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Abstract: The increasing deployment of Large Language Models (LLMs) in enterprise settings ne-
cessitates a thorough understanding of their inherent biases, which can lead to unequal outcomes in
multilingual information retrieval, question answering, and language processing. This study presents
a systematic evaluation of bias dimensions in five leading Large Language Models (LLMs)—GPT-4,
Claude, Cohere, Mistral, and DeepSeek—within a multilingual enterprise context. Leveraging a
controlled Retrieval-Augmented Generation (RAG) pipeline and over 250 real-world queries grounded
in corporate documentation, we examined four critical bias types: retrieval bias, reinforcement drift,
language bias, and hallucination. Our results reveal distinct model behaviors: Claude demonstrates
a strong recency preference and sensitivity to input grammar, while Cohere and GPT-4 are notably
susceptible to output drift under repeated queries. Language bias persists across all models, with
reduced performance on Dutch and German inputs relative to English, echoing known cross-lingual
disparities. Notably, hallucination rates were negligible under RAG, reinforcing its value in grounding
responses. These findings underscore the need for robust bias auditing, language-aware deployment
strategies, and retrieval-grounded architectures in enterprise LLM applications.

Keywords: LLM; chatbots; corporate; bias

1. Introduction
Large Language Models (LLMs) are rapidly transitioning from research laboratories to become

integral components of enterprise workflows, powering applications ranging from multilingual
information retrieval systems to sophisticated corporate chatbots. Their capacity to process and
generate human-like text across various languages holds immense potential for enhancing productivity
and streamlining operations within global organizations. However, alongside this transformative
power comes a critical concern: the potential for inherent biases within these models to generate
inequitable or skewed outcomes [41,51].

While prior research has extensively cataloged various forms of bias in NLP systems, often
focusing on singular bias types or employing controlled, monolingual settings [41,50], a comprehen-
sive understanding of the multi-dimensional biases exhibited by LLMs in real-world, multilingual
enterprise environments remains a significant challenge. As LLMs are increasingly deployed as deci-
sion influencers within workplaces, the need to rigorously evaluate and mitigate these biases across
different operational facets becomes paramount [48].

This study addresses this gap by providing a systematic empirical evaluation of four key bias
dimensions prevalent in LLM-powered corporate chatbots: retrieval bias (encompassing recency,
language, grammar, and length preferences) [37], reinforcement bias (investigated through response
drift over repeated queries), hallucination bias (the tendency to generate factually incorrect informa-
tion) [28], and language bias (differential processing of semantically equivalent queries in different
languages) [50].
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Unlike existing work, our investigation leverages real-world multilingual corporate documents
and over 250 targeted user queries to assess the intertwined nature of these biases in a genuine
workplace context. Through a controlled Retrieval-Augmented Generation (RAG) pipeline and robust
statistical analyses on five prominent LLMs (GPT-4, Claude, Cohere, Mistral, and DeepSeek), we aim
to uncover complex, model-specific bias patterns that can significantly impact fair knowledge access
and equitable outcomes within global organizations.

The findings of this study reveal distinct and complex multi-dimensional bias patterns across
the evaluated LLMs when operating in a multilingual enterprise context. This empirical comparison
highlights the nuanced ways different models manifest biases in retrieval, reinforcement, hallucination,
and language processing. The observed variations in bias profiles across these prominent models
underscore the critical need for enterprises to perform rigorous, context-specific evaluations before
deploying LLMs, particularly in multilingual settings where biases can compound or interact un-
expectedly. By empirically evaluating and comparing the multi-faceted biases of prominent LLMs
in a realistic enterprise setting, this work provides crucial insights for organizations seeking to de-
ploy AI globally, ensuring knowledge systems remain accessible and trustworthy across diverse user
populations.

2. Related Work
The increasing deployment of Large Language Models (LLMs) in enterprise settings has spurred

significant research into their capabilities and limitations [41]. A critical area of investigation focuses
on the inherent biases that these models may exhibit, potentially leading to unfair or inconsistent
outcomes across various natural language processing (NLP) tasks [41]. Prior work has extensively
explored different facets of bias in NLP and LLMs, including biases stemming from training data, such
as gender and racial bias in text generation and sentiment analysis [17,18,52].

In the context of Retrieval-Augmented Generation (RAG) systems, "retrieval bias" can occur in
several forms. It can manifest as a preference for newer content ("retrieval recency bias"). It can also
occur when the LLM disproportionately favors certain documents or viewpoints during the retrieval
process, leading to skewed information access [32,43]. Furthermore, "grammatical robustness" is a
concern, as LLMs may deprioritize noisy text even when factually correct and relevant to information
retrieval (as shown by findings that while LLMs generally maintain semantic sensitivity under noisy
conditions, surface-level grammatical cues still influence their rankings). "Length bias" is also relevant,
where LLMs might favor longer documents regardless of content quality (with findings suggesting
that most models show this bias, especially at the top ranks). Furthermore, a critical aspect is "retrieval
language bias," where LLMs exhibit systematic preferences for documents in certain languages over
semantically equivalent documents in others. Studies have shown a consistent language hierarchy in
LLM rerankers, with a strong preference for English at the top ranks [23,39].

The interaction between users and LLMs can also introduce or amplify biases. While Reinforce-
ment Learning from Human Feedback (RLHF) aims to align LLMs with human preferences, the
potential for "reinforcement bias" – where repeated interactions or specific feedback patterns lead to a
drift in the model’s responses – demands careful examination [21,40]. Studies have shown that even
state-of-the-art LLMs are not fully deterministic under repetition [34].

The multilingual nature of global organizations introduces "language bias," where LLMs may
exhibit performance disparities or varying responses based on the input language [23,30]. Prior
research indicates that LLMs can exhibit a consistent internal language hierarchy when processing
semantically equivalent queries in different languages, potentially due to training data imbalance,
cross-lingual transfer limitations, and embedding space distortion [16]. This can manifest as differences
in the language of the response, as well as variations in metrics such as word count and lexical diversity.
Understanding these language-specific behaviors is crucial for ensuring equitable access and effective
communication across diverse user bases [60].
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Another significant concern is "hallucination bias," where LLMs generate plausible-sounding
but factually incorrect information [29]. The propensity for hallucination can vary across models and
contexts, potentially leading to the dissemination of misinformation within enterprise environments
[27]. Evaluating the rate and nature of hallucinations is essential to ensure the reliability of LLM-
powered chatbots [13].

Unlike prior work that often focuses on singular bias types or employs static evaluations, this study
provides a comprehensive empirical evaluation of four key bias dimensions-retrieval, reinforcement
(investigated through repeated queries), language (investigated through identical queries in different
languages), and hallucination in the context of real-world corporate documents and targeted user
queries. Using a controlled RAG-based pipeline and robust statistical analysis, we systematically
examine five prominent LLMs to uncover model-specific bias patterns that impact fairness, transparency,
and trust in enterprise chatbot deployments. This work contributes to the field by offering a multi-
dimensional framework for continuous bias auditing in AI-driven workplace assistants, addressing a
critical need for ensuring responsible and equitable LLM integration in organizational settings [34].

3. Methodology
Our experimental framework is designed to comprehensively evaluate multiple bias dimensions

in LLM-powered corporate chatbots deployed within a multilingual enterprise environment. The
evaluation is organized into four primary components: Retrieval Bias, Reinforcement Bias, Language
Bias, and Hallucination Bias. Each component is addressed with a targeted dataset and experimental
design, as described below.

3.1. Retrieval-Augmented Generation (RAG) Pipeline

A Retrieval-Augmented Generation (RAG) pipeline, orchestrated using the n8n automation
platform (version 1.78.1) [42], was implemented to retrieve and rank documents for the Retrieval Bias
experiments. The n8n workflow comprised the following key steps:

• Data Acquisition: Corporate documents were accessed from a Microsoft SharePoint site using the
Microsoft Graph API. This involved an initial HTTP Request node to the SharePoint site, followed
by subsequent requests and JavaScript code nodes to extract page content, including text and
metadata.

• Segmentation: The extracted text was segmented using the Recursive Character Text Splitter
(LangChain node within n8n) [19] with a chunk overlap of 10 characters to maintain contextual
continuity. Text chunks were transformed into numerical vector representations using the OpenAI
Embeddings model (LangChain node within n8n) [44], specifically the text-embedding-3-large
model. The generated embeddings, along with their corresponding text chunks and metadata,
were stored in a Supabase Vector Store (LangChain node within n8n) [56] for efficient similarity-
based retrieval.

• Retrieval Process: LLM queries were embedded using the same OpenAI Embeddings model.
A similarity search was performed in the Supabase Vector Store to retrieve relevant document
chunks. The retrieved chunks were provided as context to the LLM to generate a ranked list of
documents.

• Automation and Scheduling: The entire workflow was automated using n8n and scheduled to
run periodically (frequency specified in the "Schedule Trigger" node) to ensure the vector store
remained synchronized with updates to the SharePoint data source.

3.2. Dataset Creation and Augmentation

We began with the original company policy documents, which originally contained 66 pages
related to company policies. After identifying and excluding 16 pages with missing content, we
retained 50 original document rows. For each of these documents, we formulated a corresponding test
query—covering topics such as accessing corporate systems, policy inquiries, and operational details.
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To ensure the integrity and cultural relevance of our evaluations, all data augmentations were
performed by human annotators.

• Recency Bias: For every original document, three additional copies were manually created with
identical content but with timestamps set from 0.5 to 5 years in the past. This approach ensured
that only the temporal metadata varied, isolating the effect of recency on document retrieval.

• Retrieval Language Bias: Documents were translated into four languages (English, French,
Flemish/Dutch, and German) by professional translators. This manual translation process
preserved semantic equivalency and accounted for cultural nuances, avoiding potential artifacts
introduced by automated translation tools.

• Retrieval Grammar Bias: Each document was duplicated into two versions—one containing
intentional spelling and grammatical mistakes (e.g., ‘you will able to access’ (missing auxiliary
verb), ‘the administrative documents has to be read’ (incorrect conjugation)), and one kept error-
free. These modifications were introduced by human editors to simulate realistic grammatical or
orthographical errors without altering the core content.

• Retrieval Length Bias: Documents were categorized into short (<600 characters), medium
(600–1300 characters), and long (>1300 characters) by manually editing the content to vary
verbosity. Human editors ensured that the essential information remained consistent across
versions, allowing for the assessment of length-based retrieval preferences.

3.3. Retrieval Bias

For the Retrieval Bias experiments, the RAG pipeline described in Section 3.1 was used to retrieve
and rank the manually augmented documents. The LLMs (GPT-4o [44], Claude 3 Sonnet [14], Mistral
Large [12], Cohere Command A [9], and DeepSeek-V3 [10]), hereafter referenced as GPT, Claude,
Mistral, Cohere and Deepseek respectively, were tasked with ranking the available documents based
solely on relevance, as determined by the RAG pipeline. The ranking was extracted from the LLM’s
output using a regular expression. We statistically evaluated the ranking variations using Chi-Square
tests [25] and visualized the outcomes (e.g., bar charts, ranking distribution plots) to determine if
metadata variations systematically influenced document ranking.

3.4. Reinforcement Bias

To assess reinforcement bias, we selected 10 representative queries and asked each LLM to
respond 50 times. We computed pairwise drift scores between consecutive responses using TF-IDF
vectors generated with the scikit-learn library (version 1.6.1) [46], with default parameters, and cosine
similarity calculated using the standard formula. This generated a quantifiable drift metric that
measures semantic divergence over repeated submissions. Human evaluators rated each set of 50
responses for each query. Evaluators assessed consistency based on a Likert scale of 1 to 5, where 1
indicated low inconsistency and 5 indicated high consistency. Evaluators also provided qualitative
feedback on any observed changes in tone, focus, or factual accuracy.

The drift analysis was implemented as follows: for each base question, responses were grouped
by LLM and ordered by repetition number. Drift between consecutive responses was calculated using
the TF-IDF vectorizer and cosine similarity from scikit-learn [46]. The resulting drift scores were
aggregated for statistical analysis. To compare drift distributions across LLMs, we performed an
ANOVA test using SciPy [57], and, if significant, conducted post-hoc pairwise comparisons using
Tukey’s HSD from statsmodels [54].

3.5. Language Bias

For the Language Bias experiment, identical queries were formulated in four languages (English,
French, Dutch, and German) regardless of the source document’s original language. We analyzed
outputs in terms of response lengths and lexical diversity. Response length was measured in word
count was determined using a tokenizer from the NLTK library (version 3.9.1) [15]. Mann-Whitney
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U tests were performed to detect statistically significant differences among language outputs [38],
and human evaluators assessed the responses for each language in terms of clarity, output language,
completeness, and cultural appropriateness using a rubric with specific criteria.

3.6. Hallucination Bias

To evaluate hallucination bias, we utilized the set of 50 vague or ambiguous questions developed
by our experts. Each model’s response to these queries was collected and subsequently compared
against verified company documents. Human evaluators were tasked with scoring each response
based on its factual accuracy and identifying instances where the model fabricated or exaggerated
information [29]. The hallucination rate was computed as the percentage of responses containing
unverifiable or fabricated content, and the confidence-accuracy mismatch was further analyzed to
evaluate the reliability of the outputs [13].

4. Results
4.1. Retrieval Bias
4.1.1. Retrieval Recency Bias

To assess recency bias, LLMs re-ranked four identical documents differing only in timestamps
(newest, newer, older, oldest) without temporal cues in the prompt (see Section 3.3). Figure 1 shows
the distribution of date categories across top-4 ranks for each model.

Figure 1. Date category distribution across top-4 ranks by model.

Claude strongly favored “newest” at Rank 1 (80% of trials), while GPT and Cohere showed
weaker recency preference; Mistral and DeepSeek were the most balanced. At lower ranks, older
document selection increased across all models.

Retrieval performance metrics (Accuracy, MAE, and Cohen’s Kappa) are summarized in Table
S1 (supplementary). Claude achieved the highest accuracy and agreement, suggesting effective
prioritization of recency-aligned relevance [22,58]. In contrast, GPT and DeepSeek had lower accuracy
and higher MAE [58]. A chi-square test (χ2 = 86.50, d f = 4, p < 0.001) confirmed significant
differences among models [45]. Confusion matrix analysis showed Claude maintained higher F1,
precision, and recall across temporal categories, while GPT and DeepSeek often misclassified older
documents as recent [49].
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4.1.2. Retrieval Grammar Bias

Real-world documents often include orthographic and grammatical variations. While semanti-
cally irrelevant, such noise can affect LLM relevance judgments. We examined model response to gram-
matical errors using Accuracy, MAE, and Cohen’s Kappa across clean vs. noisy input variants[22,58].

Claude showed the strongest preference for clean text (Accuracy: 76.92%, κ = 0.54); GPT was
most indifferent (Accuracy: 56.41%, κ = 0.13). Cohere and DeepSeek fell in between. Confusion matrix
metrics confirmed Claude’s distinct preference pattern across clean and noisy inputs (F1: 0.77). A
chi-square test on top-rank outputs (χ2 = 8.63, d f = 4, p = 0.071) found no statistically significant
differences. Figure 2 visualizes document error category distribution at top rank per model.

Figure 2. Top-rank distribution of grammatically correct (no error) vs. incorrect (yes error) documents.

Claude exhibited a stronger preference for grammatically clean documents at Rank 1, while other
models showed more balance.

4.1.3. Retrieval Length Bias

Length bias refers to disproportionate preference for longer documents. Using semantically
equivalent documents of varying lengths (long, medium, short), we evaluated length preferences
across models (Section 3.3).

At Rank 1, GPT, Claude, and Cohere preferred longer documents; Mistral was balanced; DeepSeek
was evenly distributed. At Rank 3, all models shifted toward shorter selections. Chi-square results
[45] (Table S4, Supplementary) revealed significant associations at Rank 1 (χ2 = 22.84, p = 0.0036) and
Rank 3 (χ2 = 20.68, p = 0.0081), indicating model-specific biases. No significant difference was found
at Rank 2 (p = 0.6690).
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Figure 3. Document length distribution across top-3 ranks.

4.1.4. Retrieval Language Bias

To assess multilingual fairness, models re-ranked equivalent documents in English, French, Dutch,
and German (Section 3.3). Figure 4 shows language preferences across top-4 ranks.

All models preferred English at Rank 1, with Claude and DeepSeek leading. Subsequent ranks
showed a consistent shift: French (Rank 2), Dutch (Rank 3), and German (Rank 4), especially pro-
nounced in Claude.

Chi-square results [45] confirmed significant associations between model and language at Ranks
1 (p = 0.0010), 2 (p = 0.0192), and 4 (p = 0.0196). No significant association was observed at Rank 3
(p = 0.2499), suggesting relative consistency across models at that position.
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Figure 4. Language distribution across top-4 ranks by model.

4.2. Reinforcement Bias

A reliable chatbot should exhibit consistent behavior when presented with identical queries over
time. However, LLMs, being inherently stochastic systems, may be susceptible to reinforcement bias - a
phenomenon characterized by response drift, where outputs gradually shift across repeated exposures
to the same prompt [21,41]. This subtle form of instability can have significant implications for the
reproducibility and reliability of LLM-based systems, particularly in user-facing or regulatory-sensitive
applications such as legal search and medical question answering [17,52]. Therefore, understanding
and quantifying this drift is crucial for ensuring the robustness and trustworthiness of LLM chatbots
in real-world deployments.

We analyzed semantic drift across 50 responses to 10 repeatedly presented prompts for all five
LLMs. Using a TF-IDF/cosine similarity-based metric computed with scikit-learn [46], we calculated
pairwise drift scores for each repetition sequence. A one-way ANOVA showed a statistically significant
effect of model type on drift (F = 15.12, p < 0.0001) [57]. Tukey’s HSD test further identified model pairs
with significant differences in mean drift scores [54]. Full results are provided in the Supplementary
Materials (Table S6).

Notably, Cohere exhibited significantly higher average drift than Claude, GPT, and Mistral.
Claude showed significantly lower drift than GPT. DeepSeek and Mistral had intermediate drift, not
significantly different from Claude or GPT. These findings suggest that some LLMs are more prone to
semantic variation than others under repeated identical queries.

To assess whether these drift patterns were noticeable or impactful to humans, we conducted a
parallel human evaluation. Human raters scored response quality over 50 repetitions for each model
using a 1–5 scale, considering relevance, completeness, and tone stability.

Figure 5 shows that average scores remained mostly stable across iterations for all models. While
Cohere and Mistral showed more fluctuation, no model displayed a steady downward trend in quality.

Regression and Kendall’s Tau analyses (Table S7, supplementary material) found no statistically
significant trends across repetitions (p > 0.2), confirming visual impressions of temporal stability [31].

As shown in Figure 6, average quality scores differed by model. Claude ranked highest (4.60),
followed by GPT (4.25). Mistral, Cohere, and DeepSeek scored lower, at 3.86, 3.48, and 3.28, respectively.

Score variability (Figure 7) reinforces these differences: Claude responses were consistently rated
highly, while Cohere and DeepSeek showed wider distribution and lower medians.
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Figure 5. LLM Scores by Iteration

Figure 6. Average Score by LLM Model

Figure 7. Score variability per LLM

In sum, while semantic drift is detectable computationally, its perceptual impact over 50 repetitions
appears limited. However, differences in mean scores and variability indicate that models like Claude
and GPT maintain more consistent quality, reinforcing their robustness in repeated-query contexts.
Full pairwise drift statistics are available in Table S6 of Supplementary Materials.

4.3. Language Bias

The widespread use of multilingual LLMs necessitates robust evaluation of their linguistic consis-
tency and fairness [16,23,30]. Ideally, LLMs should perform uniformly across languages, particularly
for semantically equivalent prompts. However, uneven training data and multilingual modeling
challenges can introduce "language bias"-systematic output differences based solely on the response
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language [16,41]. These disparities may affect quality, tone, and verbosity, with ethical and UX
implications in sensitive domains such as education, healthcare, and global customer service.

This study investigates the language adherence behavior of all five LLMs across four languages:
English (en), French (fr), Dutch (nl), and German (de). For each model, we analyzed responses to 20
prompts per language and measured whether replies matched the prompt language.

As shown in Figure 8, adherence varied widely: DeepSeek (96.25%), Claude (83.75%), GPT
(82.50%), Mistral (51.25%), and Cohere (26.25%). All models consistently maintained English responses,
but significant variation across other languages was observed for all except GPT (χ2(3) = 7.27,
p = 0.064). Cohere (χ2(3) = 75.09, p < 0.001) and Mistral (χ2(3) = 36.17, p < 0.001) showed the
strongest divergence. Claude (χ2(3) = 17.18, p < 0.001) and DeepSeek (χ2(3) = 9.35, p = 0.025)
exhibited smaller but significant variation. See Tables S8–9 in the Supplementary Material for detailed
statistics [45].

Figure 8. Same-language response counts per LLM and prompt language.

We also analyzed response verbosity (Figure 9). Mistral produced the longest outputs across all
languages, especially for French and German. GPT generated the shortest, while Claude, Cohere, and
DeepSeek fell between, with average lengths of 115–160 words.

Figure 9. Average response length (in words) by model and language.

Lexical diversity was evaluated using the Unique Word Ratio (UWR), defined as the number
of unique words divided by total word count (Figure 10). GPT, DeepSeek, and Claude achieved the
highest diversity (typically UWR > 0.68), especially in German and French. Cohere and Mistral had
the lowest diversity (UWR ≈ 0.59 − 0.63). Notably, verbosity did not predict diversity: Mistral’s long
outputs had low UWR, while GPT’s concise responses maintained high diversity. Word counts and
tokenization were performed using the NLTK library [15].
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Figure 10. Average unique word ratio (lexical diversity) by LLM and prompt language.

To complement quantitative metrics, we conducted a human evaluation of the generated re-
sponses. Figure 11 presents the average scores (1–5 scale) assigned by human raters across models.
DeepSeek received the highest overall rating (mean ≈ 4.9), indicating strong perceived response
quality. Claude and GPT also performed well, with averages around 4.3 and 3.95, respectively. Mistral
(≈ 2.4) and Cohere (≈ 2.3) were rated significantly lower.

Figure 11. Average human evaluation scores (1–5 scale) for each LLM, with error bars representing standard
deviation.

These subjective assessments corroborate earlier findings: models with high language adherence
and lexical diversity (e.g., DeepSeek, Claude) tend to be rated more favorably, while models that
diverged from the prompt language or produced verbose yet less diverse outputs (e.g., Mistral) received
lower scores. The alignment between quantitative indicators and human judgments strengthens the
validity of our evaluation framework.

4.4. Hallucination Bias

To evaluate hallucination bias, we utilized a set of 50 vague or ambiguous questions. The
responses were compared against verified company documents, and human evaluators identified
instances of fabricated or exaggerated information [13,29].

Contrary to the expectation that ambiguous prompts might elicit hallucinations, our analysis
revealed that none of the evaluated large language models exhibited any instances of hallucination in
their responses to the 50 ambiguous questions. All information provided was verifiable against the
company documents, resulting in a 0% hallucination rate across all models. Consequently, an analysis
of confidence-accuracy mismatch was not applicable. This finding suggests that for the specific type of
ambiguous queries and the provided knowledge source, these models demonstrated a strong ability to
avoid generating unverified information.

5. Discussions
We observed distinct biases across the systems. Claude’s outputs heavily favored recently

retrieved passages (a strong recency effect), paralleling known primacy/recency biases in long-context
models [33,36]. This aligns with findings that LLMs tend to focus on the start and end of long
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documents, potentially overlooking information in the middle [3]. Claude was also sensitive to minor
perturbations such as grammatical errors, suggesting that information might be undervalued due to
textual errors.[20,35]. This finding calls for caution, especially considering the employment of LLMs in
environments where information should be treated irrespective of its linguistic quality. In contrast
to Claude, both GPT and Cohere displayed more indifference when confronted with irregularities
such as typos or grammatical errors. However, the same models exhibited higher instability when
repeated queries were presented, reflecting that such small input noise can degrade LLM performance
[26,47]. This instability can manifest as output drift over repeated queries [5]. DeepSeek’s retriever
maintained high fidelity to the query language (minimal cross-language drift) [11,59] but showed
variable semantic drift: it sometimes returned topically related but semantically off-target documents
[6,20]. This might be due to DeepSeek being primarily designed as a reasoning engine rather than
for generating embeddings for retrieval [20]. All systems performed best on English documents;
in our tests, French, Dutch, and German queries yielded significantly lower accuracy, consistent
with prior evidence that LLMs often underperform on lower-resource languages [30]. This English-
centric behavior is observed even in multilingual LLMs, where internal processing often occurs in a
representation space closer to English [24,53].

Crucially, we did not observe any hallucinated outputs. Because our pipeline grounded generation
in retrieved documents (a retrieval-augmented setup), answers were always based on provided
content. This aligns with reports that RAG architectures substantially reduce hallucinations and
improve factual accuracy [29,55]. RAG ensures that the model has access to accurate and up-to-date
information, reducing the likelihood of generating incorrect or outdated content [1,7,8]. These findings
have important implications for enterprise deployment. A strong recency bias means that knowledge
management systems should explicitly index and surface older but relevant documents to avoid
favoring only recent information [3]. Grammar-sensitive models like Claude suggest the need for
input sanitization or correction to accommodate varied writing styles [35]. The fragility of LLMs to
noise highlights the importance of robust prompt engineering and output validation in mission-critical
applications [2,4]. The English-language preference implies that global deployments cannot assume
equal performance across languages; practitioners should verify LLM accuracy for each target language
or employ multilingual retrieval strategies [30]. Importantly, the absence of hallucinations under RAG
grounding demonstrates the benefit of integrating retrieval: grounding answers in real documents
drastically improves factual reliability [8,55]. Consistent with our observations, recent work stresses
that deploying RAG-based LLMs at scale requires strong governance (e.g., modular design, continuous
evaluation) to detect and mitigate biases or misinformation [34,41].

Our study has several limitations. We relied on synthetic documents and controlled prompt
variants to isolate specific biases, which may not capture the full complexity of real-world enterprise
data or adversarial queries. We focused on a narrow domain (enterprise knowledge bases) and a few
languages, so our findings may not generalize to other sectors or truly low-resource settings. We also
evaluated only particular commercial models; different architectures or fine-tunings might exhibit
different bias patterns. These constraints suggest caution in extrapolating our results beyond the tested
conditions.

Future work should address these gaps.
Multilingual bias mitigation: Developing retrieval or training methods (e.g., language-agnostic

embeddings or fairness-aware reranking) can help equalize performance across languages [59]. Tech-
niques like cross-lingual debiasing have shown promise in reducing bias across languages. Drift
detection tools: Implementing monitoring that measures semantic consistency between queries and
retrieved documents over time could flag when the model starts diverging from intended topics [34].
Public dashboards are being developed to track model drift over time, providing valuable insights
into the stability of LLMs. Realistic evaluation: Extending this analysis to live enterprise traffic and
additional low-resource languages will verify whether the observed biases persist in practice and will
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refine guidelines for robust deployment. Further research could also explore the impact of different
RAG configurations and knowledge sources on mitigating these biases [29,55].

6. Conclusion
Based on the analysis of the bias profiles of the five evaluated LLMs, the following conclusions

and recommendations can be made for enterprises considering their deployment:
Claude: Its strong recency preference makes it potentially suitable for applications where the

most up-to-date information is critical, and where the quality of input (grammar) can be controlled or
is generally high. However, it might be less ideal for scenarios that require accessing older information
or processing noisy user input. GPT-4: While highly capable, its susceptibility to output drift under
repeated queries necessitates careful management for applications involving multiple interactions. The
observed language bias also needs to be taken into account for multilingual deployments. Cohere: Its
lower adherence to non-English prompt languages makes it less suitable for multilingual applications
requiring strict language matching. It is also prone to output drift, which should be considered for
consistency-critical use cases. Mistral: Offers a balanced approach to recency in retrieval, which can
be advantageous in many scenarios. However, its limitations in language adherence for multilingual
applications need to be addressed through careful evaluation and potential fine-tuning. DeepSeek:
Emerges as a strong candidate for multilingual enterprise environments due to its high fidelity to the
query language and balanced recency preference. While some language bias was still observed, it
appears to be less pronounced compared to other models.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org.
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