested case-control studies with prescription data. Integrating signal detection into a broader risk management strategy will be key to optimizing the safety and effectiveness of GLP-1 RAs in an increasingly diverse patient population.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADR Adverse drug reaction SmPCSummary of Product Characteristics

Appendix A

Appendix A.1

Table A1. Bayesian Disproportionality Analysis of spontaneous reports of suspected adverse drug reactions to GLP-1 Receptor Agonists submitted to the Spanish Pharmacovigilance System for Human Use Medicines until June 2024 in Spain.

drug	event effect (PT)	count (N)	expected count	post .H0	n11 /E	drug margin	event margin	FD R	F N R	Se	Sp
semagl	Off label use	109	55.571	0.00	1.9	1933	153	0.0	0.5	0.0	1.0
utide				0	61			00	31	01	00
dulagl	Injection site pain	38	12.151	0.00	3.1	1115	58	0.0	0.5	0.0	1.0
utide	injection site pain		12.101	0	27	1110		00	30	03	00
exenati	Injection site nodule	10	0.963	0.00	10.	427	12	0.0	0.5	0.0	1.0
de	injection site nottile	10	0.903	0	386	427	12	00	30	04	00
dulagl	Product dose omission	21	5.866	0.00	3.5	1115	28	0.0	0.5	0.0	1.0
utide	Froduct dose omission	21	3.000	0	80	1113	20	00	30	06	00
liraglut	747 * 1 . 1 . 1 . 1 . 1	20	1 6 00 4	0.00	2.4	1510	5 0	0.0	0.5	0.0	1.0
ide	Weight decreased mild	39	16.094	0	23	1713	50	00	29	07	00
liraglut	T	22	40.004	0.00	2.6	4=40	20	0.0	0.5	0.0	1.0
ide	Injection site urticaria	33	12.231	0	98	1713	38	00	29	08	00
exenati				0.00	7.0			0.0	0.5	0.0	1.0
de	Injection site induration	9	1.284	0	11	427	16	00	28	10	00
dulagl				0.00	2.1			0.0	0.5	0.0	1.0
utide	Blood glucose increased	29	13.408	1	63	1115	64	00	28	11	00
liraglut				0.00	1.9			0.0	0.5	0.0	1.0
ide	Injection site erythema	41	20.922	1	60	1713	65	00	28	12	00
semagl			143.46	0.00	1.3			0.0	0.5	0.0	1.0
utide	Nausea	190	8	1	24	1933	395	0.0	27	14	00
unue				1	44			00	۷/	14	00

dulagl utide	Injection site haemorrhage	15	4.400	0.00 1	3.4 09	1115	21	0.0	0.5 27	0.0 15	1.0
exenati				0.00	3.1			0.0	0.5	0.0	1.0
de	Acute pancreatitis	13	4.172	1	16	427	52	00	27	17	00
dulagl	Wrong dose administered	17	5.866	0.00	2.8	1115	28	0.0	0.5	0.0	1.0
utide	vyrong dose damarastered		2.000	1	98	1110		00	26	18	00
exenati de	Erythema	8	1.605	0.00 2	4.9 85	427	20	0.0 01	0.5 26	0.0 19	1.0
liraglut	-			0.00	1.6		400	0.0	0.5	0.0	1.0
ide	Drug ineffective	53	32.187	3	47	1713	100	01	26	21	00
exenati	Retching	6	0.642	0.00	9.3	427	8	0.0	0.5	0.0	1.0
de 	recently	Ü	0.012	4	48	12,	O	01	25	22	00
exenati de	Pancreatitis	11	3.771	0.00 4	2.9 17	427	47	0.0 01	0.5 25	0.0 24	1.0
liraglut				0.00	1.9			0.0	0.5	0.0	1.0
ide	Injection site pruritus	29	15.128	6	17	1713	47	01	25	25	00
semagl	Weight decreased	46	27.967	0.00	1.6	1933	77	0.0	0.5	0.0	1.0
utide	0	10	27.507	6	45	1700	,,	02	24	26	00
semagl utide	Product use for unapproved indication	21	9.443	0.00 7	2.2 24	1933	26	0.0 02	0.5 24	0.0 28	1.0
exenati				0.01	12.			0.0	0.5	0.0	1.0
de	Skin mass	5	0.401	0	464	427	5	02	24	29	00
exenati	Renal failure	6	1.203	0.01	4.9	427	15	0.0	0.5	0.0	1.0
de	ichar ianare	O	1.200	1	85	127	10	03	23	30	00
liraglut ide	Injection site rash	15	6.116	0.01 3	2.4 53	1713	19	0.0	0.5 23	0.0 32	1.0
lixisen				0.01	4.4			0.0	0.5	0.0	1.0
atide	Urticaria	5	1.113	8	93	126	47	04	23	33	00
dulagl	Decreased appetite	34	21.998	0.02	1.5	1115	105	0.0	0.5	0.0	1.0
utide		01	21.770	1	46	1110	100	04	22	34	00
semagl utide	Diabetes mellitus	15	6.538	0.02 1	2.2 94	1933	18	0.0 05	0.5 22	0.0 36	1.0
semagl	inadequate control			0.02	2.2			0.0	0.5	0.0	1.0
utide	Drug intolerance	16	7.264	1	03	1933	20	06	22	37	00
liraglut	Injection site reaction	14	6.116	0.02	2.2	1713	19	0.0	0.5	0.0	1.0
ide	,	14	0.110	3	89	1713	17	06	21	39	00
liraglut	Injection site	12	4.828	0.02 6	2.4 85	1713	15	0.0 07	0.5 21	0.0 40	1.0
ide semagl	hypersensitivity			0.02	1.5			0.0	0.5	0.0	1.0
utide	Dyspepsia	39	25.788	7	12	1933	71	08	20	41	00
liraglut	Injection site bruising	10	3.541	0.02	2.8	1713	11	0.0	0.5	0.0	1.0
ide	injection site bruising	10	3.341	8	24	1713	11	08	20	43	00
semagl	Gastrointestinal disorder	19	10.170	0.03	1.8	1933	28	0.0	0.5	0.0	1.0
utide semagl				2 0.03	68 1.9			09 0.0	20 0.5	44 0.0	00 1.0
utide	Product use error	17	8.717	4	50	1933	24	10	19	45	00
exenati	Nodule	4	0.562	0.03	7.1	427	7	0.0	0.5	0.0	0.9
de	rvoctule	-	0.302	6	22	427	,	11	19	47	99
dulagl utide	Hypoaesthesia	5	1.048	0.05 2	4.7 73	1115	5	0.0 12	0.5 19	0.0 48	0.9 99
dulagl				0.05	4.7			0.0	0.5	0.0	0.9
utide	Intestinal obstruction	5	1.048	2	73	1115	5	13	18	49	99
liraglut	Device administration error	7	2.253	0.05	3.1	1713	7	0.0	0.5	0.0	0.9
ide	Device administration error	,	2.233	9	07	1713	,	14	18	51	99
dulagl	Accidental overdose	6	1.886	0.05 9	3.1	1115	9	0.0	0.5	0.0	0.9
utide semagl				0.06	82 1.7			15 0.0	18 0.5	52 0.0	99 0.9
utide	Overdose	16	9.080	5	62	1933	25	17	18	53	99
liraglut	Injection site swelling	12	6.116	0.06	1.9	1713	19	0.0	0.5	0.0	0.9
ide	injection site sweiling	14	0.110	6	62	1/13	17	18	17	54	99
lixisen	Hypoglycaemia	4	1.136	0.06	3.5	126	48	0.0	0.5	0.0	0.9
atide lixisen				8 0.07	20 2.1			19 0.0	17 0.5	56 0.0	99 0.9
atide	Dizziness	7	3.315	6	12	126	140	20	17	57	99
exenati	Acthonia	7	3.209	0.07	2.1	407	40	0.0	0.5	0.0	0.9
de	Asthenia	/	3.209	6	81	427	40	22	16	58	99

dulagl utide	Limb pain	5	1.467	0.08 1	3.4 09	1115	7	0.0 23	0.5 16	0.0 60	0.9 99
semagl utide	Weight increased	19	11.986	0.08 3	1.5 85	1933	33	0.0 24	0.5 16	0.0 61	0.9 98
liraglut ide	Skin reaction	9	4.184	0.08 5	2.1 51	1713	13	0.0 26	0.5 15	0.0 62	0.9 98
dulagl utide	Accidental subtherapeutic dose	4	0.838	0.09 0	4.7 73	1115	4	0.0 27	0.5 15	0.0 63	0.9 98
liraglut ide	Product quality issue	8	3.541	0.09 2	2.2 60	1713	11	0.0 28	0.5 15	0.0 65	0.9 98
dulagl utide	Flatulence	21	14.456	0.09 5	1.4 53	1115	69	0.0 30	0.5 14	0.0 66	0.9 98
liraglut ide	Device-mediated wrong dose administration	7	2.897	0.09 9	2.4 16	1713	9	0.0 31	0.5 14	0.0 67	0.9 98
semagl utide	Upper abdominal pain	35	26.151	0.10 0	1.3 38	1933	72	0.0 32	0.5 14	0.0 68	0.9 98
exenati de	Peripheral oedema	3	0.562	0.10 1	5.3 42	427	7	0.0 34	0.5 14	0.0 70	0.9 97
dulagl utide	Cholelithiasis	8	3.981	0.10 3	2.0 10	1115	19	0.0 35	0.5 13	0.0 71	0.9 97
dulagl utide	Product administration schedule inappropriate	15	9.637	0.10 5	1.5 56	1115	46	0.0 36	0.5 13	0.0 72	0.9 97
dulagl utide	Injection site trauma	4	1.048	0.11 0	3.8 18	1115	5	0.0 38	0.5 13	0.0 73	0.9 97
semagl utide	Hyperglycaemia	16	10.170	0.11 2	1.5 73	1933	28	0.0 39	0.5 12	0.0 75	0.9 97
exenati de	Diabetic ketoacidosis	3	0.642	0.11 3	4.6 74	427	8	0.0 40	0.5 12	0.0 76	0.9 97
lixisen atide	Blood glucose increased	4	1.515	0.12 0	2.6 40	126	64	0.0 42	0.5 12	0.0 77	0.9 96
exenati de	Pruritus	7	3.691	0.12 1	1.8 97	427	46	0.0 43	0.5 12	0.0 78	0.9 96
lixisen atide	Product contamination by body fluid	2	0.071	0.12 2	28. 159	126	3	0.0 44	0.5 11	0.0 79	0.9 96
lixisen atide	Serum triglycerides increased	2	0.095	0.12 3	21. 119	126	4	0.0 46	0.5 11	0.0 81	0.9 96
lixisen atide	Tendonitis	2	0.047	0.12 4	42. 238	126	2	0.0 47	0.5 11	0.0 82	0.9 96
exenati de	Haemoglobin A1c increased	3	0.722	0.12 5	4.1 55	427	9	0.0 48	0.5 10	0.0 83	0.9 95
exenati de	Weight decreased	10	6.178	0.12 8	1.6 19	427	77	0.0 49	0.5 10	0.0 84	0.9 95

Relative risk \geq 1, Number of Monte Carlo simulations NB.MC=10,000. False Discovery Rate (FDR)<0.05. Interpretation of items: N (count): number of couples 'active ingredient-ADR' reported; post.H0: posterior probability of null hypothesis; FDR: False Discovery Rate; FNR: False Negative Rate; Se: Sensitivity; Sp: Specificity.

Appendix A.2

Table A2. Bayesian Disproportionality Analysis of spontaneous reports of suspected adverse drug reactions to GLP-1 Receptor Agonists submitted to the Spanish Pharmacovigilance System for Human Use Medicines until June 2025 in Spain.

drug	event effect	count (N)	expected count	post .H0	n11 /E	drug margin	event margin	FD R	FN R	Se	Sp
dulagl utide	Injection site pain	45	11.630	0.00	3.8 69	117 1	67	0.0 00	0.5 28	0.0 01	1.0
liraglut ide	Injection site urticaria	33	10.348	0.00	3.1 89	183 7	38	$0.0 \\ 00$	0.5 28	0.0 03	1.0 00
liraglut ide	Weight decreased (mild not codified separately)	46	18.517	0.00	2.4 84	183 7	68	$0.0 \\ 00$	0.5 27	0.0 04	1.0 00
dulagl utide	Product dose omission	21	4.860	0.00	4.3 21	117 1	28	0.0 00	0.5 27	0.0 05	1.0 00

exenati de	Injection site nodule	10	0.760	0.00	13. 165	427	12	0.0 00	0.5 27	0.0 06	1.0 00
dulagl utide	Blood glucose increased	30	11.804	0.00	2.5 42	117 1	68	0.0 00	0.5 26	0.0 08	1.0 00
dulagl utide	Injection site haemorrhage	17	3.992	0.00	4.2 58	117 1	23	0.0 00	0.5 26	0.0 09	1.0 00
semagl utide	Off-label use	130	82.416	0.00	1.5 77	317 7	175	0.0 00	0.5 26	0.0 10	1.0 00
liraglut ide	Injection site erythema	41	18.245	0.00	2.2 47	183 7	67	0.0 00	0.5 25	0.0 11	1.0 00
exenati de	Injection site induration	9	1.013	0.00	8.8 87	427	16	0.0	0.5	0.0	1.0
dulagl utide	Wrong dose administered	19	6.249	0.00	3.0 40	117 1	36	0.0	0.5 25	0.0	1.0
exenati	Acute pancreatitis	13	3.798	0.00	3.4	427	60	0.0	0.5 24	0.0	1.0
de liraglut	Drug ineffective	56	32.133	0.00	23 1.7	183 7	118	0.0	0.5	0.0	1.0
ide exenati	Erythema	8	1.393	0.00	43 5.7	427	22	0.0	0.5	0.0	1.0
de liraglut	Injection site pruritus	29	13.343	0.00	45 2.1	183	49	0.0	0.5	0.0	1.0
ide exenati	Retching	6	0.506	1 0.00	73 11.	7 427	8	0.0	0.5	0.0	1.0
de semagl	Product use for unapproved	41	21.664	2 0.00	849 1.8	317	46	0.0	23 0.5	20 0.0	00 1.0
utide exenati	indication Pancreatitis	11	3.798	3 0.00	93 2.8	7 427	60	0.0	23 0.5	21 0.0	00 1.0
de liraglut	Injection site rash	15	5.446	4 0.00	96 2.7	183	20	01 0.0	23 0.5	22 0.0	00 1.0
ide exenati	,			5 0.00	54 5.9	7		01 0.0	22 0.5	24 0.0	00 1.0
de liraglut	Renal impairment	6	1.013	6 0.00	24 2.9	427 183	16	01 0.0	22 0.5	25 0.0	00 1.0
ide liraglut	Injection site hypersensitivity	13	4.357	7 0.00	84 2.6	7 183	16	01 0.0	22 0.5	26 0.0	00 1.0
ide exenati	Injection site reaction	15	5.718	7 0.00	23 15.	7	21	02	21	27 0.0	00
de semagl	Skin mass	5	0.316 231.70	7 0.00	799 1.1	427 317	5	0.0	21	29	00
utide	Nausea	277	5	9 0.01	95	7	492	02	0.5	0.0 30	1.0
lixisen atide	Urticaria	5	0.971	2	5.1 48	126	52	0.0	0.5	0.0	1.0
dulagl utide	Decreased appetite	34	21.351	0.01	1.5 92	117	123	0.0	0.5	0.0	1.0
liraglut ide	Injection site bruise	10	3.268	0.01 8	3.0 60	183 7	12	0.0 04	0.5 20	0.0 34	1.0 00
exenati de	Nodule	4	0.443	0.02 6	9.0 28	427	7	0.0 04	0.5 19	0.0 35	1.0 00
liraglut ide	Skin reaction	10	3.812	0.03	2.6 23	183 7	14	0.0 05	0.5 19	0.0 36	1.0 00
liraglut ide	Injection site swelling	13	5.991	0.03 1	2.1 70	183 7	22	0.0 06	0.5 19	0.0 37	1.0 00
semagl utide	Product use error	27	16.012	0.03 4	1.6 86	317 7	34	0.0 07	0.5 19	0.0 38	1.0 00
dulagl utide	Hypoaesthesia	5	0.868	0.03 7	5.7 61	117 1	5	$0.0 \\ 08$	0.5 18	0.0 40	1.0 00
semagl utide	Dyspepsia	63	46.624	0.03 9	1.3 51	317 7	99	0.0 09	0.5 18	0.0 41	1.0 00
semagl utide	Weight decreased	58	42.385	0.04 0	1.3 68	317 7	90	0.0 10	0.5 18	0.0 42	1.0 00
semagl utide	Extra dose administered	27	16.483	0.04 1	1.6 38	317 7	35	0.0 11	0.5 17	0.0 43	1.0 00
dulagl utide	Accidental overdose	6	1.736	0.04 4	3.4 57	117 1	10	0.0 12	0.5 17	0.0 44	0.9 99
dulagl utide	Intestinal obstruction	5	1.042	0.04	4.8 01	117 1	6	0.0	0.5 17	0.0 46	0.9 99
									•	•	

liraglut ide	Product quality issue	9	3.540	0.04 5	2.5 42	183 7	13	0.0 13	0.5 16	0.0 47	0.9 99
liraglut ide	Device administration error	7	2.178	0.04 8	3.2 13	183 7	8	0.0 14	0.5 16	0.0 48	0.9 99
lixisen atide	Hypoglycaemia	4	0.990	0.05 0	4.0 41	126	53	0.0 15	0.5 16	0.0 49	0.9 99
semagl utide	Gastrointestinal disorder	31	20.251	0.05 0	1.5 31	317 7	43	0.0 16	0.5 16	0.0 50	0.9 99
dulagl utide	Blood glucose abnormal	8	3.298	0.05 2	2.4 26	117 1	19	0.0 17	0.5 15	0.0 52	0.9 99
liraglut ide	Device-related wrong dose administration	8	2.995	0.05 3	2.6 71	183 7	11	0.0 18	0.5 15	0.0 53	0.9 99
semagl utide	Vomiting	217	190.26 2	0.06	1.1 41	317 7	404	0.0 19	0.5 15	0.0 54	0.9 99
dulagl utide	Injection site haematoma	7	2.777	0.06 4	2.5 20	117 1	16	0.0 20	0.5 14	0.0 55	0.9 99
semagl utide	Drug intolerance	21	12.716	0.06	1.6 52	317 7	27	0.0 21	0.5 14	0.0 56	0.9 99
semagl utide	Diarrhoea	159	136.57 4	0.06 7	1.1 64	317	290	0.0 22	0.5 14	0.0 57	0.9 99
exenati de	Asthenia	7	3.165	0.06 9	2.2	427	50	0.0 23	0.5 13	0.0 59	0.9 99
exenati de	Pruritus	7	3.165	0.06 9	2.2	427	50	0.0 24	0.5	0.0 60	0.9 98
dulagl utide	Cholelithiasis	9	4.340	0.06 9	2.0 74	117 1	25	0.0 25	0.5	0.0 61	0.9 98
dulagl utide	Accidental subtherapeutic dose	4	0.694	0.07	5.7 61	117 1	4	0.0 25	0.5	0.0	0.9 98
semagl utide	Diabetes mellitus inadequate control	16	8.948	0.07	1.7 88	317	19	0.0 26	0.5	0.0 63	0.9 98
exenati	Peripheral oedema	3	0.443	0.08	6.7 71	427	7	0.0 27	0.5	0.0 64	0.9 98
de lixisen	Injection site trauma	4	1.270	0.08	3.1 49	126	68	0.0 28	0.5	0.0	0.9 98
atide dulagl utide	Inappropriate schedule of	4	0.868	0.08	4.6 09	117 1	5	0.0 29	0.5 12	0.0 67	0.9 98
dulagl utide	product administration Weight increased	15	9.374	0.08 6	1.6 00	117 1	54	0.0	0.5	0.0 68	0.9 98
semagl	Dizziness	33	23.547	0.08 7	1.4	317	50	0.0	0.5	0.0 69	0.9 98
utide lixisen	Limb pain	7	3.455	0.08	01 2.0	126	185	0.0	0.5	0.0	0.9
atide exenati	Flatulence	10	5.697	8 0.08	26 1.7	427	90	0.0 33	11 0.5 10	70 0.0 71	98 0.9 97
de liraglut	Diabetic ketoacidosis	21	14.160	8 0.09	55 1.4	183	52	0.0	0.5	0.0	0.9
ide dulagl	Abdominal pain	6	2.430	1 0.09	83 2.4	7 117	14	34 0.0	0.5	72 0.0	97 0.9
utide exenati	Malaise	8	4.241	3 0.09	69 1.8	1 427	67	35 0.0	0.5	74 0.0	97 0.9
de dulagl	Haemoglobin A1c increased	21	14.581	5 0.09	86 1.4	117	84	36 0.0	0.5	75 0.0	97 0.9
utide exenati	Injection site warmth	3	0.570	5 0.09	40 5.2	1 427	9	37 0.0	0.5	76 0.0	97 0.9
de dulagl	Breast cancer	28	20.657	6 0.09	66 1.3	117	119	38 0.0	0.5	77 0.0	97 0.9
utide liraglut	Drug hypersensitivity	20	13.615	8 0.10	56 1.4	1 183	50	0.0	0.5	78 0.0	97 0.9
ide semagl	Chills	63	50.862	4 0.10	69 1.2	7 317	108	40 0.0	09	79 0.0	96 0.9
utide exenati	Blood triglycerides increased	3	0.633	4 0.10	39 4.7	7 427	100	0.0	08	0.0	96 0.9
de liraglut	Product contamination with	5	1.634	5 0.10	40 3.0	183	6	42 0.0	08 0.5	81 0.0	96 0.9
ide liraglut	body fluid Tendinitis	5	1.634	9 0.10	60 3.0	7 183	6	43 0.0	08 0.5	83 0.0	96 0.9
ide	Teliulius		1.034	9	60	7	O	44	07	84	96

liraglut ide	Injection site mass	5	1.634	0.10 9	3.0 60	183 7	6	0.0 45	0.5 07	0.0 85	0.9 96
liraglut ide	Injection site pain	6	2.451	0.11 6	2.4 48	183 7	9	0.0 46	0.5 07	0.0 86	0.9 96
lixisen atide	Injection site urticaria	2	0.075	0.11 7	26. 770	126	4	0.0 47	0.5 07	0.0 87	0.9 95
lixisen atide	Weight decreased (mild not codified separately)	2	0.056	0.11 7	35. 693	126	3	0.0 48	0.5 06	0.0 88	0.9 95
lixisen atide	Product dose omission	2	0.037	0.12 0	53. 540	126	2	0.0 49	0.5 06	0.0 89	0.9 95
exenati de	Injection site nodule	4	1.456	0.12 1	2.7 48	427	23	0.0 50	0.5 06	0.0 90	0.9 95

Relative risk \geq 1, Number of Monte Carlo simulations NB.MC=10,000. False Discovery Rate (FDR)<0.05. Interpretation of items: N (count): number of couples 'active ingredient-ADR' reported; post.H0: posterior probability of null hypothesis; FDR: False Discovery Rate; FNR: False Negative Rate; Se: Sensitivity; Sp: Specificity.

References

- Nauck MA, Meier JJ. Management of endocrine disease: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur J Endocrinol. 2019;181(6):R211–R234. https://doi.org/10.1530/EJE-19-0564
- 2. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740–756. https://doi.org/10.1016/j.cmet.2018.03.001
- 3. Buse JB, Nauck M, Forst T, et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes: a 26-week randomized, open-label trial. Lancet. 2013;381(9861):117–124. https://doi.org/10.1016/S0140-6736(12)61258-3
- 4. Pratley RE, Aroda VR, Lingvay I, et al. Semaglutide versus dulaglutide in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018;6(4):275–286. https://doi.org/10.1016/S2213-8587(18)30024-X
- 5. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–322. https://doi.org/10.1056/NEJMoa1603827
- Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–130. https://doi.org/10.1016/S0140-6736(19)31149-3
- 7. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844. https://doi.org/10.1056/NEJMoa1607141
- 8. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989–1002. https://doi.org/10.1056/NEJMoa2032183
- 9. Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with GLP-1-based therapies. Gastroenterology. 2011;141(1):150–156. https://doi.org/10.1053/j.gastro.2011.02.018
- 10. Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. GLP-1 receptor agonists in the treatment of type 2 diabetes state-of-the-art. Mol Metab. 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102
- 11. Sultana J, Giorgianni F, Fontana A, et al. The safety of GLP-1 receptor agonists: a systematic review. Drug Saf. 2019;42(6):681–698. https://doi.org/10.1007/s40264-019-00795-1
- 12. Persson R, Hedenmalm K, Aagaard L, et al. Spontaneous reports of pancreatitis associated with GLP-1 receptor agonists. Diabetes Obes Metab. 2020;22(2):409–417. https://doi.org/10.1111/dom.13912
- 13. Petit C, Boudiaf N, Drouin J, et al. Drug-induced acute pancreatitis related to GLP-1 receptor agonists: analysis from a pharmacovigilance database. Diabetes Metab. 2022;48(5):101310. https://doi.org/10.1016/j.diabet.2022.101310
- 14. Ferreira JP, Girerd N, Rossignol P, Zannad F. Spontaneous adverse drug reaction reporting in cardiovascular medicine. Eur Heart J. 2018;39(38):3107–3109. https://doi.org/10.1093/eurheartj/ehy415
- 15. Hauben M, Zhou X. Quantitative methods in pharmacovigilance: focus on signal detection. Drug Saf. 2003;26(3):159–186. https://doi.org/10.2165/00002018-200326030-00002

- 16. van Puijenbroek EP, Bate A, Leufkens HG, et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002;11(1):3–10. https://doi.org/10.1002/pds.668
- 17. Bate A, Evans SJW. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427–436. https://doi.org/10.1002/pds.1742
- 18. Norén GN, Hopstadius J, Bate A. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery. Stat Methods Med Res. 2013;22(1):57–69. https://doi.org/10.1177/0962280211403602
- 19. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B. 1995;57(1):289–300.
- 20. Scarpello JHB. The GLP-1 system: physiology and therapeutic applications. Br J Diabetes Vasc Dis. 2001;1(4):224–230. https://doi.org/10.1177/147465140100100406
- 21. Nauck MA, Kemmeries G, Holst JJ, Meier JJ. Rapid gastric emptying of a solid test meal after administration of exenatide in type 2 diabetes. J Clin Endocrinol Metab. 2011;96(1):E884–E886. https://doi.org/10.1210/jc.2010-2681
- 22. Thomas CE, Cadenhead C, Donskey CJ. Off-label and illicit use of GLP-1 receptor agonists for weight loss: a new safety concern. Ann Intern Med. 2023;176(2):261–263. https://doi.org/10.7326/M22-2914
- 23. Sagner M, Meier JJ. Patient-reported barriers to injectable GLP-1 RA use in routine clinical care. Diabetes Ther. 2020;11(2):395–403. https://doi.org/10.1007/s13300-019-00745-x
- 24. EMA. Withdrawal of the marketing authorization for Lyxumia (lixisenatide) and Byetta (exenatide) in the EU. European Medicines Agency; 2024.
- 25. Norén GN, Orre R, Bate A, Edwards IR. Duplicate detection in adverse drug reaction surveillance. Drug Saf. 2007;30(7):607–616. https://doi.org/10.2165/00002018-200730070-00005
- 26. Begaud B, Martin K, Fourrier-Reglat A, et al. Benevolat, usefulness of spontaneous reporting systems for pharmacovigilance: experience and limitations. Therapie. 2002;57(6):569–576. https://doi.org/10.2515/therapie:2002050
- 27. Lopez-Gonzalez E, Herdeiro MT, Figueiras A. Determinants of under-reporting of adverse drug reactions: a systematic review. Drug Saf. 2009;32(1):19–31. https://doi.org/10.2165/00002018-200932010-00002
- 28. Hall GC, Sauer B, Bourke A, Brown JS, Reynolds MW, Casale RL. Guidelines for good database selection and use in pharmacoepidemiology research. Pharmacoepidemiol Drug Saf. 2012;21(1):1–10. https://doi.org/10.1002/pds.2229
- 29. Baldé S, Dutordoir M, Bellet L, Thiessard P. PhViD: Pharmacovigilance Signal Detection [Internet]. R package version 2.2.0; 2019. Available from: https://CRAN.R-project.org/package=PhViD.
- 30. Inácio P, Cavaco A, Airaksinen M. The value of patient reporting to the pharmacovigilance system: a systematic review. Br J Clin Pharmacol. 2017;83(2):227–246. https://doi.org/10.1111/bcp.13098
- 31. AEMPS. Sistema Español de Farmacovigilancia. Available at: https://www.aemps.gob.es/vigilancia-medicamentos-de-uso-humano/farmacovigilancia-en-espana/
- 32. Brown EG, Wood L, Wood S. The Medical Dictionary for Regulatory Activities (MedDRA). Drug Saf. 1999;20(2):109–117. https://doi.org/10.2165/00002018-199920020-00002
- 33. Norén GN, Sundberg R, Bate A, Edwards IR. A statistical methodology for drug safety signal detection in small databases. Drug Saf. 2008;31(6):525–537. https://doi.org/10.2165/00002018-200831060-00008
- 34. DuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat. 1999;53(3):177–190. https://doi.org/10.1080/00031305.1999.10474456
- 35. Noguchi Y, Tachi T, Teramachi H. Factors associated with the prioritization of safety signals detected from spontaneous adverse event reporting. Pharmaceutics. 2021;13(7):1027. https://doi.org/10.3390/pharmaceutics13071027

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.