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Abstract: Cryo-electron microscopy (Cryo-EM) has revolutionized structural biology by enabling the 

determination of high-resolution 3-Dimensional (3D) structures of large biological macromolecules. Protein 

particle picking, the process of identifying individual protein particles in cryo-EM micrographs for building 

protein structures, has progressed from manual and template-based methods to sophisticated artificial 

intelligence (AI)-driven approaches in recent years. This review critically examines the evolution and current 

state of cryo-EM particle picking methods, with an emphasis on the impact of AI. We conducted a comparative 

evaluation of popular AI-based particle picking methods, using both general machine learning (ML) metrics 

and specific cryo-EM structure determination metrics. This analysis involved constructing the 3D density map 

from the picked protein particles and assessing the obtained resolution and particle orientation diversity, 

underscoring the significant impact of AI on cryo-EM particle picking. Despite the advancements, we also 

identified key obstacles, such as handling complex micrographs with small proteins. The analysis provides 

insights into the future development of more sophisticated and fully automated AI methods in cryo-EM 

particle recognition. 

Keywords: cryo-electron microscopy; protein particle picking; artificial intelligence; machine 

learning; structural biology 

 

Introduction Background  

Cryo-EM is a technique that involves imaging biological samples at cryogenic temperature using 

electron beams to produce 3D structures of biological macromolecules. It first rapidly freezes 

biological samples (e.g., proteins and viruses) to preserve their native state and then images them 

with an electron microscope to capture numerous 2D projections. These projections are 

computationally combined to reconstruct a detailed 3D structure of the sample [1,2]. Cryo-EM has 

revolutionized structural biology by allowing researchers to visualize intricate large molecular 

structures, leading to significant advancements in understanding the functions of proteins, viruses, 

and their dynamic assemblies.  

Over the past decade, cryo-EM technology and data analysis have advanced rapidly. These 

advancements encompass improvements in microscope hardware, sample preparation methods, 

image processing techniques, and software algorithms. Notably, the enhancement of optical 

performance in electron microscopes has enabled reaching atomic resolutions of 1.25 Å, surpassing 

the previous 1.5 Å barrier. Additionally, innovations in image processing powered by artificial 

intelligence (AI) and machine learning (ML) (particularly deep learning) have been crucial, 

advancing the state of the art in cryo-EM reconstruction workflows [3]. Furthermore, the 

development of user-friendly software packages and AI/ML-based tools has streamlined data 

processing, leading to high-quality 3D reconstructions and the progress towards the complete 

automation of cryo-EM data processing pipelines. Moreover, the advancements in cryo-sample 
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preparation methods have addressed challenges such as protein denaturation and aggregation, 

ensuring higher quality and reproducibility of samples for 3D reconstruction [1,4]. These combined 

advancements have propelled cryo-EM towards routine high-resolution protein structure 

determination, marking a significant milestone in structural biology. 

2. What is Cryo-EM Particle Picking? 

Particle picking is the first critical step in the cryo-EM data analysis, which involves identifying 

and selecting individual particles of interest (Figure 1), such as biological macromolecules (usually 

proteins, nucleic acids, lipid complexes, and viruses), from electron micrographs to reconstruct their 

3D structures. This review is focused on picking protein particles.  Accurate particle picking is 

crucial for obtaining high-resolution structures, aiding in understanding biological processes at the 

molecular level and advancing drug discovery and disease research [5][6][7][8]. In the early days, 

manual particle picking was the main approach used in the cryo-EM data analysis, requiring 

researchers to visually identify individual particles and manually mark their positions (as 

exemplified in Figure 1C) to facilitate further analysis and reconstruction of their 3D structures [2]. 

This approach is labor-intensive and challenging as the particles are barely visible to the naked eyes 

in complex cryo-EM micrographs.  

Following the manual particle picking, template-based picking methods [9,10] emerged as a 

more efficient alternative, by using some manually predefined particle templates to automatically 

recognize and extract more particles from micrographs. This approach reduced the time and 

subjectivity associated with manual picking, allowing for higher throughput and more consistent 

results.  

 

Figure 1. Overview of the cryo-EM particle picking workflow. (A) A stack of 2D movie frames 

(micrographs). (B) Motion-corrected 2D micrographs. (C) Particle picking via manual, template-based 

or automatic methods (green circles indicate picked particles). (D) Initial 2D particle classes 

containing both true particles and false positives. (E) Selected protein particles for 3D structure 

reconstruction. 

While the template-based picking improved efficiency, it faces challenges such as template 

variability and difficulty in handling heterogeneous samples, leading to inaccurate and incomplete 

particle selection. These limitations spurred the emergence of AI-based particle picking methods, 
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which leverage machine learning algorithms to automatically identify particles from cryo-EM 

micrographs, overcoming the shortcomings of manual and template-based approaches. AI-based 

picking offers enhanced accuracy, scalability, and adaptability to diverse sample types, significantly 

advancing cryo-EM data processing and comprehensive structural analysis of biological 

macromolecules. 

3. The Challenges in Particle Picking and the Resources to Tackle Them 

Particle picking in cryo-EM poses several challenges related to the complex nature of cryo-EM 

micrographs. These challenges include the low signal-to-noise ratio (SNR) of the original 

micrographs, resulting in highly noisy images due to radiation damage and various noise sources 

such as low contrast, particle overlap, ice contamination, and amorphous carbon [2,11]. Additionally, 

the intricate shapes of proteins, variations in particle sizes and orientations, and the presence of 

artifacts further complicate the particle picking process [11]. 

One key step to tackle the challenges is the creation of high-quality datasets of cryo-EM 

micrographs to train and test particle picking methods. EMPIAR [12] is a large, important database, 

storing high-quality raw electron microscopy data (e.g., cryo-EM micrographs) from various EM 

techniques. CryoPPP [2] is an expert-curated dataset comprised of cryo-EM micrographs with labeled 

protein particle coordinates to facilitate the training of AI and ML models for automated particle 

picking. The dataset includes raw micrographs, motion correction files adjusted for imaging artifacts, 

particle stacks of manually identified protein particles, and ground truth labels (coordinates) 

detailing true positives and common false positives like ice contamination and carbon edges.  

In addition to data resources, recent advancements in computer vision techniques can be used 

to preprocess cryo-EM micrographs to enhance their quality for particle picking. Key tools include 

OpenCV [13], offering functions for image noise reduction, edge detection, and contrast enhancement 

crucial for protein particle visibility. Similarly, for machine learning developers, Scikit-Image 

provides various denoising and segmentation tools like Non-Local Means and watershed 

segmentation, which can be used in pre-processing cryo-EM micrographs. 

4. Emergence of AI in Particle Picking  

Over the last two decades, AI methods, particularly machine learning and deep learning 

techniques, have been developed to automate and improve particle picking efficiency and accuracy. 

In this section, we delve into the AI-based methods, including both classical methods (summarized 

in Table 1) and advanced deep learning methods (summarized in Table 2) that have gradually 

advanced particle picking in cryo-EM. We examine their principles, performance, and potential to 

overcome existing hurdles in the field. 

5. Classical Particle Picking Methods 

Earlier in 2004, Mallick et al. presented a pioneering machine learning approach for automated 

particle picking in cryo-EM micrographs, employing the Adaboost learning algorithm [14]. Their 

discriminative algorithm learned essential features of particle appearance from training examples, 

enabling generic detection unrestricted by particle shape or size. It trained a cascaded classifier using 

Adaboost, which was augmented by rotating test micrographs over various orientations to enhance 

detection versatility. However, the method encountered difficulties in assessing particle detection 

performance due to variability in particle labeling by different microscopists and the complexity of 

protein shapes in micrographs. The dataset used by the method only included ground truth labels 

only for particles of rectangular shape, leading to suboptimal performance of recognizing particles of 

circular shapes and potential biases in evaluation. Additionally, the method's reliance on a specific 

feature type (rectangular features derived from templates) and a single training methodology, 

Adaboost, was noted as a limitation, suggesting that exploring more feature types and training 

approaches might offer greater accuracy. 
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gEMpicker [15] is a particle picking method leveraging parallel programming techniques 

distributed across GPUs and CPU cores in a computer cluster to efficiently gather and combine 

cluster calculation results, thereby enhancing overall picking throughput for generation of higher 

resolution 3D cryo-EM density maps from picked particles.  gEMpicker's performance was 

evaluated with various Fast Fourier Transform (FFT) libraries. Given that most computational costs 

stemmed from FFT-based normalized cross-correlation (NCC) calculations, the choice of FFT library 

significantly influenced the performance. This study found that FFT size and zero-padding were 

important for efficiency optimization. 

Langlois et al.'s method, AutoPicker [16], represented an advancement in selecting particle 

images in low-contrast conditions, outperforming manual selection on close-to-focus micrographs 

and leading to improved or comparable 3D reconstruction resolution. Leveraging unsupervised 

learning, AutoPicker minimized manual intervention, requiring only the approximate size of the 

macromolecule to be picked as input. Employing template matching and unsupervised learning, 

AutoPicker identified potential particles while excluding contaminants and noise windows, thereby 

enhancing particle selection accuracy. Its View Classifier (ViCer) further refined candidate particles, 

particularly in cases with contaminants, contributing to improved accuracy in noisy micrographs. 

The integration of real-time feedback mechanisms and adaptive algorithms was proposed to enhance 

the system's performance over time for effective handling of diverse macromolecules. 

APPLE Picker [17], developed in 2018, tackled cryo-EM particle picking with a template-free 

approach, reducing user effort and bias. By leveraging cross-correlation with a reference set derived 

from cryo-EM micrographs themselves, it efficiently identified particles and minimized false 

positives. However, this dependence on cross-correlation could be susceptible to noise mimicking 

particles, and the method's effectiveness can vary substantially with respect to particle complexity.  

Table 1. A list of classical AI methods for particle picking, their techniques and train/test data. 

SN Method Techniques Train/Test Data Year 

1 Mallick et al.’s method [14] Adaboost Learning Algorithm Keyhole Limpet Hemocyanin (KLH) [18] 2004 

2 gEMpicker [15] 
Roseman’s NCC Matching 

Algorithm 
Keyhole Limpet Hemocyanin (KLH) 2013 

3 
Langlois et al.’s method 

[16] 

Principal Component Analysis 

(PCA) and Otsu’s Algorithm 

VA-ATPase from T. Thermophilus HB8 

And 70S Ribosome from E. Coli, 
2014 

4 APPLE picker [17] Support Vector Machine 

Β-Galactosidase, T20S Proteasome, 70S 

Ribosome, and Keyhole Limpet 

Hemocyanin (KLH) 

2018 

5 SuperCryoEMPicker [19] Super-Clustering Approach 
80S Ribosome and Beta-Galactosidase 

Datasets 
2019 

6 AutoCryoPicker [20] Unsupervised Clustering 
Apoferritin Dataset [21] and Keyhole 

Limpet Hemocyanin (KLH) Dataset 
2019 

7 Li et al [22] 
Segmentation-Aware Synergy 

Framework 

EMPIAR-10028, EMPIAR-10097, and 

EMPIAR-10333 
2022 

Al-Azzawi et al. proposed two methods in 2019: AutoCryoPicker [20] and SuperCryoEMPicker 

[19]. AutoCryoPicker carried out micrograph cleaning and particle shape detection using a 

customized Circular Hough Transform algorithm. This technique efficiently identified particle 

shapes and centers, facilitating accurate particle selection through the creation of bounding boxes. 

Notably, the method incorporated a series of image preprocessing steps, and introduced an intensity 

distribution model for particle clustering, demonstrating superior performance over traditional 

clustering algorithms like K-means and Fuzzy C-Means (FCM) [20]. SuperCryoEMPicker introduced 
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a super-clustering technique designed to handle complex shapes, irregularities, and low SNR in 

particle images. The approach consisted of three primary stages: pre-processing, particle clustering, 

and particle selection. It surpassed traditional clustering methods like k-means, fuzzy c-means 

(FCM), and intensity-based cluster (IBC) by incorporating super-pixel algorithms. The pre-processing 

stage involved various image enhancement procedures, such as global intensity adjustment, contrast 

enhancement, noise suppression, and edge enhancement, aimed at improving cryo-EM image quality 

and enabling more precise particle detection [19]. Finally, in the particle picking stage, a final set of 

particles was selected and picked from the clustered candidates after post-processing steps like 

binary mask cleaning and particle property measurement.  

In 2022, Li et al. introduced a segmentation-aware synergy network, which incorporated an 

instance-level attention regression module during denoising to address vulnerable feature 

representation challenges and bridge the gap between denoising and recognition tasks [22]. By 

treating particle selection as a semantic segmentation problem, the method enhanced the semantic-

level label generation pipeline, overcoming some limitations of traditional mask obtainment 

techniques, particularly for datasets with missing angle information. The proposed multitask 

ensemble learning framework enhanced the synergy between denoising and downstream 

recognition, resulting in reliable location estimations for single particle analysis. The method was 

trained with pixel-level denoising loss, instance-level denoising loss, and particle segmentation loss. 

The segmentation loss was implemented as the binary cross-entropy (BCE) loss function for 

supervised training. 

6. Advanced Deep Learning Methods 

In 2016, DeepPicker [23] introduced an iterative process to train its particle picking model, where 

top predicted particles from initial training steps were incorporated as new training data. It used a 

convolutional neural network (CNN) with a pooling layer to manage model complexity and prevent 

overfitting, thereby enhancing its capability to differentiate correct particles from background noise. 

Recall, precision, and center deviations were used to evaluate picked particles against ground-truth 

particles. Additionally, 2D clustering and class averaging were employed to validate the quality and 

accuracy of the selected particles. However, despite the efforts to mitigate overfitting through the 

pooling layer and iterative refinement, DeepPicker remained susceptible to overfitting the training 

data, limiting its generalizability to unseen datasets. 

DeepEM [24] employed a deep CNN for single particle recognition, which was trained with 

labeled 'good' and 'bad' particles to differentiate desired features from undesired ones, facilitating 

template-free particle picking and reducing reference particle-dependent bias. The performance 

evaluation, conducted via precision-recall curves, demonstrated its good accuracy and efficiency in 

automated particle extraction. However, DeepEM was shown to be effective for feature-rich cryo-EM 

micrographs but struggled with datasets lacking distinctive particle features.  

Xiao et al. presented an approach for automated particle picking in 2017 using Fast R-CNN [25], 

a deep learning-based object detection framework [26]. It employed a 'Cross Molecule Training 

Strategy' to train the CNN with particles of various protein complexes to capture common latent 

features in protein particles, facilitating efficient and generalized particle picking without human 

intervention. The optimization of box-step settings for regions of interest (RoI) balanced GPU 

memory constraints and accuracy requirements, enhancing the overall performance. Several 

potential enhancements to this method include exploring advanced image processing techniques for 

data preprocessing, RoI proposal generation, and false positive reduction to improve efficiency and 

accuracy. Additionally, investigating alternative neural network architectures or employing 

ensemble learning methods may further enhance particle picking performance. The continuous 

refinement of the training strategy, such as incorporating more diverse training datasets or fine-

tuning network parameters, could enhance method robustness and adaptability to different protein 

particle types. 
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In 2019, five deep learning methods including Pixer, HydraPicker, CrYOLO, Wrap and Topaz 

were developed, leveraging cutting-edge algorithms in deep learning and computer vision to 

enhance the accuracy and efficiency of identifying particles. 

PIXER [27] adopted an image segmentation-based approach, utilizing a deep neural network 

architecture. It first trained a classification network and then leveraged its parameters to expedite the 

segmentation network's training. During testing, cryo-EM micrographs were inputted into the 

segmentation network to generate probability density maps. Preliminary particle coordinates were 

obtained using a grid-based local-maximum method, followed by a classification network to 

eliminate false positive particles. The classification network was equipped with multiple parallel 

Atrous convolution channels [28], enabling the processing of multiscale particles. The segmentation 

network's performance was evaluated using pixel intersection-over-union criteria on a validation 

dataset. It used a grid-based local-maximum method to pinpoint particles from the probability 

density maps, enhancing both accuracy and efficiency in particle selection.  

HydraPicker [29] developed a customized CNN architecture based on ResNet, with larger filters 

and group normalization layers. Its multi-headed design, comprising shared and dataset-specific 

heads, facilitated effective handling of unseen particles. Furthermore, the model was trained on 

different kinds of particles, combining specialized and generic models. Through a fully convolutional 

design, it divided the model into shared and specialized parts. Exploring limited data scenarios, it 

introduced a few-shot learning approach, enhancing adaptability to new datasets. While the method 

presented a couple of advancements in automated particle picking, it carried limitations. Firstly, its 

focus on specific particle structures during training may limit the model's generalizability to a 

broader range of datasets and particle types, potentially constraining its applicability in diverse 

experimental settings. Moreover, the complexity of the proposed methodology, particularly with 

multiple specialized heads and a shared trunk, may have high computational cost, necessitating 

careful optimization and resource allocation for practical deployment.  

CrYOLO [30] introduced a ‘You Only Look Once’ (YOLO) framework for automated particle 

picking, employing a 21-layer CNN for accurate particle detection. By reformulating the classification 

problem as a regression task, it predicted particle positions in a single pass of the full image, 

significantly speeding up the process compared to traditional methods. Despite training with a 

relatively small number of particles per cryo-EM micrograph dataset, CrYOLO achieved high recall 

and precision rates at a speed of up to five micrographs per second. The method may be further 

improved via transfer learning by pre-training it on diverse datasets first and then fine-tuning it to 

improve the generalization capability. Additionally, applying additional data augmentation 

techniques during training, such as rotation and scaling, might enhance robustness. Furthermore, 

incorporating domain-specific knowledge or constraints into the model, such as particle size 

distribution, may improve accuracy and efficiency in particle picking. 

Warp [31] introduced a particle-picking method centered on the BoxNet machine-learning 

algorithm, a fully convolutional ResNet architecture comprising 72 layers. Trained on both real cryo-

EM micrograph data from the EMPIAR repository and synthetic data simulated from Protein Data 

Bank (PDB) structures, BoxNet adeptly masked out high-contrast artifacts like ethane. The system 

incorporated a retraining interface, enabling users to fine-tune BoxNet's performance by supplying 

positive examples of particle positions. Notably, Wrap's BoxNet model had some advantage in 

dealing with heterogeneous datasets, exhibiting superior performance over some alternative models 

such as crYOLO or RELION [32] 3.0's Laplacian of Gaussian approach. 

Table 2. A list of advanced deep learning methods for protein particle picking, their techniques and 

train/test data. 

SN Approach Techniques Train/Test Data Year 

1 DeepPicker [23] 
Deep Learning (using Cross-

Molecule Training Strategy) 

y-secretase, spliceosome, TRPV1, b-galactosidase, N- 

ethylmaleimide sensitive factor complex 
2016 
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2 DeepEM [24] 
Convolutional Neural 

Network (CNN) 

800 manually selected particle images from the 

keyhole limpet Hemocyanin (KLH) dataset 
2017 

3 
Xiao et al.’s 

method [26] 

Region-based Convolutional 

Network (R-CNN) 
Gammas, Spliceosome, Trpv1 2017 

4 Warp [31] 
Convolutional ResNet 

Architecture 

EMPIAR-10097, EMPIAR-10045, EMPIAR-10078, 

EMPIAR-10061, EMPIAR-10164, EMPIAR-10153 
2019 

5 
SPHIRE-crYOLO 

[30] 

Deep Learning (Based on 

YOLO) 

TcdA1 toxin subunit, Drosophila transient receptor 

channel NOMPC, human peroxiredoxin-3 (Prx3), 

simulated data of the canonical TRPC4 ion channel, 

and keyhole limpet hemocyanin (KLH) 

2019 

6 HydraPicker [29] ResNet Architecture Data from Warp [31] 2019 

7 Pixer [27] Deep Neural Network 

beta-galactosidase, influenza hemagglutinin trimer, 

Plasmodium falciparum 80S ribosome, cyclic 

nucleotide-gated ion channel, and GroEl + TRPV1, 

KLH, bacteriophage MS2, and rabbit muscle aldolase 

2019 

8 Topaz [33] Positive U learning CNN 
EMPIAR-10025, EMPIAR-10096, EMPIAR-10028, 

EMPIAR-10261, EMPIAR-10234, and EMPIAR-10096 
2019 

9 
DeepCryoPicker 

[34] 
Unsupervised Learning Apoferritin, KLH, 80S ribosome, β-galactosidase 2020 

10 
McSweeney et al.’s 

method [35] 

Convolutional Neural 

Networks 

EMPIAR-10204, 10218, 10028, 10335, 10184, and 

10059. 
2020 

11 DRPnet [36] 
Double Convolutional Neural 

Network (CNN) Cascade 
TRPV1 dataset (EMPIAR-10005) 2021 

12 TransPicker [37] 
End-to-End Transformer-

based Architecture 

EMPIAR-10093, EMPIAR-10017, EMPIAR-10028, 

EMPIAR-10096, EMPIAR-10406, and EMPIAR-10590 
2021 

13 CASSPER [38] 
Full Resolution Residual 

Network (FRRN) 

TcdA1 (EMPIAR 10089), HCN1 (EMPIAR 10081), 

TRPV1 (EMPIAR 10005) and b-galactosidase 

(EMPIAR 10017) 

2021 

14 Urdnet [39] 
U-Net based residual intensive 

neural network 

71 human 80S ribosomal micrographs, 30 HCN1 

micrographs, 24 TcdA1 micrographs, and 16 KLH 

micrographs 

2022 

15 CryoSegNet [40] U-Net + SAM Model CryoPPP [2] 2024 

16 
CryoTransformer 

[41] 

Transformer + ResNet 

Architecture 
CryoPPP [2] 2024 

Topaz [33] is one of the widely used particle picking methods, which is based on a positive-

unlabeled (PU) learning method, minimizing the need for extensive manual labeling by training the 

classifier with few labeled positive regions and unlabeled regions. It used a Generalized Expectation 

(GE) criteria to mitigate overfitting, improving prediction accuracy with minimal labeled data. 

Leveraging CNNs in conjunction with the PU learning, Topaz retrieved more particles at a low false-

positive rate. However, manual examination of class averages of true particles or false positives 

picked by Topaz could be time-consuming and subjective.  
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In 2020, DeepCryoPicker [34] was developed to train a deep learning network using 'good' and 

'bad' particle examples, similar to DeepEM [24]. However, the key difference was its use of a sliding 

window technique to classify sub-images as particles or background. To further improve 

performance, techniques like Non-Maximum Suppression (NMS) were utilized during testing to 

reduce false positives. Moreover, the method applied data augmentation and preprocessing steps to 

enhance the quality of low signal-to-noise ratio micrographs. 

In the same year, McSweeney et al. proposed a self-supervised workflow for particle picking, 

employing an iterative strategy with 2D particle class averaging and a progressively improved CNN 

[35]. Automation was achieved through defining a threshold (%/Res: the proportion of particles in a 

2D class average to the total particle count), minimizing user input. The iterative process optimized 

a fine-tuned CNN-based particle picker, enhancing particle picking quality. While offering 

automated particle picking and integration into single-particle analysis packages, the method 

required additional 2D and 3D particle classifications to filter out damaged particles. Efficiency 

limitations were noted for small particles, regardless of the picking program used. Though aiming to 

eliminate trial-and-error parameters, the dependence on data-dependent parameters such as particle 

size remained a limitation. 

In 2021, TransPicker [37] introduced a framework leveraging the crDETR module based on a 

transformer-based detection method for 2D particle picking. Using an improved deformable 

Transformer [42], TransPicker adeptly handled particle relocation and global context without using 

traditional components like anchors or sliding windows [43], reaching rapid convergence with a 

combined loss function. The framework addressed limitations in object query numbers through a 

divide-and-conquer algorithm and incorporated optimizations such as denoising, enhancing 

(sharpening edges and contours), and adding masks to carbon region to improve accuracy. Moreover, 

it implemented particle filtering techniques and applied masks on carbon regions and ice 

contaminants to further reduce false positive ratios.  

In the same year, CASSPER [38] utilized semantic segmentation, a deep learning technique 

enabling pixel-level classification in cryo-EM micrographs, to streamline particle identification 

without manual picking. It used the Contrast Limited Adaptive Histogram Equalization (CLAHE) to 

enhance particle detection in challenging conditions, delivering robust performance. While 

streamlining particle picking, iterative 2D classification and 3D refinement steps were still necessary 

for detailed structural analysis, incorporating feedback mechanisms for self-correction and adaptive 

learning may further enhance CASSPER's robustness and accuracy over time, particularly with 

complex datasets. 

DRPNet [36], a deep learning-based particle picking network, was tailored to tackle issues like 

low signal-to-noise ratios and diverse particle characteristics.  It employed a fully convolutional 

regression network (FCRN) to generate continuous distance maps representing particle centers and 

a classification CNN to refine detections, minimizing false positives. The model treated particle 

picking as a blob detection problem, considering particles as convex blobs with distinct textures and 

locating particle centers based on size estimates. Micrograph preprocessing enhanced performance 

by improving contrast and correcting artifacts. Based on its evaluation, DRPNet improved particle 

picking in terms of recall, precision, and F-measure. However, it encountered difficulty in the 

scenarios where particles varied substantially in dimensions and shapes.  

UrdNet [39] developed a U-Net based residual dense neural network that integrated point-level 

and pixel-level labels to streamline manual particle labeling and enhance the precision of particle 

picking. This approach combined multiple annotations (point-level and pixel-level annotations) and 

an improved U-Net architecture to select particles. The network model, comprising 49 convolution 

layers, four max-pooling layers, four up-sampling layers, and four feature concatenations, facilitated 

the extraction of global features and deep feature fusion, thereby enabling efficient particle picking. 

However, it had a limitation in the output definition of the residual block (ambiguity in feature 

representation), indicating the need for further refinement in the network architecture.  

In 2024, CryoTransformer [41] introduced a self-attention-based transformer model, typically 

utilized in natural language processing, to cryo-EM particle picking. By combining the transformer 
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model and residual connections within the CNN component, CryoTransformer aimed to capture 

long-range dependencies/correlation between particles within cryo-EM images, thereby enhancing 

the accuracy of particle selection. The evaluation of the method on the CryoPPP dataset [2] involved 

ablation studies to assess various technical components, including the impact of denoising (pre-

processing) micrographs. A set of comprehensive evaluation metrics encompassing machine learning 

metrics, 2D particle resolution, 3D density map resolution, and particle orientation diversity were 

applied to assess its performance. The study highlighted the importance of denoising micrographs in 

particle picking tasks for improving particle picking accuracy. Potential enhancements for 

CryoTransformer includes leveraging transfer learning techniques, embracing ensemble learning 

approaches, developing interpretability and visualization methods. Developing a user interface to 

provide more intuitive controls and real-time feedback during particle picking could streamline the 

workflow and make the tool more user-friendly for researchers with varying levels of expertise. 

Also in 2024, CryoSegNet [40] was developed to integrate the attention-gated U-Net architecture 

with a general foundational image segmentation model - the Segment Anything Model (SAM) [44] - 

to achieve heightened precision and recall in particle selection. Notably, the method addressed 

challenges in picking particles for small proteins through fine-tuning with predicted labels from a 

pre-trained model [45], improving the accuracy of this difficult task. Moving forward, potential 

enhancements for CryoSegNet includes fine-tuning the model on the cryo-EM data of diverse 

proteins, augmenting the training dataset with predicted labels via distillation, and optimizing post-

processing steps of selecting particles.  

7. A Comparative Study of the AI-based cryo-EM Particle Picking Methods 

We conducted a comparative evaluation of some of the aforementioned methods that are 

updated or widely used in terms of various metrics and visualized the results. The implementation 

of most of the particle picking methods has become outdated, mainly due to their reliance on 

idealized cryo-EM micrographs as training data. Additionally, some methods lack publicly available 

software tools, hindering usability and independent evaluation. Consequently, we focused our 

evaluation on six recently developed or widely used deep learning methods in the particle picking 

domain whose source codes are openly accessible: Deep Picker, CrYOLO, Topaz, CASSPER, 

CryoTransformer, and CryoSegNet. 

To ensure a fair comparison of these six methods, we utilized the same set of training and test 

data from the CryoPPP dataset to train and test them. Specifically, the micrographs of 22 proteins 

(EMPIAR IDs) from CryoPPP were used for training, while 4 EMPIAR IDs were reserved for testing. 

Deep Picker was trained using the default parameters in CryoSPARC [46], CrYOLO was trained 

using the 'PhosaurusNet' architecture, and Topaz was trained with the 'ResNet16' architecture. 

CASSPER, CryoTransformer, and CryoSegNet, were trained using their default parameters. 

Traditional metrics like F1-score, precision, and recall can only literally measure how accurately 

protein particles can be picked from a pure machine learning perspective but cannot directly measure 

how well the picked particles can be used to build the density maps of the proteins, the ultimate goal 

of users.  A more robust evaluation should consider the ability of these methods to capture true 

particles representing the diverse orientations of protein structures that are important for building 

better 3D density maps. Therefore, in this work, we used the resolution of 3D density maps 

reconstructed from particles picked by each method to evaluate its performance. We also considered 

the distribution of viewing directions of the picked particles and the local resolution of the resulting 

density maps in the evaluation. 

8. Evaluation in Terms of the Resolution of 3D Density Maps Reconstructed from  

Picked Particles 

For each protein (identified by EMPIAR ID) in the CryoPPP test dataset, we generated star files 

that contain protein particles picked by each method. The files were then imported into CryoSPARC 

[46] for 3D ab initio reconstruction of density maps and homogeneous refinement. During the 

reconstruction, a 3D density map was generated solely from the set of particles. During the process, 
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the homogeneous refinement was used to correct higher-order aberrations and refine particle defocus 

caused by beam tilt, spherical aberration, and other optical challenges.  The 3D resolution of the 

density maps constructed from the picked particles by Deep Picker, crYOLO, Topaz, CASSPER, 

CryoTransformer, and CryoSegNet was compared. The comparative evaluation was carried out 

across three trials with random seed initialization for CryoSPARC, and the best resolution among the 

three trials was used for comparison. 

In addition to evaluating the methods on the CryoPPP test dataset, which includes 

approximately 300 micrographs per protein, we expanded our assessment to use the complete set of 

micrographs for each protein available on the EMPIAR website to benchmark them. This extended 

evaluation aimed to gauge the resolution these methods can achieve in a real-world setting where 

many micrographs are usually generated for a protein.  The results of these methods in the two 

settings are summarized in Table 3. 

Table 3 shows that as the number of micrographs increases, as indicated in the CryoPPP and 

EMPIAR columns, the total number of particles picked by each method also increases. This increase 

in particles leads to an improvement in the 3D resolution of the constructed 3D density maps for all 

methods. CryoSegNet demonstrates superior performance for three out of four proteins (EMPIAR-

10028, EMPIAR-10345, and EMPIAR-10532) for both CryoPPP and EMPIAR datasets, while 

CryoTransformer performs the best on EMPIAR-10093 in CryoPPP. Topaz shows the best result for 

EMPIAR-10093 in the EMPIAR dataset.  

According to the average resolution across the four test proteins in the two datasets, 

CryoSegNet, Topaz and CryoTransformer exhibit better performance than the other three methods, 

among which CryoSegNet performs best. For instance, the average resolution of CryoSegNet over 

the four test proteins in the EMPIAR dataset is 3.28 Å, which is the highest among the six methods.  

CrYOLO and CASSPER yielded similar average resolutions, whereas Deep Picker had the poorest 

resolution. 

Table 3. Comparison of performance of six deep learning particle picking methods in terms of the 

resolution of 3D density maps constructed from the picked particles on two cryo-EM micrograph test 

datasets (CryoPPP and EMPIAR). Bold font denotes the best resolution for a protein identified by an 

EMPIAR ID. The performance on each of the four proteins in the two datasets as well as the average 

performance is reported. 

EMPIAR 

ID 
Method 

CryoPPP (~300 micrographs per protein) 
EMPIAR (all micrographs for each 

protein) 

Number of 

Micrographs 

Best 

Resolution 

of 3 Trials 

(Å) 

Number of 

Picked 

Particles 

Number of 

Micrographs 

Best 

Resolution 

of 3 Trials 

(Å) 

Number of 

Picked 

Particles 

10028 

Deep Picker 

300 

4.08 30,242 

600 

4.09 43,027 

CrYOLO 4.11 31,699 3.94 63,562 

Topaz 3.93 35,514 2.72 96,352 

CASSPER 4.42 15,637 4.16 29,906 

CryoTransformer 3.82 40,488 3.72 52,134 

CryoSegNet 2.72 45,218 2.72 92,532 

10345 

Deep Picker 

295 

8.54 2,470 

 

1644 

4.16 8,399 

CrYOLO 3.83 11,369 3.54 40,047 

Topaz 3.64 21,343 3.45 87,472 

CASSPER 5.12 9,876 3.99 56,728 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2024 doi:10.20944/preprints202408.1936.v2

https://doi.org/10.20944/preprints202408.1936.v2


 11 

 

CryoTransformer 4.39 15,739 3.45 81,465 

CryoSegNet 2.84 15,209 2.67 73,377 

10532 

Deep Picker 

300 

4.88 28,711 

 

1556 

3.42 95,469 

CrYOLO 4.08 29,434 3.22 161,497 

Topaz 4.23 38,372 3.27 206,460 

CASSPER 3.94 29,290 3.27 146,022 

CryoTransformer 3.96 38,345 3.21 259,757 

CryoSegNet 3.89 30,155 3.2 90,477 

10093 

Deep Picker 

295 

7.25 2,360 

 

1873 

7.34 15,725 

CrYOLO 8.87 33,183 5.57 192,337 

Topaz 6.12 61,698 4.4 437,235 

CASSPER 7.23 32,383 5.1 156,945 

CryoTransformer 6.81 51,545 4.65 204,355 

CryoSegNet 6.99 27,745 4.54 169,330 

A
v

er
ag

e 

Deep Picker 

 

6.19 15,946 

 

4.75 40,655 

CrYOLO 5.22 26,421 4.07 114,361 

Topaz 4.48 39,232 3.46 206,880 

CASSPER 5.18 21,797 4.13 97,400 

CryoTransformer 4.75 36,529 3.76 149,428 

CryoSegNet 4.11 29,582 3.28 106,429 

9. Evaluation in Terms of the Viewing Directions of Picked Particles 

Picking particles representing a broad range of particle orientations/views, particularly rare 

ones, is critical for achieving high-resolution reconstruction of 3D density maps. Here, we evaluated 

the quality of viewing direction of the particles picked by each method. Our assessment involved 

comparing the visual orientation of selected particles, focusing on elevation versus azimuth plots for 

each test EMPIAR ID as shown in Figure 2. 

Deep Picker picked a relatively fewer number of particles and hence the distribution of the 

particles representing various orientations is also less intense for EMPIAR 10028, EMPIAR 10345 and 

EMPIAR 10093. CASSPER struggled to pick particles of diverse orientations for EMPIAR 10028. For 

all other methods, the distribution of particles with various orientations has a similar pattern. An 

analysis of Figure 2 reveals that EMPIAR 10028 and EMPIAR 10093 present a greater challenge for 

the methods to pick particles than EMPIAR 10345 and EMPIAR 10532, indicated by the abundance 

of blueish color in the plots of the latter.  
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Figure 2. Performance comparison of the six deep learning particle picking methods based on viewing 

direction plots. Areas with more intense red indicate more particles picked at a particular elevation 

and azimuth direction. 

10. Evaluation in Terms of the Visualized Reconstructed 3D Maps and Their GSFSC Curves 

The 3D density map reconstructed by each method for each protein was visualized in Figure 3. 

Moreover, in Figure 4, the Fourier Shell Correlation (FSC) curves are used to evaluate the resolution 

of the 3D density maps. Two different versions of FSC plots, one based on a 'loose mask' curve 

generated automatically with a 15 Å falloff, and another using a 'tight mask' curve with a 6 Å falloff 

for all FSC plots, are presented. 

In Figure 3, some notable differences between the results of Deep Picker and CASSPER with 

other methods can be observed. For instance, in the case of EMPIAR 10093, the tips of the spiral 

shaped protein were not reconstructed from the particles picked by Deep Picker and CASSPER but 

were built from those picked by all other methods. In the case of EMPIAR 10532, CASSPER failed to 

reconstruct a segment of the rod-like protein structure, while all other methods reconstructed it. For 

EMPIAR 10532, the 3D maps constructed from Deep Picker, CrYOLO, Topaz and CASSPR picked 

particles contains a lot of dust (noisy) particles, while the 3D maps of CryoTransformer and 

CryoSegNet constructs are smooth and solid with few dusts.   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2024 doi:10.20944/preprints202408.1936.v2

https://doi.org/10.20944/preprints202408.1936.v2


 13 

 

 

Figure 3. Comparison of the six deep learning particle picking methods based on 3D density map 

visualization. 
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Figure 4. The FSC curves of the density maps of the particles picked by the six deep learning particle 

picking methods. 

11. Evaluation in Terms of the Local Resolution of 3D Maps Reconstructed from Picked Particles 

The 3D density maps generated from the picked particles of the six methods are further analyzed 

using local resolution maps to interpret their structural details. These maps reveal how resolution 

varies across different regions of the density maps. A high local resolution for a region indicates well-

defined structural details being constructed for the region. Conversely, a low local resolution points 

to less detailed and less reliable structural information in the region. This analysis helps us gain an 

in-depth understanding of the performance of the particle picking methods. 

We utilized CryoSPARC's Local Refine job to generate the local resolution maps for the 

reconstructed density maps. Each local resolution map was overlaid onto the corresponding original 

density map using Chimera X [47]. A color scale was applied to indicate resolution. High-resolution 

areas are depicted in gray and low-resolution areas in red, as illustrated in Figure 5.  

For EMPIAR 10028 and EMPIAR 10345, the density maps of CryoSegNet have high resolution 

indicated by gray color. CryoSegNet and CryoTransformer yielded similar local resolution for 

EMPIAR 10532. For EMPIAR 10093, the density map of CryoTransformer has the highest resolution 

in the open tip region. The better performance is due to a method’s ability to capture a wider range 

of particle orientations. The density maps of Deep Picker and CASSPER have generally lower local 

resolution than those of the other methods.  
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Figure 5. A comparison of the local resolution of density maps of particles picked by the six deep 

learning particle picking methods. The color scale (in Angstrom) displayed on the right of the map 

indicates different resolutions (e.g., high-resolution areas in gray and low-resolution regions in red). 

12. Remaining Challenges in Particle Picking. 

As discussed in the previous sections, AI has substantially advanced the state of the art of single-

protein cryo-EM particle picking. However, there are still the following significant hurdles to be 

overcome to move the particle picking to the next level.  

13. Complexity within Cryo-EM Micrographs 

The complex nature of micrographs affects the accuracy and reliability of particle identification. 

The low SNR, stemming from the weak scattering of electrons, complicates the distinction of particles 

from background noise. This difficulty is compounded by complex noisy background objects caused 

by ice contamination, support film artifacts, and other non-particle features, which can lead to false 

positives. Additionally, biological samples are often significantly heterogeneous, with particles in 

various conformations, orientations, and states, making consistent and accurate identification of the 

particles challenging. The frequent overlap and crowding of particles further complicate the accurate 

identification and separation of individual particles, necessitating the development of more 
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advanced, robust computational techniques that can reliably deal with the background noise and 

particle heterogeneity. 

The large size of cryo-EM micrographs also presents a significant computational challenge. 

Individual micrographs, often exceeding 7000 x 7000 pixels and comprising up to 3.0 GB in size, 

demand substantial computational resources for loading and processing them, particularly when 

training AI models with them. Resizing or compressing large micrographs to manage computational 

load risks the loss of critical information, potentially degrading the quality and accuracy of particle 

picking. 

14. Lack of Benchmarking Data 

The scarcity of labeled cryo-EM micrograph datasets poses a significant challenge in cryo-EM 

particle picking. Unlike some other domains such as protein tertiary structure prediction where large, 

annotated datasets are readily available for training machine learning models, annotated cryo-EM 

micrograph datasets are often limited in size and diversity. This scarcity of data makes it difficult to 

develop robust and generalizable particle picking methods, as the data may not capture the full 

spectrum of particle variability present in real-world samples. As a result, researchers often face 

difficulties in achieving high performance and accuracy, especially when dealing with novel or rare 

biological structures. The recent development of the expert-curated CryoPPP dataset used in this 

work is one step forward to address this issue. It has helped train several AI-based picking methods, 

including SAM-based picking [48], CryoTransformer [41], CryoMAE [49], CryoSegNet [40], and 

Cryo-EMMAE [50]. However, the size of CryoPPP is still rather small compared to the image datasets 

available in the other field. Larger datasets that commensurate with the fast growth of the 

unannotated cryo-EM image data in the EMPIAR database need to be created by the community.  

Furthermore, the subjectivity in defining true and false particles is also an issue to be addressed in 

the data annotation and performance evaluation.  

In addition to increasing the amount of the annotated cryo-EM micrograph data, machine 

learning techniques dealing with few data such as data augmentation and transfer learning can be 

applied to improve the performance of AI methods under the existing data constraints.  

15. Lack of Standard Evaluation Metrics for Particle Picking  

The lack of standardized metrics in this relatively young field is a challenge for evaluating the 

performance of particle picking methods and identifying the key areas that need improvement. 

Traditionally, the number of picked particles, precision, recall, F1 score, and Dice score are often used 

in evaluation. However, these metrics do not provide a comprehensive evaluation of the usefulness 

of picked particles, i.e., the quality of 3D density maps built from them. Directly evaluating the 

quality of the density maps built from picked particles such as the resolution used in this work can 

be added into the evaluation of new methods.  Finally, it is important to evaluate AI methods on a 

diverse set of cryo-EM micrographs data containing diverse proteins of different size and shapes, 

heterogeneous particles, and noisy background to realistically estimate their performance. 

Evaluating methods only on relatively simple and idealized datasets such as Keyhole Limpet 

Hemocyanin (KHL) [18] and Apoferritin [21] may not be sufficient.  

16. Potential Future Development 

Addressing Data Scarcity 

EMPIAR, the largest Cryo-EM image database in the field, provides a vast repository of raw 

cryo-EM image data. Annotating many cryo-EM micrographs in EMPIAR by one person or by one 

group may be unrealistic. However, a collaborative particle annotation effort by the community may 

be able to create large datasets of labeled cryo-EM image data for particle picking. To facilitate the 

effort, a standard protocol of reducing conflicts and subjectivity in human particle annotations may 

be needed.   
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17. Preprocessing and Efficient Representation of Cryo-EM Micrographs 

Denoising micrographs is crucial for effective cryo-EM particle detection. However, standard 

image denoising techniques are often ineffective for cryo-EM micrographs due to the significant 

variability between micrographs. For instance, some micrographs may require saturation correction, 

others may need contrast enhancement, and for some micrographs, additional techniques such as 

noise reduction and edge preservation may be necessary. Therefore, adaptive denoising methods, 

tailored to the specific characteristics of each micrograph, are important for improving particle 

detection accuracy. 

Moreover, it may be useful to develop micrograph cleansing tools to eliminate artifacts like ice 

contamination and carbon edges. Tools for resolving beam-induced movement and sample drift for 

motion correction, and methods that can estimate the contrast transfer function (CTF) parameters, 

which are crucial for correcting phase reversals and improving image contrast, may also help 

improve the accuracy of particle picking. 

Using a more efficient representation of cryo-EM micrographs can   facilitate the training and 

development of AI methods for particle picking. Typically, micrographs are stored as 32-bit float 

images of MRC format, which imposes significant computational burdens for loading and training 

machine learning models. By compressing the micrographs to 8-bit representation and normalizing 

pixels ranging from 0 to 255 as JPEG images can substantially reduce the requirement of the 

GPU/CPU memory and disk space for processing them.  

18. Adoption of Comprehensive Performance Evaluation Metrics 

Applying a comprehensive set of complimentary metrics to evaluate particle picking methods 

is important to objectively assess their strengths and weaknesses. In addition to the generic machine 

learning evaluation metrics such as precision, recall, and F1-measure, the following domain-specific 

metrics that directly measure the usefulness of picked particles can be applied to evaluate the 

performance of particle picking methods.  

a) 2D Class Resolution of Picked Particles  

Picked particles are often grouped together to form 2D particle classes whose resolution is 

evaluated before they are used to build 3D density maps. Better resolution of 2D classes indicates a 

more effective picking. Visualizing different 2D particle classes can show the breadth of the 

orientations of particles captured by a particle picking methods. The Initial Classification Uncertainty 

Factor (ICUF) and maximum alignment resolution are specified to align particles into classes 

(typically around 50) for this analysis. 

Three diagnostic measures in this analysis are useful: the resolution (Å) of a class, the number 

of particles in a class (higher numbers are generally better), and the visual appearance of a class, 

which provides distinct views of particle structures. Solely considering the number of particles in a 

class is insufficient, as some classes with fewer particles may represent unique views of the protein. 

For a more detailed evaluation of viewing directions, analyzing the azimuthal curve is necessary, 

which is discussed below.  

b) Elevation vs Azimuthal Plot 

It is worth pointing out that simply having a large number of particles does not guarantee the 

high resolution of 3D density maps. It's crucial to select a sufficient number of high-quality particles 

that cover a wide range of viewing angles.  

The elevation versus azimuth plot can assess the view directions of picked particles. The plot 

provides a visual representation of the distribution of picked particle orientations in 3D space as 

represented in Figure 2. By analyzing the elevation vs azimuthal angles, one can assess whether a 

particle picking method effectively samples particles from a wide range of viewing directions. A well-

distributed plot with uniform coverage across all angles indicates robust particle picking. 

Discrepancies or gaps in the plot highlight regions in the particle orientation space that are 

underrepresented or not picked by the method. 
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Besides visual inspection, quantitative metrics such as the angular coverage and distribution 

uniformity can be derived from the elevation vs azimuthal plot. These metrics provide objective 

measures of a method’s ability to capture particles from diverse orientations. 

c) 3D Resolution of Density Maps with Multiple Trails 

The 3D resolution of density maps reconstructed from picked particles reflects the overall level 

of structural detail obtained from the particles. High resolution indicates that the picked particles 

accurately represent the underlying protein structure, whereas lower resolution may high false 

positives or few true positives in the picked particles. The star file of the picked particles can be used 

for ab initio density map reconstruction. To avoid any random bias in the 3D resolution, multiple ab 

initio 3D reconstruction trials with different random seeds (typically three trails) can be used, 

followed by reporting the average or best resolution. Then the average or the best resolution can be 

used in the evaluation. The variations of Fourier Shell Correlation (FSC) plots, such as those with 

tight or loose masks, can further assess the range of the resolution of the 3D density maps, offering 

comprehensive insights into the performance of particle picking methods. 

d) Local Resolution of Density Maps 

The local resolution of 3D density maps provides a full picture of the variability of resolution 

across different regions of the 3D structure of a protein. By examining local resolution, one can 

identify specific regions where a particle picking method may struggle, such as regions with high 

conformational flexibility or insufficient coverage. Regions of the 3D structure with consistently high 

local resolution suggest that the picked particles in those areas are accurate and consistent. 

Conversely, regions with variable or low local resolution may indicate the presence of heterogeneous 

or incorrectly picked particles, highlighting the need for better particle picking or better cryo-EM 

image data in the first place. Furthermore, the quantitative metrics derived from local resolution 

maps, such as the mean local resolution and the distribution of resolution values, can be used to 

statistically compare different particle picking methods.  

19. Exploration of Advanced AI Architectures and Ensemble Methods 

Continuing to explore and refine advanced AI architectures is important for further improving 

the robustness and accuracy of particle picking. For instance, utilizing large-scale image models, such 

as Swin Transformer [51], Segment Anything Model (SAM) [44], and DETR [52], can be useful to 

improve cryo-EM picking particles. Even though these models were initially trained on natural image 

datasets not containing cryo-EM micrographs for particle detection, they can be fine-tuned with cryo-

EM data or directly used as a component in a cryo-EM particle picking pipeline, as exemplified by 

CryoSegNet. 

Another possibility is to develop ensemble learning techniques to combine multiple particle 

picking methods to obtain consensus predictions. This approach may leverage the strengths of 

multiple methods, enhancing reliability of particle picking.   

20. Conclusions 

Particle picking methods have evolved from manual and semi-automated techniques to fully 

automated AI approaches. Early AI methods built on small, simple cryo-EM datasets lack robustness 

needed in practical applications. Recent AI methods leveraging advanced AI architectures and larger 

datasets have significantly improved the accuracy and reliability of particle picking. This work 

provides a rather complete review of the strengths, novelty, and weaknesses of many AI particle 

picking methods developed in the last two decades. We also conducted a comparative evaluation of 

several state-of-the-art deep learning particle picking methods using the metrics most relevant to the 

need of end users, such as the resolution of density maps reconstructed from picked particles. 

Through an in-depth review of the existing methods and the comparative evaluation, we identified 

several remaining challenges in the field, including improving accuracy of picking particles for small 

proteins with complicated micrographs, picking particles representing a complete, diverse range of 
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view directions, and the lack of large, diverse, labeled particle datasets.  Finally, we suggest some 

future developments to tackle the challenges.  

Key Points 

1. This review provides a rather complete, deep analysis of the existing AI-based methods for 

single-protein cryo-EM particle picking. 

2. A comprehensive benchmarking of six state-of-the-art deep learning particle picking methods 

that can help users apply them in practice is conducted.  

3. Several key remaining challenges in cryo-EM protein particle picking are identified and the 

potential future developments to address them are discussed.  
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