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Abstract: This manuscript explores unmanned aerial vehicle DC motor control performance efficacy 
of deterministic artificial intelligence in comparison to model-following adaptation, particularly a 
direct self-tuner with filtering. The deterministic artificial intelligence model made use of self-
awareness statements to overcome error in response to permutations of the multi-duty cycle square 
wave that served as the system input. It can be seen that (despite equivalently powerful estimation 
techniques) deterministic artificial intelligence provided far superior results: a reduction in peak 
initial transient error of 55%, and a mean error reduction over 81% with over 65% reduction in error 
standard deviation compared to a state-of-the-art nonlinear adaptive control method. Deterministic 
artificial intelligence also was able to very closely track at the switching of the input control, while 
the benchmark nonlinear adaptive control failed to respond as quickly at these points.  
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1. Introduction 

  
(a) (b) 

Figure 1. (a) Low-cost, low-power, portable mounting platform for auto-tracking antenna, image 
credit NASA [1] used in accordance with image use policy [2]. (b) mounted horn probe antenna, 
image credit NOAA [3] used in accordance with image use policy [4]. 

Unmanned aerial vehicles, widely known as drones, can act as autonomous communi-
cating nodes, aerial relays, or even aerial base stations, and strongly support the conven-
tional networks in propagation scenarios with obstacles and highly mobile and remote net-
work nodes. [5] 

Lightweight, brushless DC motors optimized for size, weight, and power are often se-
lected for several disparate drone systems. The most common use of motors for drones 
and unmanned aerial vehicles is to spin the propellers of multirotor drones to enable them 
to fly. Drone motors may also be found in other unmanned vehicle subsystems, such as 
camera and payload gimbals, flight surfaces, landing gear, and antenna rotators (the focus 
of this research). Motor control is a very well researched field and options are proposed 
in this manuscript directly compared to state-of-the-art methods using numerical figures 
of merit.   
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Nonlinear adaptive control is one such well known state-of-the-art field of DC motor 
control. While the state of nonlinear adaptive control has begun to approach diminishing 
returns controlling drone DC motors. Meanwhile, other learning systems of control rep-
resent an ability to push forth significant performance improvements without the cost of 
greater computational burden. Following this, the usage of DC motors, and electrical sys-
tems in general, continues to grow exponentially as the world moves towards electrifica-
tion. The ability to create and tune these systems, which are comparatively simple against 
more advanced nonlinear control methodology, stands to greatly affect the implementa-
tion and standard operating procedure of electric motors, and controllable systems in gen-
eral, in time to come. 

The development of adaptive and learning systems has a long history that is pres-
ently culminating in a very recent, distinguished lineage in the literature [6, 7, 8, 9], al-
ready bestowing three major publication awards, validating the contemporary interest in 
continued developments. Many techniques are available from this long lineage as alter-
natives benchmarks for comparing newly proposed methods. Rathmore focused on arti-
ficial intelligence applying robust steering control based on tuning of PID controller using 
the so-called genetic algorithm and the harmonic search algorithm [6]. In 2020, so-called 
deterministic artificial intelligence was proposed for controlling autonomous unmanned 
underwater vehicles [7]. The method is based on the self-awareness assertion in the feed-
forward process dynamics. The feedback signal was formatted by Koo as an adaptive & 
learning system (proportional derivative feedback and 2-norm optimal least squares). [8] 
As a duplication and continuation of Koo's work in [8], this manuscript provides an in-
depth comparison between the performance of the deterministic artificial intelligence and 
declared benchmark approaches with iterated step sizes. The performance evaluation 
mainly focuses on the ability to track the command signals represented by challenging 
square wave trajectories.  

Bernat introduced a speed control approach [10] based on a model-reference adap-
tive control algorithm for torque load and ripple compensation. Gowri described a direct 
torque control as one approach focused on discontinuities in rapid modulating commands 
[11]. Moreover, Rathaiah [12] and Haghi [13] both proposed extremum-seeking adaptive 
control of first-order systems, which is similar to the approach applied to the vehicle au-
tomation control described in [14]. The methods are similarly tested and compared with 
discontinuous step and square wave inputs. For DC motors, tracking discontinuous step 
functions and square wave function is challenging since overshoot occurs at the square 
wave's discontinuities, significantly influencing the tracking performance of nonlinear 
adaptive control approaches. The difficulty is validated by Vidlak’s very contemporary 
example in Figures 24 and 26 in [15]. This facet is also elaborated by Vidlak’s work on 
tracking performance of self-turning regulators [15] and model reference adaptive control 
[16].  

A similar phenomenon is revealed in Section 3 of this manuscript for the error distri-
bution comparison of different algorithms. This manuscript describes a duplication and 
continuation of the work presented in [8], which is also work based on its prequel research 
by Shah [9], where model-following self-turning regulators [17] are chosen as the compar-
ative benchmark approach.   

The learning approach evaluated in this manuscript stems from Slotine [18] and the 
nonlinear adaptive method for robotics [19]. The technique was quickly transformed to 
expression in coordinates of the body reference frame [20]. In [21], the tunability of feed-
back and feedforward elements are demonstrated, substantiating the self-awareness state-
ments of deterministic artificial intelligence. [22] As described by Fossen in [23], alterna-
tive trajectory tracking control mechanisms based on classical proportional, integral, de-
rivative control; linear-quadratic regulator; feedback linearization; nonlinear backstep-
ping; and sliding mode control are presented. Some approaches are applied to the ocean 
vehicle mentioned in [24]. The efficacy of such systems is also simulated in [25]. Lorenz 
and his students also used and evaluated the feedforward element in [26-32]. The fault-
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tolerance [28], loss reduction [29], loss minimization [30], dead-beat control [31], and self-
sensing [32,15] are evaluated and extended from the vehicle to the actuator control circuit. 
As described in [14,15], the precursor using the physics-based dynamics for virtual sens-
ing, which follows the illustration of optimality and self-sensing, is applied explicitly to 
DC motors.  

1.1 Literature gaps presented in this manuscript.  
This manuscript presents the following two literature gaps: 

1. Development of deterministic artificial intelligence for antenna motor control; 
2. Comparative analysis with direct self-tuner with filtering (all process zeros cancelled); 

Main Conclusion of the study. Deterministic artificial intelligence was found to outperform a 
nonlinear adaptive control (direct self-tuning with filtering) with equivalent estimation and com-
putational strength.  

2. Materials and Methods 
DC motors are well-studied by many methods, providing good comparative bench-

marks. Section 2.1 elaborates motor modeling.  
2.1. Motor modeling 

Voltage changes as a function of the current change at the operating point deter-
mined by the state of charge, and the voltage open circuit voltage for the equivalent circuit 
model is determined by a second-order discrete transfer function identical to equation (2) 
of reference [17]. The model in equation (1) is taken from [17] in discrete form establishing 
comparative benchmarks in references [9,34].  

𝐺𝐺(𝑧𝑧) =  
0.09842𝑧𝑧 + 0.09842
𝑧𝑧2 − 1.607𝑧𝑧 + 0.6065

=  
𝑌𝑌(𝑧𝑧)
𝑈𝑈(𝑧𝑧)

 (1) 

Table 1. Table of proximal variables and nomenclature 1 

Variable/acronym Definition Variable/acronym Definition 
𝐺𝐺 Transfer function 𝑠𝑠 Differential variable 
𝑌𝑌 Output 𝑧𝑧 Difference variable 
𝑈𝑈 Input 𝑡𝑡 Discrete time variable 

1 Such tables are offered throughout the manuscript to aid readability. 

2.2. Analytic trajectory generation 
The comparisons presented in this research use a combination of ubiquitous square 

waves as the input to the system. The respective duty cycles of the waveforms are 50% 
and 25%, resulting in the net duty cycle being 25%. The waveform was scaled such that 
the numeric values range from -1 to 1 in amplitude. 
2.3. Deterministic A.I.: self awareness statements using analytic trajectories and PD adaption 

The formulation of the deterministic artificial intelligence model requires restricting 
the system to respond such that each new timestep corresponds with the self-awareness 
statement. That is, u(t) is calculated according to a u*(t) (Equation 2) which binds the input 
model of the system to a self-tuned system, thus making the system learn. The u*(t) values 
can be defined through the relationship between a matrix of known values [Φd], and a 
vector of unknown values to be solved for {𝜃𝜃�} initialized with a priori data (Equations 3-
5), where equation (5) is derived from the transfer function itself. 
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𝑢𝑢∗(𝑡𝑡)  ≡ [𝑦𝑦𝑑𝑑(𝑡𝑡 + 1)     − 𝑦𝑦𝑑𝑑(𝑡𝑡)    𝑦𝑦𝑑𝑑(𝑡𝑡 − 1)   −𝑢𝑢𝑑𝑑(𝑡𝑡 − 1)]

⎩
⎨

⎧
𝑎𝑎�1
𝑎𝑎�2
𝑎𝑎�3
𝑏𝑏�1⎭
⎬

⎫
=  [Φ𝑑𝑑]�𝜃𝜃�� (2) 

�𝜃𝜃�� = [Φ𝑑𝑑]−1𝑢𝑢∗ (3) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) = �𝜃𝜃�� − 𝑦𝑦(𝑡𝑡)  →  𝑢𝑢(𝑡𝑡 + 1) =  𝑘𝑘𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) +  𝑘𝑘𝑑𝑑(Δ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡),𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡 − 1)) (4) 

�𝜃𝜃�(0)� =

⎩
⎨

⎧
𝑎𝑎�1
𝑎𝑎�2
𝑎𝑎�3
𝑏𝑏�1⎭
⎬

⎫
≈ �

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑏𝑏1

� (5) 

It can be seen how the deterministic artificial intelligence utilized the ability to ma-
nipulate the model itself according to some estimation (in this case PD or proportional, 
derivative), allowing the system to self-tune as well as be free from constraints imposed 
by model-based estimators that are inherently tied to the physical system, instead of being 
able to adapt towards fitting the input signal best. 

Table 2. Table of proximal variables and nomenclature 1 

Variable/acronym Definition Variable/acronym Definition 
𝑢𝑢∗ Control input Φ𝑑𝑑 Regressor matrix 
𝑦𝑦𝑑𝑑  Desired output 𝜃𝜃� Parameter vector 

𝑎𝑎�1, 𝑎𝑎�2, 𝑎𝑎�3, 𝑏𝑏�1 Estimates 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑏𝑏1 True values 
𝑘𝑘𝑝𝑝 Proportional gain 𝑘𝑘𝑑𝑑 Difference gain 
𝐴𝐴 Coefficients of 𝑈𝑈(𝑧𝑧) 𝐵𝐵 Coefficients of 𝑌𝑌(𝑧𝑧) 

1 Such tables are offered throughout the manuscript to aid readability. 

3. Results 
Section 2 outlined the establishment of the model and estimators working on the 

deterministic artificial intelligence methodology, which will now be compared against a 
direct self-tuner with filtering (with all process zeros cancelled). 

3.1. Direct self-tuner with filtering results 
Section 2 outlined the establishment of the model and estimators working on the de-

terministic artificial intelligence methodology, which will now be compared against a di-
rect self-tuner with filtering (with all process zeros cancelled). The state-of-the-art bench-
mark method is well known [9,17,33,34] and is briefly summarized in this section.  

The direct self-tuner aims to reparametrize the model in terms of the controller pa-
rameters, demonstrated in the convergence of the new parameters shown in Figure 1b. 
The process of doing such is outlined in Section 3.5 of [2], and is done through use of the 
Diophantine equation to break down the reparameterization into the following pseudo-
code: 

1. Calculate terms in denominator 𝐴𝐴 = [𝑎𝑎�1 𝑎𝑎�2 𝑎𝑎�3] with use of estimator. 
2. Declare “left-over” A terms. 
3. Establish left-over terms from factoring numerator 𝐵𝐵+ become 𝑅𝑅′𝐵𝐵+. 
4. Combine 𝐵𝐵‾‾  gain terms with that cannot be cancelled in 𝐵𝐵 = �𝑏𝑏�1�.  
5. Output the polynomial of the controller. 

The nonlinear adaptive controller, due to the coefficients of the polynomial being 
parameterized and solved for, provides estimation without manual tuning.  
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Results plotted versus time in seconds on the abscissa. Direct self-tuner with filtering with 
process zero cancellation. (a) response to input, (b) u response, (c) error, (d) standard deviation; (e) 
response to input, (f) normalized parameter estimates 

Figure 1a shows the large overshoot at the initial displacement condition, and while 
the system does mitigate error over time, even after the full propagation of the system, 
significant error still exists. It can be seen that at all switches, the system responds fairly 
slowly, but with minimal overshoot. The convergence of the parameter estimates does 
occur rapidly, reaching convergence at around 20 timesteps, or at around 4% of the 
runtime of this simulation.  

Table 3. Figures of merit corresponding to figure 1 direct self-tuner with process zero cancellation 1 

Data source Mean Standard deviation 
Subfigure (a) command 0.0059 0.7113 

Subfigure (b) output -2e-04 0.1047 
Subfigure (c) command 0.2272 0.6555 
Subfigure (d) command 0.9187 0.3064 

Subfigure (e) input command 0.0059 0.7113 
Subfigure (e) output 0.0893 0.9875 

Subfigure (e) 1-𝜎𝜎 bounds 1.0080 1.1024 
Subfigure (f) 𝑡𝑡0 𝑟𝑟0⁄  0.1434 0.0158 
Subfigure (f) 𝑟𝑟1 𝑟𝑟0⁄  -0.417 0.0991 
Subfigure (f) 𝑠𝑠0 𝑟𝑟0⁄  0.4280 0.6408 
Subfigure (f) 𝑠𝑠1 𝑟𝑟0⁄  -0.305 0.7094 

1 Such tables are offered throughout the manuscript to aid readability. 
 

3.2. Deterministic artificial intelligence 
The responses generated were according to the model and estimations described in 

Section 2.3.  
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Results plotted versus time in seconds on the abscissa. Deterministic artificial intelligence 
results. (a) Command and response (top, left), input (top, right), error over time (bottom, left), and 
standard deviation over time (bottom, right). (b) Response to command with standard deviation 
bands (top) and normalized, converging parameter estimates over time, note logarithmic y-axis due 
to the magnitude of values (bottom) (a) Response to input, (b) U response, (c) Error, (d) Standard 
deviation; (e) Response to input, (f) Normalized parameter estimates 

It can be seen that the deterministic artificial intelligence system has significantly less 
overshoot, as well as almost negligible error in regions immediately away from the 
switches. While the initial standard deviation is already far lower than the previous meth-
odology in Section 3.1, the decay of the standard deviation is also greater. It should be 
noted that the proportional and derivative gain of the system were lightly tuned through 
simple looping while looking to minimize the total error of the system, resulting in 𝐾𝐾𝑝𝑝 =
0.3887,𝐾𝐾𝑑𝑑 = 0.6279.  

3.3. Comparison of Estimation Accuracy 
This section compares the numerical error performance between the two methods. 

Figure 3 shows the comparison in the raw results, where the difference around switches 
can be highlighted as the greatest strength of the deterministic artificial intelligence 
method. 
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(a) (b) 

  
(c) (d) 

Figure 3. Results plotted versus time in seconds on the abscissa. Results. (a) Command and response 
in initial region (top, left), input in initial region (top, right) command and response over time (bot-
tom, left), and input over time (bottom, right) 

Table 3. Criteria Comparison Between Methods. 1 

Method Initial error 
Tracking error  

Mean, 𝝁𝝁 Standard deviation, 𝝈𝝈 
Direct self-tuner with filtering  
(all process zeros cancelled) 

2.0209069 0.22724 0.65545 

Deterministic artificial intelligence 0.90158 0.042619 0.2290 
1 Such tables are offered throughout the manuscript to aid readability. 

 
The results in bold font within Table 3 indicate that deterministic artificial intelli-

gence performed better across all three metrics analyzed, as well as Figure 3 shows visu-
ally the superior performance in terms of transient behavior, especially in terms of most 
accurately capturing the command signal. 

4. Discussion 

It can be seen that the deterministic artificial intelligence had superior performance 
across almost every metric and given that the actual estimation within the deterministic 
artificial intelligence was done with equivalently powerful estimators, it can be shown 
clearly that the ability to affect the model greatly contributes to improved performance. 
The greatest points of interest come in response to the initial condition and at switches. 
Within the initial region, almost no overshoot is experienced, which is where the 55% re-
duction in peak accuracy comes, as the non-learning controller overshoots so drastically.  

Table 4. Percent performance improvement comparisons. 1 

Method Initial error 
Tracking error  

Mean, 𝝁𝝁 Standard deviation, 𝝈𝝈 
Deterministic artificial intelligence –55% –81% –65% 
1 Such tables are offered throughout the manuscript to aid readability. 

The ability to pivot immediately in response to a single timestep at the switches to 
capture the command behavior also stands out, as no traditional controller can respond 
to this quickly, due to the system inertia present in any plant. By overriding this, the con-
troller is able to radically pivot. It should be noted, however, that given the massive spike 
in the adjusted parameters, this behavior may be unrealistic due to the physical limitations 
of a system: the massive spike could lead to an unachievable gain and simply require too 
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much power to ever happen. Further research into fine-tuning the model for a DC motor 
could reveal more about these constraints, as well as other concerns even as simple as the 
amount of stress induced by such an abrupt response. 
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Appendix A 
MATLAB Code used to generate results. 

1. Direct Self-Tuning with Filtering Script 
% Deterministic AI Script 
clear all; close all; clc; 
%Plant Characteristics 
B = [0 0.9842 0.09842]; A = [1 -1.607 0.6065]; 
Bm=[0 0.1065 0.092]; Am=[1 -1.3205 0.4966]; 
a0=1.0;d0=1;am0=Am(1);am1=Am(2);am2=Am(3); n=4; lambda=1; 
 
%Initialize  
nzeros=5;time=zeros(1,nzeros);maxtime=500; 
Y=zeros(1,maxtime+nzeros);U=zeros(1,maxtime+nzeros); Uf=ones(1,nzeros);Yf=ones(1,nzeros); 
 
r0=5; r1=0.85*r0; s0=2.68*r0; s1=-1.03*r0; t0=1.65*r0; P=100*eye(n); THETA_hat(:,1)=[r0 r1 s0 s1]'; 
 
%Square wave with 50 sec period 
for i=1:maxtime   
    Uc(i)=(square(2*pi/50*i)+square(pi/50*i))/2;   
end 
 
Uc=[ones(1,nzeros),Uc]; Uc(1,100:105)=-1; 
 
for i=1:maxtime 
   phi=[];t=i+nzeros;time(t)=i;    
    
   %Y(t)=[r0 r1 s0 s1]*[Uf(t-d0) Uf(t-d0-1) Yf(t-d0) Yf(t-d0-1)]'; 
   Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-d0) Y(t-d0-1) U(t-d0) U(t-d0-1)]'; 
    
   % RLS-EF algorithm on model 3.30 to estimate R & S coefficients, calculate T 
   phi=[Uf(t-d0) Uf(t-d0-1) Yf(t-d0) Yf(t-d0-1)]'; K=P*phi/(lambda+phi'*P*phi);    
   P=P-P*phi/(1+phi'*P*phi)*phi'*P/lambda; error(i)=Y(t)-phi'*THETA_hat(:,i);    
   THETA_hat(:,i+1)=THETA_hat(:,i)+K*error(i); 
   r0=THETA_hat(1,i+1); r1=THETA_hat(2,i+1); s0=THETA_hat(3,i+1); s1=THETA_hat(4,i+1); 
   t0=[1+am1+am2]; 
    
   % Calculate Model control 
   U(t)=[-r1 t0 -s0 -s1]*[U(t-d0) Uc(t) Y(t) Y(t-d0)]'/r0; 
 
   % Calculate filtered output and control 
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   Yf(t)=[1 -am1 -am2]*[Y(t) Yf(t-d0) Yf(t-d0-1)]';  Uf(t)=[1 -am1 -am2]*[U(t) Uf(t-d0) Uf(t-d0-1)]'; 
end 
 
%Plot 
error = zeros(1,length(Y)); 
for i=1:1:length(Y);  error(i) = abs(Y(i)-Uc(i)); end 
sd_set = zeros(1,length(Y)); 
for i=2:1:length(error);  sd_set(i) = std(error(1:i)); end 
sd_set(1) = sd_set(2); 
 
[peak_transient_error, pos] = max(abs(Y(50:end)-Uc(50:end))); 
%peak_transient_error_percent = abs(Y(pos))/abs(Uc(pos)); 
 
[peak_input_error, pos] = max(abs(Y(1:20)-Uc(1:20))); 
peak_input_error_percent = abs(Y(pos))/abs(Uc(pos)); 
error_mean = mean(error(:)); 
 
%Response Plot 
figure(1);  
subplot(2,2,1);plot(time,Uc,time,Y);axis([0 250,-1.25 4]); 
xlabel('Timesteps','fontsize',12);legend('u_c','y'); 
title('Response to Input','fontsize',13); 
subplot(2,2,2);plot(time,U);xlabel('Timesteps','fontsize',12);axis([0 500 -2.7 2.7]); 
title('U Response','fontsize',13); 
subplot(2,2,3);plot(time,error);xlabel('Timesteps','fontsize',12);axis([0 250,-0.1 4]); 
title('Error','fontsize',13); 
subplot(2,2,4);plot(time,sd_set);xlabel('Timesteps','fontsize',12);axis([0 500 0 2]); 
title('Standard Deviation','fontsize',13); 
 
%Fancy Response Mode 
sd_up = Y+sd_set; sd_low = Y-sd_set; 
figure(2); 
subplot(2,1,1);plot(time,Uc,'--',time,Y,time,sd_up,'r',time,sd_low,'r');  
axis([0 500,-2 3]);xlabel('Timesteps','fontsize',12);legend('u_c','y','1 \sigma Bound'); 
title('Response to Input','fontsize',13); 
 
R0=THETA_hat(1,:);R1=THETA_hat(2,:);S0=THETA_hat(3,:);S1=THETA_hat(4,:); 
for i=1:501;t(i)=i;end 
subplot(2,1,2);plot(t,R1./R0,t,S0./R0,t,t0./R0,t,S1./R0);xlabel('Timesteps','fontsize',14); 
axis([0 30 -4 4]); title(' Normalized Parameter Estimates','fontsize',13); 
text(11,1.75,'t_0/r_0','fontsize',14);text(12.5,0.25,'s_0/r_0','fontsize',13); 
text(11.5,-1.25,'r_1/r_0','fontsize',14);text(15,-1.25,'s_1/r_0','fontsize',13); 

 
%Plant Functions 
maxtime = 500; 
B = [0 0.9842 0.09842]; A = [1 -1.607 0.6065]; Bm=[0 0.1065 0.092]; Am=[1 -1.3205 0.4966]; 
 
H=tf(Bm,Am,0.1); %Convert Plant [num] and [den] to discrete transfer function 
Rmatrix=[]; 
 
n=4;lambda=1; % number of parameters to estimate and Exponential Forgetting Factor 
nzeros=5; time=zeros(1,nzeros); Y=zeros(1,nzeros); Ym=zeros(1,nzeros);%Initialize ouput vectors 
U=ones(1,nzeros); error_collect=ones(1,nzeros); 
Noise = 1/25*randn(1,maxtime+nzeros); epsilon=[zeros(1,nzeros+maxtime)]; 
 
%Square wave with 50 sec period 
for l=1:maxtime; Uc(l)=(square(2*pi/50*l)+square(pi/50*l))/2; end 
 
Uc=[ones(1,nzeros),Uc]; Uc(1,100:105)=-1; phi_awr = []; 
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t=1:1:maxtime; 
traj_Uc = (Uc); hvy_m = [zeros(1,nzeros) traj_Uc]; eb = Y(1) - hvy_m(1); 
err = 0; kp = 0.3887; kd = 0.6279; phid = []; ustar = []; hatvec = zeros(4,1); 
 
for i=1:maxtime 
    t=i+nzeros; time(t)=i; de = err-eb; u = kp*err + kd*de; U(t-1) = u; 
 
    Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]'; 
 
    phid = [phid; Y(t) -Y(t-1) Y(t-2) -U(t-2)]; ustar = [ustar; u]; 
    phid_t = phid(i,:); ustar_t = u; 
    newest = phid_t.\ustar_t; hatvec(:,i) = newest; eb = err; err = hvy_m(t)-Y(t); 
end 
 
time = time((nzeros+1):end); Y = Y((nzeros+1):end); U = U((nzeros):end); Uc = Uc(1:length(time)); 
error = zeros(1,length(Y)); 
for i=1:1:length(Y); error(i) = abs(Y(i)-Uc(i)); end 
sd_set = zeros(1,length(Y)); 
for i=2:1:length(error); sd_set(i) = std(error(1:i)); end 
sd_set(1) = sd_set(2); 
 
THETA_hat = [hatvec(2,:)./hatvec(1,:); hatvec(3,:)./hatvec(1,:);  
ones(1,length(hatvec(1,:)))./hatvec(1,:); hatvec(4,:)./hatvec(1,:)]; 
 
%Response Plot 
figure(1);  
subplot(2,2,1);plot(time,Uc,time,Y);axis([0 100,-1.25 1.25]); 
xlabel('Timesteps','fontsize',12);legend('u_c','y'); 
title('Response to Input','fontsize',13); 
subplot(2,2,2);plot(time,U);xlabel('Timesteps','fontsize',12);axis([0 250 -2.7 2.7]); 
title('U Response','fontsize',13); 
subplot(2,2,3);plot(time,error);xlabel('Timesteps','fontsize',12);axis([0 100,-0.1 1.25]); 
title('Error','fontsize',13); 
subplot(2,2,4);plot(time,sd_set);xlabel('Timesteps','fontsize',12);axis([0 250 0 0.75]); 
title('Standard Deviation','fontsize',13); 
 
[peak_transient_error, pos] = max(abs(Y(50:end)-Uc(50:end))); 
peak_transient_error_percent = abs(Y(pos))/abs(Uc(pos)); 
 
[peak_input_error, pos] = max(abs(Y(1:24)-Uc(1:24)));  
peak_input_error_percent = abs(Y(pos))/abs(Uc(pos)); 
error_mean = mean(error(:)); 
 
%Fancy Response Mode 
sd_up = Y+sd_set; sd_low = Y-sd_set; 
figure(2); 
subplot(2,1,1);plot(time,Uc,'--',time,Y,time,sd_up,'r',time,sd_low,'r');axis([0 300,-1.75 1.75]); 
xlabel('Timesteps','fontsize',12);legend('u_c','y','1 \sigma Bound'); 
title('Response to Input','fontsize',13); 
 
for i=1:1:4; THETA_hat(1,:) = sign(THETA_hat(1,:)).*log10(abs(THETA_hat(1,:))); end 
 
R0=THETA_hat(1,:);R1=THETA_hat(2,:);S0=THETA_hat(3,:);S1=THETA_hat(4,:);  
for i=1:501; t(i)=i; end 
 
subplot(2,1,2);plot( time,R0,time,R1,time,S0,time,S1); 
xlabel('Timesteps','fontsize',14);axis([0 300 -3000 3000]); ylabel('Logarithmic Scale') 
title('Automated System Parameters','fontsize',13); legend('a1','a2','a3','b1'); 

References 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2023                   doi:10.20944/preprints202302.0022.v1

https://doi.org/10.20944/preprints202302.0022.v1


 11 of 12 
 

1. Low-Cost, Low-Power, Portable Mounting Platform for Auto-Tracking Antenna. Available online: 
https://www.nasa.gov/sites/default/files/files/Low-Cost_Low-Power_Portable_Mounting_Platform_for_Auto-Tracking_An-
tenna-20150703-LOW.pdf (accessed on 15 January 2023)  

2. NASA Image Use Policy. Available online: https://gpm.nasa.gov/image-use-policy (accessed on 24 December 2022). 
3. Umeyama, A.; Salazar-Cerreno, J.; Fulton, C. UAV-Based Antenna Measurements for Polarimetric Weather Radars: Probe Anal-

ysis. IEEE Access, 2020, 8, 191862-191874. 
4. NOAA Image Use Policy. Available online: https://www.fisheries.noaa.gov/national/about-us/website-policies-and-disclaim-

ers#:~:text=Any%20NOAA%20images%20on%20our,%E2%80%9CNOAA%E2%80%9D%20as%20the%20source (accessed on 
24 December 2022). 

5. Special Issue "Advances of Unmanned Aerial Vehicle Communication". Available online: https://www.mdpi.com/jour-
nal/drones/special_issues/KEM553JC45 (accessed on 15 January 2023).  

6. Rathore, Ankush and Mahendra Kumar. Robust Steering Control of Autonomous Underwater Vehicle: based on PID Tuning 
Evolutionary Optimization Technique. International Journal of Computer Applications 2015, 117, 1-6. 

7. Sands, T. Development of deterministic artificial intelligence for unmanned underwater vehicles (UUV). J. Mar. Sci. Eng. 2020, 
8, 578.  

8. Koo, S.M.; Travis, H.; Sands, T. Impacts of Discretization and Numerical Propagation on the Ability to Follow Challenging 
Square Wave Commands. J. Mar. Sci. Eng. 2022, 10, 419. https://doi.org/10.3390/jmse10030419  

9. Shah, R.; Sands, T. Comparing Methods of DC Motor Control for UUVs. Appl. Sci. 2021, 11, 4972.  
10. Bernat, J.; Stepien, S. The adaptive speed controller for the BLDC motor using MRAC technique. IFAC Proc. Vol. 2011, 44, 4143–

4148. 
11. Gowri, K.; Reddy, T.; Babu, C. Direct torque control of induction motor based on advanced discontinuous PWM algorithm for 

reduced current ripple. Electr. Eng. 2010, 92, 245–255.  
12. Rathaiah, M.; Reddy, R.; Anjaneyulu, K. Design of Optimum Adaptive Control for DC Motor. Int. J. Electr. Eng. 2014, 7, 353–

366. 
13. Haghi, P.; Ariyur, K. Adaptive First Order Nonlinear Systems Using Extremum Seeking. In Proceedings of the 50th Annual 

Allerton Conference on Communication Control, Monticello, IL, USA, 1–5 October 2012; pp. 1510–1516. 
14. Sands, T. Virtual sensoring of motion using Pontryagin's treatment of Hamiltonian systems. Sensors 2021, 21, 4603.  
15. Vidlak, M.; Gorel, L.; Makys, P.; Stano, M. Sensorless Speed Control of Brushed DC Motor Based at New Current Ripple Com-

ponent Signal Processing. Energies 2021, 14, 5359. 
16. Chen, J.; Wang, J.; Wang, W. Robust Adaptive Control for Nonlinear Aircraft System with Uncertainties. Appl. Sci. 2020, 10, 

4270. 
17. Åström, K.;Wittenmark, B. Adaptive Control; Addison-Wesley: Boston, FL, USA, 1995. 
18. Slotine, J.; Benedetto, M. Hamiltonian adaptive control on spacecraft. IEEE Trans. Autom. Control 1990, 35, 848–852. 
19. Slotine, J.;Weiping, L. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991. 
20. Fossen, T. Comments on "Hamiltonian Adaptive Control of Spacecraft". IEEE Trans. Autom. Control 1993, 38, 671–672. 
21. Sands, T.; Kim, J.J.; Agrawal, B.N. Improved Hamiltonian adaptive control of spacecraft. In Proceedings of the IEEE Aerospace, 

Big Sky, MT, USA, 7–14 March 2009; IEEE Publishing: Piscataway, NJ, USA, 2009; pp. 1–10. 
22. Smeresky, B.; Rizzo, A.; Sands, T. Optimal Learning and Self-Awareness Versus PDI. Algorithms 2020, 13, 23. 
23. Fossen, T. Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 

2021; ISBN 978-1-119-57505-4. 
24. Fossen, T. Guidance and Control of Ocean Vehicles; John Wiley & Sons Inc.: Chichester, UK, 1994. 
25. Sands, T.; Bollino, K.; Kaminer, I.; Healey, A. Autonomous Minimum Safe Distance Maintenance from Submersed Obstacles in 

Ocean Currents. J. Mar. Sci. Eng. 2018, 6, 98. 
26. Sands, T.; Lorenz, R. Physics-Based Automated Control of Spacecraft. In Proceedings of the AIAA Space Conference & Exposi-

tion, Pasadena, CA, USA, 14–17 September 2009. 
27. Available online: https://site.ieee.org/ias-idc/2019/01/29/prof-bob-lorenz-passed-away/ (accessed on 12 Dec 2022). 
28. Zhang, L.; Fan, Y.; Cui, R.; Lorenz, R.; Cheng, M. Fault-Tolerant Direct Torque Control of Five-Phase FTFSCW-IPM Motor Based 

on Analogous Three-phase SVPWM for Electric Vehicle Applications. IEEE Trans. Veh. Technol. 2018, 67, 910–919.  
29. Apoorva, A.; Erato, D.; Lorenz, R. Enabling Driving Cycle Loss Reduction in Variable Flux PMSMs Via Closed-LoopMagneti-

zation State Control. IEEE Trans. Ind. Appl. 2018, 54, 3350–3359.  
30. Flieh, H.; Lorenz, R.; Totoki, E.; Yamaguchi, S.; Nakamura, Y. Investigation of Different Servo Motor Designs for Servo Cycle 

Operations and Loss Minimizing Control Performance. IEEE Trans. Ind. Appl. 2018, 54, 5791–5801. 
31. Flieh, H.; Lorenz, R.; Totoki, E.; Yamaguchi, S.; Nakamura, Y. Dynamic Loss Minimizing Control of a Permanent Magnet Ser-

vomotor Operating Even at the Voltage Limit When Using Deadbeat-Direct Torque and Flux Control. IEEE Trans. Ind. Appl. 
2019, 3, 2710–2720.  

32. Flieh, H.; Slininger, T.; Lorenz, R.; Totoki, E. Self-Sensing via Flux Injection with Rapid Servo Dynamics Including a Smooth 
Transition to Back-EMF Tracking Self-Sensing. IEEE Trans. Ind. Appl. 2020, 56, 2673–2684.  

33. Sands, T. Comparison and Interpretation Methods for Predictive Control of Mechanics. Algorithms 2019, 12, 232. 
34. Sands, T. Control of DC Motors to Guide Unmanned Underwater Vehicles. Appl. Sci. 2021, 11, 2144.  
35.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2023                   doi:10.20944/preprints202302.0022.v1

https://doi.org/10.20944/preprints202302.0022.v1


 12 of 12 
 

36.  
37. Author 1, A.B.; Author 2, C.D. Title of the article. Abbreviated Journal Name Year, Volume, page range. 
38. Author 1, A.; Author 2, B. Title of the chapter. In Book Title, 2nd ed.; Editor 1, A., Editor 2, B., Eds.; Publisher: Publisher Location, 

Country, 2007; Volume 3, pp. 154–196. 
39. Author 1, A.; Author 2, B. Book Title, 3rd ed.; Publisher: Publisher Location, Country, 2008; pp. 154–196. 
40. Author 1, A.B.; Author 2, C. Title of Unpublished Work. Abbreviated Journal Name year, phrase indicating stage of publication (sub-

mitted; accepted; in press). 
41. Author 1, A.B. (University, City, State, Country); Author 2, C. (Institute, City, State, Country). Personal communication, 2012. 
42. Author 1, A.B.; Author 2, C.D.; Author 3, E.F. Title of Presentation. In Proceedings of the Name of the Conference, Location of 

Conference, Country, Date of Conference (Day Month Year). 
43. Author 1, A.B. Title of Thesis. Level of Thesis, Degree-Granting University, Location of University, Date of Completion. 
44. Title of Site. Available online: URL (accessed on Day Month Year). 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2023                   doi:10.20944/preprints202302.0022.v1

https://doi.org/10.20944/preprints202302.0022.v1

	1. Introduction
	1.1 Literature gaps presented in this manuscript.

	2. Materials and Methods
	2.1. Motor modeling
	2.2. Analytic trajectory generation
	2.3. Deterministic A.I.: self awareness statements using analytic trajectories and PD adaption

	3. Results
	3.1. Direct self-tuner with filtering results
	3.2. Deterministic artificial intelligence
	3.3. Comparison of Estimation Accuracy

	4. Discussion
	References

