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Abstract: Autonomous vehicles (AVs) rely heavily on multi-sensor fusion to perceive their
environment and make critical, real-time decisions by integrating data from various sensors such as
radar, cameras, Lidar, and GPS. However, the complexity of these systems often leads to a lack of
transparency, posing challenges in terms of safety, accountability, and public trust. This review
investigates the intersection of multi-sensor fusion and explainable artificial intelligence (XAI),
aiming to address the challenges of implementing accurate and interpretable AV systems. We
systematically review cutting-edge multi-sensor fusion techniques, along with various explainability
approaches, in the context of AV systems. While multi-sensor fusion technologies have achieved
significant advancement in improving AV perception, the lack of transparency and explainability in
autonomous decision-making remains a primary challenge. Our findings underscore the necessity of
abalanced approach to integrating XAI and multi-sensor fusion in autonomous driving applications,
acknowledging the trade-offs between real-time performance and explainability. The key challenges
identified span a range of technical, social, ethical, and regulatory aspects. We conclude by
underscoring the importance of developing techniques that ensure real-time explainability,
specifically in high-stakes applications, to stakeholders without compromising safety and accuracy,
as well as outlining future research directions aim at bridging the gap between high-performance
multi-sensor fusion and trustworthy explainability in autonomous driving systems.

Keywords: autonomous vehicles; self-driving cars; multi-sensor fusion; explainability; explainable
artificial intelligence (xai); interpretability; perception; camera; lidar; radar

1. Introduction

Autonomous vehicles (AVs), also known as self-driving vehicles, are at the forefront of
technological innovation with the potential to transform and revolutionize transportation by
improving road user safety, efficiency, accessibility, and reducing greenhouse gas emissions [1,2]. At
the core of their operation lies the sophisticated capability to perceive, analyze, and respond to highly
dynamic and complex driving environments in real time with minimal to no human intervention.
AV’s perception system relies on the integration of advanced proprioceptive and exteroceptive
sensors, robust processing power, complex machine learning (ML) algorithms, and decision-making
systems to analyze and interpret complex traffic situations, navigate through unpredictable
conditions, and make real-time critical driving decisions autonomously [2]. In our previous research
[3], we investigated the architecture of an autonomous driving system from both functional and
technical perspectives; highlighting the key components and subsystems that facilitate AVs to
operate efficiently based on system design and operational capabilities, specifically in the perception
stage of self-driving solutions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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AVs are not limited to on-road applications such as highway driving and navigation or urban
driving, nor to off-road environments in industries like agriculture, mining, and construction [4-6].
It extends to a broader range of domains, including maritime settings, where AVs are applied to
manage self-navigating vessels, automated container handling and logistic operations in container
port terminals, et cetera; hence, improving the safety and efficiency of port activities [7,8]. Whether
operating in structured urban settings with well-defined road networks, navigating unstructured and
rugged off-road terrains, or coordinating day-to-day logistical tasks within dynamic maritime
settings, AVs face diverse operational challenges that demand advanced solutions. All these
challenges require efficient and robust multi-sensor fusion and decision-making algorithms to ensure
effective and reliable performance.

In AVs, sensors play a pivotal role in perceiving its surroundings and localization of the vehicle
within its environment to perform dynamic driving tasks such as obstacle detection and avoidance,
path planning, environmental awareness, response to unexpected road situations, et cetera [9,10]. It
involves real-time collection and interpretation of large volumes of data (or measurements) from
multiple proprioceptive and exteroceptive sensors, including vision cameras, radar, Lidar, ultrasonic
sensor, Global Positioning System (GPS), Inertial Measurement Unit (IMU), et cetera. Table 1 below
provides a summary of the commonly adopted proprioceptive and exteroceptive sensors in an AV.
It outlines the specific types of sensor that are frequently used in autonomous driving systems to
enable robust perception and localization across various operational contexts [11,12].

Table 1. A summary of the commonly utilized proprioceptive and exteroceptive sensors in AVs.

Definition Examples

Exteroceptive Sensor It perceives the external environment, detecting e  Vision cameras.
objects, obstacles, light intensity, and other e Radar sensors.
relevant features essential for safe navigation. e Lidar sensors.

e  Ultrasonic sensors.

Proprioceptive Sensor It measures the internal values and gathers e IMU.
information about the dynamic state of a self- e  Global Navigation
driving vehicles, such as its position, speed, and Satellite System (GNSS).
acceleration, that are essential for maintaining e GPS.
stability and ensuring precise control of the
vehicle motion.

However, the composition of the sensor suite, which refers to the collection of sensors that are
integrated into an AV, can vary significantly based on the intended use cases and its specific
operational demands. In addition, the specific operational environment of AVs — whether it is on-
road, off-road, or in specialized industrial settings — affects the type and arrangement of the sensors
that are required to facilitate the perception, localization, and decision-making processes in an
autonomous driving system. For example, on-road AVs such as self-driving cars [13] or trucks [14]
that operate predominantly on highways and within urban environments often rely heavily on a
combination of vision cameras, radar, and Lidars to ensure high-resolution and 360-degree
environmental mapping; which are vital in environments where dense traffic and high-speed motion
are involved. These sensors must be able to detect and track moving objects, interpret traffic signals,
and respond to unpredictable behaviors from other road users.

In contrast, off-road AVs such as autonomous tractor and tillage (agriculture), autonomous
pallet loader (military and warehousing), automated rail mounted gantry (RMG) cranes (shipping
yards), et cetera [15-17] may employ different sensor configuration that incorporates robustness due
to rugged environment, uneven surfaces, low-visibility conditions, or lack of clear infrastructures. In
such cases, off-road AVs often incorporate specialized sensors like infrared cameras or thermal
cameras to enhance visibility in dusty or low-light conditions [18]. Figure 1 below presents a visual
depiction of various examples of AVs specifically designed for both on-road and off-road
applications. The imagery exemplifies the diversity present within the category of AVs, highlighting
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how different designs and functionalities are tailored to meet the unique requirements of different
operational environments.

(c) (d)

Figure 1. A visual representation of various examples of AVs specifically designed for both on-road and off-road
applications. (a) Waymo self-driving taxis for ride-sharing services; (b) Einride autonomous truck for freight
transportation and logistics; (¢) John Deere autonomous tractor and tillage for agricultural activities and
precision farming; (d) Stratom autonomous pallet loader for handling pallets. All images shown are provided
by the following sources: [14,16,17,19].

The Society of Automation Engineers (SAE) introduced a standardized guideline to eliminate
terminological confusion used to describe the varying levels of vehicle automation. It aims to promote
clearer communication across industries, enhance risk assessment during system design, support the
development of safety and regulatory frameworks, and build public trust and understanding of AV
technologies [10,20]. Hence, its initiative has led to the publication of the SAE J3016 standard in 2014,
which clearly classifies the levels of driving automation ranging from Level 0 (no automation) to
Level 5 (full automation) [21], as illustrated in Figure 2. Current automation driving technologies
have yet to reach its full potential and have remained at Level 2 (partial automation) for several years
[10]. Nonetheless, it is important to highlight that Level 3 (conditional automation) automated
driving systems are now being initiated into regular production [22] and some manufacturers, such
as Waymo’s commercial self-driving ride-sharing services [23], claim to have built vehicles with
autonomy that are equivalent to Level 4 (high automation) as described in the SAE J3016 standard.
In both on-road and off-road applications, the adoption of this standardized classification supports
more coherent development pathways for multi-sensor fusion and explainable artificial intelligence
(XAI), as it provides a clearer understanding of the driving system’s intended level of autonomy,
decision-making responsibilities, and operational limitations.
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Figure 2. A visual summary of the SAE J3016:2021 standard, which categorizes the levels of driving automation
in vehicles. Readers interested in the comprehensive description of the SAE J3016:2021 standard (latest revision)
are advised to refer to the SAE International Blog Post [24]. The illustration shown was redrawn and modified
based on the diagram in [25,26].

A shared characteristic of an autonomous driving system, applicable to both on-road and off-
road applications, is their reliance on multi-sensor fusion, a method that involves integration data
from multiple sensor types. This approach is essential for improving the overall perception and
situational awareness of AVs, as it helps to address the limitations inherent in individual sensors
operating in isolation and mitigate detection uncertainties. For instance, Lidar sensors are highly
effective at providing precise, high-resolution depth information, they are susceptible to adverse
weather conditions. In contrast, radar sensors are more capable of detecting objects through fog or
rain but may offer lower spatial resolution [11]. By integrating data from diverse sensor modalities
such as exteroceptive sensors and proprioceptive sensors, multi-sensor fusion significantly enhances
the accuracy, reliability, and robustness of the vehicle’s perception capabilities. Thus, such an
approach enables AVs to achieve a more comprehensive understanding of the surroundings,
facilitating more effective navigation in complex and dynamic environments [27,28].

Nonetheless, as the complexity of autonomous driving systems increases, especially with the
integration of multiple sensor modalities, the decision-making processes guided by complex deep
learning (DL) and ML algorithms often lead to a significant lack of transparency. While these DL and
ML models are highly effective at generalizing across a wide range of driving scenarios and are
renowned for their powerful ability to model complex patterns through sophisticated data
representation, their inner workings and its underlying decision-making logic often results in an
inexplainable system [29]. Such systems are concerning in safety-critical applications, such as AVs,
where the consequences of erroneous or suboptimal decisions can be severe. For example, in
scenarios involving novel conditions or sophisticated driving environments, the inability to
understand how or why an autonomous system has made a particular decision can lead to significant
risks, including system failures, accidents, or even the loss of human life [30,31]. Hence, it is important
to integrate explainability into the design of complex autonomous systems to enhance transparency,
traceability, accountability, and trust among stakeholders [32].

This paper builds upon and extends the research presented in our previous publication [11],
broadening the scope to deliver an in-depth analysis of the intersection between multi-sensor fusion
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and XAl in the context of AV systems. In this extended review study, we aim to systematically review
state-of-the-art multi-sensor fusion techniques alongside emerging XAI methodologies that
contribute to the development of more transparent and interpretable AV systems without
compromising safety and perception accuracy. Section 2 presents an overview of the latest
advancements in multi-sensor fusion techniques and provides insight into how multi-sensor fusion
methodologies are used to create a unified understanding of the vehicle’s surrounding environment.
In addition, this section evaluates their respective strengths and weaknesses as well as the challenges
associated in real-world autonomous driving applications.

Section 3 outlines the core principles and frameworks of XAI and presents an overview of
emerging XAl techniques and tools that can be adopted to enhance the interpretability, transparency,
and trustworthiness of an AV system. Besides, this section explores the role of XAI in AVs and
emphasizes the critical importance of implementing explainability into the decision-making
processes and its challenges to provide clear and interpretable insights into how and why specific
driving decisions are made. Lastly, Section 4 presents a summary overview of the key findings and
insights presented throughout the research and highlights future research directions that could
contribute to the development of more reliable, interpretable, and trustworthy autonomous driving
systems.

2. Multi-Sensor Fusion in Autonomous Vehicles

In AV systems, multi-sensor fusion serves as a cornerstone process in constructing a precise and
dependable model of the driving environment. It enables the AV to interpret, predict, and respond
to diverse and complex road conditions without little to no human intervention. Unlike traditional
vehicles, which rely exclusively on human drivers to perceive and respond to road conditions, AV
systems employ a range of sensor types, including cameras, Lidar, radar, and ultrasonic sensors, that
capture unique aspects of the driving environment for safe navigations and decision-making [11].
Figure 3 below provides an illustrative example of a standard sensor configuration for environment
perception in AV systems. Nevertheless, it is important to note that the arrangement and integration
of various sensors can differ significantly based on the specific application scenarios and operational
requirements of the AV [33-37].

Ultrasonic Sensor

Camera
Camera
1 Camera

Ultrasonic Sensor Shert-Bange Radar

l Short-Range Lidar

|

|

Short-Range Radar

Long-Range Radar

Ultrasonic Sensor

I

Camera

360° Lidar

Ultrasonic Sensor

Figure 3. An illustrative example of a typical sensor configuration employed for environmental perception in

on-road automated driving systems. It is essential to recognize that the arrangement and integration of sensor
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modalities can differ significantly based on operational requirements and specific applications, i.e., off-road
versus on-road use cases. Other sensors, such as GPS and IMUs, are not indicated in the illustration. The image
shown was redrawn and modified based on the diagram in [36,37].

However, each sensor type carries specific limitations that can compromise its reliability in
isolation. For example, cameras deliver high-resolution images that are invaluable for capturing
texture and color details and object recognition, but their effectiveness decreases in low light, glare,
or adverse weather conditions. Lidar sensors generate detailed depth maps of the surrounding
driving environment that enhance spatial awareness, but their performances can degrade under
heavy fog or rainy weather conditions [38—40]. Radar sensors, on the other hand, offer reliable
distance and velocity measurements without weather condition constraints, but they lack the
resolution needed to capture finer details or identify static objects with precision. Lastly, ultrasonic
sensors complement the perception suite in AV systems by providing short-range object detection
capabilities, which are critical for close-proximity maneuvers such as parking, yet their capabilities
are limited in their short operational range and are not suitable for use in high-speed driving
scenarios, where higher-resolution data and broader spatial awareness are indispensable [11,41,42].
Therefore, integrating multiple sensor data streams using multi-sensor fusion techniques is
imperative for overcoming the limitations that arise when sensors are employed independently. In
addition, the multi-sensor fusion process significantly enhances the overall robustness and accuracy
of perception in AV systems, which is vital for their performance in dynamic, unpredictable, and
safety-critical driving scenarios. Table 2 below presents a summary of advantages and limitations
associated with exteroceptive sensors — cameras, Lidar, radar, and ultrasonic sensors [43,44]. It
highlights the strengths and weaknesses of the sensors, offering valuable insights into their
performance across different operational requirements and environmental or illumination
conditions.

Table 2. An overview of the advantages and limitations associated with exteroceptive sensors: camera, Lidar,
radar, and ultrasonic sensors. The table shown is adapted from [44] with modifications.

Exteroceptive Sensors Advantages
e High resolution. o

e Infrared or thermal

Disadvantages
Depth information is not
possible without stereo
configuration.

sensing available.
Reliant on illumination.

e Captures texture and color

details. e Vulnerable to weather
Camera e Optimal for object conditions.
recognition. e Extensive computational
e Low cost. power to analyze camera
images.
¢ Limited velocity

measurements.

Long detection range. e High cost.

Provides high-resolution
three-dimensional (3D)
spatial data with distance

Ineffective and shorter range
in adverse heavy rain, fog, or
dust.

Lidar measurements. e No texture or color
Insusceptible to information.
illumination. o Difficult to detect objects
with specular surface or non-
Lambertian material [45].
Insusceptible to e Poor resolutions.
Radar illumination and weather e Unable to detect small

conditions.

objects.
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o Offers distance and e Limited classification
relative velocity capability.
measurements. ¢ Noisy outputs due to

e Low cost. reflections.

e Longrange. ¢ No texture or color

information.

e Insusceptible to e Limited detection range.
illumination and weather e Not suitable for detecting
conditions. objects at high speed.

e Provides high precision ¢ Susceptible to interference

. for close-range detection at from wind at high speed.
Ultrasonic o\
low speed. ¢ Sensitive to temperature
e Capable of detecting variation and vapors.

objects made from all
types of materials.
e Low cost.

In the context of multi-sensor fusion, several distinct strategies were introduced and adopted to
integrate data from multiple sensor modalities to improve the overall perception and decision-
making capabilities of AV systems [46]. These strategies can be broadly categorized into three
primary approaches: (a) low-level fusion, (b) mid-level fusion, and (c) high-level fusion. Each of these
approaches presents a distinct technique for integrating sensor data, designed to optimize the trade-
offs between data richness, real-time processing requirements, and computational efficiency. By
strategically integrating data at different stages within the sensor data processing pipeline, these
fusion techniques aim to address the inherent limitations and uncertainties of individual sensor
modalities to create a more robust and resilient perception and navigation model in AV systems.
This, in turn, allows AV systems to achieve a higher level of situational awareness, improving the
reliability of decision-making and ensuring safer navigation, even in complex and challenging
driving environments [11,46—48].

2.1. Multi-Sensor Fusion Approaches

2.1.1. Low-Level Fusion

Low-Level Fusion (LLF), also known as data-level fusion or early fusion [48-50], represents the
most granular approach to integrating sensor data in AV systems, where data from multiple sensor
types is integrated at the lowest abstraction level, before any significant preprocessing, filtering, or
feature extraction occurs. In essence, the LLF approach to multi-sensor fusion utilizes raw features or
unprocessed sensor inputs, such as raw radar reflections, camera pixel data, or Lidar point clouds, to
create a comprehensive, high-resolution representation of the driving environment. One of the key
advantages of LLF approach is its capability to retain the fine-grained information captured by each
individual sensor, which maximizes the amount of information available for further analysis
including small objects or minute changes in the driving scene. As a result, LLF approach plays an
essential role in enhancing the precision and reliability of object detection and environmental
awareness in AV’s perception system, specifically in dynamic or complex driving scenarios where
capturing and preserving fine-grained information is critical for accurate decision-making and
ensuring safe navigation [51].

In AV systems, the LLF strategy is often employed in scenarios where high precision and fine-
grained detail are indispensable, especially in tasks such as object detection, classification, and
tracking. For instance, a recent study by [52] demonstrated that integrating high-resolution camera
images and Lidar 3D point clouds at the raw data level substantially improves the accuracy of image
depth estimation. It involves projecting Lidar point clouds onto the image plane, otherwise known
as sparse depth maps, and further refines into dense depth maps utilizing a depth completion method
[53] to transform camera features into a bird’s-eye view (BEV) space for long-range high-definition
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(HD) map generation; thereby improving the precision of object detection and overall spatial
awareness. In addition, the study referenced in [54] introduced a novel camera-radar fusion
transformer framework to integrate spatial and contextual information from both the radar and
camera sensors using an innovative Spatio-Contextual Fusion Transformer (SCFT) model and a Soft
Polar Association (SPA) module. It leverages the complementary strengths of each sensor and the
associated polar coordinates between radar points and vision-based object proposals for object
detection, classification, and tracking. Such approach achieved state-of-the-art performance on the
nuScenes test dataset [55] and outperforming other existing camera-radar fusion methods in terms of
accuracy and reliability.

Figure 4 below illustrates the concept and architecture of LLF approach to multi-sensor fusion.
It visually demonstrates a high-level overview of the step-by-step fusion processes, emphasizing on
how raw data streams from an array of sensor modalities are pre-processed including spatial-
temporal calibration [11], prior to being integrated into a unified dataset for further perception and
navigation analysis [56,57]. While LLF is advantageous in providing a comprehensive, detailed view
of the surrounding environment, it is not without its challenges and drawbacks. LLF requires high
computational resources and memory bandwidth to manage and process large volumes of raw data
from multiple sensors simultaneously, specifically at high resolutions. It leads to increased latency
and may negatively impact the processing capabilities, which are not suitable in complex, dynamic
environments where real-time decision-making is essential. Besides, LLF is susceptible to errors in
the spatial-temporal calibration of the sensors operating at different frequencies. In safety-critical AV
systems, the sensor misalignments can lead to inaccuracies in detecting objects and predicting object
distances and trajectories; thus, compromising the reliability and safety of the AV systems. In
addition, LLF approach exhibits limited flexibility in scenarios where a sensor fails or malfunctions,
as the tightly coupled architecture relies heavily on synchronized inputs from all sensors. Thus, such
dependencies reduce the robustness of the system and can pose significant challenges in maintaining
the operational safety of the AV system in real-world conditions [56-58].

Y PRE-PROCESSING
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Raw Data —= i
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Figure 4. A graphical representation of the concept and architecture of LLF strategy to multi-sensor fusion. It

Decision
Qutput

Early Fusion

Path Planning

visualizes the step-by-step fusion processes at high level, emphasizing on how raw sensor data streams from
multiple sensor modalities are pre-processed, e.g., multi-sensor calibration, prior to being integrated into a
unified dataset for further analysis. The diagram illustrated was modified and redrawn based on the depiction
in [56,57].

2.1.2. Mid-Level Fusion

In contrast to LLF, which integrates raw data to build a comprehensive and detailed
representation of the surrounding driving environment, Mid-Level Fusion (MLF) utilizes the
extracted salient features from individual sensor types to construct a more refined and
computationally efficient perception of the surroundings. MLF, otherwise known as feature level
fusion, intermediate fusion [57], or middle-fusion [59], integrates the high-level features obtained
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from individual sensors, such as depth estimations — Lidar, motion trajectories — radar, object
boundaries — camera, and et cetera, to develop a more abstract yet informative representation of the
environment [48]. MLF approach to multi-sensor fusion lies in its ability to balance perception
accuracy with computation efficiency, especially in real-time decision-making scenarios. It offers a
pragmatic solution for AV systems by optimizing the allocation of resources and reducing the
computational complexity of sensor data processing while maintaining the precision of situational
awareness for effective and safe navigation in dynamic, real-world driving conditions [60].

MLF approach is often adopted to achieve a balance between high-accuracy perception and
computational efficiency in real-time data processing for object detection, classification, and tracking.
In their study, [61] introduced ContextualFusion, an environmental-based fusion network, that
leverages domain-specific knowledge about the limitations of camera and Lidar sensors, as well as
the contextual information about the environment to enhance the perception capabilities. It utilizes
the MLF approach to integrate features extracted from the sensors and environmental contextual
data, i.e., illumination conditions — daytime and night-time, and rainy weather condition to detect
objects in adverse operating conditions, achieving state-of-the-art detection performance on the
nuScenes dataset [55] at night-time. In [62], the scholars presented the concept of an end-to-end
perception architecture that leverages the MLF strategy in its deep fusion network to create a shared
representation of the surroundings. Its fusion network incorporates the features obtained from
individual sensor encoders, as well as the temporal dimensions to develop a unified latent space that
is sensitive to the nuances of spatial relationships and temporal dynamics for subsequent perception
tasks, including object detection, localization, and mapping. By utilizing the unified latent space, the
network allows interdependent learning across various perception tasks to minimize redundant data
processing; hence, optimizing resource utilization and computational efficiency.

Figure 5 below depicts the concept and architecture of MLF approach to multi-sensor fusion. It
illustrates a high-level overview of the sequential fusion processes, emphasizing on how distinct
features are initially extracted from individual sensor types prior to being integrated into a shared
feature space for subsequent perception and navigation analysis [56,57]. Although MLF offers
significant benefits in optimizing resource utilization while maintaining high object detection
accuracy, it also presents certain challenges and limitations. MLF requires robust feature extraction
algorithms to accurately synthesize the relevant information from disparate sensor sources. It relies
on precise feature extraction and is vulnerable to sensor failures, noise, and inconsistencies, which
can lead to information loss and resulting in degraded performance in critical perception tasks [48].
Additionally, MLF requires precise multi-sensor spatio-temporal calibration to ensure data
consistency during the fusion process. It also requires substantial computational resources to
integrate large feature subsets from multiple sensors, which can be challenging in real-time safety-
critical systems due to concerns about data latency [11]. Furthermore, as noted in [63], the MLF
strategy may not be adequate to support the realization of SAE Level 4 or 5 AVs, as it struggles to
handle unexpected scenarios based on predefined feature sets and may fail to retain critical
contextual information.

Q FEATURE EXTRACTION
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Figure 5. A graphical representation of the concept and architecture of MLF approach to multi-sensor fusion. It
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visualizes the high-level overview of the MLF processes, where features, such as depth estimations and texture
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gradients, were extracted from individual sensors prior to being integrated into a unified dataset for further
perception and safe navigation processing to support accurate and safe driving tasks. The diagram shown was

redrawn and modified based on the depiction in [57].

2.1.3. High-Level Fusion

High-Level Fusion (HLF), also referred to as decision-level fusion or late fusion [57], represents
the highest level of abstraction to integrating multi-sensor data in AV systems. In contrast to LLF and
MLEF, HLF incorporates individual sensor outputs or decision-making results to construct a
comprehensive understanding of the environment. It focuses on integrating the final interpretations
or outcomes derived from the analysis performed by individual sensors, such as, location
coordinates, velocity vectors, motion trajectories, predicted bounding boxes, classifications of
detected objects, et cetera, to establish a reliable, unified, and accurate informed decision [59,64]. One
of the key benefits of HLF approach is its modular structure that allows seamless integration of new
sensors or updates to existing multi-sensor fusion system without significant changes to the overall
fusion framework. As a result, it can be easily adapted to incorporate additional sensing modalities
or to accommodate multiple sensor configurations, thereby supporting the scalability of the
autonomous driving system [57]. Besides, HLF enhances computational efficiency by focusing on the
integration of high-level decisions from individual sensor modalities, which significantly reduces
computational complexity compared to raw sensor data, as the processed, abstracted information
requires fewer resources, making it beneficial for low latency applications in AV [65]. HLF also
promotes robustness and fault tolerance due to its approach to sensor fusion, which allows the system
to maintain effective operation when one or more sensors fail or provide erroneous data — no
interdependence at the feature or raw data levels.

HLF approach is often adopted to optimize computational efficiency while maintaining effective
decision-making capabilities and overall system performance, specifically in real-time, safety-critical
applications such as autonomous driving. In their study, [66] introduced a Multi-modal Multi-class
Late Fusion (MMLF) architecture, which integrates object-level information from various sensor
modalities and quantifies the uncertainty associated with the classification results. It involves
integrating bounding boxes (spatial locations of objects) from the detectors and a non-zero
Intersection over Union (IoU) values to obtain multi-class features for uncertainty estimation. As a
result, the integration leads to improved precision and reliability in object detection, achieving
substantial performance improvements on the KITTI [67] validation and test datasets. In [68], the
researchers presented a late fusion architecture that leverages Deep Neural Network (DNN) models to
detect pedestrian detection during night-time conditions by utilizing data inputs from RGB and
thermal camera images. It involves integrating the outputs, i.e., bounding boxes and detection
confidence scores, from individual detection models and applying a Non-Maximum Suppression
(NMS) method [69] to eliminate redundant detections of the same object and refine the final detection
outputs. As a result, the architecture enhances the precision and reliability of pedestrian detection in
night-time conditions while ensuring an optimal balance between detection accuracy and low
response time during real-time inferencing.

Figure 6 below demonstrates the concept of HLF approach to multi-sensor fusion. It visualizes
the high-level overview of the HFL processes, where the outputs generated by individual sensor data
analysis are integrated to achieve enhanced situational awareness and reliable informed decisions in
dynamic driving scenarios [56,57]. While HLF strategy is advantageous in terms of its computational
efficiency and modularity, it is not without its challenges and drawbacks. One notable drawback is
the potential loss of detailed contextual information that is often available in raw or feature-level
data. HLF may overlook the fine-grained details that are crucial for precise decision-making,
especially in dynamic and complex driving environments. The omission of these details can result in
erroneous or suboptimal decisions, which can negatively impact the overall performance and safety
of the autonomous driving system [59]. Besides, HLF approach relies significantly on the precision
and reliability of each individual sensor’s interpretation of the surroundings. In other words, any
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inaccuracies, misclassifications, or failures in the data from a single sensor can propagate through the
AV system, which can lead to misinterpretation of objects or incorrect assessments of driving
conditions [48].
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Figure 6. A graphical representation of the conceptual framework of the HLF approach to multi-sensor fusion.
It visualizes the high-level overview of the HLF processes, emphasizing on the flow of information as data from
individual sensors undertakes independent analysis before the fusion stage occurs to establish a unified

informed decision. The depiction shown was adapted and redrawn based on the illustration in [57].

From a computational perspective, sensor fusion can also be categorized into: (a) centralized
fusion, (b) decentralized fusion, and (c) distributed fusion. Each of these categories defines the architecture
and the specific locus of where the fusion process occurs within the system [70]. In centralized fusion,
raw data from each individual sensor is transmitted to a central processing unit, where it is integrated
to produce a cohesive and comprehensive representation of the surroundings. In other words, the
central processor handles a range of critical tasks in autonomous driving, including data filtering,
feature extraction, decision-making, and oversees system control functions, to ensure safe and
efficient autonomous driving. In contrast to centralized fusion, decentralized fusion distributes the
fusion process across multiple local nodes, where each sensor or subsystem independently processes
its data and performs local fusion or analysis before transmitting the processed results to a central
unit or other nodes for further integration. In distributed fusion, the concept of decentralization is
further extended to allow each sensor or node to share intermediate or partially fusion results across
the system without relying on a single central processing unit for final decision-making. Table 3
below highlights the advantages and drawbacks of centralized fusion, decentralized fusion, and
distributed fusion [70-73].

Table 3. An overview of the pros and cons associated with centralized fusion, decentralized fusion, and
distributed fusion [70-73].

Advantages Disadvantages

e Easy to maintain and update e High computational load
as all data processing occurs on the central processor
in the central processing unit. and potentially lead to

e High processing power. latency issues.

e Can leverage advanced e Single point of failure.

Centralized Fusion processing techniques and e Limited scalability as ift

complex algorithms that can create bottlenecks in
require significant both data transmissions
computational resources and processing power as
without the need for the number of sensors
synchronization across increases.

multiple nodes.
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Decentralized Fusion

Efficient multi-sensor data
fusion as all data is
integrated at a single central
processor.

Reduces computational
burden on a single processor
by distributing processing
tasks across multiple nodes.
Robust to failure of
individual processing units
or one node.

Improves scalability where
the system can handle
additional sensor modalities
without overloading the
central processor.

Reduces communication
delays and enable faster
decision-making by enabling
parallel data processing.

Limited bandwidth
especially in high-speed
or resource constrained
systems.

Complex communication
and synchronization can
lead to delays or conflicts
during data fusion.

Risk of data inconsistency
if synchronization is
handled ineffectively.
Data redundancy as
multiple sensors may
perform similar
processing tasks
independently.

Limited computational
resources on individual
nodes to process large
amounts of data
compared to a central
processing unit.

Distributed Fusion

Improves robustness and
fault tolerance as the failure
of one node or sensor does
not compromise the entire
system.

Enables faster decision-
making as local processing
can occur in parallel across
different nodes.

Reduces potential
bottlenecks and latency.
Flexible and adaptive to
changing environments or
multi-sensor configurations.

Requires effective
coordination and
communication protocols
between distributed nodes
to ensure seamless
integration and
synchronization of data.
Increased complexity in
data management and
fusion due to the
distributed nature of the
system.

Computational and
communication overhead
in real-time, large scale,
resource-limited systems.

In summary, by strategically integrating sensor data at different stages of the multi-sensor

processing pipeline, these multi-sensor fusion approaches aim to leverage the complementary
strengths of diverse sensors and the architectural designs of the autonomous driving systems. As
discussed, multi-sensor fusion can occur at both the abstraction level, i.e., HLF, MLF, and LLF, and
computational level, i.e., centralized fusion, decentralized fusion, and distributed fusion. On the one
hand, the sensor fusion approaches at the abstraction level dictate the timing of when data from
individual sensors are integrated. In other words, it addresses the question of “when should the
multi-sensor fusion occur?”. On the other hand, the fusion approaches at the computational level
emphasis on the location of where the fusion process occurs to optimize system performance. In
essence, it addresses the question of “where should the multi-sensor fusion occur?”. Nonetheless, it
is vital for readers to learn that sensor fusion can also occur at the competition level, which addresses
the question of “what should the fusion do?” [70,72,74] (detailed discussion of the fusion approaches
at the competition level, i.e., competitive fusion, coordinated fusion, and complementary fusion is
beyond the scope of this manuscript). Ultimately, selecting the most suitable sensor fusion approach
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depends on the specific use cases and requirements of the AV systems, including scalability,
computational resources, fault tolerance, and real-time performance.

2.2. Fusion Techniques and Algorithms

In AVs, the multi-sensor fusion methods and algorithms serve as the cornerstone for building
robust and precise systems that enable reliable perception, accurate localization, and efficient
navigation. It supports the integration of data from various sensor types such as GPS, camera, Lidar,
and radar sensors, to construct a more comprehensive understanding of the surroundings, thereby,
enhancing situational awareness in the highly dynamic and complex driving environment. Over the
years, the sensor fusion techniques and algorithms have been studied significantly and well-
established in the literature [49,57,75-84]. Fusion techniques and algorithms can be classified into: (a)
traditional approaches and (b) advanced approaches. In traditional approaches, the algorithm utilizes
well-established mathematical frameworks, such as deterministic rules, probabilistic theories, and
optimization-based criteria, to combine data from multiple sensors. It offers robust, efficient, and
interpretable solutions to multi-sensor fusion, specifically in scenarios where the systems require
transparency in its decision-making processes and has limited computational resources. Nonetheless,
traditional approaches can pose a challenge in nonlinear, highly dynamic, and unstructured
environments. Its reliance on predefined models or assumptions about the data distribution may
result in suboptimal performance when the assumptions are inaccurate or violated [76].

Conversely, algorithms in advanced approaches leverage complex DL techniques to process,
analyze, and integrate data from various sensors. It represents a significant shift towards data-driven
methodologies as it employs a multi-layered structure of algorithms (also known as deep neural
networks [85,86]) and big data to learn the complex representations, nonlinear relationships, and
intricate patterns between multiple sensor inputs for multi-sensor fusion. Essentially, these
algorithms are designed to adapt to complex, high-dimensional, and unstructured data, such as
camera images, which enables the algorithms to generalize effectively across diverse and dynamic
real-world driving environments. As a result, the algorithms provide enhanced perception and
navigation capabilities, ensuring reliable performance in challenging and dynamic driving
conditions. Nevertheless, as algorithms in advanced approaches continue to advance, their lack of
interpretability presents significant challenges in ensuring safety, trust, transparency in its decision-
making processes, and accountability, particularly in critical applications such as AV. Besides, DL
techniques are computational complex due to its intricate underlying architecture, which can lead to
increased latency and resource consumption [11,76,87].

Figures 7 and 8 below demonstrate the traditional and advanced approaches, respectively,
highlighting examples of techniques and algorithms that are commonly used in AV systems for tasks
such as object detection, localization, and navigation. Figure 7 exemplifies the traditional fusion
algorithms, which include well-established techniques that rely on mathematical models, statistical
approaches, knowledge-based theory, and probabilistic frameworks. These techniques are often
adopted in scenarios where the dynamics of a system are well understood, and the noise
characteristics are predictable [76]. In [88], the scholar utilized the Unscented Kalman Filter (UKF)
algorithm, an adaptation of the Kalman Filter (KF) algorithm for nonlinear state estimation [89], to
incorporate GNSS absolute positioning values and real-time IMU input data. It addresses the
potential drift inherent in IMU data during sensor fusion processes, ensuring accurate and reliable
estimates of the vehicle’s position and orientation and ultimately improving the robustness and
precision of the navigation system in AVs. Figure 8 depicts the advanced fusion algorithms, which
leverage modern DL approaches such as Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Restricted Boltzmann Machine (RBM), Transformers, Reinforcement Learning
(RL), and Autoencoders [57,75,90-99]. These techniques are effective in processing complex, high-
dimensional input data and are designed to adapt to the dynamic and unpredictable characteristics
of real-time driving environments. For example, the scholar in [100] contributed to a novel multi-
object tracking system that utilizes three trained Long Short Term Memory (LSTM) models to perform
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data association, tracking updates, and object position estimation. LSTM model is an RNN-based
technique that is designed to capture long-term dependencies in sequential data, which is ideal for
tasks like time-series prediction of an object trajectory or vehicle motion prediction [101].
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Figure 7. A graphical summary of the traditional fusion methodologies and their associated techniques and

algorithms. It highlights the various algorithms used within different paradigms such as probabilistic method,
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Figure 8. A graphical overview of the advanced fusion methodologies and their associated techniques and
algorithms. It emphasizes the various DL algorithms applied within different paradigms for perception,
localization, and mapping systems in AV application. The figure shown was redrawn and adapted based on the
depiction in [57,75,76,90-99] to include state-of-the-art algorithms and the algorithms highlighted in “blue”

represent those specifically utilized for perception tasks involving 3D point clouds.

In complex applications like autonomous driving systems, traditional and advanced fusion
algorithms are commonly utilized in tandem to leverage the strengths of each approach, also known
as the hybrid approach [102,103]. This synergistic integration is critical for achieving optimal
performance in diverse tasks, such as environmental perception and motion trajectory estimation,
where the robustness and efficiency of traditional methods complement the adaptability and learning
capabilities of advanced DL algorithms. In [104], the authors proposed a hybrid approach to develop
a parameter-free state estimation framework for GPS-based maneuvering-target tracking and
localization in AV applications. It features a parameter learning module that integrates a transformer
encoder architecture with an LSTM network to effectively capture the motion characteristics of the
system from offline state measurement data. In addition, the framework incorporates the Expectation-
Maximization (EM) algorithm, which is a well-established statistical approach for parameter
estimation in probabilistic models [105]. The EM algorithm estimates the measurement and dynamic
characteristics of moving targets in real-time and refines the system parameters based on the outputs
of the learning module. Lastly, a KF algorithm is used to deliver precise statement estimations,
thereby enhancing the accuracy of trajectory tracking predictions. This synergistic integration of
traditional algorithms and advanced learning techniques provides a robust solution to estimate state
and track trajectory of maneuvering-targets in real time. Hence, it effectively mitigates the impact of
sensor noise e.g., Doppler shift, occlusion, and flicker, and eliminates the need to explicitly model the
complex dynamics and measurement characteristics of the system.

In [106], the authors introduced YOLO-ACN, a novel and efficient detection framework
specifically developed to improve detection precision and overcome the challenges of detecting small
targets and occluded objects within complex environments. It includes a lightweight feature
extraction network with an attention mechanism, built upon the architecture of the You Only Look
Once (YOLO) neural network, particularly YOLOv3 [107], to improve focus on small target detection.
YOLO is a single-stage detector that simultaneously predicts multiple bounding boxes (detected
objects) and class probabilities on an image in real-time [108]. In addition, the network features a
modified variant of the NMS classical algorithm, referred to as Soft-NMS, within its post-processing
phase to eliminate redundant bounding boxes while reducing the likelihood of discarding occluded
objects, especially in densely populated environments. Unlike traditional NMS, which eliminates
overlapping bounding boxes that exceed the predefined IoU threshold, Soft-NMS retains overlapping
boxes with adjusted confidence scores; thereby, improving detection performance in complex
scenarios [109,110]. As a result, this synergistic integration has significantly enhanced detection
performance and robustness, particularly in recognizing small targets and occluded objects within
complex environments, such as urban areas with high pedestrian density.

Ultimately, the selection of the most suitable techniques for the hybrid approach depends on the
specific requirements and use cases of the intended application. In complex and dynamic scenarios,
leveraging a combination of traditional and advanced algorithms has become a preferred strategy to
capitalize on their complementary strengths. This combination not only enhances overall
performance but also improves the precision and reliability of the system, ensuring that it is
optimized to address the distinct challenges associated with each driving task. Table 4 below
provides an overview of the advantages and weaknesses of both traditional and advanced learning
algorithms utilized in multi-sensor fusion systems for AV applications, such as the UKF, Particle Filter
(PF), YOLO, Dempster-Shafe Theory (DST), PointNet, and Faster R-CNN [11,76,111-129]. Besides, this
table focuses on their applications to dynamic driving tasks, such as object detection, tracking, and
localization and mapping, which are essential for the safe and efficient operation of autonomous
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driving in complex and dynamic driving settings. For a comprehensive discussion of traditional and
advanced learning methods for object detection in 3D point cloud data (out of scope in this
manuscript), readers are recommended to refer to [57,94,97,130-136].

Table 4. An overview of the advantages and limitations of traditional and advanced learning algorithms
employed in multi-sensor fusion systems for AV applications, such as the Unscented Kalman Filter (UKF)
algorithm, Particle Filter (PF) algorithm, Dempster-Shafe Theory (DST), YOLO convolutional neural network
(CNN), PointNet, and Faster R-CNN.

Algorithms Descriptions Applications Ref.
UKF UKEF is an advanced adaptation of the KF e Simultaneous [111]
algorithm, specifically developed to address Localization and [112]
nonlinearities in state estimation with greater Mapping (SLAM). [115]
efficiency and accuracy. Its strengths and e Object tracking.
limitations include:
e Improved accuracy in nonlinear
systems.
o Less susceptible to divergence in
scenarios where linear
approximations might fail.
e High computational overhead in
high-dimensional systems.
e Sensitive to noise modelling.
e Requires careful initialization of
parameters for optimal performance.
e  Requires prior knowledge of systems
model and data.
Particle Filter PF is a recursive algorithm that is utilized to e Object tracking. [116]
(PF) estimate the state of a system by using a set of o Trajectory prediction. [117]
random samples (particles) to represent the e Localization. [119]
probability distribution, making it ideal for
nonlinear and non-Gaussian problems. Its
strengths and limitations include:
e Highly effective for systems with
nonlinear dynamics and non-
Gaussian noise.
e Scalable for real-time applications
with optimization.
e Flexible and can integrate data from
multiple sensor modalities.
e Prone to particle degeneracy.
e Sensitive to initial particle
distribution, and improper
initialization can lead to inaccurate
estimates.
e High computational cost.
Dempster-Shafer DST is a mathematical framework for Object fusion [113]
Theory (DST) modeling uncertainties in real-world detection. [120]
problems and combining evidence from Tracking dynamic  [121]
different sources to make decisions, even if objects.
that evidence is uncertain or incomplete, to Classification.

form a belief about a hypothesis. Its strengths
and limitations include:

Decision-making in
complex
environments.
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e Does not require pre-defined
probabilities.
e Integrates evidence from diverse
sources with varying reliability.
e Improves decision-making by
representing varying levels of belief.
¢ Computational expensive in large
systems.
e Struggles with conflicting evidence.
e May produce high uncertainty in
complex, high-dimensional data.

YOLO YOLO is a real-time object detection e Real time object [11]
algorithm that utilizes a single CNN (single- detection. [108]
stage detector) to predict bounding boxes and e Traffic sign [114]
class probabilities from an image. Several recognition. [122]
versions of YOLO have been established, each
offering improved precision, with the most
recent version being YOLOv11 [137]. Its
strengths and limitations include:

e TFast and able to handle multi-scale
object detection in real-time.

e Offers high precision in object
localization and classification.

e Does not require manual feature
extraction.

o Less accurate than other methods due
to coarse bounding boxes.

e High computational cost especially in
high-resolution images.

e Poor detection of occluded objects
and small targets.

Faster R-CNN  Faster Region-Convolutional Neural Network e Real time object [76]
(Faster R-CNN) is a two-stage object detection detection. [114]
algorithm that utilizes a Region Proposal [123]
Network (RPN) and a CNN to detect and [124]
localize objects in complex real-world images. [125]
Its strengths and limitations include:

e High detection precision.

e Performs well in cluttered or
occluded environments.

e Combines region proposal and object
classification in a unified framework
(end-to-end training).

e Requires significant computational
resources for training and inference.

e Degraded performance when
detecting small objects in dense
environments.

e Slow inference time, which can be
challenging for real-time applications.

PointNet PointNet is a two-stage detector that e 3D object detection. [126]
introduces a permutation-variant deep neural e Semantic [127]

network to learn global features from segmentation. [128]
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unordered point clouds using a symmetric e Localization. [129]
function, without the need for voxelization. e  (Obstacle detection
Its strengths and limitations include: and avoidance.

e Handles unordered point cloud data.

e Can learn directly from raw data
without feature engineering.

e Sensitive to noisy or sparse data.

e Limitations in generalizing to new or
unseen scene configurations.

e Lack of fine-grained feature
extraction but PointNet++ [138] is
introduced to address this limitation.

2.3. Challenges in Multi-Sensor Fusion

In AVs, integrating multiple sensor data, otherwise known as multi-sensor fusion, is a
cornerstone for implementing precise and robust systems capable of achieving high levels of
perception, localization, and mapping essential for autonomous operations. By synergistically
integrating information from complementary sensor modalities, multi-sensor fusion allows AVs to
construct a comprehensive and dynamic understanding of their environment. In addition, by
leveraging unique strengths of various sensors and traditional and advanced fusion algorithms,
multi-sensor fusion significantly enhances the capability of AVs to detect obstacles, interpret traffic
patterns, and navigate effectively through complex and unpredictable driving environment.
Nonetheless, while multi-sensor fusion has revolutionized the capability of AVs to interact effectively
with their surroundings, it also introduces several critical technical, operational, and interpretability
challenges that need to be addressed for the successful deployment of reliable, safe, scalable, and
interpretable (transparent) autonomous systems in real-world applications.

One of the primary challenges is sensor noise, which refers to inaccuracies, inconsistencies, or
irrelevant data introduced by individual sensors due to a combination of external interference,
hardware limitations, and environmental conditions, such as rain, snow, or dense fog. In [139], the
authors presented a comprehensive overview of the challenges associated with radar technologies in
autonomous driving systems. A major issue identified is the occurrence of spurious observations,
also known as clutter, which arises due to multiple reflections off surfaces in the surroundings, a
phenomenon commonly known as multipath. In some cases, such clutter can be difficult to
distinguish from real detections, leading to false positive detections in learned radar-based detection
models. This, in turn, can significantly undermine the overall system performance and the ability to
make precise, reliable, and trustworthy decisions. In our previous exploratory research [11] (Figure
4), we observed multiple instances of false-positive and inconsistent detections within the off-road
testing environment, which includes metal objects with corrugated surfaces, traffic cones, and
guardrails. These issues were caused by multipath propagation, which distorts sensor signals and
leads to inaccurate and unreliable detections in complex environments [140]. A study in [141] showed
that Lidar sensors can generate false-positive detections in rainy weather due to reflections from
raindrops, and wet surfaces may cause laser beams to scatter, resulting in artifacts such as mirrored
objects appearing below the actual ground surface. Therefore, these factors can undermine the
accuracy and reliability of the sensor outputs, posing significant challenges for ensuring reliability
and precision of autonomous driving operations.

In addition, the heterogeneity of sensor modalities and the ensuing system complexity represent
another major challenge in multi-sensor fusion. AVs are generally equipped with a diverse set of
sensor types, including cameras, Lidar, radar, ultrasonic sensor, and GPS, each with distinct
operational attributes that contribute to their strengths and weaknesses. For example, radar is
resilient in poor weather but offers lower spatial resolution; Lidar offers high-resolution depth
information but is computationally intensive; and cameras capture rich visual detail but are sensitive
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to lighting and weather conditions. Nonetheless, integrating these diverse sensor types introduces
significant complexity in algorithmic design and computational processing. It requires sophisticated
and innovative fusion algorithms that can handle differences in sensor data format, resolution, and
spatial-temporal synchronization [11] while maintaining the overall AV system performance and
reliability. Moreover, the complexity of the fusion systems escalates as additional sensors are
incorporated to enhance the robustness of perception and support real-time decision-making. It
results in the generation of big data, imposing significant demands on computational resources and
necessitating innovative real-time processing capabilities to maintain timely and accurate responses.
Furthermore, it also intensifies the difficulties associated with testing and validation as rigorous
evaluations across varying driving scenarios and environmental conditions are essential to minimize
failure risks and ensure dependable and safe operation in real-world contexts [142,143].

In AVs, the volume of data generated by multi-sensor fusion systems is significantly extensive,
highlighting the complexity and sophistication of sensor suite employed to perceive and navigate the
environment. The continuous operation of these sensors generates high-dimensional, multi-modal
data streams, with throughput often reaching multiple gigabytes per second or even terabytes per
hour, depending on system configuration (how many sensors are integrated into the system), sensor
resolution, refresh rates, and operating conditions [144,145]. This immense data volume is essential
for robust perception, localization, and decision-making, but it introduces significant challenges in
implementing low-latency data processing pipelines and optimizing the utilization of computational
resources. In the event of delays or latency within the data processing pipeline, the AV may fail to
respond to dynamic changes in its surroundings, such as unforeseen objects or pedestrians entering
the roadway [146]. Besides, the limitations of computational resources in embedded systems that are
often utilized in AVs require deliberate trade-offs between accuracy and computational efficiency,
needing the optimization of complex fusion algorithms to operate within hardware constraints.
Moreover, safety-critical autonomous systems require multi-sensor output verification and cross-
validation to address the potential risks of sensor noise, malfunction, or environmental interference;
hence, posing significant challenges in its computational load [147]. As a result, addressing these
challenges necessitates innovative approaches, such as leveraging parallel processing, hardware
accelerators, e.g., Graphics Processing Units (GPUs) or Tensor Processing Units (TPUs), and
optimized fusion frameworks [148-150].

In addition, multi-sensor fusion systems in AVs are susceptible to malicious attacks, which pose
significant risks to the integrity and reliability of their autonomous operation. AVs rely on seamless
integration of multiple sensor modalities, but are vulnerable to different forms of adversarial
interference, such as spoofing, jamming, and signal manipulation. For example, attackers may
broadcast incorrect yet plausible GPS signals to mislead the AV about its true location and leading to
navigation inaccuracies [151]. Similarly, adversaries exploit the vulnerabilities of deep neural
networks and introduce subtle perturbations to images that are often imperceptible to the human
eye, otherwise known as adversarial images. It causes the trained model to produce erroneous
predictions or classifications [152]. Moreover, attackers may target the underlying software or
communication infrastructure of the multi-sensor fusion system through cyberattacks to overload the
system, disrupt data transmission, or manipulate sensor inputs. Thus, these attacks compromise the
robustness and reliability of decision-making processes and endanger its overall safety during
autonomous operations [153]. In recent years, the Zero Trust framework has emerged as a key
approach in the design and implementation of multi-sensor fusion systems in AVs. It challenges the
traditional assumption of inherent trust within the ecosystem and operates under the core principle
that no component or node in the autonomous system should be automatically trusted [154,155]. For
a comprehensive exploration of the different attack models and their associated defense strategies
(out of scope in this manuscript), readers are encouraged to refer to the research established in [152-
154,156-161].

In complex fusion algorithms, the lack of interpretability and explainability presents significant
challenges in ensuring transparency and accountability in autonomous operations. One crucial aspect
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of this challenge is the necessity to provide clear and comprehensible explanations to stakeholders
regarding the decisions and actions made by the autonomous system. For example, end-users often
require comprehensible explanations to foster trust and confidence in the reliability of autonomous
driving technologies, particularly in safety-critical applications such as AVs. Similarly, regulatory
authorities seek comprehensive insights into the decision-making processes to evaluate compliance
with well-established safety protocols, legal standards, and ethical guidelines [162]. Additionally, the
necessity for explainability is critical for fostering user acceptance of autonomous driving
technologies. A lack of clarity in explaining the rationale behind specific actions taken by autonomous
systems, especially in situations involving errors or unanticipated outcomes, can significantly
undermine user trust and hinder the acceptance of autonomous driving technologies [163-165].
Consequently, overcoming these challenges necessitates a focused effort to design and implement
multi-sensor fusion methods and models that strike a balance between complexity and transparency
by leveraging XAI techniques to provide valuable insights into how inputs from various sensors are
processed and integrated. By enhancing the transparency of decision-making processes, developers
can facilitate regulatory approval, enhance confidence and trust among stakeholders, and ensure that
autonomous driving systems are reliable and accountable in real-world applications.

3. Explainable Artificial Intelligence (XAI)

XAl, or Explainable Artificial Intelligence, is a specialized domain within the broader discipline
of Al that focuses on designing and developing techniques and models that are interpretable and
comprehensible to all stakeholders. These stakeholders include, but are not limited to, (a) researchers
and academics aiming to advance the field through theoretical and applied insights; (b) developers and
engineers responsible for developing and maintaining autonomous systems; (c) end-users and
consumers who interact with autonomous systems; (d) regulators and policymakers to ensure
compliance with established standards and safety requirements; and (e) business leaders and industry
professionals focused on utilizing Al to drive commercial and operational success [166-168]. XAl is
vital in enhancing transparency, trust, accountability, and safety, especially in safety-critical
applications such as autonomous driving. It emphasizes five core principles that serve as
foundational pillars, ensuring that such systems conform to transparency, accountability, and user
trust standards while achieving their intended functionalities. XAl principles include interpretability,
explainability, justifiability, traceability, and transparency, as exemplified in Figure 9 below
[169,170]. It is important for readers to learn that additional XAI principles can encompass fairness,
robustness, satisfaction, stability, and responsibility [171] (comprehensive exploration of these
principles is beyond the scope of this manuscript).
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Figure 9. A visual depiction illustrating the five core principles of XAI: interpretability, explainability,
justifiability, traceability, and transparency [169,170]. The diagram shown was generated using Napkin Al — an
editing platform that transforms text into visual content [172].

e Interpretability. It is defined as the ability to explain or to provide clear and comprehensible
explanations of the actions and decisions made by the autonomous driving system to relevant
stakeholders. It is often deliberated that interpretable systems are more suitable for safety-critical
applications, as such systems provide a clear and observable chain of casualties that explains the
decision-making processes [173].

e  Explainability. It is associated with the concept of explanation as a means of providing an
interface between humans and a decision-making system that is both an accurate representation
of the decision-making process and comprehensive to stakeholders [174]. In essence, explainable
systems can provide a clear and detailed account of how and why the decision was made.

o  Justifiability. It signifies the capability of an artificial intelligence (AI) system to provide logical,
ethical, and contextually appropriate reasons for its decisions (outcome) and ensuring alignment
with ethical guidelines, user trusts, and accountability [175]. In essence, justifiability ensures that
the Al decision made are justifiable and reasonable based on the given data and context. Several
approaches can be used to achieve justifiability, including utilizing interpretable models,
incorporating post-hoc explanation tools, and involving human experts to review and validate
Al decisions [175].

e  Traceability. It refers to the systematic tracking and documentation of the entire decision-
making process of an Al system, ensuring that each action or outcome is traceable to its
corresponding inputs, processing steps, reasoning, and outcomes. As a result, any anomalies or
errors can be precisely identified and addressed, which is particularly essential in critical
situations such as collisions or near-miss events.

° Transparency. It involves designing and developing an Al system where the underlying logic,
rules, and algorithms governing the decision-making process can be scrutinized and
comprehended by all stakeholders. It also involves open and clear communication with
stakeholders about the decision-making criteria, functions, capabilities, and limitations of an Al
system, e.g., autonomous driving system.
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The rapid evolution of ML and DL techniques and algorithms has driven substantial
advancements in cutting-edge autonomous applications, such as self-driving vehicles and humanoid
robots [176,177]. These advancements underscore the transformative potential of ML and DL
technologies in creating systems capable of performing highly sophisticated tasks, such as
autonomous driving, with unparalleled precision and efficiency. However, the growing complexity
and sophistication of the underlying algorithms pose significant challenges in ensuring transparency
and interpretability within complex autonomous systems. In other words, the internal mechanisms
of modern ML and DL models, particularly large-scale neural networks, or DNNs, and ensemble
methods, are characterized by their opaque nature. Its underlying structure, i.e., multiple hidden
layers and extensive parameterization, depicted in Figure 10 below [178], reflect the difficulties
stakeholders encounter in comprehending the internal workings and decision-making processes of
these models, resulting in their classification as black-box models or systems [179]. Besides, the black-
box nature of DNN models introduces additional risks, including the potential propagation of biases
and the complexities in diagnosing errors or unintended outcomes. In DNN models, the propagation
of biases refers to the amplification or continuation of pre-existing biases embedded in the training
data or unintentionally introduced during the design and implementation phases of the DNN
models. This issue often arises from imbalances in training datasets, e.g., underrepresentation of
specific scenarios, demographic groups, or weather conditions, as well as from implicit assumptions
and inconsistencies in labeling practices and feature selection [180]. For example, underlying biases
in perception algorithms to detect objects and interpret road signs may lead to disastrous outcomes.
As a result, developers use post-hoc analysis techniques to elucidate the decision-making processes
of black-box models. However, such methods can be resource intensive, time consuming, and may
not always yield definitive explanations, especially when the sources of biases are deeply embedded
in complex data or algorithmic structures [171,181-184].
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Figure 10. A visual representation of a Deep Neural Network (DNN) model. It shows the underlying architecture

of a DNN model, which encompasses an input layer, multiple hidden layers, extensive parameterization, non-
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linear activation functions, an output layer, et cetera. The illustration shown is generated using the open-source
NN-SVG visualization tool [178].

In contrast to the black-box model, which operates an opaque system with decision-making
processes that are difficult to understand, the white-box model provides enhanced transparency and
offers greater insight into its internal mechanisms. It emphasizes utilizing simple and self-
explanatory methods, where the decision-making processes are comprehensible and transparent to
human stakeholders. A white-box model is designed with simpler underlying structure and often
adopts linear or rule-based traditional algorithms such as, Decision Trees, K-Nearest Neighbors
(KNN), Linear Regression, et cetera, which explicitly outline the relationship between inputs and
outputs. In linear models, the predicted result can be mathematically expressed as a weighted sum
of all its feature inputs, where each feature contributes to the final decision based on its assigned
weight [167]. As a result, the white-box model allows a clear and direct understanding and
explanation of the decision-making processes. In autonomous driving vehicles, the decision made to
decelerate in response to pedestrians crossing the road can be traced and explained through a white-
box model. It would generate an audit trail that outlines the rationale behind the action, including
factors such as the detection of the pedestrian’s location, vehicle’s proximity to the pedestrian, and
the calculated necessity to decelerate to avoid a potential collision [185]. However, the simplicity and
interpretability of white-box models may struggle to attain the same level of predictive accuracy
required for handling complex and dynamic real-world autonomous driving tasks, such as object
detection. In addition, white-box models are often limited in their ability to effectively handle
intricate and unseen scenarios, such as identifying subtle road hazards or reacting to unpredictable
driver behavior [167,170,186].

In [169] (Figure 3), the authors presented a comprehensive discussion of the various levels of
transparency that represent distinct aspects of interpretability and understanding in ML models. It
consists of three distinct levels of transparency: (a) simulatability, (b) decomposability, and (c) algorithmic
transparency, which serve as quintessence frameworks for understanding how the internal
mechanisms of ML models can be made explainable and accessible to human stakeholders. Within
transparency:

e Simulatability denotes the ability to simulate the behavior of an ML model through interactive
experimentation or human understanding. It enables users to replicate or anticipate the
decisions made without necessitating in-depth technical knowledge of its underlying
mechanisms or internal architecture. In this aspect, a model is considered simulatable if it can be
effectively presented to stakeholders utilizing text, visualizations, or other accessible
representations. Furthermore, a simulatable model enables users to reasonably anticipate its
outputs based on a given set of inputs, fostering a more intuitive grasp of its decision-making
processes [187].

¢  Decomposability refers to the ability to disaggregate an ML model into smaller and
interpretable components, such as inputs, parameters, and computations. In essence,
decomposability signifies the capability to explain the functioning of a model by examining its
constituent elements, providing clarity about how specific inputs influence the outputs, how
parameters are optimized, and how intermediate calculations are carried out to reach a final
decision. For example, decomposability enables engineers to isolate and explain the contribution
of individual subcomponents in autonomous driving, including object detection, trajectory
planning, and control systems, which is critical for technical debugging, model refinement, and
ensuring compliance with legal and ethical standards. However, in practice, achieving
decomposability in intricate ML models, such as DNNSs, can be challenging due to their non-
linear relationships and the distributed nature of their data representations [169,188].

e  Algorithmic transparency, as the name suggests, pertains to the extent to which the internal
workings and decision-making processes of an algorithm can be clearly understood, elucidated,
and scrutinized. In essence, it emphasizes the visibility of how an algorithm operates, from its
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initial design through to its decision outputs. In practical terms, algorithmic transparency
ensures that the reasoning behind the algorithm decisions can be traced back to its underlying
mathematical or computational principles, which are indispensable in identifying and rectifying
potential biases, addressing embedded biases, and uncovering unintended behaviors that could
compromise the precision and integrity of an ML system. In autonomous driving,
understanding the decision-making processes of algorithms, such as how a vehicle decides when
to stop or how it identifies and avoids obstacles, is vital in ensuring safety and adherence to
regulatory standards. However, the main limitation of algorithmically transparent models is
that these models must be fully accessible for analysis using mathematical methods, which is
challenging for deep architectures due to the opaque nature of their loss landscapes (multiple
interconnected hidden layers) [169,189-192].

The advancement of Al models (ML and DL models) has significantly amplified the need for
explainability and interpretability, particularly in safety-critical domains such as autonomous
driving. In these domains, it is imperative for Al systems to not only demonstrate high predictive
accuracy but also deliver transparent and comprehensible explanations for their decisions to ensure
safety, reliability, and adherence to regulatory and ethical guidelines. In XAlI, the distinctions
between black-box and white-box models underscores a fundamental trade-off in AI models
development, i.e., achieving an optimal balance between interpretability and predictive performance.
As discussed, black-box models are known for their ability to process complex scenarios with high
accuracy but often lack transparency in understanding the underlying processes behind their
decision-making. In contrast, white-box models emphasize interpretability and explainability,
offering clear and understandable decision-making processes, but may face limitations in managing
complex tasks.

However, both paradigms play a pivotal role in addressing the interpretability challenges
inherent in cutting-edge, sophisticated AI models, significantly contributing to enhanced
accountability and transparency in ML and DL technologies. Besides, both paradigms are
instrumental in fostering trust among human stakeholders, which is critical in ensuring the
responsible and ethical implementation of autonomous systems within real-world environments.
Therefore, addressing interpretability and explainability challenges in autonomous systems has
become a primary focus within XAl research, which seeks to develop tools and techniques that can
elucidate the decision-making processes of opaque systems and provide human stakeholders with
actionable insights into their operations.

3.1. XAl Strategies and Techniques

XAl is an emerging field of research that aims to provide clear, comprehensible, and human-
centered explanations for the decisions generated by Al systems. Recent research has investigated
several strategies and methodologies designed to elucidate the decision-making processes of intricate
and opaque black-box models. XAl methods can be categorized into three main categories: (a)
explanation level, (b) implementation level, and (c) model dependency [193]. Such categories offer a
systematic framework for understanding the diverse approaches designed to enhance the
interpretability and explainability of sophisticated ML and DL systems, especially in contexts where
transparency is imperative. It enables researchers and practitioners to select appropriate methods or
strategies tailored to specific applications and requirements.

Explanation level refers to the scope and depth of insights delivered, addressing either the
overarching behavior of the model or the rationale behind specific individual instances. This concept
is subdivided into (a) global explanations and (b) local explanations. In global explanations, the emphasis
is on providing a detailed overview of the model’s decision-making processes (at macro-level). In
essence, this approach delivers a holistic understanding of the model’s behavior and how it operates
across different inputs and conditions. In turn, it enhances the interpretability of the model, offering
insights into its underlying operational structure and the factors that influence its overall
performance during the decision-making processes [193]. Generalized Additive Model (GAM) are
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among the XAI methodologies that provide insights into a model’s decision-making process at a
global level [194]. GAM is a statistical modeling method designed to capture and analyze non-linear
relationships between dependent and independent variables utilizing smooth functions to model the
effects of each predictor [195]. For instance, the research shown in [196] utilized the GAM method to
examine the relationships between kinematic variables of vehicles, such as position, velocity, and
acceleration, during overtaking maneuvers. In contrast, local explanations aim to elucidate the
rationale underlying specific predictions made by the model for individual instances. Itis particularly
valuable in situations where understanding individual predictions is important, such as analyzing
specific driving scenarios in AVs. Therefore, this approach fosters trust in high-stakes autonomous
systems, ensuring safety and accountability [162,193]. Grad-CAM or Gradient-weighted Class

Activation Mapping is one of the prominent XAI techniques designed to interpret the decision-
making process of Al models at a local level. It is often adopted to visualize and elucidate localized
decisions made by CNN-based models, particularly in image recognition and classification tasks
[197]. For instance, [199] adopted the Grad-CAM technique to analyze DL detection models by
generating heatmaps that visually explain the road semantic segmentation outputs, thereby
providing a comprehensive understanding of the relevance of their outcomes. Nevertheless, Grad-
CAM may generate heatmaps that highlight regions unrelated to the detected objects in detection
tasks, as its approach prioritizes feature importance without accounting for spatial sensitivity [198].

Implementation level refers to the stage at which interpretability and explainability are
incorporated into Al models, focusing on when and how these aspects are integrated into the design
and implementation of these models. This concept can be subdivided into (a) ante-hoc explanations
and (b) post-hoc explanations. Ante-hoc explanation, also known as intrinsic explanation or pre-hoc

explanation, refers to the interpretability mechanism that is inherently integrated into the design of
the model during its development phase. Such explanations are designed to embed transparency and
understandability into the model’s decision-making processes from the outset, ensuring that its
operation remains explainable and transparent from the initial stage [193,199]. Bayesian Rule Lists
(BRL) represent a prominent example of an ante-hoc explanations method. It leverages Bayesian
principles to achieve an optimal balance between simplicity and predictive performance. BRL
operates by composing probabilistic models that derive decision rules (IF-THEN rules) based on
observed data, with a focus on selecting rules that jointly maximize the posterior probability of class
labels. Therefore, BRL ensures that the resulting rule lists remain explainable and grounded in a
robust statistical framework [183,200]. Figure 11 below depicts an example of how BRL can be used
to explain the pedestrian crossing detection. In this instance, the model derives IF-THEN rule lists
based on the input features, such as, vehicle speed, distance to pedestrians, weather conditions, and
road type, to inform the decision-making process, determining whether the vehicle must stop,
decelerate, or proceed with caution when detecting a potential pedestrian crossing scenario [11].
Contrarily, post-hoc explanations are applied after AI models, such as DNN or ensemble methods,
have been trained. It aims to provide insights into the decision-making processes by analyzing how
input features are translated into output decisions in opaque black-box models. Post-hoc explanation
is critical for applications requiring model transparency, trust, and accountability, specifically when

the model’s complexity hinders direct interpretation [199]. Local Interpretable Model-Agnostic
Explanations (LIME) is a well-known post-hoc explanation technique that approximates the decision-
making processes of black-box models by constructing explainable and simplified models within the
local vicinity of a specific prediction, thereby allowing stakeholders to gain insight into the reasons
behind a model’s decision for a particular input. For example, [201] demonstrated a trust-aware
approach for selecting AVs to participate in model training, aiming to ensure system performance
and reliability. They utilized the LIME method to calculate the trust values and highlight key features
that influenced the selection of each AV during the model training process.
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Figure 11. A graphical representation of the Bayesian Rule Lists (BRL) technique in elucidating the decision-

making process for pedestrian crossing detection. The BRL rules shown in the illustration are derived in a
preliminary manner based on our previous experimental analyses and discussions shown in [11]. Rule 1: If the
pedestrian is detected within 5 m and the vehicle speed is greater than 30 km/h, then apply brakes immediately.
Rule 2: Else if the pedestrian is detected within 10 m and the weather is clear, then reduce speed to 10 km/h.
Rule 3: Else if the pedestrian is detected within 10 m and the weather is foggy or rain, then reduce speed to 5
km/h. Rule 4: Else if no pedestrian is detected and the road is highway, then maintain current speed. Rule 5:

Else, proceed with caution.

Model dependency, as the name implies, pertains to the extent to which an explanation method
is designed for a particular type of ML or DL model, or whether it possesses the versatility to be
adopted across various model architectures. This concept can be subdivided into: (a) model-agnostic
technique and (b) model-specific technique. Model-agnostic techniques are designed to provide
interpretability independent of the underlying architecture of AI models. Model-agnostic methods
are extensively utilized owing to their remarkable flexibility and adaptability, which enable them to
interpret diverse models and use cases. These methods often provide post-hoc explanations and
operate by examining the inputs and outputs of an Al model without requiring access to its internal
parameters or structures [193,202]. Shapley Additive Explanations (SHAP) serves as a prominent
example of model-agnostic explanations method. SHAP provides valuable insights into the
contribution of individual input features to the output of an Al model. Moreover, it facilitates detailed
and granular explanations that can either focus on specific individual predictions (local explanations)
or provide an overall summary of feature importance across multiple predictions (global
explanations) [203]. For instance, [204] proposed WhONet, a wheel odometry neural network that
provides continuous positioning information using GNSS data with wheel encoders measurements
from the vehicle. The SHAP method was adopted to interpret the predictions of vehicle positioning,
thereby enhancing its reliability and ensuring greater transparency and accountability. Contrarily,
model-specific techniques are designed to the unique characteristics and architecture of a specific ML
or DL model. These methods leverage the intrinsic properties or mathematical properties of the
model to provide detailed explanations of its decision-making processes. In other words, model-
specific explanation methods require modifications to the explanation framework when applied to
different models [199]. Saliency maps exemplify a model-specific interpretability technique that
provides pixel-level insights into the significance of input features. This method leverages gradient-
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based information to identify and highlight the regions of an input (image) that most significantly
influence the decision-making processes of an AI model by assigning a salience score to each pixel or
region [205]. In other words, a saliency map represents a heatmap that highlights the most visually
prominent objects or regions within a given scene. It is imperative to learn that certain studies
consider that saliency maps can be generalized to operate in a model-agnostic manner by altering
their computation to the model’s input-output behavior rather than its internal gradients [206-208].
An illustrative application of saliency maps can be found in [209], where the authors proposed a
saliency-based object detection algorithm to detect unknown obstacles in autonomous driving
environments. This approach integrates the saliency map method into the detection algorithm to
amplify image features, thereby emphasizing both known and unknown objects in the environment.

Table 5 and 6 below provide a detailed overview of various interpretation techniques that are
commonly employed in XAI to improve the interpretability and explainability of Al models. Table 5
categorizes these techniques based on their interpretability level (e.g., local or global), their
classification within XAI (e.g., model-agnostic, model-specific, ante-hoc, and post-hoc), and the types
of data they are designed to support. Table 6 presents a comparative analysis, outlining the strengths
and limitations of each interpretation technique. By consolidating this information, the tables offer
valuable guidance for researchers and practitioners in identifying the most suitable techniques for
specific applications. For a more in-depth exploration of additional interpretation methods (out of
scope in this manuscript), readers are encouraged to refer to [167,171,179,183,184,193,194,199,210-
216].

Table 5. An overview of interpretation techniques for XAI These techniques are categorized based on their
interpretability level (e.g., local or global), their explainability classification (e.g., ante-hoc, post-hoc, model-
agnostic, and model-specific), and the types of input data (e.g., unstructured data — textual data, structured data
— tabular, and image) that each technique can handle. The acronyms from top to bottom at the first column are:
BRL - Bayesian Rule Lists; GAM — Generalized Additive Model; LIME — Local Interpretable Model-Agnostic
Explanations; SHAP - Shapley Additive Explanation; Grad-CAM - Gradient-weighted Class Activation
Mapping; DeepLIFT — Deep Learning Important Features; PDP — Partial Dependence Plot. This table has been
adapted and revised based on [167,171,183,184,193,194,199,210-214,216].

Explanation Implementation Model Data Type
Techniques Level Level Dependency
Global Local Ante-hoc Post-hoc Agnostic Specific TabularImageTextual

Decision Tree ® o o - ® - ® - -
Linear Model ® - [ - ° - J - -
BRL [ ] - ([ ] - - [ ] [ - -
GAM [ ] - [ J - - [ ] [ ] - -
LIME - [ J - [ ] [ ] - [ ] ® [ ]
SHAP [ o - [ (d - ° ® [
Saliency Maps * - [ - J J [ - [ -
Grad-CAM - ° - ° ° - - ° -
Anchors - ® - ® ® - ° ® ®
DeepLIFT ® ® - ® ® - - ® ®
Counterfactuals - [ - ® (] - J [ [
Sensitivi - -
AnalysisJfZ ° i i ° ° ° °

Distillation ° - - ° - ° ° ° o
PDP ° [ - - ° - [ - -
Feature ° °
Importance ° ° i ° ° i °

* Saliency maps and sensitivity analysis can be adapted to function in a model-agnostic manner by modifying
their computation to focus on the input-output relationships of a model [206-208,214].
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Table 6. A comparative analysis of interpretation techniques, highlighting their respective strengths and
limitations. This table has been revised and adapted based on [167,171,183,184,193,199-201,210-216]. The
acronyms from top to bottom (first column) are BRL — Bayesian Rule Lists; GAM — Generalized Additive Model;
LIME - Local Interpretable Model-Agnostic Explanations; SHAP — Shapley Additive Explanations; Grad-CAM
— Gradient-weighted Class Activation Mappings; DeepLIFT — Deep Learning Important Features; PDP — Partial

Dependence Plot.
Techniques Strengths Limitations
Decision Tree e Easy to understand. e Lack of stability, where small

Robust to outliers and missing
values.

changes in training data can result
in significant variations.

e High interpretability. e Prone to overfitting.
e Able to handle non-linear e Non-smooth decision boundaries.
relationships. e Not applicable to linear
relationships.
Linear Model e Simple and easy to implement. ¢ Not applicable to non-linear
e Computationally inexpensive. relationships.
e Generalize well to new datasets withe  Oversimplified explanations may
linear relationships. not be sufficient for safety-critical
e Transparent, no hidden layers or applications.
complex transformations. e Coefficients of linear models
become unstable and unreliable
when input features are highly
correlated.
o Sensitive to outliers.
BRL e  The IF-THEN rules are easy to e High computational cost.
interpret. e Difficult to model complex and
e Incorporation of prior knowledge, high-dimensional environments.
which can guide the learning processe  Sensitive to noisy or incomplete
and improve model performance. data.
e Automatic feature selection. e Not feasible for large-scale systems
e Can handle noisy and incomplete due to scalability issues.
data by modeling uncertainty.
GAM o Flexible — can handle linear and non-¢ Computationally intensive in large
linear relationships in data. datasets or high-dimensional data.
e No black-box nature. e Sensitive to smoothing parameters.
e Provides clear and interpretable e Require large sample sizes to
relationships between input features capture non-linear patterns
and predicted output. effectively [217].
e Caninclude regularization e Risk of overfitting in highly
techniques to control model complex data.
complexity.
LIME e Computationally efficient. e Lacks precision in capturing global
e Simple and intuitive for local feature importance.
interpretation. e Sensitive to perturbations and may
o Flexible, which can be applied to any require hyperparameter tuning
ML models. [218].
e  Works well on tabular, images, and e Sensitive to small changes in data
text data. or the neighborhood around the
instance [219].
e Limited to local context.
SHAP e Versatile — can be applied to various ¢ High computational cost.

ML models [220].
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Provides more accurate explanations e
than LIME.

Fair attribution to prevent unbiased e
explanations.

Can handle simple and complex

Can be manipulated by adversarial
attacks [221].

May require approximations in
large, complex DNN that can
reduce accuracy.

models. e Assume feature independence.

Saliency Maps Intuitive visualization. e Limited to gradient-based models
Can be applied during model e Sensitive to noise.
inference. o Lack of global interpretability.
Effective in explaining decisions of e Requires backpropagation, which
image-based models, such as CNN. can be computationally expensive.
Supports model debugging. e Can be manipulated by adversarial

attacks [222].

Grad-CAM Intuitive visual explanations. e Lack ability to highlight fine-
Localized insights. grained details.
Robust to adversarial perturbations ¢ Computationally expensive to
in image classification tasks. calculate gradients in deep models.
Supports model debugging by e Does not effectively localize objects
highlighting which areas of the input ~ within an image when multiple
are important for predictions. instances of the same class are

present [223].

Anchors Less computation than SHAP. e Require tuning to provide optimal
Better generalizability than LIME explanations [225].
[224]. e Requires discretization, highly
Can be applied to any ML models configurable, and impactful setup.
regardless of its architecture. e Computationally intensive.
High fidelity.

DeepLIFT Compatible with DNN. e Sensitive to initialization.
Efficient explanation generation. e Depends on a reference point or
Captures complex interactions baseline, which might not always
between features. be appropriate in certain contexts.
Scalable. e Produce inconsistent results due to
Local and global interpretability. redefining gradients.

e Struggle to offer global
explanations for more complex and
ensemble models.

Counterfactuals User centric — provides intuitive e High computational cost in high-
explanations with “what-if” dimensional models.
scenarios. e Ambiguity in interpretation and
Does not require access to the data may require expert judgement in
or the model. specific contexts.
Easy to implement. e Potential risk of neglecting
Provides actionable insights. complex relationships in data.

e Inability to capture all aspects of
model behavior, limiting the
comprehensiveness of the
explanation.

Sensitivity Provides intuitive explanations. e Limited to global insights.
Analysis Provides unique solution, training e Require explicit modeling of

free process, and fast computation
[226]. o
Identifies weak and prominent
features.

complex feature interactions
Computationally expensive for
complex models due to multiple
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Applicable to various model types
without requiring access to internal
parameters.

evaluations for each input
variation.
Generates noisy explanation maps

Distillation Simplifies complex models. Dependence on the teacher model
Can be applied across various ML (complex model).
models. Potential loss of fine-grained
Does not require the creation of details during compression.
additional rules or decision Sensitive to hyperparameters.
pathways. Increase computational cost.
Maintains model’s performance
while ensuring interpretability.
PDP Easy to implement. Assumes no correlation between
Provides clear and causal features.
interpretation. High computational cost in large
Offers intuitive visualization. datasets.
Delivers global insights into the Restricted to marginal effects,
overall impact of individual features showing the influence of a
on predictions. maximum of three features at once.
Potential to overlook
heterogeneous effects.
Feature Provides clear and intuitive Overlook complex feature
Importance explanations. interactions may be overlooked

Identifies critical factors influencing
decision-making [227].

Aids in model debugging by
detecting potential biases, errors, or
overfitting through feature analysis.
Offers flexibility as a model agnostic

when decision-making processes
are overly simplified.

Feature importance values are
context dependent and may vary
significantly across different data
distributions or conditions.

d0i:10.20944/preprints202501.1423.v1

approach. e High computational cost for large
models.

e Over-reliance on the assumption of
feature independence, not suitable
in scenarios where features are
correlated [228,229].

3.2. Roles of XAl in Autonomous Vehicles and its Challenges

AVs are inherently complex systems, incorporating advanced and intricate Al algorithms to
perceive, navigate, and make real-time decisions in dynamic, often unpredictable environments.
These decisions necessitate careful consideration of numerous factors, including prevailing traffic
conditions, potential road hazards, and interactions with various road users — pedestrians, cyclists,
and other vehicles. However, the inherent opacity of sophisticated ML and DL models, often
described as the black-box nature of Al, poses significant challenges in translating complex decision-
making processes into transparent and understandable explanations, particularly in contexts where
trustworthiness, safety, reliability, and accountability are imperative. For example, the rationale
behind the decisions to apply brakes or swerve to avoid obstacles during autonomous driving might
remain obscure to human stakeholders and may undermine the confidence in its reliability and
ethical alignment. As a result, the integration of XAI holds paramount importance in addressing these
challenges, as it directly impacts critical factors that are essential for the successful deployment,
operation, and societal acceptance of these technologies [170].

XAI serves as a critical bridge between advanced Al-driven technologies and human
understanding, providing explainable insights into the underlying decision-making processes of Al-
driven systems, especially in safety-critical domains such as AVs. One of the primary roles of XAl is
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to improve transparency, which is a quintessence quality that enables human stakeholders to
understand and evaluate the rationale behind the decisions made by autonomous driving systems. It
demystifies the black-box nature of intricate Al algorithms and elucidates how inputs, such as sensor
data, predetermined rules, and environmental conditions influence the decisions of acceleration,
braking (deceleration), or navigating through complex traffic scenarios. These explanations are often
presented using natural language depictions or visualizations, making the decision-making
processes of autonomous driving systems more accessible and easier to interpret for diverse
audiences [230]. For instance, an XAl-driven multi-sensor perception system of an AV can interpret
and elucidate the relative contributions of each sensor in detecting obstacles, such as pedestrians,
vehicles, or cyclists, while also providing the underlying rationale for specific decisions such as the
decision to decelerate in response to detected hazards. In addition, the system may also integrate
visual representations to demonstrate how sensor inputs shaped its decisions, thereby assuring end-
users that the vehicle’s decisions and actions are made based on robust and explainable
interpretations of its environment. In instances where errors occur, XAl can assist engineers in tracing
the decisions back to their originating data sources, which aids in diagnosing issues and improving
detection precision; and ultimately contributes to the improved transparency and interpretability of
the multi-sensor perception system [215,231-233].

However, XAl-driven systems still encounter various technical challenges that complicate their
implementation and practical usability. Among these, one of the most prominent challenges is the
inherent complexity of DL models, which serve as the backbone of many autonomous systems. DL
models, especially DNNSs, are integral to processing vast amounts of high-dimensional data and
making real-time decisions. Nonetheless, their intricate architectures and reliance on sophisticated
mathematical computations to achieve optimal performance in driving tasks, such as obstacle
avoidance, path planning, and object detection, make it difficult to trace or elucidate the rationale
behind a specific output. For example, providing an explanation for why an AV selects a particular
route or reacts to hazards in a specific manner in real-time often requires advanced interpretability
techniques, which are essential to achieve the level of explainability demanded in safety-critical
systems for trust and accountability. Thus, achieving an optimal balance between interpretability and
model performances remains an ongoing challenge in the development of XAI-driven systems [184].
Other technical challenges involve the need to explain real-time decisions in time-sensitive and
safety-critical situations without introducing significant delays that could compromise the system’s
performance. For instance, in multi-sensor systems, establishing a unified framework to incorporate
multimodal data sources and elucidate the contribution of each sensor modality in real-time is a
significant challenge as these systems scale in size to address various driving conditions. There is also
the potential computational overhead associated with generating interpretable explanations without
affecting real-time performances. Moreover, the challenge of establishing a universal explanation
technique that applies to diverse and dynamic environments remains significant. This includes the
difficulty of explaining decisions made in edge cases or unprecedented conditions, as well as the need
to generalize explanations across different driving scenarios, operational contexts, stakeholder
groups, and modes of transport (on-road versus off-road) [168,170].

Transparency, in turn, supports trustworthiness, which is a critical factor in promoting the
widespread acceptance and successful adoption of Al-driven systems across various domains. In the
early stages of technological advancement, machines and algorithms were often viewed as epitomes
of trustworthiness and reliability due to their predictable, as their operations and actions were limited
to executing predefined tasks that are explicitly programmed, leaving minimal scope for ambiguity
or error in their decision-making processes. In recent years, the emergence of ML and DL algorithms
has marked a significant paradigm shift, facilitating the creation of systems capable of autonomous
reasoning and decision-making. However, this evolution has also introduced an element of
unpredictability and opacity into the behavior of Al-driven systems, which in turn undermines the
implicit trust due to the underlying complex and opaque reasoning behind their decisions [234]. From
end-users’ perspective, the concept of trustworthiness in these systems extends beyond their
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technical capabilities. It operates as a socio-psychological construct that impacts how individuals,
communities, and societies perceive, interact with, and ultimately accept emerging technologies,
specifically in autonomous driving systems [235]. One primary factor that affects trustworthiness
from a socio-psychological perspective is the fear of the unknown, which stems from the inherent
complexity and unpredictability of these technologies. This concern is especially significant in safety-
critical applications, where system failure or malfunctions can result in severe and far-reaching
consequences. Besides, the lack of clear accountability in autonomous systems intensifies the fear of
the unknown, creating significant uncertainty regarding responsibility in the event of system failures
or accidents. Thus, the ambiguity surrounding liability and responsibility amplifies public
apprehension and undermines trust in Al-driven applications [236]. Other socio-psychological
factors influencing trustworthiness of Al systems include perceived behavioral control, which relates
to the user’s capabilities to control or intervene the system when necessitated, privacy concerns, and
perceived usefulness, which refers to the belief that the system will effectively achieve its intended
purposes [235]. Thus, it is imperative to highlight transparency and explainability as the foundational
elements of trustworthy AI [237].

From a regulatory perspective, the capability to provide explainable insights into Al systems has
emerged as an imperative requirement across multiple jurisdictions. As AVs and other Al-driven
systems become increasingly integrated into various aspects of society, regulatory authorities have
emphasized the critical importance of ensuring transparency and interpretability in their decision-
making processes. Thus, the integration of XAl into such applications is important to complying with
regulatory mandates and industry standards, as it provides critical mechanisms for comprehending,
justifying, and validating the decisions and actions made by Al-driven systems. In addition, it plays
an imperative role in supporting transparent investigations and aiding in the determination of
liability in the event of an incident [184,238]. In April 2019, the High-Level Expert Group on Al (Al
HLEG), appointed by the European Commission (EC), presented a human-centric approach for Al
development, which outlines seven ethical guidelines aimed at supporting the development of Al
systems that can be considered as trustworthy. Table 7 below outlines the seven ethical guidelines
that Al systems must adhere to be deemed trustworthy [234,239,240]. Moreover, XAl is essential in
addressing biases within autonomous systems, specifically in instances where such biases stem from
unrepresentative training data or flawed algorithmic designs. By enhancing the transparency of the
Al decision-making processes, XAl enables the identification and analysis of potential sources of bias
that can lead to inequitable or unfair outcomes. This capability ensures that Al-driven systems
operate in a fair and unprejudiced manner, thereby preventing the perpetuation of discriminatory
practices and promoting unbiased decision-making [162,183]. Nonetheless, one of the ethical
challenges of XAl is that it can be challenging to identify the appropriate level of explanation required
for different scenarios. Therefore, it is essential to tailor explanations that suit the unique needs and
expectations of different uses cases, thereby addressing the distinct requirements of various
stakeholders [241]. Furthermore, the ethical challenges associated with data security and data privacy
in XAl are significant and multifaceted. It requires an optimal balance between openness and
confidentiality, certifying that sensitive data is not compromised or exposed to vulnerabilities, while
simultaneously ensuring that the explanations provided are clear, interpretable, and meaningful
[234,235].

Table 7. An overview of the seven essential criteria outlined in the established ethical guidelines by the High-
Level Expert Group on Al (AI HLEG) that Al systems must follow to be deemed as trustworthy. This table has
been revised and adapted based on [234,239,240].

Criteria Explanations
Human Agency and Oversight Al systems should enhance human decision-making and
support fundamental rights while ensuring adequate

oversight, rather than restricting or misleading human
autonomy. This can be achieved through human-in-the-
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loop, human-on-the-loop, and human-in-command
approaches.
Technical Robustness and Safety Al systems must be resilient, secure, and safe, with

contingency plans in place to address system failures or
malfunctions. They must also be accurate, reliable, and
reproducible to minimize and prevent unintentional harm.
Privacy and Data Governance In addition to safeguarding privacy and data protection,
effective data governance mechanisms must be established,
ensuring data quality, integrity, and authorized access. End-
users should also maintain full control over their personal

information, ensuring that such data is not used in ways
that could be detrimental or harmful to their interests.

Transparency Data, systems, and Al business models must be transparent,
with traceability mechanisms ensuring accountability.
Moreover, Al systems and their decisions should be
explained in a way that is tailored to the relevant
stakeholders, and it is essential that users are aware that
they are interacting with Al and are informed of its
capabilities and limitations.

Diversity, Non-Discrimination, and  Unfair bias must be eliminated to prevent negative

Fairness outcomes such as the marginalization of vulnerable groups

and the reinforcement of prejudice. Al systems should be
accessible to all, regardless of disability, and involve
relevant stakeholders throughout their lifecycle to promote
inclusivity.

Societal and Environmental Well-Being Al systems must be designed to benefit all humanity,
including future generations, while prioritizing

sustainability and environmental responsibility.
Additionally, their impact on the environment, other living
being, and society must be thoroughly evaluated and
considered.

Accountability Mechanisms must be established to ensure accountability
for Al systems and their outcomes. Auditability, which
allows for the evaluation of algorithms, data, and design
processes, is essential, particularly in critical applications.
Besides, accessible avenues for compensation should be
provided.

4. Conclusions and Future Research Recommendations

In this manuscript, we investigated and explored the intersection of multi-sensor fusion and
XAl, aiming on addressing the challenges associated with developing interpretable, trustworthy, and
accurate AV systems. We began the survey by introducing the various applications of AVs in both
on-road and off-road environments, and an overview of the commonly employed sensors integral to
developing multi-sensor perception systems, which support critical functionalities, including object
detection, obstacle avoidance, and localization and mapping. Subsequently, we presented a
comprehensive overview of the various multi-sensor fusion strategies, highlighting their respective
strengths and limitations. It gave valuable insights into the various fusion approaches from three
primary aspects: (a) when should the sensor fusion occur, (b) where should the sensor fusion occur;
and (c) what should the fusion do. Ultimately, selecting the most suitable approaches depends on the
specific use cases, requirements, and available resources on the AVs. Additionally, we reviewed some
of the cutting-edge multi-sensor fusion techniques and algorithms — traditional and advanced fusion
algorithms, discussing their respective applications, strengths, and weaknesses. We also emphasized
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the challenges involved in the deployment of reliable, safe, scalable, transparent, and comprehensible
multi-sensor perception systems in real-world autonomous driving environments. Some of the key
challenges are:

e  Sensor noise, which relates to the inaccuracies, inconsistencies, or irrelevant data introduced by
individual sensors due to a combination of hardware limitations, external interference, or
environmental conditions.

e  Heterogeneity of sensor modalities in AVs and the resulting system complexity.

e  Achieving an optimal balance between accuracy and computational efficiency.

e  Multi-sensor fusion systems are susceptible to malicious attacks, which pose significant risk to
the integrity and reliability of their autonomous operation.

e Lack of transparency, explainability, and interpretability in black-box Al models, especially in
advanced DNN algorithms.

Finally, we explored the core principles of XAl and provided a comprehensive overview of the
several emerging XAl strategies and techniques that can be integrated during autonomous systems
development to enhance the transparency, trustworthiness, and interpretability of these systems. We
summarized the strengths and limitations of these approaches, offering valuable guidance for
researchers and practitioners in identifying and selecting the most suitable strategies and
methodologies for specific use cases. Moreover, we examined the significance of XAl in Al-driven
systems, specifically in AVs, as well as the challenges associated with integrating XAl into real-time
autonomous driving applications or other Al-driven technologies. The findings revealed that the lack
of interpretability and transparency in advanced Al models, specifically in DNNSs, remains a primary
challenge due to the opaque, black-box nature of their model architectures and the inherent
complexity of these systems. Eventually, the selection of suitable strategies and methodologies for
incorporating XAl depends on the specific system requirements, computational resources, and the
associated limitations, all while striving to attain an optimal balance between explainability and
system performance. Moreover, several challenges comprise technical, ethical, social, and regulatory
aspects, remain a main challenge that must be addressed to enable the successful deployment of XAI
systems into the real-world environments while ensuring that such systems remain efficient, safe,
transparent, trustworthy, and ethical.

In summary, the development of methodologies that ensure real-time explainability for
stakeholders without compromising safety and accuracy is paramount in the successful deployment
of AVs and other Al-driven systems. It ensures that stakeholders, including end-users, engineers,
operators, and regulators, can understand the reasoning behind critical decisions while it operates in
complex and dynamic environments, fostering trust and enabling timely interventions when needed.
Nonetheless, it is essential to customize the explanations to meet the specific needs and expectations
of different use cases, thereby addressing the diverse requirements of various stakeholders. In
autonomous driving, vehicles operate in real-time and must adapt to rapidly changing situations. It
is imperative to attain an optimal balance between the computational requirements necessitated for
accurate real-time decision-making and the need for explainability and transparency, without
introducing delays that could result in potential hazardous outcomes. Hence, it is essential to develop
efficient and scalable XAI methods that provide clear, comprehensible, and real-time explanations,
while maintaining operational safety and decision-making accuracy of autonomous systems. Such
methods are critical for fostering trust and accountability, aiding in error diagnosis, ensuring
compliance with regulatory requirements, and supporting the ethical and responsible integration and
deployment of autonomous technologies into real-world environments.

Future research directions aimed at progressing the integration of XAl into real-time, high-stakes
AVs or other Al-driven systems encompass a range of innovative and critical domains. Such
explorations aim to address existing challenges and unlock new opportunities to enhance the safety,
reliability, interpretability, transparency, and trustworthiness of these systems. A significant area of
focus for future research involves the development of a unified context-aware evaluation framework
for comparing and selecting interpretability techniques across multiple domains or, at a minimum,
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achieving uniformity within specialized areas. It could contribute to the development of best
practices in XAl, providing valuable, contextual, and adaptive insights that are aligned with specific
goals, stakeholders, and operational constraints of different domains — cross-disciplinary, human-AI
collaboration [170]. Over time, this would support the development of more transparent, reliable,
and user-centric Al systems [184,242,243]. Moreover, it is essential to investigate and develop novel
XAI approaches that facilitate the provision of accurate and computationally efficient real-time
explanations, specifically in memory-constrained, real-time industrial systems like autonomous
driving and healthcare [171]. Another promising direction for future research involves integrating
causal relationships into XAI, with the objective of enhancing the capability of Al systems to offer
more comprehensive explanations for their decisions. This approach aims to elucidate the underlying
causal factors that impact the outcomes, thereby enabling a transparent understanding of the cause-
and-effect dynamics involved in the decision-making process [171,216,244,245].

Besides, it is important to investigate and refine cutting-edge multi-sensor fusion algorithms
capable of processing and interpreting large-scale sensor data in real time. Such advancements are
vital to ensuring the accuracy and reliability of autonomous systems in dynamic environments, while
simultaneously providing clear and interpretable explanations of the underlying decision-making
process. From an ethical and regulatory perspective, future research should prioritize the
development of methodologies aimed at incorporating fairness, non-discrimination, and privacy
protections into Al systems. Simultaneously, it is vital to ensure that these systems comply with
emerging ethical and regulatory standards, thereby fostering trust and accountability within Al
technology [171,246]. Other future research avenues may involve incorporating large language
models (LLMs) to aid in the generation of clear, contextually relevant, and user-friendly explanations
for various stakeholders, including passengers, regulators, and legal professionals [247,248].
Moreover, investigating the different methodologies for preventing adversarial attacks is vital in
ensuring the security and integrity of Al systems, specifically in safety-critical applications
[240,249,250]. Finally, improving the knowledge and skills of practitioners and researchers in XAl
through continuous education and training will significantly contribute to the advancement of
interpretability research and its practical applications. It is also important to develop accessible and
effective educational frameworks aimed at fostering public understanding of Al systems, their
capabilities and limitations, as well as their decision-making processes [184,235]. We hope that these
research avenues will facilitate the development of AI models that are reliable, trustworthy,
interpretable, and safe, thereby advancing the field of XAI and enhancing transparency and
interpretability in AVs.
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Abbreviations

The following abbreviations are used in this manuscript:

3D Three Dimensional

Al Artificial Intelligence

ATHLEG High-Level Expert Group on Al
AV Autonomous Vehicles

BEV Bird’s-Eye View

BRL Bayesian Rule Lists

CNN Convolutional Neural Networks
DeepLIFT Deep Learning Important Features
DL Deep Learning

DNN Deep Neural Network

DST Dempster-Shafer Theory

EC European Commission

EM Expectation-Maximization

Faster R-CNN Faster Region-Convolutional Neural Network
GAM Generalized Additive Model
GNSS Global Navigation Satellite System

GPSs Global Positioning System

GPU Graphics Processing Unit
Grad-CAM Gradient-weighted Class Activation Mapping
HD High-Definition

HLF High-Level Fusion

IMU Inertial Measurement Unit

IoU Intersection over Union

KF Kalman Filter

KNN K-Nearest Neighbors

LIME Local Interpretable Model-Agnostic Explanations
LLF Low-Level Fusion

LLM Large Language Model

ML Machine Learning

MLF Mid-Level Fusion

MMLF Mult-modal Multi-class Late Fusion
NMS Non-Maximum Suppression

PDP Partial Dependency Plots

PF Particle Filter

RBM Restricted Boltzmann Machine

RL Reinforcement Learning

RMG Rail Mounted Gantry

RNN Recurrent Neural Networks

RPN Region Proposal Network

SAE Society of Automation Engineers
SCFT Spatio-Contextual Fusion Transformer
SHAP Shapley Additive Explanations

SPA Soft Polar Association

TPU Tensor Processing Unit

UKF Unscented Kalman Filter

XAI Explainable Artificial Intelligence
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