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Abstract: Cryo-electron microscopy (Cryo-EM) has revolutionized structural biology by enabling the
determination of high-resolution 3-Dimensional (3D) structures of large biological macromolecules. Protein
particle picking, the process of identifying individual protein particles in cryo-EM micrographs for building
protein structures, has progressed from manual and template-based methods to sophisticated artificial
intelligence (Al)-driven approaches in recent years. This review critically examines the evolution and current
state of cryo-EM particle picking methods, with an emphasis on the impact of AL. We conducted a comparative
evaluation of popular Al-based particle picking methods, using both general machine learning (ML) metrics
and specific cryo-EM structure determination metrics. This analysis involved constructing the 3D density map
from the picked protein particles and assessing the obtained resolution and particle orientation diversity,
underscoring the significant impact of Al on cryo-EM particle picking. Despite the advancements, we also
identified key obstacles, such as handling complex micrographs with small proteins. The analysis provides
insights into the future development of more sophisticated and fully automated AI methods in cryo-EM
particle recognition.

Keywords: cryo-electron microscopy; protein particle picking; artificial intelligence; machine
learning; structural biology

Introduction Background

Cryo-EM is a technique that involves imaging biological samples at cryogenic temperature using
electron beams to produce 3D structures of biological macromolecules. It first rapidly freezes
biological samples (e.g., proteins and viruses) to preserve their native state and then images them
with an electron microscope to capture numerous 2D projections. These projections are
computationally combined to reconstruct a detailed 3D structure of the sample [1,2]. Cryo-EM has
revolutionized structural biology by allowing researchers to visualize intricate large molecular
structures, leading to significant advancements in understanding the functions of proteins, viruses,
and their dynamic assemblies.

Over the past decade, cryo-EM technology and data analysis have advanced rapidly. These
advancements encompass improvements in microscope hardware, sample preparation methods,
image processing techniques, and software algorithms. Notably, the enhancement of optical
performance in electron microscopes has enabled reaching atomic resolutions of 1.25 A, surpassing
the previous 1.5 A barrier. Additionally, innovations in image processing powered by artificial
intelligence (AI) and machine learning (ML) (particularly deep learning) have been crucial,
advancing the state of the art in cryo-EM reconstruction workflows [3]. Furthermore, the
development of user-friendly software packages and AI/ML-based tools has streamlined data
processing, leading to high-quality 3D reconstructions and the progress towards the complete
automation of cryo-EM data processing pipelines. Moreover, the advancements in cryo-sample
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preparation methods have addressed challenges such as protein denaturation and aggregation,
ensuring higher quality and reproducibility of samples for 3D reconstruction [1,4]. These combined
advancements have propelled cryo-EM towards routine high-resolution protein structure
determination, marking a significant milestone in structural biology.

2. What is Cryo-EM Particle Picking?

Particle picking is the first critical step in the cryo-EM data analysis, which involves identifying
and selecting individual particles of interest (Figure 1), such as biological macromolecules (usually
proteins, nucleic acids, lipid complexes, and viruses), from electron micrographs to reconstruct their
3D structures. This review is focused on picking protein particles. Accurate particle picking is
crucial for obtaining high-resolution structures, aiding in understanding biological processes at the
molecular level and advancing drug discovery and disease research [5][6][7][8]. In the early days,
manual particle picking was the main approach used in the cryo-EM data analysis, requiring
researchers to visually identify individual particles and manually mark their positions (as
exemplified in Figure 1C) to facilitate further analysis and reconstruction of their 3D structures [2].
This approach is labor-intensive and challenging as the particles are barely visible to the naked eyes
in complex cryo-EM micrographs.

Following the manual particle picking, template-based picking methods [9,10] emerged as a
more efficient alternative, by using some manually predefined particle templates to automatically
recognize and extract more particles from micrographs. This approach reduced the time and
subjectivity associated with manual picking, allowing for higher throughput and more consistent
results.
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Figure 1. Overview of the cryo-EM particle picking workflow. (A) A stack of 2D movie frames
(micrographs). (B) Motion-corrected 2D micrographs. (C) Particle picking via manual, template-based
or automatic methods (green circles indicate picked particles). (D) Initial 2D particle classes
containing both true particles and false positives. (E) Selected protein particles for 3D structure
reconstruction.

While the template-based picking improved efficiency, it faces challenges such as template
variability and difficulty in handling heterogeneous samples, leading to inaccurate and incomplete
particle selection. These limitations spurred the emergence of Al-based particle picking methods,
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which leverage machine learning algorithms to automatically identify particles from cryo-EM
micrographs, overcoming the shortcomings of manual and template-based approaches. Al-based
picking offers enhanced accuracy, scalability, and adaptability to diverse sample types, significantly
advancing cryo-EM data processing and comprehensive structural analysis of biological
macromolecules.

3. The Challenges in Particle Picking and the Resources to Tackle Them

Particle picking in cryo-EM poses several challenges related to the complex nature of cryo-EM
micrographs. These challenges include the low signal-to-noise ratio (SNR) of the original
micrographs, resulting in highly noisy images due to radiation damage and various noise sources
such as low contrast, particle overlap, ice contamination, and amorphous carbon [2,11]. Additionally,
the intricate shapes of proteins, variations in particle sizes and orientations, and the presence of
artifacts further complicate the particle picking process [11].

One key step to tackle the challenges is the creation of high-quality datasets of cryo-EM
micrographs to train and test particle picking methods. EMPIAR [12] is a large, important database,
storing high-quality raw electron microscopy data (e.g., cryo-EM micrographs) from various EM
techniques. CryoPPP [2] is an expert-curated dataset comprised of cryo-EM micrographs with labeled
protein particle coordinates to facilitate the training of AI and ML models for automated particle
picking. The dataset includes raw micrographs, motion correction files adjusted for imaging artifacts,
particle stacks of manually identified protein particles, and ground truth labels (coordinates)
detailing true positives and common false positives like ice contamination and carbon edges.

In addition to data resources, recent advancements in computer vision techniques can be used
to preprocess cryo-EM micrographs to enhance their quality for particle picking. Key tools include
OpenCV [13], offering functions for image noise reduction, edge detection, and contrast enhancement
crucial for protein particle visibility. Similarly, for machine learning developers, Scikit-Image
provides various denoising and segmentation tools like Non-Local Means and watershed
segmentation, which can be used in pre-processing cryo-EM micrographs.

4. Emergence of Al in Particle Picking

Over the last two decades, Al methods, particularly machine learning and deep learning
techniques, have been developed to automate and improve particle picking efficiency and accuracy.
In this section, we delve into the Al-based methods, including both classical methods (summarized
in Table 1) and advanced deep learning methods (summarized in Table 2) that have gradually
advanced particle picking in cryo-EM. We examine their principles, performance, and potential to
overcome existing hurdles in the field.

5. Classical Particle Picking Methods

Earlier in 2004, Mallick et al. presented a pioneering machine learning approach for automated
particle picking in cryo-EM micrographs, employing the Adaboost learning algorithm [14]. Their
discriminative algorithm learned essential features of particle appearance from training examples,
enabling generic detection unrestricted by particle shape or size. It trained a cascaded classifier using
Adaboost, which was augmented by rotating test micrographs over various orientations to enhance
detection versatility. However, the method encountered difficulties in assessing particle detection
performance due to variability in particle labeling by different microscopists and the complexity of
protein shapes in micrographs. The dataset used by the method only included ground truth labels
only for particles of rectangular shape, leading to suboptimal performance of recognizing particles of
circular shapes and potential biases in evaluation. Additionally, the method's reliance on a specific
feature type (rectangular features derived from templates) and a single training methodology,
Adaboost, was noted as a limitation, suggesting that exploring more feature types and training
approaches might offer greater accuracy.
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gEMpicker [15] is a particle picking method leveraging parallel programming techniques
distributed across GPUs and CPU cores in a computer cluster to efficiently gather and combine
cluster calculation results, thereby enhancing overall picking throughput for generation of higher
resolution 3D cryo-EM density maps from picked particles. gEMpicker's performance was
evaluated with various Fast Fourier Transform (FFT) libraries. Given that most computational costs
stemmed from FFT-based normalized cross-correlation (NCC) calculations, the choice of FFT library
significantly influenced the performance. This study found that FFT size and zero-padding were
important for efficiency optimization.

Langlois et al.'s method, AutoPicker [16], represented an advancement in selecting particle
images in low-contrast conditions, outperforming manual selection on close-to-focus micrographs
and leading to improved or comparable 3D reconstruction resolution. Leveraging unsupervised
learning, AutoPicker minimized manual intervention, requiring only the approximate size of the
macromolecule to be picked as input. Employing template matching and unsupervised learning,
AutoPicker identified potential particles while excluding contaminants and noise windows, thereby
enhancing particle selection accuracy. Its View Classifier (ViCer) further refined candidate particles,
particularly in cases with contaminants, contributing to improved accuracy in noisy micrographs.
The integration of real-time feedback mechanisms and adaptive algorithms was proposed to enhance
the system's performance over time for effective handling of diverse macromolecules.

APPLE Picker [17], developed in 2018, tackled cryo-EM particle picking with a template-free
approach, reducing user effort and bias. By leveraging cross-correlation with a reference set derived
from cryo-EM micrographs themselves, it efficiently identified particles and minimized false
positives. However, this dependence on cross-correlation could be susceptible to noise mimicking
particles, and the method's effectiveness can vary substantially with respect to particle complexity.

Table 1. A list of classical Al methods for particle picking, their techniques and train/test data.

SN | Method Techniques Train/Test Data Year

1 | Mallick et al.’s method [14] | Adaboost Learning Algorithm | Keyhole Limpet Hemocyanin (KLH) [18] | 2004

Roseman’s NCC Matching

2 | gEMpicker [15] Keyhole Limpet Hemocyanin (KLH) 2013
Algorithm
Langlois et al’s method | Principal Component Analysis | VA-ATPase from T. Thermophilus HBS8
3 2014
[16] (PCA) and Otsu’s Algorithm And 70S Ribosome from E. Colj,

B-Galactosidase, T20S Proteasome, 70S

4 | APPLE picker [17] Support Vector Machine Ribosome, and  Keyhole  Limpet | 2018
Hemocyanin (KLH)
80S Ribosome and Beta-Galactosidase

5 | SuperCryoEMPicker [19] Super-Clustering Approach 2019
Datasets

Apoferritin Dataset [21] and Keyhole
6 | AutoCryoPicker [20] Unsupervised Clustering 2019
Limpet Hemocyanin (KLH) Dataset

Segmentation-Aware Synergy | EMPIAR-10028, EMPIAR-10097, and
7 | Lietal [22] 2022
Framework EMPIAR-10333

Al-Azzawi et al. proposed two methods in 2019: AutoCryoPicker [20] and SuperCryoEMPicker
[19]. AutoCryoPicker carried out micrograph cleaning and particle shape detection using a
customized Circular Hough Transform algorithm. This technique efficiently identified particle
shapes and centers, facilitating accurate particle selection through the creation of bounding boxes.
Notably, the method incorporated a series of image preprocessing steps, and introduced an intensity
distribution model for particle clustering, demonstrating superior performance over traditional
clustering algorithms like K-means and Fuzzy C-Means (FCM) [20]. SuperCryoEMPicker introduced
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a super-clustering technique designed to handle complex shapes, irregularities, and low SNR in
particle images. The approach consisted of three primary stages: pre-processing, particle clustering,
and particle selection. It surpassed traditional clustering methods like k-means, fuzzy c-means
(FCM), and intensity-based cluster (IBC) by incorporating super-pixel algorithms. The pre-processing
stage involved various image enhancement procedures, such as global intensity adjustment, contrast
enhancement, noise suppression, and edge enhancement, aimed at improving cryo-EM image quality
and enabling more precise particle detection [19]. Finally, in the particle picking stage, a final set of
particles was selected and picked from the clustered candidates after post-processing steps like
binary mask cleaning and particle property measurement.

In 2022, Li et al. introduced a segmentation-aware synergy network, which incorporated an
instance-level attention regression module during denoising to address vulnerable feature
representation challenges and bridge the gap between denoising and recognition tasks [22]. By
treating particle selection as a semantic segmentation problem, the method enhanced the semantic-
level label generation pipeline, overcoming some limitations of traditional mask obtainment
techniques, particularly for datasets with missing angle information. The proposed multitask
ensemble learning framework enhanced the synergy between denoising and downstream
recognition, resulting in reliable location estimations for single particle analysis. The method was
trained with pixel-level denoising loss, instance-level denoising loss, and particle segmentation loss.
The segmentation loss was implemented as the binary cross-entropy (BCE) loss function for
supervised training.

6. Advanced Deep Learning Methods

In 2016, DeepPicker [23] introduced an iterative process to train its particle picking model, where
top predicted particles from initial training steps were incorporated as new training data. It used a
convolutional neural network (CNN) with a pooling layer to manage model complexity and prevent
overfitting, thereby enhancing its capability to differentiate correct particles from background noise.
Recall, precision, and center deviations were used to evaluate picked particles against ground-truth
particles. Additionally, 2D clustering and class averaging were employed to validate the quality and
accuracy of the selected particles. However, despite the efforts to mitigate overfitting through the
pooling layer and iterative refinement, DeepPicker remained susceptible to overfitting the training
data, limiting its generalizability to unseen datasets.

DeepEM [24] employed a deep CNN for single particle recognition, which was trained with
labeled 'good' and 'bad' particles to differentiate desired features from undesired ones, facilitating
template-free particle picking and reducing reference particle-dependent bias. The performance
evaluation, conducted via precision-recall curves, demonstrated its good accuracy and efficiency in
automated particle extraction. However, DeepEM was shown to be effective for feature-rich cryo-EM
micrographs but struggled with datasets lacking distinctive particle features.

Xiao et al. presented an approach for automated particle picking in 2017 using Fast R-CNN [25],
a deep learning-based object detection framework [26]. It employed a 'Cross Molecule Training
Strategy' to train the CNN with particles of various protein complexes to capture common latent
features in protein particles, facilitating efficient and generalized particle picking without human
intervention. The optimization of box-step settings for regions of interest (Rol) balanced GPU
memory constraints and accuracy requirements, enhancing the overall performance. Several
potential enhancements to this method include exploring advanced image processing techniques for
data preprocessing, Rol proposal generation, and false positive reduction to improve efficiency and
accuracy. Additionally, investigating alternative neural network architectures or employing
ensemble learning methods may further enhance particle picking performance. The continuous
refinement of the training strategy, such as incorporating more diverse training datasets or fine-
tuning network parameters, could enhance method robustness and adaptability to different protein
particle types.
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In 2019, five deep learning methods including Pixer, HydraPicker, CrYOLO, Wrap and Topaz
were developed, leveraging cutting-edge algorithms in deep learning and computer vision to
enhance the accuracy and efficiency of identifying particles.

PIXER [27] adopted an image segmentation-based approach, utilizing a deep neural network
architecture. It first trained a classification network and then leveraged its parameters to expedite the
segmentation network's training. During testing, cryo-EM micrographs were inputted into the
segmentation network to generate probability density maps. Preliminary particle coordinates were
obtained using a grid-based local-maximum method, followed by a classification network to
eliminate false positive particles. The classification network was equipped with multiple parallel
Atrous convolution channels [28], enabling the processing of multiscale particles. The segmentation
network's performance was evaluated using pixel intersection-over-union criteria on a validation
dataset. It used a grid-based local-maximum method to pinpoint particles from the probability
density maps, enhancing both accuracy and efficiency in particle selection.

HydraPicker [29] developed a customized CNN architecture based on ResNet, with larger filters
and group normalization layers. Its multi-headed design, comprising shared and dataset-specific
heads, facilitated effective handling of unseen particles. Furthermore, the model was trained on
different kinds of particles, combining specialized and generic models. Through a fully convolutional
design, it divided the model into shared and specialized parts. Exploring limited data scenarios, it
introduced a few-shot learning approach, enhancing adaptability to new datasets. While the method
presented a couple of advancements in automated particle picking, it carried limitations. Firstly, its
focus on specific particle structures during training may limit the model's generalizability to a
broader range of datasets and particle types, potentially constraining its applicability in diverse
experimental settings. Moreover, the complexity of the proposed methodology, particularly with
multiple specialized heads and a shared trunk, may have high computational cost, necessitating
careful optimization and resource allocation for practical deployment.

CrYOLO [30] introduced a “You Only Look Once’ (YOLO) framework for automated particle
picking, employing a 21-layer CNN for accurate particle detection. By reformulating the classification
problem as a regression task, it predicted particle positions in a single pass of the full image,
significantly speeding up the process compared to traditional methods. Despite training with a
relatively small number of particles per cryo-EM micrograph dataset, CrYOLO achieved high recall
and precision rates at a speed of up to five micrographs per second. The method may be further
improved via transfer learning by pre-training it on diverse datasets first and then fine-tuning it to
improve the generalization capability. Additionally, applying additional data augmentation
techniques during training, such as rotation and scaling, might enhance robustness. Furthermore,
incorporating domain-specific knowledge or constraints into the model, such as particle size
distribution, may improve accuracy and efficiency in particle picking.

Warp [31] introduced a particle-picking method centered on the BoxNet machine-learning
algorithm, a fully convolutional ResNet architecture comprising 72 layers. Trained on both real cryo-
EM micrograph data from the EMPIAR repository and synthetic data simulated from Protein Data
Bank (PDB) structures, BoxNet adeptly masked out high-contrast artifacts like ethane. The system
incorporated a retraining interface, enabling users to fine-tune BoxNet's performance by supplying
positive examples of particle positions. Notably, Wrap's BoxNet model had some advantage in
dealing with heterogeneous datasets, exhibiting superior performance over some alternative models
such as crYOLO or RELION [32] 3.0's Laplacian of Gaussian approach.

Table 2. A list of advanced deep learning methods for protein particle picking, their techniques and
train/test data.

SN | Approach Techniques Train/Test Data Year

Deep Learning (using Cross- | y-secretase, spliceosome, TRPV1, b-galactosidase, N-
1 DeepPicker [23] 2016
Molecule Training Strategy) ethylmaleimide sensitive factor complex
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7
Convolutional Neural | 800 manually selected particle images from the
2 | DeepEM [24] 2017
Network (CNN) keyhole limpet Hemocyanin (KLH) dataset
Xiao et al’s | Region-based Convolutional
3 Gammas, Spliceosome, Trpv1 2017
method [26] Network (R-CNN)
Convolutional ResNet | EMPIAR-10097, EMPIAR-10045, EMPIAR-10078,
4 | Warp [31] 2019
Architecture EMPIAR-10061, EMPIAR-10164, EMPIAR-10153
TedAl toxin subunit, Drosophila transient receptor
SPHIRE-crYOLO | Deep Learning (Based on | channel NOMPC, human peroxiredoxin-3 (Prx3),
5 2019
[30] YOLO) simulated data of the canonical TRPC4 ion channel,
and keyhole limpet hemocyanin (KLH)
6 HydraPicker [29] ResNet Architecture Data from Warp [31] 2019

beta-galactosidase, influenza hemagglutinin trimer,
Plasmodium falciparum 80S ribosome, cyclic
7 | Pixer [27] Deep Neural Network 2019
nucleotide-gated ion channel, and GroEl + TRPV1,

KLH, bacteriophage MS2, and rabbit muscle aldolase

EMPIAR-10025, EMPIAR-10096, EMPIAR-10028,
8 | Topaz[33] Positive U learning CNN 2019
EMPIAR-10261, EMPIAR-10234, and EMPIAR-10096

DeepCryoPicker

9 Unsupervised Learning Apoferritin, KLH, 80S ribosome, 3-galactosidase 2020
[34]
McSweeney etal.’s | Convolutional Neural | EMPIAR-10204, 10218, 10028, 10335, 10184, and

10 2020
method [35] Networks 10059.

Double Convolutional Neural
11 | DRPnet [36] TRPV1 dataset (EMPIAR-10005) 2021
Network (CNN) Cascade

End-to-End Transformer- | EMPIAR-10093, EMPIAR-10017, EMPIAR-10028,
12 | TransPicker [37] 2021
based Architecture EMPIAR-10096, EMPIAR-10406, and EMPIAR-10590

TcedAl (EMPIAR 10089), HCN1 (EMPIAR 10081),
Full Resolution Residual
13 | CASSPER [38] TRPV1 (EMPIAR 10005) and b-galactosidase | 2021
Network (FRRN)
(EMPIAR 10017)

71 human 80S ribosomal micrographs, 30 HCN1
U-Net based residual intensive
14 | Urdnet [39] micrographs, 24 TcdAl micrographs, and 16 KLH | 2022
neural network

micrographs
15 | CryoSegNet [40] U-Net + SAM Model CryoPPP [2] 2024
CryoTransformer Transformer + ResNet
16 CryoPPP [2] 2024
[41] Architecture

Topaz [33] is one of the widely used particle picking methods, which is based on a positive-
unlabeled (PU) learning method, minimizing the need for extensive manual labeling by training the
classifier with few labeled positive regions and unlabeled regions. It used a Generalized Expectation
(GE) criteria to mitigate overfitting, improving prediction accuracy with minimal labeled data.
Leveraging CNNs in conjunction with the PU learning, Topaz retrieved more particles at a low false-
positive rate. However, manual examination of class averages of true particles or false positives
picked by Topaz could be time-consuming and subjective.
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In 2020, DeepCryoPicker [34] was developed to train a deep learning network using 'good' and
'bad’ particle examples, similar to DeepEM [24]. However, the key difference was its use of a sliding
window technique to classify sub-images as particles or background. To further improve
performance, techniques like Non-Maximum Suppression (NMS) were utilized during testing to
reduce false positives. Moreover, the method applied data augmentation and preprocessing steps to
enhance the quality of low signal-to-noise ratio micrographs.

In the same year, McSweeney et al. proposed a self-supervised workflow for particle picking,
employing an iterative strategy with 2D particle class averaging and a progressively improved CNN
[35]. Automation was achieved through defining a threshold (%/Res: the proportion of particles in a
2D class average to the total particle count), minimizing user input. The iterative process optimized
a fine-tuned CNN-based particle picker, enhancing particle picking quality. While offering
automated particle picking and integration into single-particle analysis packages, the method
required additional 2D and 3D particle classifications to filter out damaged particles. Efficiency
limitations were noted for small particles, regardless of the picking program used. Though aiming to
eliminate trial-and-error parameters, the dependence on data-dependent parameters such as particle
size remained a limitation.

In 2021, TransPicker [37] introduced a framework leveraging the crDETR module based on a
transformer-based detection method for 2D particle picking. Using an improved deformable
Transformer [42], TransPicker adeptly handled particle relocation and global context without using
traditional components like anchors or sliding windows [43], reaching rapid convergence with a
combined loss function. The framework addressed limitations in object query numbers through a
divide-and-conquer algorithm and incorporated optimizations such as denoising, enhancing
(sharpening edges and contours), and adding masks to carbon region to improve accuracy. Moreover,
it implemented particle filtering techniques and applied masks on carbon regions and ice
contaminants to further reduce false positive ratios.

In the same year, CASSPER [38] utilized semantic segmentation, a deep learning technique
enabling pixel-level classification in cryo-EM micrographs, to streamline particle identification
without manual picking. It used the Contrast Limited Adaptive Histogram Equalization (CLAHE) to
enhance particle detection in challenging conditions, delivering robust performance. While
streamlining particle picking, iterative 2D classification and 3D refinement steps were still necessary
for detailed structural analysis, incorporating feedback mechanisms for self-correction and adaptive
learning may further enhance CASSPER's robustness and accuracy over time, particularly with
complex datasets.

DRPNet [36], a deep learning-based particle picking network, was tailored to tackle issues like
low signal-to-noise ratios and diverse particle characteristics. It employed a fully convolutional
regression network (FCRN) to generate continuous distance maps representing particle centers and
a classification CNN to refine detections, minimizing false positives. The model treated particle
picking as a blob detection problem, considering particles as convex blobs with distinct textures and
locating particle centers based on size estimates. Micrograph preprocessing enhanced performance
by improving contrast and correcting artifacts. Based on its evaluation, DRPNet improved particle
picking in terms of recall, precision, and F-measure. However, it encountered difficulty in the
scenarios where particles varied substantially in dimensions and shapes.

UrdNet [39] developed a U-Net based residual dense neural network that integrated point-level
and pixel-level labels to streamline manual particle labeling and enhance the precision of particle
picking. This approach combined multiple annotations (point-level and pixel-level annotations) and
an improved U-Net architecture to select particles. The network model, comprising 49 convolution
layers, four max-pooling layers, four up-sampling layers, and four feature concatenations, facilitated
the extraction of global features and deep feature fusion, thereby enabling efficient particle picking.
However, it had a limitation in the output definition of the residual block (ambiguity in feature
representation), indicating the need for further refinement in the network architecture.

In 2024, CryoTransformer [41] introduced a self-attention-based transformer model, typically
utilized in natural language processing, to cryo-EM particle picking. By combining the transformer
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model and residual connections within the CNN component, CryoTransformer aimed to capture
long-range dependencies/correlation between particles within cryo-EM images, thereby enhancing
the accuracy of particle selection. The evaluation of the method on the CryoPPP dataset [2] involved
ablation studies to assess various technical components, including the impact of denoising (pre-
processing) micrographs. A set of comprehensive evaluation metrics encompassing machine learning
metrics, 2D particle resolution, 3D density map resolution, and particle orientation diversity were
applied to assess its performance. The study highlighted the importance of denoising micrographs in
particle picking tasks for improving particle picking accuracy. Potential enhancements for
CryoTransformer includes leveraging transfer learning techniques, embracing ensemble learning
approaches, developing interpretability and visualization methods. Developing a user interface to
provide more intuitive controls and real-time feedback during particle picking could streamline the
workflow and make the tool more user-friendly for researchers with varying levels of expertise.

Also in 2024, CryoSegNet [40] was developed to integrate the attention-gated U-Net architecture
with a general foundational image segmentation model - the Segment Anything Model (SAM) [44] -
to achieve heightened precision and recall in particle selection. Notably, the method addressed
challenges in picking particles for small proteins through fine-tuning with predicted labels from a
pre-trained model [45], improving the accuracy of this difficult task. Moving forward, potential
enhancements for CryoSegNet includes fine-tuning the model on the cryo-EM data of diverse
proteins, augmenting the training dataset with predicted labels via distillation, and optimizing post-
processing steps of selecting particles.

7. A Comparative Study of the Al-based cryo-EM Particle Picking Methods

We conducted a comparative evaluation of some of the aforementioned methods that are
updated or widely used in terms of various metrics and visualized the results. The implementation
of most of the particle picking methods has become outdated, mainly due to their reliance on
idealized cryo-EM micrographs as training data. Additionally, some methods lack publicly available
software tools, hindering usability and independent evaluation. Consequently, we focused our
evaluation on six recently developed or widely used deep learning methods in the particle picking
domain whose source codes are openly accessible: Deep Picker, CrYOLO, Topaz, CASSPER,
CryoTransformer, and CryoSegNet.

To ensure a fair comparison of these six methods, we utilized the same set of training and test
data from the CryoPPP dataset to train and test them. Specifically, the micrographs of 22 proteins
(EMPIAR IDs) from CryoPPP were used for training, while 4 EMPIAR IDs were reserved for testing.
Deep Picker was trained using the default parameters in CryoSPARC [46], CrYOLO was trained
using the 'PhosaurusNet' architecture, and Topaz was trained with the 'ResNetl6' architecture.
CASSPER, CryoTransformer, and CryoSegNet, were trained using their default parameters.

Traditional metrics like F1-score, precision, and recall can only literally measure how accurately
protein particles can be picked from a pure machine learning perspective but cannot directly measure
how well the picked particles can be used to build the density maps of the proteins, the ultimate goal
of users. A more robust evaluation should consider the ability of these methods to capture true
particles representing the diverse orientations of protein structures that are important for building
better 3D density maps. Therefore, in this work, we used the resolution of 3D density maps
reconstructed from particles picked by each method to evaluate its performance. We also considered
the distribution of viewing directions of the picked particles and the local resolution of the resulting
density maps in the evaluation.

8. Evaluation in Terms of the Resolution of 3D Density Maps Reconstructed from
Picked Particles

For each protein (identified by EMPIAR ID) in the CryoPPP test dataset, we generated star files
that contain protein particles picked by each method. The files were then imported into CryoSPARC
[46] for 3D ab initio reconstruction of density maps and homogeneous refinement. During the
reconstruction, a 3D density map was generated solely from the set of particles. During the process,
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the homogeneous refinement was used to correct higher-order aberrations and refine particle defocus
caused by beam tilt, spherical aberration, and other optical challenges. The 3D resolution of the
density maps constructed from the picked particles by Deep Picker, crYOLO, Topaz, CASSPER,
CryoTransformer, and CryoSegNet was compared. The comparative evaluation was carried out
across three trials with random seed initialization for CryoSPARC, and the best resolution among the
three trials was used for comparison.

In addition to evaluating the methods on the CryoPPP test dataset, which includes
approximately 300 micrographs per protein, we expanded our assessment to use the complete set of
micrographs for each protein available on the EMPIAR website to benchmark them. This extended
evaluation aimed to gauge the resolution these methods can achieve in a real-world setting where
many micrographs are usually generated for a protein. The results of these methods in the two
settings are summarized in Table 3.

Table 3 shows that as the number of micrographs increases, as indicated in the CryoPPP and
EMPIAR columns, the total number of particles picked by each method also increases. This increase
in particles leads to an improvement in the 3D resolution of the constructed 3D density maps for all
methods. CryoSegNet demonstrates superior performance for three out of four proteins (EMPIAR-
10028, EMPIAR-10345, and EMPIAR-10532) for both CryoPPP and EMPIAR datasets, while
CryoTransformer performs the best on EMPIAR-10093 in CryoPPP. Topaz shows the best result for
EMPIAR-10093 in the EMPIAR dataset.

According to the average resolution across the four test proteins in the two datasets,
CryoSegNet, Topaz and CryoTransformer exhibit better performance than the other three methods,
among which CryoSegNet performs best. For instance, the average resolution of CryoSegNet over
the four test proteins in the EMPIAR dataset is 3.28 A, which is the highest among the six methods.
CrYOLO and CASSPER yielded similar average resolutions, whereas Deep Picker had the poorest
resolution.

Table 3. Comparison of performance of six deep learning particle picking methods in terms of the
resolution of 3D density maps constructed from the picked particles on two cryo-EM micrograph test
datasets (CryoPPP and EMPIAR). Bold font denotes the best resolution for a protein identified by an
EMPIAR ID. The performance on each of the four proteins in the two datasets as well as the average
performance is reported.

EMPIAR (all micrographs for each
CryoPPP (~300 micrographs per protein)
protein)
EMPIAR Best Best
Method Number of Number of
ID Number of | Resolution Number of | Resolution
Picked Picked
Micrographs | of 3 Trials Micrographs | of 3 Trials
) Particles ) Particles
(A) (A)

Deep Picker 4.08 30,242 4.09 43,027

CrYOLO 4.11 31,699 3.94 63,562

Topaz 3.93 35,514 2.72 96,352

10028 300 600

CASSPER 442 15,637 4.16 29,906
CryoTransformer 3.82 40,488 3.72 52,134
CryoSegNet 2.72 45,218 2.72 92,532

Deep Picker 8.54 2,470 4.16 8,399

CrYOLO 3.83 11,369 3.54 40,047

10345 295

Topaz 3.64 21,343 1644 3.45 87,472

CASSPER 5.12 9,876 3.99 56,728
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CryoTransformer 4.39 15,739 3.45 81,465
CryoSegNet 2.84 15,209 2.67 73,377
Deep Picker 4.88 28,711 3.42 95,469
CrYOLO 4.08 29,434 3.22 161,497
Topaz 423 38,372 3.27 206,460

10532 300
CASSPER 3.94 29,290 1556 3.27 146,022
CryoTransformer 3.96 38,345 3.21 259,757
CryoSegNet 3.89 30,155 32 90,477
Deep Picker 7.25 2,360 7.34 15,725
CrYOLO 8.87 33,183 5.57 192,337
Topaz 6.12 61,698 44 437,235

10093 295
CASSPER 7.23 32,383 1873 5.1 156,945
CryoTransformer 6.81 51,545 4.65 204,355
CryoSegNet 6.99 27,745 4.54 169,330
Deep Picker 6.19 15,946 4.75 40,655
CrYOLO 522 26,421 4.07 114,361
gﬁ Topaz 448 39,232 3.46 206,880
;; CASSPER 5.18 21,797 413 97,400
CryoTransformer 4.75 36,529 3.76 149,428
CryoSegNet 4.11 29,582 3.28 106,429

9. Evaluation in Terms of the Viewing Directions of Picked Particles

Picking particles representing a broad range of particle orientations/views, particularly rare
ones, is critical for achieving high-resolution reconstruction of 3D density maps. Here, we evaluated
the quality of viewing direction of the particles picked by each method. Our assessment involved
comparing the visual orientation of selected particles, focusing on elevation versus azimuth plots for
each test EMPIAR ID as shown in Figure 2.

Deep Picker picked a relatively fewer number of particles and hence the distribution of the
particles representing various orientations is also less intense for EMPIAR 10028, EMPIAR 10345 and
EMPIAR 10093. CASSPER struggled to pick particles of diverse orientations for EMPIAR 10028. For
all other methods, the distribution of particles with various orientations has a similar pattern. An
analysis of Figure 2 reveals that EMPIAR 10028 and EMPIAR 10093 present a greater challenge for
the methods to pick particles than EMPIAR 10345 and EMPIAR 10532, indicated by the abundance
of blueish color in the plots of the latter.
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EMPIAR 10028 EMPIAR 10345 EMPIAR 10532 EMPIAR 10093

Deep Picker

CrYOLO

Topaz

CASSPER

CryoSegNet CryoTransformer

Figure 2. Performance comparison of the six deep learning particle picking methods based on viewing
direction plots. Areas with more intense red indicate more particles picked at a particular elevation
and azimuth direction.

10. Evaluation in Terms of the Visualized Reconstructed 3D Maps and Their GSFSC Curves

The 3D density map reconstructed by each method for each protein was visualized in Figure 3.
Moreover, in Figure 4, the Fourier Shell Correlation (FSC) curves are used to evaluate the resolution
of the 3D density maps. Two different versions of FSC plots, one based on a 'loose mask' curve
generated automatically with a 15 A falloff, and another using a 'tight mask' curve with a 6 A falloff
for all FSC plots, are presented.

In Figure 3, some notable differences between the results of Deep Picker and CASSPER with
other methods can be observed. For instance, in the case of EMPIAR 10093, the tips of the spiral
shaped protein were not reconstructed from the particles picked by Deep Picker and CASSPER but
were built from those picked by all other methods. In the case of EMPIAR 10532, CASSPER failed to
reconstruct a segment of the rod-like protein structure, while all other methods reconstructed it. For
EMPIAR 10532, the 3D maps constructed from Deep Picker, CrYOLO, Topaz and CASSPR picked
particles contains a lot of dust (noisy) particles, while the 3D maps of CryoTransformer and
CryoSegNet constructs are smooth and solid with few dusts.
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EMPIAR 10028 EMPIAR 10345 EMPIAR 10532 EMPIAR 10093

Deep Picker

CrYOLO

Topaz

CASSPER

CryoTransformer

CryoSegNet

Figure 3. Comparison of the six deep learning particle picking methods based on 3D density map
visualization.
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Figure 4. The FSC curves of the density maps of the particles picked by the six deep learning particle
picking methods.

11. Evaluation in Terms of the Local Resolution of 3D Maps Reconstructed from Picked Particles

The 3D density maps generated from the picked particles of the six methods are further analyzed
using local resolution maps to interpret their structural details. These maps reveal how resolution
varies across different regions of the density maps. A high local resolution for a region indicates well-
defined structural details being constructed for the region. Conversely, a low local resolution points
to less detailed and less reliable structural information in the region. This analysis helps us gain an
in-depth understanding of the performance of the particle picking methods.

We utilized CryoSPARC's Local Refine job to generate the local resolution maps for the
reconstructed density maps. Each local resolution map was overlaid onto the corresponding original
density map using Chimera X [47]. A color scale was applied to indicate resolution. High-resolution
areas are depicted in gray and low-resolution areas in red, as illustrated in Figure 5.

For EMPIAR 10028 and EMPIAR 10345, the density maps of CryoSegNet have high resolution
indicated by gray color. CryoSegNet and CryoTransformer yielded similar local resolution for
EMPIAR 10532. For EMPIAR 10093, the density map of CryoTransformer has the highest resolution
in the open tip region. The better performance is due to a method’s ability to capture a wider range
of particle orientations. The density maps of Deep Picker and CASSPER have generally lower local
resolution than those of the other methods.
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EMPIAR 10028 EMPIAR 10345 EMPIAR 10532 EMPIAR 10093

Deep Picker

CrYoLo

Topaz

CASSPER

CryoTransformer

CryoSegNet

Figure 5. A comparison of the local resolution of density maps of particles picked by the six deep
learning particle picking methods. The color scale (in Angstrom) displayed on the right of the map
indicates different resolutions (e.g., high-resolution areas in gray and low-resolution regions in red).

12. Remaining Challenges in Particle Picking.

As discussed in the previous sections, Al has substantially advanced the state of the art of single-
protein cryo-EM particle picking. However, there are still the following significant hurdles to be
overcome to move the particle picking to the next level.

13. Complexity within Cryo-EM Micrographs

The complex nature of micrographs affects the accuracy and reliability of particle identification.
The low SNR, stemming from the weak scattering of electrons, complicates the distinction of particles
from background noise. This difficulty is compounded by complex noisy background objects caused
by ice contamination, support film artifacts, and other non-particle features, which can lead to false
positives. Additionally, biological samples are often significantly heterogeneous, with particles in
various conformations, orientations, and states, making consistent and accurate identification of the
particles challenging. The frequent overlap and crowding of particles further complicate the accurate
identification and separation of individual particles, necessitating the development of more


https://doi.org/10.20944/preprints202408.1936.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2024 d0i:10.20944/preprints202408.1936.v2

16

advanced, robust computational techniques that can reliably deal with the background noise and
particle heterogeneity.

The large size of cryo-EM micrographs also presents a significant computational challenge.
Individual micrographs, often exceeding 7000 x 7000 pixels and comprising up to 3.0 GB in size,
demand substantial computational resources for loading and processing them, particularly when
training Al models with them. Resizing or compressing large micrographs to manage computational
load risks the loss of critical information, potentially degrading the quality and accuracy of particle
picking.

14. Lack of Benchmarking Data

The scarcity of labeled cryo-EM micrograph datasets poses a significant challenge in cryo-EM
particle picking. Unlike some other domains such as protein tertiary structure prediction where large,
annotated datasets are readily available for training machine learning models, annotated cryo-EM
micrograph datasets are often limited in size and diversity. This scarcity of data makes it difficult to
develop robust and generalizable particle picking methods, as the data may not capture the full
spectrum of particle variability present in real-world samples. As a result, researchers often face
difficulties in achieving high performance and accuracy, especially when dealing with novel or rare
biological structures. The recent development of the expert-curated CryoPPP dataset used in this
work is one step forward to address this issue. It has helped train several Al-based picking methods,
including SAM-based picking [48], CryoTransformer [41], CryoMAE [49], CryoSegNet [40], and
Cryo-EMMAE [50]. However, the size of CryoPPP is still rather small compared to the image datasets
available in the other field. Larger datasets that commensurate with the fast growth of the
unannotated cryo-EM image data in the EMPIAR database need to be created by the community.
Furthermore, the subjectivity in defining true and false particles is also an issue to be addressed in
the data annotation and performance evaluation.

In addition to increasing the amount of the annotated cryo-EM micrograph data, machine
learning techniques dealing with few data such as data augmentation and transfer learning can be
applied to improve the performance of Al methods under the existing data constraints.

15. Lack of Standard Evaluation Metrics for Particle Picking

The lack of standardized metrics in this relatively young field is a challenge for evaluating the
performance of particle picking methods and identifying the key areas that need improvement.
Traditionally, the number of picked particles, precision, recall, F1 score, and Dice score are often used
in evaluation. However, these metrics do not provide a comprehensive evaluation of the usefulness
of picked particles, i.e., the quality of 3D density maps built from them. Directly evaluating the
quality of the density maps built from picked particles such as the resolution used in this work can
be added into the evaluation of new methods. Finally, it is important to evaluate AI methods on a
diverse set of cryo-EM micrographs data containing diverse proteins of different size and shapes,
heterogeneous particles, and noisy background to realistically estimate their performance.
Evaluating methods only on relatively simple and idealized datasets such as Keyhole Limpet
Hemocyanin (KHL) [18] and Apoferritin [21] may not be sufficient.

16. Potential Future Development
Addressing Data Scarcity

EMPIAR, the largest Cryo-EM image database in the field, provides a vast repository of raw
cryo-EM image data. Annotating many cryo-EM micrographs in EMPIAR by one person or by one
group may be unrealistic. However, a collaborative particle annotation effort by the community may
be able to create large datasets of labeled cryo-EM image data for particle picking. To facilitate the
effort, a standard protocol of reducing conflicts and subjectivity in human particle annotations may
be needed.
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17. Preprocessing and Efficient Representation of Cryo-EM Micrographs

Denoising micrographs is crucial for effective cryo-EM particle detection. However, standard
image denoising techniques are often ineffective for cryo-EM micrographs due to the significant
variability between micrographs. For instance, some micrographs may require saturation correction,
others may need contrast enhancement, and for some micrographs, additional techniques such as
noise reduction and edge preservation may be necessary. Therefore, adaptive denoising methods,
tailored to the specific characteristics of each micrograph, are important for improving particle
detection accuracy.

Moreover, it may be useful to develop micrograph cleansing tools to eliminate artifacts like ice
contamination and carbon edges. Tools for resolving beam-induced movement and sample drift for
motion correction, and methods that can estimate the contrast transfer function (CTF) parameters,
which are crucial for correcting phase reversals and improving image contrast, may also help
improve the accuracy of particle picking.

Using a more efficient representation of cryo-EM micrographs can  facilitate the training and
development of Al methods for particle picking. Typically, micrographs are stored as 32-bit float
images of MRC format, which imposes significant computational burdens for loading and training
machine learning models. By compressing the micrographs to 8-bit representation and normalizing
pixels ranging from 0 to 255 as JPEG images can substantially reduce the requirement of the
GPU/CPU memory and disk space for processing them.

18. Adoption of Comprehensive Performance Evaluation Metrics

Applying a comprehensive set of complimentary metrics to evaluate particle picking methods
is important to objectively assess their strengths and weaknesses. In addition to the generic machine
learning evaluation metrics such as precision, recall, and F1-measure, the following domain-specific
metrics that directly measure the usefulness of picked particles can be applied to evaluate the
performance of particle picking methods.

a) 2D Class Resolution of Picked Particles

Picked particles are often grouped together to form 2D particle classes whose resolution is
evaluated before they are used to build 3D density maps. Better resolution of 2D classes indicates a
more effective picking. Visualizing different 2D particle classes can show the breadth of the
orientations of particles captured by a particle picking methods. The Initial Classification Uncertainty
Factor (ICUF) and maximum alignment resolution are specified to align particles into classes
(typically around 50) for this analysis.

Three diagnostic measures in this analysis are useful: the resolution (A) of a class, the number
of particles in a class (higher numbers are generally better), and the visual appearance of a class,
which provides distinct views of particle structures. Solely considering the number of particles in a
class is insufficient, as some classes with fewer particles may represent unique views of the protein.
For a more detailed evaluation of viewing directions, analyzing the azimuthal curve is necessary,
which is discussed below.

b) Elevation vs Azimuthal Plot

It is worth pointing out that simply having a large number of particles does not guarantee the
high resolution of 3D density maps. It's crucial to select a sufficient number of high-quality particles
that cover a wide range of viewing angles.

The elevation versus azimuth plot can assess the view directions of picked particles. The plot
provides a visual representation of the distribution of picked particle orientations in 3D space as
represented in Figure 2. By analyzing the elevation vs azimuthal angles, one can assess whether a
particle picking method effectively samples particles from a wide range of viewing directions. A well-
distributed plot with uniform coverage across all angles indicates robust particle picking.
Discrepancies or gaps in the plot highlight regions in the particle orientation space that are
underrepresented or not picked by the method.
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Besides visual inspection, quantitative metrics such as the angular coverage and distribution
uniformity can be derived from the elevation vs azimuthal plot. These metrics provide objective
measures of a method’s ability to capture particles from diverse orientations.

c¢) 3D Resolution of Density Maps with Multiple Trails

The 3D resolution of density maps reconstructed from picked particles reflects the overall level
of structural detail obtained from the particles. High resolution indicates that the picked particles
accurately represent the underlying protein structure, whereas lower resolution may high false
positives or few true positives in the picked particles. The star file of the picked particles can be used
for ab initio density map reconstruction. To avoid any random bias in the 3D resolution, multiple ab
initio 3D reconstruction trials with different random seeds (typically three trails) can be used,
followed by reporting the average or best resolution. Then the average or the best resolution can be
used in the evaluation. The variations of Fourier Shell Correlation (FSC) plots, such as those with
tight or loose masks, can further assess the range of the resolution of the 3D density maps, offering
comprehensive insights into the performance of particle picking methods.

d) Local Resolution of Density Maps

The local resolution of 3D density maps provides a full picture of the variability of resolution
across different regions of the 3D structure of a protein. By examining local resolution, one can
identify specific regions where a particle picking method may struggle, such as regions with high
conformational flexibility or insufficient coverage. Regions of the 3D structure with consistently high
local resolution suggest that the picked particles in those areas are accurate and consistent.
Conversely, regions with variable or low local resolution may indicate the presence of heterogeneous
or incorrectly picked particles, highlighting the need for better particle picking or better cryo-EM
image data in the first place. Furthermore, the quantitative metrics derived from local resolution
maps, such as the mean local resolution and the distribution of resolution values, can be used to
statistically compare different particle picking methods.

19. Exploration of Advanced Al Architectures and Ensemble Methods

Continuing to explore and refine advanced Al architectures is important for further improving
the robustness and accuracy of particle picking. For instance, utilizing large-scale image models, such
as Swin Transformer [51], Segment Anything Model (SAM) [44], and DETR [52], can be useful to
improve cryo-EM picking particles. Even though these models were initially trained on natural image
datasets not containing cryo-EM micrographs for particle detection, they can be fine-tuned with cryo-
EM data or directly used as a component in a cryo-EM particle picking pipeline, as exemplified by
CryoSegNet.

Another possibility is to develop ensemble learning techniques to combine multiple particle
picking methods to obtain consensus predictions. This approach may leverage the strengths of
multiple methods, enhancing reliability of particle picking.

20. Conclusions

Particle picking methods have evolved from manual and semi-automated techniques to fully
automated Al approaches. Early Al methods built on small, simple cryo-EM datasets lack robustness
needed in practical applications. Recent Al methods leveraging advanced Al architectures and larger
datasets have significantly improved the accuracy and reliability of particle picking. This work
provides a rather complete review of the strengths, novelty, and weaknesses of many Al particle
picking methods developed in the last two decades. We also conducted a comparative evaluation of
several state-of-the-art deep learning particle picking methods using the metrics most relevant to the
need of end users, such as the resolution of density maps reconstructed from picked particles.
Through an in-depth review of the existing methods and the comparative evaluation, we identified
several remaining challenges in the field, including improving accuracy of picking particles for small
proteins with complicated micrographs, picking particles representing a complete, diverse range of
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view directions, and the lack of large, diverse, labeled particle datasets. Finally, we suggest some
future developments to tackle the challenges.

Key Points

1. This review provides a rather complete, deep analysis of the existing Al-based methods for
single-protein cryo-EM particle picking.

2. A comprehensive benchmarking of six state-of-the-art deep learning particle picking methods
that can help users apply them in practice is conducted.

3. Several key remaining challenges in cryo-EM protein particle picking are identified and the
potential future developments to address them are discussed.
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