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Abstract: Autonomous vehicles (AVs) rely heavily on multi-sensor fusion to perceive their 
environment and make critical, real-time decisions by integrating data from various sensors such as 
radar, cameras, Lidar, and GPS. However, the complexity of these systems often leads to a lack of 
transparency, posing challenges in terms of safety, accountability, and public trust. This review 
investigates the intersection of multi-sensor fusion and explainable artificial intelligence (XAI), 
aiming to address the challenges of implementing accurate and interpretable AV systems. We 
systematically review cutting-edge multi-sensor fusion techniques, along with various explainability 
approaches, in the context of AV systems. While multi-sensor fusion technologies have achieved 
significant advancement in improving AV perception, the lack of transparency and explainability in 
autonomous decision-making remains a primary challenge. Our findings underscore the necessity of 
a balanced approach to integrating XAI and multi-sensor fusion in autonomous driving applications, 
acknowledging the trade-offs between real-time performance and explainability. The key challenges 
identified span a range of technical, social, ethical, and regulatory aspects. We conclude by 
underscoring the importance of developing techniques that ensure real-time explainability, 
specifically in high-stakes applications, to stakeholders without compromising safety and accuracy, 
as well as outlining future research directions aim at bridging the gap between high-performance 
multi-sensor fusion and trustworthy explainability in autonomous driving systems. 

Keywords: autonomous vehicles; self-driving cars; multi-sensor fusion; explainability; explainable 
artificial intelligence (xai); interpretability; perception; camera; lidar; radar 
 

1. Introduction 

Autonomous vehicles (AVs), also known as self-driving vehicles, are at the forefront of 
technological innovation with the potential to transform and revolutionize transportation by 
improving road user safety, efficiency, accessibility, and reducing greenhouse gas emissions [1,2]. At 
the core of their operation lies the sophisticated capability to perceive, analyze, and respond to highly 
dynamic and complex driving environments in real time with minimal to no human intervention. 
AV’s perception system relies on the integration of advanced proprioceptive and exteroceptive 
sensors, robust processing power, complex machine learning (ML) algorithms, and decision-making 
systems to analyze and interpret complex traffic situations, navigate through unpredictable 
conditions, and make real-time critical driving decisions autonomously [2]. In our previous research 
[3], we investigated the architecture of an autonomous driving system from both functional and 
technical perspectives; highlighting the key components and subsystems that facilitate AVs to 
operate efficiently based on system design and operational capabilities, specifically in the perception 
stage of self-driving solutions. 
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AVs are not limited to on-road applications such as highway driving and navigation or urban 
driving, nor to off-road environments in industries like agriculture, mining, and construction [4–6]. 
It extends to a broader range of domains, including maritime settings, where AVs are applied to 
manage self-navigating vessels, automated container handling and logistic operations in container 
port terminals, et cetera; hence, improving the safety and efficiency of port activities [7,8]. Whether 
operating in structured urban settings with well-defined road networks, navigating unstructured and 
rugged off-road terrains, or coordinating day-to-day logistical tasks within dynamic maritime 
settings, AVs face diverse operational challenges that demand advanced solutions. All these 
challenges require efficient and robust multi-sensor fusion and decision-making algorithms to ensure 
effective and reliable performance. 

In AVs, sensors play a pivotal role in perceiving its surroundings and localization of the vehicle 
within its environment to perform dynamic driving tasks such as obstacle detection and avoidance, 
path planning, environmental awareness, response to unexpected road situations, et cetera [9,10]. It 
involves real-time collection and interpretation of large volumes of data (or measurements) from 
multiple proprioceptive and exteroceptive sensors, including vision cameras, radar, Lidar, ultrasonic 
sensor, Global Positioning System (GPS), Inertial Measurement Unit (IMU), et cetera. Table 1 below 
provides a summary of the commonly adopted proprioceptive and exteroceptive sensors in an AV. 
It outlines the specific types of sensor that are frequently used in autonomous driving systems to 
enable robust perception and localization across various operational contexts [11,12]. 

Table 1. A summary of the commonly utilized proprioceptive and exteroceptive sensors in AVs. 

 Definition Examples 
Exteroceptive Sensor It perceives the external environment, detecting 

objects, obstacles, light intensity, and other 
relevant features essential for safe navigation. 

 Vision cameras. 
 Radar sensors. 
 Lidar sensors. 
 Ultrasonic sensors. 

Proprioceptive Sensor It measures the internal values and gathers 
information about the dynamic state of a self-
driving vehicles, such as its position, speed, and 
acceleration, that are essential for maintaining 
stability and ensuring precise control of the 
vehicle motion. 

 IMU. 
 Global Navigation 

Satellite System (GNSS). 
 GPS. 

However, the composition of the sensor suite, which refers to the collection of sensors that are 
integrated into an AV, can vary significantly based on the intended use cases and its specific 
operational demands. In addition, the specific operational environment of AVs – whether it is on-
road, off-road, or in specialized industrial settings – affects the type and arrangement of the sensors 
that are required to facilitate the perception, localization, and decision-making processes in an 
autonomous driving system. For example, on-road AVs such as self-driving cars [13] or trucks [14] 
that operate predominantly on highways and within urban environments often rely heavily on a 
combination of vision cameras, radar, and Lidars to ensure high-resolution and 360-degree 
environmental mapping; which are vital in environments where dense traffic and high-speed motion 
are involved. These sensors must be able to detect and track moving objects, interpret traffic signals, 
and respond to unpredictable behaviors from other road users. 

In contrast, off-road AVs such as autonomous tractor and tillage (agriculture), autonomous 
pallet loader (military and warehousing), automated rail mounted gantry (RMG) cranes (shipping 
yards), et cetera [15–17] may employ different sensor configuration that incorporates robustness due 
to rugged environment, uneven surfaces, low-visibility conditions, or lack of clear infrastructures. In 
such cases, off-road AVs often incorporate specialized sensors like infrared cameras or thermal 
cameras to enhance visibility in dusty or low-light conditions [18]. Figure 1 below presents a visual 
depiction of various examples of AVs specifically designed for both on-road and off-road 
applications. The imagery exemplifies the diversity present within the category of AVs, highlighting 
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how different designs and functionalities are tailored to meet the unique requirements of different 
operational environments. 

  
(a) (b) 

  

  

(c) (d) 

Figure 1. A visual representation of various examples of AVs specifically designed for both on-road and off-road 
applications. (a) Waymo self-driving taxis for ride-sharing services; (b) Einride autonomous truck for freight 
transportation and logistics; (c) John Deere autonomous tractor and tillage for agricultural activities and 
precision farming; (d) Stratom autonomous pallet loader for handling pallets. All images shown are provided 
by the following sources: [14,16,17,19]. 

The Society of Automation Engineers (SAE) introduced a standardized guideline to eliminate 
terminological confusion used to describe the varying levels of vehicle automation. It aims to promote 
clearer communication across industries, enhance risk assessment during system design, support the 
development of safety and regulatory frameworks, and build public trust and understanding of AV 
technologies [10,20]. Hence, its initiative has led to the publication of the SAE J3016 standard in 2014, 
which clearly classifies the levels of driving automation ranging from Level 0 (no automation) to 
Level 5 (full automation) [21], as illustrated in Figure 2. Current automation driving technologies 
have yet to reach its full potential and have remained at Level 2 (partial automation) for several years 
[10]. Nonetheless, it is important to highlight that Level 3 (conditional automation) automated 
driving systems are now being initiated into regular production [22] and some manufacturers, such 
as Waymo’s commercial self-driving ride-sharing services [23], claim to have built vehicles with 
autonomy that are equivalent to Level 4 (high automation) as described in the SAE J3016 standard. 
In both on-road and off-road applications, the adoption of this standardized classification supports 
more coherent development pathways for multi-sensor fusion and explainable artificial intelligence 
(XAI), as it provides a clearer understanding of the driving system’s intended level of autonomy, 
decision-making responsibilities, and operational limitations. 
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Figure 2. A visual summary of the SAE J3016:2021 standard, which categorizes the levels of driving automation 
in vehicles. Readers interested in the comprehensive description of the SAE J3016:2021 standard (latest revision) 
are advised to refer to the SAE International Blog Post [24]. The illustration shown was redrawn and modified 
based on the diagram in [25,26]. 

A shared characteristic of an autonomous driving system, applicable to both on-road and off-
road applications, is their reliance on multi-sensor fusion, a method that involves integration data 
from multiple sensor types. This approach is essential for improving the overall perception and 
situational awareness of AVs, as it helps to address the limitations inherent in individual sensors 
operating in isolation and mitigate detection uncertainties. For instance, Lidar sensors are highly 
effective at providing precise, high-resolution depth information, they are susceptible to adverse 
weather conditions. In contrast, radar sensors are more capable of detecting objects through fog or 
rain but may offer lower spatial resolution [11]. By integrating data from diverse sensor modalities 
such as exteroceptive sensors and proprioceptive sensors, multi-sensor fusion significantly enhances 
the accuracy, reliability, and robustness of the vehicle’s perception capabilities. Thus, such an 
approach enables AVs to achieve a more comprehensive understanding of the surroundings, 
facilitating more effective navigation in complex and dynamic environments [27,28]. 

Nonetheless, as the complexity of autonomous driving systems increases, especially with the 
integration of multiple sensor modalities, the decision-making processes guided by complex deep 
learning (DL) and ML algorithms often lead to a significant lack of transparency. While these DL and 
ML models are highly effective at generalizing across a wide range of driving scenarios and are 
renowned for their powerful ability to model complex patterns through sophisticated data 
representation, their inner workings and its underlying decision-making logic often results in an 
inexplainable system [29]. Such systems are concerning in safety-critical applications, such as AVs, 
where the consequences of erroneous or suboptimal decisions can be severe. For example, in 
scenarios involving novel conditions or sophisticated driving environments, the inability to 
understand how or why an autonomous system has made a particular decision can lead to significant 
risks, including system failures, accidents, or even the loss of human life [30,31]. Hence, it is important 
to integrate explainability into the design of complex autonomous systems to enhance transparency, 
traceability, accountability, and trust among stakeholders [32]. 

This paper builds upon and extends the research presented in our previous publication [11], 
broadening the scope to deliver an in-depth analysis of the intersection between multi-sensor fusion 
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and XAI in the context of AV systems. In this extended review study, we aim to systematically review 
state-of-the-art multi-sensor fusion techniques alongside emerging XAI methodologies that 
contribute to the development of more transparent and interpretable AV systems without 
compromising safety and perception accuracy. Section 2 presents an overview of the latest 
advancements in multi-sensor fusion techniques and provides insight into how multi-sensor fusion 
methodologies are used to create a unified understanding of the vehicle’s surrounding environment. 
In addition, this section evaluates their respective strengths and weaknesses as well as the challenges 
associated in real-world autonomous driving applications. 

Section 3 outlines the core principles and frameworks of XAI and presents an overview of 
emerging XAI techniques and tools that can be adopted to enhance the interpretability, transparency, 
and trustworthiness of an AV system. Besides, this section explores the role of XAI in AVs and 
emphasizes the critical importance of implementing explainability into the decision-making 
processes and its challenges to provide clear and interpretable insights into how and why specific 
driving decisions are made. Lastly, Section 4 presents a summary overview of the key findings and 
insights presented throughout the research and highlights future research directions that could 
contribute to the development of more reliable, interpretable, and trustworthy autonomous driving 
systems. 

2. Multi-Sensor Fusion in Autonomous Vehicles 

In AV systems, multi-sensor fusion serves as a cornerstone process in constructing a precise and 
dependable model of the driving environment. It enables the AV to interpret, predict, and respond 
to diverse and complex road conditions without little to no human intervention. Unlike traditional 
vehicles, which rely exclusively on human drivers to perceive and respond to road conditions, AV 
systems employ a range of sensor types, including cameras, Lidar, radar, and ultrasonic sensors, that 
capture unique aspects of the driving environment for safe navigations and decision-making [11]. 
Figure 3 below provides an illustrative example of a standard sensor configuration for environment 
perception in AV systems. Nevertheless, it is important to note that the arrangement and integration 
of various sensors can differ significantly based on the specific application scenarios and operational 
requirements of the AV [33–37]. 

 

Figure 3. An illustrative example of a typical sensor configuration employed for environmental perception in 
on-road automated driving systems. It is essential to recognize that the arrangement and integration of sensor 
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modalities can differ significantly based on operational requirements and specific applications, i.e., off-road 
versus on-road use cases. Other sensors, such as GPS and IMUs, are not indicated in the illustration. The image 
shown was redrawn and modified based on the diagram in [36,37]. 

However, each sensor type carries specific limitations that can compromise its reliability in 
isolation. For example, cameras deliver high-resolution images that are invaluable for capturing 
texture and color details and object recognition, but their effectiveness decreases in low light, glare, 
or adverse weather conditions. Lidar sensors generate detailed depth maps of the surrounding 
driving environment that enhance spatial awareness, but their performances can degrade under 
heavy fog or rainy weather conditions [38–40]. Radar sensors, on the other hand, offer reliable 
distance and velocity measurements without weather condition constraints, but they lack the 
resolution needed to capture finer details or identify static objects with precision. Lastly, ultrasonic 
sensors complement the perception suite in AV systems by providing short-range object detection 
capabilities, which are critical for close-proximity maneuvers such as parking, yet their capabilities 
are limited in their short operational range and are not suitable for use in high-speed driving 
scenarios, where higher-resolution data and broader spatial awareness are indispensable [11,41,42]. 
Therefore, integrating multiple sensor data streams using multi-sensor fusion techniques is 
imperative for overcoming the limitations that arise when sensors are employed independently. In 
addition, the multi-sensor fusion process significantly enhances the overall robustness and accuracy 
of perception in AV systems, which is vital for their performance in dynamic, unpredictable, and 
safety-critical driving scenarios. Table 2 below presents a summary of advantages and limitations 
associated with exteroceptive sensors – cameras, Lidar, radar, and ultrasonic sensors [43,44]. It 
highlights the strengths and weaknesses of the sensors, offering valuable insights into their 
performance across different operational requirements and environmental or illumination 
conditions. 

Table 2. An overview of the advantages and limitations associated with exteroceptive sensors: camera, Lidar, 
radar, and ultrasonic sensors. The table shown is adapted from [44] with modifications. 

Exteroceptive Sensors Advantages Disadvantages 

Camera 

 High resolution. 
 Infrared or thermal 

sensing available. 
 Captures texture and color 

details. 
 Optimal for object 

recognition. 
 Low cost. 

 Depth information is not 
possible without stereo 
configuration. 

 Reliant on illumination. 
 Vulnerable to weather 

conditions. 
 Extensive computational 

power to analyze camera 
images. 

 Limited velocity 
measurements. 

Lidar 

 Long detection range. 
 Provides high-resolution 

three-dimensional (3D) 
spatial data with distance 
measurements. 

 Insusceptible to 
illumination. 

 High cost. 
 Ineffective and shorter range 

in adverse heavy rain, fog, or 
dust. 

 No texture or color 
information. 

 Difficult to detect objects 
with specular surface or non-
Lambertian material [45]. 

Radar 
 Insusceptible to 

illumination and weather 
conditions. 

 Poor resolutions. 
 Unable to detect small 

objects. 
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 Offers distance and 
relative velocity 
measurements. 

 Low cost. 
 Long range. 

 Limited classification 
capability. 

 Noisy outputs due to 
reflections. 

 No texture or color 
information.  

Ultrasonic 

 Insusceptible to 
illumination and weather 
conditions. 

 Provides high precision 
for close-range detection at 
low speed. 

 Capable of detecting 
objects made from all 
types of materials. 

 Low cost. 

 Limited detection range. 
 Not suitable for detecting 

objects at high speed. 
 Susceptible to interference 

from wind at high speed. 
 Sensitive to temperature 

variation and vapors. 

In the context of multi-sensor fusion, several distinct strategies were introduced and adopted to 
integrate data from multiple sensor modalities to improve the overall perception and decision-
making capabilities of AV systems [46]. These strategies can be broadly categorized into three 
primary approaches: (a) low-level fusion, (b) mid-level fusion, and (c) high-level fusion. Each of these 
approaches presents a distinct technique for integrating sensor data, designed to optimize the trade-
offs between data richness, real-time processing requirements, and computational efficiency. By 
strategically integrating data at different stages within the sensor data processing pipeline, these 
fusion techniques aim to address the inherent limitations and uncertainties of individual sensor 
modalities to create a more robust and resilient perception and navigation model in AV systems. 
This, in turn, allows AV systems to achieve a higher level of situational awareness, improving the 
reliability of decision-making and ensuring safer navigation, even in complex and challenging 
driving environments [11,46–48]. 

2.1. Multi-Sensor Fusion Approaches 

2.1.1. Low-Level Fusion 

Low-Level Fusion (LLF), also known as data-level fusion or early fusion [48–50], represents the 
most granular approach to integrating sensor data in AV systems, where data from multiple sensor 
types is integrated at the lowest abstraction level, before any significant preprocessing, filtering, or 
feature extraction occurs. In essence, the LLF approach to multi-sensor fusion utilizes raw features or 
unprocessed sensor inputs, such as raw radar reflections, camera pixel data, or Lidar point clouds, to 
create a comprehensive, high-resolution representation of the driving environment. One of the key 
advantages of LLF approach is its capability to retain the fine-grained information captured by each 
individual sensor, which maximizes the amount of information available for further analysis 
including small objects or minute changes in the driving scene. As a result, LLF approach plays an 
essential role in enhancing the precision and reliability of object detection and environmental 
awareness in AV’s perception system, specifically in dynamic or complex driving scenarios where 
capturing and preserving fine-grained information is critical for accurate decision-making and 
ensuring safe navigation [51]. 

In AV systems, the LLF strategy is often employed in scenarios where high precision and fine-
grained detail are indispensable, especially in tasks such as object detection, classification, and 
tracking. For instance, a recent study by [52] demonstrated that integrating high-resolution camera 
images and Lidar 3D point clouds at the raw data level substantially improves the accuracy of image 
depth estimation. It involves projecting Lidar point clouds onto the image plane, otherwise known 
as sparse depth maps, and further refines into dense depth maps utilizing a depth completion method 
[53] to transform camera features into a bird’s-eye view (BEV) space for long-range high-definition 
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(HD) map generation; thereby improving the precision of object detection and overall spatial 
awareness. In addition, the study referenced in [54] introduced a novel camera-radar fusion 
transformer framework to integrate spatial and contextual information from both the radar and 
camera sensors using an innovative Spatio-Contextual Fusion Transformer (SCFT) model and a Soft 
Polar Association (SPA) module. It leverages the complementary strengths of each sensor and the 
associated polar coordinates between radar points and vision-based object proposals for object 
detection, classification, and tracking. Such approach achieved state-of-the-art performance on the 
nuScenes test dataset [55] and outperforming other existing camera-radar fusion methods in terms of 
accuracy and reliability. 

Figure 4 below illustrates the concept and architecture of LLF approach to multi-sensor fusion. 
It visually demonstrates a high-level overview of the step-by-step fusion processes, emphasizing on 
how raw data streams from an array of sensor modalities are pre-processed including spatial-
temporal calibration [11], prior to being integrated into a unified dataset for further perception and 
navigation analysis [56,57]. While LLF is advantageous in providing a comprehensive, detailed view 
of the surrounding environment, it is not without its challenges and drawbacks. LLF requires high 
computational resources and memory bandwidth to manage and process large volumes of raw data 
from multiple sensors simultaneously, specifically at high resolutions. It leads to increased latency 
and may negatively impact the processing capabilities, which are not suitable in complex, dynamic 
environments where real-time decision-making is essential. Besides, LLF is susceptible to errors in 
the spatial-temporal calibration of the sensors operating at different frequencies. In safety-critical AV 
systems, the sensor misalignments can lead to inaccuracies in detecting objects and predicting object 
distances and trajectories; thus, compromising the reliability and safety of the AV systems. In 
addition, LLF approach exhibits limited flexibility in scenarios where a sensor fails or malfunctions, 
as the tightly coupled architecture relies heavily on synchronized inputs from all sensors. Thus, such 
dependencies reduce the robustness of the system and can pose significant challenges in maintaining 
the operational safety of the AV system in real-world conditions [56–58]. 

 

Figure 4. A graphical representation of the concept and architecture of LLF strategy to multi-sensor fusion. It 
visualizes the step-by-step fusion processes at high level, emphasizing on how raw sensor data streams from 
multiple sensor modalities are pre-processed, e.g., multi-sensor calibration, prior to being integrated into a 
unified dataset for further analysis. The diagram illustrated was modified and redrawn based on the depiction 
in [56,57]. 

2.1.2. Mid-Level Fusion 

In contrast to LLF, which integrates raw data to build a comprehensive and detailed 
representation of the surrounding driving environment, Mid-Level Fusion (MLF) utilizes the 
extracted salient features from individual sensor types to construct a more refined and 
computationally efficient perception of the surroundings. MLF, otherwise known as feature level 
fusion, intermediate fusion [57], or middle-fusion [59], integrates the high-level features obtained 
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from individual sensors, such as depth estimations – Lidar, motion trajectories – radar, object 
boundaries – camera, and et cetera, to develop a more abstract yet informative representation of the 
environment [48]. MLF approach to multi-sensor fusion lies in its ability to balance perception 
accuracy with computation efficiency, especially in real-time decision-making scenarios. It offers a 
pragmatic solution for AV systems by optimizing the allocation of resources and reducing the 
computational complexity of sensor data processing while maintaining the precision of situational 
awareness for effective and safe navigation in dynamic, real-world driving conditions [60]. 

MLF approach is often adopted to achieve a balance between high-accuracy perception and 
computational efficiency in real-time data processing for object detection, classification, and tracking. 
In their study, [61] introduced ContextualFusion, an environmental-based fusion network, that 
leverages domain-specific knowledge about the limitations of camera and Lidar sensors, as well as 
the contextual information about the environment to enhance the perception capabilities. It utilizes 
the MLF approach to integrate features extracted from the sensors and environmental contextual 
data, i.e., illumination conditions – daytime and night-time, and rainy weather condition to detect 
objects in adverse operating conditions, achieving state-of-the-art detection performance on the 
nuScenes dataset [55] at night-time. In [62], the scholars presented the concept of an end-to-end 
perception architecture that leverages the MLF strategy in its deep fusion network to create a shared 
representation of the surroundings. Its fusion network incorporates the features obtained from 
individual sensor encoders, as well as the temporal dimensions to develop a unified latent space that 
is sensitive to the nuances of spatial relationships and temporal dynamics for subsequent perception 
tasks, including object detection, localization, and mapping. By utilizing the unified latent space, the 
network allows interdependent learning across various perception tasks to minimize redundant data 
processing; hence, optimizing resource utilization and computational efficiency. 

Figure 5 below depicts the concept and architecture of MLF approach to multi-sensor fusion. It 
illustrates a high-level overview of the sequential fusion processes, emphasizing on how distinct 
features are initially extracted from individual sensor types prior to being integrated into a shared 
feature space for subsequent perception and navigation analysis [56,57]. Although MLF offers 
significant benefits in optimizing resource utilization while maintaining high object detection 
accuracy, it also presents certain challenges and limitations. MLF requires robust feature extraction 
algorithms to accurately synthesize the relevant information from disparate sensor sources. It relies 
on precise feature extraction and is vulnerable to sensor failures, noise, and inconsistencies, which 
can lead to information loss and resulting in degraded performance in critical perception tasks [48]. 
Additionally, MLF requires precise multi-sensor spatio-temporal calibration to ensure data 
consistency during the fusion process. It also requires substantial computational resources to 
integrate large feature subsets from multiple sensors, which can be challenging in real-time safety-
critical systems due to concerns about data latency [11]. Furthermore, as noted in [63], the MLF 
strategy may not be adequate to support the realization of SAE Level 4 or 5 AVs, as it struggles to 
handle unexpected scenarios based on predefined feature sets and may fail to retain critical 
contextual information. 

 

Figure 5. A graphical representation of the concept and architecture of MLF approach to multi-sensor fusion. It 
visualizes the high-level overview of the MLF processes, where features, such as depth estimations and texture 
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gradients, were extracted from individual sensors prior to being integrated into a unified dataset for further 
perception and safe navigation processing to support accurate and safe driving tasks. The diagram shown was 
redrawn and modified based on the depiction in [57]. 

2.1.3. High-Level Fusion 

High-Level Fusion (HLF), also referred to as decision-level fusion or late fusion [57], represents 
the highest level of abstraction to integrating multi-sensor data in AV systems. In contrast to LLF and 
MLF, HLF incorporates individual sensor outputs or decision-making results to construct a 
comprehensive understanding of the environment. It focuses on integrating the final interpretations 
or outcomes derived from the analysis performed by individual sensors, such as, location 
coordinates, velocity vectors, motion trajectories, predicted bounding boxes, classifications of 
detected objects, et cetera, to establish a reliable, unified, and accurate informed decision [59,64]. One 
of the key benefits of HLF approach is its modular structure that allows seamless integration of new 
sensors or updates to existing multi-sensor fusion system without significant changes to the overall 
fusion framework. As a result, it can be easily adapted to incorporate additional sensing modalities 
or to accommodate multiple sensor configurations, thereby supporting the scalability of the 
autonomous driving system [57]. Besides, HLF enhances computational efficiency by focusing on the 
integration of high-level decisions from individual sensor modalities, which significantly reduces 
computational complexity compared to raw sensor data, as the processed, abstracted information 
requires fewer resources, making it beneficial for low latency applications in AV [65]. HLF also 
promotes robustness and fault tolerance due to its approach to sensor fusion, which allows the system 
to maintain effective operation when one or more sensors fail or provide erroneous data – no 
interdependence at the feature or raw data levels. 

HLF approach is often adopted to optimize computational efficiency while maintaining effective 
decision-making capabilities and overall system performance, specifically in real-time, safety-critical 
applications such as autonomous driving. In their study, [66] introduced a Multi-modal Multi-class 
Late Fusion (MMLF) architecture, which integrates object-level information from various sensor 
modalities and quantifies the uncertainty associated with the classification results. It involves 
integrating bounding boxes (spatial locations of objects) from the detectors and a non-zero 
Intersection over Union (IoU) values to obtain multi-class features for uncertainty estimation. As a 
result, the integration leads to improved precision and reliability in object detection, achieving 
substantial performance improvements on the KITTI [67] validation and test datasets. In [68], the 
researchers presented a late fusion architecture that leverages Deep Neural Network (DNN) models to 
detect pedestrian detection during night-time conditions by utilizing data inputs from RGB and 
thermal camera images. It involves integrating the outputs, i.e., bounding boxes and detection 
confidence scores, from individual detection models and applying a Non-Maximum Suppression 
(NMS) method [69] to eliminate redundant detections of the same object and refine the final detection 
outputs. As a result, the architecture enhances the precision and reliability of pedestrian detection in 
night-time conditions while ensuring an optimal balance between detection accuracy and low 
response time during real-time inferencing. 

Figure 6 below demonstrates the concept of HLF approach to multi-sensor fusion. It visualizes 
the high-level overview of the HFL processes, where the outputs generated by individual sensor data 
analysis are integrated to achieve enhanced situational awareness and reliable informed decisions in 
dynamic driving scenarios [56,57]. While HLF strategy is advantageous in terms of its computational 
efficiency and modularity, it is not without its challenges and drawbacks. One notable drawback is 
the potential loss of detailed contextual information that is often available in raw or feature-level 
data. HLF may overlook the fine-grained details that are crucial for precise decision-making, 
especially in dynamic and complex driving environments. The omission of these details can result in 
erroneous or suboptimal decisions, which can negatively impact the overall performance and safety 
of the autonomous driving system [59]. Besides, HLF approach relies significantly on the precision 
and reliability of each individual sensor’s interpretation of the surroundings. In other words, any 
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inaccuracies, misclassifications, or failures in the data from a single sensor can propagate through the 
AV system, which can lead to misinterpretation of objects or incorrect assessments of driving 
conditions [48]. 

 

Figure 6. A graphical representation of the conceptual framework of the HLF approach to multi-sensor fusion. 
It visualizes the high-level overview of the HLF processes, emphasizing on the flow of information as data from 
individual sensors undertakes independent analysis before the fusion stage occurs to establish a unified 
informed decision. The depiction shown was adapted and redrawn based on the illustration in [57]. 

From a computational perspective, sensor fusion can also be categorized into: (a) centralized 
fusion, (b) decentralized fusion, and (c) distributed fusion. Each of these categories defines the architecture 
and the specific locus of where the fusion process occurs within the system [70]. In centralized fusion, 
raw data from each individual sensor is transmitted to a central processing unit, where it is integrated 
to produce a cohesive and comprehensive representation of the surroundings. In other words, the 
central processor handles a range of critical tasks in autonomous driving, including data filtering, 
feature extraction, decision-making, and oversees system control functions, to ensure safe and 
efficient autonomous driving. In contrast to centralized fusion, decentralized fusion distributes the 
fusion process across multiple local nodes, where each sensor or subsystem independently processes 
its data and performs local fusion or analysis before transmitting the processed results to a central 
unit or other nodes for further integration. In distributed fusion, the concept of decentralization is 
further extended to allow each sensor or node to share intermediate or partially fusion results across 
the system without relying on a single central processing unit for final decision-making. Table 3 
below highlights the advantages and drawbacks of centralized fusion, decentralized fusion, and 
distributed fusion [70–73]. 

Table 3. An overview of the pros and cons associated with centralized fusion, decentralized fusion, and 
distributed fusion [70–73]. 

 Advantages Disadvantages 

Centralized Fusion 

 Easy to maintain and update 
as all data processing occurs 
in the central processing unit. 

 High processing power. 
 Can leverage advanced 

processing techniques and 
complex algorithms that 
require significant 
computational resources 
without the need for 
synchronization across 
multiple nodes. 

 High computational load 
on the central processor 
and potentially lead to 
latency issues. 

 Single point of failure. 
 Limited scalability as it 

can create bottlenecks in 
both data transmissions 
and processing power as 
the number of sensors 
increases. 
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 Efficient multi-sensor data 
fusion as all data is 
integrated at a single central 
processor. 

 Limited bandwidth 
especially in high-speed 
or resource constrained 
systems. 

Decentralized Fusion 

 Reduces computational 
burden on a single processor 
by distributing processing 
tasks across multiple nodes. 

 Robust to failure of 
individual processing units 
or one node. 

 Improves scalability where 
the system can handle 
additional sensor modalities 
without overloading the 
central processor. 

 Reduces communication 
delays and enable faster 
decision-making by enabling 
parallel data processing. 

 Complex communication 
and synchronization can 
lead to delays or conflicts 
during data fusion. 

 Risk of data inconsistency 
if synchronization is 
handled ineffectively. 

 Data redundancy as 
multiple sensors may 
perform similar 
processing tasks 
independently. 

 Limited computational 
resources on individual 
nodes to process large 
amounts of data 
compared to a central 
processing unit.   

Distributed Fusion 

 Improves robustness and 
fault tolerance as the failure 
of one node or sensor does 
not compromise the entire 
system. 

 Enables faster decision-
making as local processing 
can occur in parallel across 
different nodes. 

 Reduces potential 
bottlenecks and latency. 

 Flexible and adaptive to 
changing environments or 
multi-sensor configurations.  

 Requires effective 
coordination and 
communication protocols 
between distributed nodes 
to ensure seamless 
integration and 
synchronization of data. 

 Increased complexity in 
data management and 
fusion due to the 
distributed nature of the 
system. 

 Computational and 
communication overhead 
in real-time, large scale, 
resource-limited systems. 

In summary, by strategically integrating sensor data at different stages of the multi-sensor 
processing pipeline, these multi-sensor fusion approaches aim to leverage the complementary 
strengths of diverse sensors and the architectural designs of the autonomous driving systems. As 
discussed, multi-sensor fusion can occur at both the abstraction level, i.e., HLF, MLF, and LLF, and 
computational level, i.e., centralized fusion, decentralized fusion, and distributed fusion. On the one 
hand, the sensor fusion approaches at the abstraction level dictate the timing of when data from 
individual sensors are integrated. In other words, it addresses the question of “when should the 
multi-sensor fusion occur?”. On the other hand, the fusion approaches at the computational level 
emphasis on the location of where the fusion process occurs to optimize system performance. In 
essence, it addresses the question of “where should the multi-sensor fusion occur?”. Nonetheless, it 
is vital for readers to learn that sensor fusion can also occur at the competition level, which addresses 
the question of “what should the fusion do?” [70,72,74] (detailed discussion of the fusion approaches 
at the competition level, i.e., competitive fusion, coordinated fusion, and complementary fusion is 
beyond the scope of this manuscript). Ultimately, selecting the most suitable sensor fusion approach 
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depends on the specific use cases and requirements of the AV systems, including scalability, 
computational resources, fault tolerance, and real-time performance. 

2.2. Fusion Techniques and Algorithms 

In AVs, the multi-sensor fusion methods and algorithms serve as the cornerstone for building 
robust and precise systems that enable reliable perception, accurate localization, and efficient 
navigation. It supports the integration of data from various sensor types such as GPS, camera, Lidar, 
and radar sensors, to construct a more comprehensive understanding of the surroundings, thereby, 
enhancing situational awareness in the highly dynamic and complex driving environment. Over the 
years, the sensor fusion techniques and algorithms have been studied significantly and well-
established in the literature [49,57,75–84]. Fusion techniques and algorithms can be classified into: (a) 
traditional approaches and (b) advanced approaches. In traditional approaches, the algorithm utilizes 
well-established mathematical frameworks, such as deterministic rules, probabilistic theories, and 
optimization-based criteria, to combine data from multiple sensors. It offers robust, efficient, and 
interpretable solutions to multi-sensor fusion, specifically in scenarios where the systems require 
transparency in its decision-making processes and has limited computational resources. Nonetheless, 
traditional approaches can pose a challenge in nonlinear, highly dynamic, and unstructured 
environments. Its reliance on predefined models or assumptions about the data distribution may 
result in suboptimal performance when the assumptions are inaccurate or violated [76]. 

Conversely, algorithms in advanced approaches leverage complex DL techniques to process, 
analyze, and integrate data from various sensors. It represents a significant shift towards data-driven 
methodologies as it employs a multi-layered structure of algorithms (also known as deep neural 
networks [85,86]) and big data to learn the complex representations, nonlinear relationships, and 
intricate patterns between multiple sensor inputs for multi-sensor fusion. Essentially, these 
algorithms are designed to adapt to complex, high-dimensional, and unstructured data, such as 
camera images, which enables the algorithms to generalize effectively across diverse and dynamic 
real-world driving environments. As a result, the algorithms provide enhanced perception and 
navigation capabilities, ensuring reliable performance in challenging and dynamic driving 
conditions. Nevertheless, as algorithms in advanced approaches continue to advance, their lack of 
interpretability presents significant challenges in ensuring safety, trust, transparency in its decision-
making processes, and accountability, particularly in critical applications such as AV. Besides, DL 
techniques are computational complex due to its intricate underlying architecture, which can lead to 
increased latency and resource consumption [11,76,87]. 

Figures 7 and 8 below demonstrate the traditional and advanced approaches, respectively, 
highlighting examples of techniques and algorithms that are commonly used in AV systems for tasks 
such as object detection, localization, and navigation. Figure 7 exemplifies the traditional fusion 
algorithms, which include well-established techniques that rely on mathematical models, statistical 
approaches, knowledge-based theory, and probabilistic frameworks. These techniques are often 
adopted in scenarios where the dynamics of a system are well understood, and the noise 
characteristics are predictable [76]. In [88], the scholar utilized the Unscented Kalman Filter (UKF) 
algorithm, an adaptation of the Kalman Filter (KF) algorithm for nonlinear state estimation [89], to 
incorporate GNSS absolute positioning values and real-time IMU input data. It addresses the 
potential drift inherent in IMU data during sensor fusion processes, ensuring accurate and reliable 
estimates of the vehicle’s position and orientation and ultimately improving the robustness and 
precision of the navigation system in AVs. Figure 8 depicts the advanced fusion algorithms, which 
leverage modern DL approaches such as Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Restricted Boltzmann Machine (RBM), Transformers, Reinforcement Learning 
(RL), and Autoencoders [57,75,90–99]. These techniques are effective in processing complex, high-
dimensional input data and are designed to adapt to the dynamic and unpredictable characteristics 
of real-time driving environments. For example, the scholar in [100] contributed to a novel multi-
object tracking system that utilizes three trained Long Short Term Memory (LSTM) models to perform 
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data association, tracking updates, and object position estimation. LSTM model is an RNN-based 
technique that is designed to capture long-term dependencies in sequential data, which is ideal for 
tasks like time-series prediction of an object trajectory or vehicle motion prediction [101]. 

 

Figure 7. A graphical summary of the traditional fusion methodologies and their associated techniques and 
algorithms. It highlights the various algorithms used within different paradigms such as probabilistic method, 
statistical method, knowledge-based method, evidence reasoning method, and interval analysis method. The 
diagram shown was redrawn based on the illustration in [76]. 
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Figure 8. A graphical overview of the advanced fusion methodologies and their associated techniques and 
algorithms. It emphasizes the various DL algorithms applied within different paradigms for perception, 
localization, and mapping systems in AV application. The figure shown was redrawn and adapted based on the 
depiction in [57,75,76,90–99] to include state-of-the-art algorithms and the algorithms highlighted in “blue” 
represent those specifically utilized for perception tasks involving 3D point clouds. 

In complex applications like autonomous driving systems, traditional and advanced fusion 
algorithms are commonly utilized in tandem to leverage the strengths of each approach, also known 
as the hybrid approach [102,103]. This synergistic integration is critical for achieving optimal 
performance in diverse tasks, such as environmental perception and motion trajectory estimation, 
where the robustness and efficiency of traditional methods complement the adaptability and learning 
capabilities of advanced DL algorithms. In [104], the authors proposed a hybrid approach to develop 
a parameter-free state estimation framework for GPS-based maneuvering-target tracking and 
localization in AV applications. It features a parameter learning module that integrates a transformer 
encoder architecture with an LSTM network to effectively capture the motion characteristics of the 
system from offline state measurement data. In addition, the framework incorporates the Expectation-
Maximization (EM) algorithm, which is a well-established statistical approach for parameter 
estimation in probabilistic models [105]. The EM algorithm estimates the measurement and dynamic 
characteristics of moving targets in real-time and refines the system parameters based on the outputs 
of the learning module. Lastly, a KF algorithm is used to deliver precise statement estimations, 
thereby enhancing the accuracy of trajectory tracking predictions. This synergistic integration of 
traditional algorithms and advanced learning techniques provides a robust solution to estimate state 
and track trajectory of maneuvering-targets in real time. Hence, it effectively mitigates the impact of 
sensor noise e.g., Doppler shift, occlusion, and flicker, and eliminates the need to explicitly model the 
complex dynamics and measurement characteristics of the system. 

In [106], the authors introduced YOLO-ACN, a novel and efficient detection framework 
specifically developed to improve detection precision and overcome the challenges of detecting small 
targets and occluded objects within complex environments. It includes a lightweight feature 
extraction network with an attention mechanism, built upon the architecture of the You Only Look 
Once (YOLO) neural network, particularly YOLOv3 [107], to improve focus on small target detection. 
YOLO is a single-stage detector that simultaneously predicts multiple bounding boxes (detected 
objects) and class probabilities on an image in real-time [108]. In addition, the network features a 
modified variant of the NMS classical algorithm, referred to as Soft-NMS, within its post-processing 
phase to eliminate redundant bounding boxes while reducing the likelihood of discarding occluded 
objects, especially in densely populated environments. Unlike traditional NMS, which eliminates 
overlapping bounding boxes that exceed the predefined IoU threshold, Soft-NMS retains overlapping 
boxes with adjusted confidence scores; thereby, improving detection performance in complex 
scenarios [109,110]. As a result, this synergistic integration has significantly enhanced detection 
performance and robustness, particularly in recognizing small targets and occluded objects within 
complex environments, such as urban areas with high pedestrian density. 

Ultimately, the selection of the most suitable techniques for the hybrid approach depends on the 
specific requirements and use cases of the intended application. In complex and dynamic scenarios, 
leveraging a combination of traditional and advanced algorithms has become a preferred strategy to 
capitalize on their complementary strengths. This combination not only enhances overall 
performance but also improves the precision and reliability of the system, ensuring that it is 
optimized to address the distinct challenges associated with each driving task. Table 4 below 
provides an overview of the advantages and weaknesses of both traditional and advanced learning 
algorithms utilized in multi-sensor fusion systems for AV applications, such as the UKF, Particle Filter 
(PF), YOLO, Dempster-Shafe Theory (DST), PointNet, and Faster R-CNN [11,76,111–129]. Besides, this 
table focuses on their applications to dynamic driving tasks, such as object detection, tracking, and 
localization and mapping, which are essential for the safe and efficient operation of autonomous 
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driving in complex and dynamic driving settings. For a comprehensive discussion of traditional and 
advanced learning methods for object detection in 3D point cloud data (out of scope in this 
manuscript), readers are recommended to refer to [57,94,97,130–136]. 

Table 4. An overview of the advantages and limitations of traditional and advanced learning algorithms 
employed in multi-sensor fusion systems for AV applications, such as the Unscented Kalman Filter (UKF) 
algorithm, Particle Filter (PF) algorithm, Dempster-Shafe Theory (DST), YOLO convolutional neural network 
(CNN), PointNet, and Faster R-CNN. 

Algorithms Descriptions Applications Ref. 
UKF UKF is an advanced adaptation of the KF 

algorithm, specifically developed to address 
nonlinearities in state estimation with greater 
efficiency and accuracy. Its strengths and 
limitations include: 

 Improved accuracy in nonlinear 
systems. 

 Less susceptible to divergence in 
scenarios where linear 
approximations might fail. 

 High computational overhead in 
high-dimensional systems. 

 Sensitive to noise modelling. 
 Requires careful initialization of 

parameters for optimal performance. 
 Requires prior knowledge of systems 

model and data.  

 Simultaneous 
Localization and 
Mapping (SLAM). 

 Object tracking. 

[111] 
[112] 
[115] 

Particle Filter  
(PF) 

PF is a recursive algorithm that is utilized to 
estimate the state of a system by using a set of 
random samples (particles) to represent the 
probability distribution, making it ideal for 
nonlinear and non-Gaussian problems. Its 
strengths and limitations include: 

 Highly effective for systems with 
nonlinear dynamics and non-
Gaussian noise. 

 Scalable for real-time applications 
with optimization. 

 Flexible and can integrate data from 
multiple sensor modalities. 

 Prone to particle degeneracy. 
 Sensitive to initial particle 

distribution, and improper 
initialization can lead to inaccurate 
estimates. 

 High computational cost. 

 Object tracking. 
 Trajectory prediction. 
 Localization. 

[116] 
[117] 
[119] 

Dempster-Shafer 
Theory (DST) 

DST is a mathematical framework for 
modeling uncertainties in real-world 
problems and combining evidence from 
different sources to make decisions, even if 
that evidence is uncertain or incomplete, to 
form a belief about a hypothesis. Its strengths 
and limitations include: 

 Object fusion 
detection. 

 Tracking dynamic 
objects. 

 Classification. 
 Decision-making in 

complex 
environments. 

[113] 
[120] 
[121] 
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 Does not require pre-defined 
probabilities. 

 Integrates evidence from diverse 
sources with varying reliability. 

 Improves decision-making by 
representing varying levels of belief. 

 Computational expensive in large 
systems. 

 Struggles with conflicting evidence. 
 May produce high uncertainty in 

complex, high-dimensional data. 
YOLO YOLO is a real-time object detection 

algorithm that utilizes a single CNN (single-
stage detector) to predict bounding boxes and 
class probabilities from an image. Several 
versions of YOLO have been established, each 
offering improved precision, with the most 
recent version being YOLOv11 [137]. Its 
strengths and limitations include: 

 Fast and able to handle multi-scale 
object detection in real-time. 

 Offers high precision in object 
localization and classification. 

 Does not require manual feature 
extraction. 

 Less accurate than other methods due 
to coarse bounding boxes. 

 High computational cost especially in 
high-resolution images. 

 Poor detection of occluded objects 
and small targets. 

 Real time object 
detection. 

 Traffic sign 
recognition. 

[11] 
[108] 
[114] 
[122] 

Faster R-CNN Faster Region-Convolutional Neural Network 
(Faster R-CNN) is a two-stage object detection 
algorithm that utilizes a Region Proposal 
Network (RPN) and a CNN to detect and 
localize objects in complex real-world images. 
Its strengths and limitations include: 

 High detection precision. 
 Performs well in cluttered or 

occluded environments. 
 Combines region proposal and object 

classification in a unified framework 
(end-to-end training). 

 Requires significant computational 
resources for training and inference. 

 Degraded performance when 
detecting small objects in dense 
environments. 

 Slow inference time, which can be 
challenging for real-time applications. 

 Real time object 
detection. 

[76] 
[114] 
[123] 
[124] 
[125] 

PointNet PointNet is a two-stage detector that 
introduces a permutation-variant deep neural 
network to learn global features from 

 3D object detection. 
 Semantic 

segmentation. 

[126] 
[127] 
[128] 
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unordered point clouds using a symmetric 
function, without the need for voxelization. 
Its strengths and limitations include: 

 Handles unordered point cloud data. 
 Can learn directly from raw data 

without feature engineering. 
 Sensitive to noisy or sparse data. 
 Limitations in generalizing to new or 

unseen scene configurations. 
 Lack of fine-grained feature 

extraction but PointNet++ [138] is 
introduced to address this limitation. 

 Localization. 
 Obstacle detection 

and avoidance. 

[129] 

2.3. Challenges in Multi-Sensor Fusion 

In AVs, integrating multiple sensor data, otherwise known as multi-sensor fusion, is a 
cornerstone for implementing precise and robust systems capable of achieving high levels of 
perception, localization, and mapping essential for autonomous operations. By synergistically 
integrating information from complementary sensor modalities, multi-sensor fusion allows AVs to 
construct a comprehensive and dynamic understanding of their environment. In addition, by 
leveraging unique strengths of various sensors and traditional and advanced fusion algorithms, 
multi-sensor fusion significantly enhances the capability of AVs to detect obstacles, interpret traffic 
patterns, and navigate effectively through complex and unpredictable driving environment. 
Nonetheless, while multi-sensor fusion has revolutionized the capability of AVs to interact effectively 
with their surroundings, it also introduces several critical technical, operational, and interpretability 
challenges that need to be addressed for the successful deployment of reliable, safe, scalable, and 
interpretable (transparent) autonomous systems in real-world applications. 

One of the primary challenges is sensor noise, which refers to inaccuracies, inconsistencies, or 
irrelevant data introduced by individual sensors due to a combination of external interference, 
hardware limitations, and environmental conditions, such as rain, snow, or dense fog. In [139], the 
authors presented a comprehensive overview of the challenges associated with radar technologies in 
autonomous driving systems. A major issue identified is the occurrence of spurious observations, 
also known as clutter, which arises due to multiple reflections off surfaces in the surroundings, a 
phenomenon commonly known as multipath. In some cases, such clutter can be difficult to 
distinguish from real detections, leading to false positive detections in learned radar-based detection 
models. This, in turn, can significantly undermine the overall system performance and the ability to 
make precise, reliable, and trustworthy decisions. In our previous exploratory research [11] (Figure 
4), we observed multiple instances of false-positive and inconsistent detections within the off-road 
testing environment, which includes metal objects with corrugated surfaces, traffic cones, and 
guardrails. These issues were caused by multipath propagation, which distorts sensor signals and 
leads to inaccurate and unreliable detections in complex environments [140]. A study in [141] showed 
that Lidar sensors can generate false-positive detections in rainy weather due to reflections from 
raindrops, and wet surfaces may cause laser beams to scatter, resulting in artifacts such as mirrored 
objects appearing below the actual ground surface. Therefore, these factors can undermine the 
accuracy and reliability of the sensor outputs, posing significant challenges for ensuring reliability 
and precision of autonomous driving operations. 

In addition, the heterogeneity of sensor modalities and the ensuing system complexity represent 
another major challenge in multi-sensor fusion. AVs are generally equipped with a diverse set of 
sensor types, including cameras, Lidar, radar, ultrasonic sensor, and GPS, each with distinct 
operational attributes that contribute to their strengths and weaknesses. For example, radar is 
resilient in poor weather but offers lower spatial resolution; Lidar offers high-resolution depth 
information but is computationally intensive; and cameras capture rich visual detail but are sensitive 
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to lighting and weather conditions. Nonetheless, integrating these diverse sensor types introduces 
significant complexity in algorithmic design and computational processing. It requires sophisticated 
and innovative fusion algorithms that can handle differences in sensor data format, resolution, and 
spatial-temporal synchronization [11] while maintaining the overall AV system performance and 
reliability. Moreover, the complexity of the fusion systems escalates as additional sensors are 
incorporated to enhance the robustness of perception and support real-time decision-making. It 
results in the generation of big data, imposing significant demands on computational resources and 
necessitating innovative real-time processing capabilities to maintain timely and accurate responses. 
Furthermore, it also intensifies the difficulties associated with testing and validation as rigorous 
evaluations across varying driving scenarios and environmental conditions are essential to minimize 
failure risks and ensure dependable and safe operation in real-world contexts [142,143]. 

In AVs, the volume of data generated by multi-sensor fusion systems is significantly extensive, 
highlighting the complexity and sophistication of sensor suite employed to perceive and navigate the 
environment. The continuous operation of these sensors generates high-dimensional, multi-modal 
data streams, with throughput often reaching multiple gigabytes per second or even terabytes per 
hour, depending on system configuration (how many sensors are integrated into the system), sensor 
resolution, refresh rates, and operating conditions [144,145]. This immense data volume is essential 
for robust perception, localization, and decision-making, but it introduces significant challenges in 
implementing low-latency data processing pipelines and optimizing the utilization of computational 
resources. In the event of delays or latency within the data processing pipeline, the AV may fail to 
respond to dynamic changes in its surroundings, such as unforeseen objects or pedestrians entering 
the roadway [146]. Besides, the limitations of computational resources in embedded systems that are 
often utilized in AVs require deliberate trade-offs between accuracy and computational efficiency, 
needing the optimization of complex fusion algorithms to operate within hardware constraints. 
Moreover, safety-critical autonomous systems require multi-sensor output verification and cross-
validation to address the potential risks of sensor noise, malfunction, or environmental interference; 
hence, posing significant challenges in its computational load [147]. As a result, addressing these 
challenges necessitates innovative approaches, such as leveraging parallel processing, hardware 
accelerators, e.g., Graphics Processing Units (GPUs) or Tensor Processing Units (TPUs), and 
optimized fusion frameworks [148–150]. 

In addition, multi-sensor fusion systems in AVs are susceptible to malicious attacks, which pose 
significant risks to the integrity and reliability of their autonomous operation. AVs rely on seamless 
integration of multiple sensor modalities, but are vulnerable to different forms of adversarial 
interference, such as spoofing, jamming, and signal manipulation. For example, attackers may 
broadcast incorrect yet plausible GPS signals to mislead the AV about its true location and leading to 
navigation inaccuracies [151]. Similarly, adversaries exploit the vulnerabilities of deep neural 
networks and introduce subtle perturbations to images that are often imperceptible to the human 
eye, otherwise known as adversarial images. It causes the trained model to produce erroneous 
predictions or classifications [152]. Moreover, attackers may target the underlying software or 
communication infrastructure of the multi-sensor fusion system through cyberattacks to overload the 
system, disrupt data transmission, or manipulate sensor inputs. Thus, these attacks compromise the 
robustness and reliability of decision-making processes and endanger its overall safety during 
autonomous operations [153]. In recent years, the Zero Trust framework has emerged as a key 
approach in the design and implementation of multi-sensor fusion systems in AVs. It challenges the 
traditional assumption of inherent trust within the ecosystem and operates under the core principle 
that no component or node in the autonomous system should be automatically trusted [154,155]. For 
a comprehensive exploration of the different attack models and their associated defense strategies 
(out of scope in this manuscript), readers are encouraged to refer to the research established in [152–
154,156–161]. 

In complex fusion algorithms, the lack of interpretability and explainability presents significant 
challenges in ensuring transparency and accountability in autonomous operations. One crucial aspect 
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of this challenge is the necessity to provide clear and comprehensible explanations to stakeholders 
regarding the decisions and actions made by the autonomous system. For example, end-users often 
require comprehensible explanations to foster trust and confidence in the reliability of autonomous 
driving technologies, particularly in safety-critical applications such as AVs. Similarly, regulatory 
authorities seek comprehensive insights into the decision-making processes to evaluate compliance 
with well-established safety protocols, legal standards, and ethical guidelines [162]. Additionally, the 
necessity for explainability is critical for fostering user acceptance of autonomous driving 
technologies. A lack of clarity in explaining the rationale behind specific actions taken by autonomous 
systems, especially in situations involving errors or unanticipated outcomes, can significantly 
undermine user trust and hinder the acceptance of autonomous driving technologies [163–165]. 
Consequently, overcoming these challenges necessitates a focused effort to design and implement 
multi-sensor fusion methods and models that strike a balance between complexity and transparency 
by leveraging XAI techniques to provide valuable insights into how inputs from various sensors are 
processed and integrated. By enhancing the transparency of decision-making processes, developers 
can facilitate regulatory approval, enhance confidence and trust among stakeholders, and ensure that 
autonomous driving systems are reliable and accountable in real-world applications. 

3. Explainable Artificial Intelligence (XAI) 

XAI, or Explainable Artificial Intelligence, is a specialized domain within the broader discipline 
of AI that focuses on designing and developing techniques and models that are interpretable and 
comprehensible to all stakeholders. These stakeholders include, but are not limited to, (a) researchers 
and academics aiming to advance the field through theoretical and applied insights; (b) developers and 
engineers responsible for developing and maintaining autonomous systems; (c) end-users and 
consumers who interact with autonomous systems; (d) regulators and policymakers to ensure 
compliance with established standards and safety requirements; and (e) business leaders and industry 
professionals focused on utilizing AI to drive commercial and operational success [166–168]. XAI is 
vital in enhancing transparency, trust, accountability, and safety, especially in safety-critical 
applications such as autonomous driving. It emphasizes five core principles that serve as 
foundational pillars, ensuring that such systems conform to transparency, accountability, and user 
trust standards while achieving their intended functionalities. XAI principles include interpretability, 
explainability, justifiability, traceability, and transparency, as exemplified in Figure 9 below 
[169,170]. It is important for readers to learn that additional XAI principles can encompass fairness, 
robustness, satisfaction, stability, and responsibility [171] (comprehensive exploration of these 
principles is beyond the scope of this manuscript). 
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Figure 9. A visual depiction illustrating the five core principles of XAI: interpretability, explainability, 
justifiability, traceability, and transparency [169,170]. The diagram shown was generated using Napkin AI – an 
editing platform that transforms text into visual content [172]. 

 Interpretability. It is defined as the ability to explain or to provide clear and comprehensible 
explanations of the actions and decisions made by the autonomous driving system to relevant 
stakeholders. It is often deliberated that interpretable systems are more suitable for safety-critical 
applications, as such systems provide a clear and observable chain of casualties that explains the 
decision-making processes [173]. 

 Explainability. It is associated with the concept of explanation as a means of providing an 
interface between humans and a decision-making system that is both an accurate representation 
of the decision-making process and comprehensive to stakeholders [174]. In essence, explainable 
systems can provide a clear and detailed account of how and why the decision was made. 

 Justifiability. It signifies the capability of an artificial intelligence (AI) system to provide logical, 
ethical, and contextually appropriate reasons for its decisions (outcome) and ensuring alignment 
with ethical guidelines, user trusts, and accountability [175]. In essence, justifiability ensures that 
the AI decision made are justifiable and reasonable based on the given data and context. Several 
approaches can be used to achieve justifiability, including utilizing interpretable models, 
incorporating post-hoc explanation tools, and involving human experts to review and validate 
AI decisions [175]. 

 Traceability. It refers to the systematic tracking and documentation of the entire decision-
making process of an AI system, ensuring that each action or outcome is traceable to its 
corresponding inputs, processing steps, reasoning, and outcomes. As a result, any anomalies or 
errors can be precisely identified and addressed, which is particularly essential in critical 
situations such as collisions or near-miss events. 

 Transparency. It involves designing and developing an AI system where the underlying logic, 
rules, and algorithms governing the decision-making process can be scrutinized and 
comprehended by all stakeholders. It also involves open and clear communication with 
stakeholders about the decision-making criteria, functions, capabilities, and limitations of an AI 
system, e.g., autonomous driving system. 
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The rapid evolution of ML and DL techniques and algorithms has driven substantial 
advancements in cutting-edge autonomous applications, such as self-driving vehicles and humanoid 
robots [176,177]. These advancements underscore the transformative potential of ML and DL 
technologies in creating systems capable of performing highly sophisticated tasks, such as 
autonomous driving, with unparalleled precision and efficiency. However, the growing complexity 
and sophistication of the underlying algorithms pose significant challenges in ensuring transparency 
and interpretability within complex autonomous systems. In other words, the internal mechanisms 
of modern ML and DL models, particularly large-scale neural networks, or DNNs, and ensemble 
methods, are characterized by their opaque nature. Its underlying structure, i.e., multiple hidden 
layers and extensive parameterization, depicted in Figure 10 below [178], reflect the difficulties 
stakeholders encounter in comprehending the internal workings and decision-making processes of 
these models, resulting in their classification as black-box models or systems [179]. Besides, the black-
box nature of DNN models introduces additional risks, including the potential propagation of biases 
and the complexities in diagnosing errors or unintended outcomes. In DNN models, the propagation 
of biases refers to the amplification or continuation of pre-existing biases embedded in the training 
data or unintentionally introduced during the design and implementation phases of the DNN 
models. This issue often arises from imbalances in training datasets, e.g., underrepresentation of 
specific scenarios, demographic groups, or weather conditions, as well as from implicit assumptions 
and inconsistencies in labeling practices and feature selection [180]. For example, underlying biases 
in perception algorithms to detect objects and interpret road signs may lead to disastrous outcomes. 
As a result, developers use post-hoc analysis techniques to elucidate the decision-making processes 
of black-box models. However, such methods can be resource intensive, time consuming, and may 
not always yield definitive explanations, especially when the sources of biases are deeply embedded 
in complex data or algorithmic structures [171,181–184]. 

 

Figure 10. A visual representation of a Deep Neural Network (DNN) model. It shows the underlying architecture 
of a DNN model, which encompasses an input layer, multiple hidden layers, extensive parameterization, non-
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linear activation functions, an output layer, et cetera. The illustration shown is generated using the open-source 
NN-SVG visualization tool [178]. 

In contrast to the black-box model, which operates an opaque system with decision-making 
processes that are difficult to understand, the white-box model provides enhanced transparency and 
offers greater insight into its internal mechanisms. It emphasizes utilizing simple and self-
explanatory methods, where the decision-making processes are comprehensible and transparent to 
human stakeholders. A white-box model is designed with simpler underlying structure and often 
adopts linear or rule-based traditional algorithms such as, Decision Trees, K-Nearest Neighbors 
(KNN), Linear Regression, et cetera, which explicitly outline the relationship between inputs and 
outputs. In linear models, the predicted result can be mathematically expressed as a weighted sum 
of all its feature inputs, where each feature contributes to the final decision based on its assigned 
weight [167]. As a result, the white-box model allows a clear and direct understanding and 
explanation of the decision-making processes. In autonomous driving vehicles, the decision made to 
decelerate in response to pedestrians crossing the road can be traced and explained through a white-
box model. It would generate an audit trail that outlines the rationale behind the action, including 
factors such as the detection of the pedestrian’s location, vehicle’s proximity to the pedestrian, and 
the calculated necessity to decelerate to avoid a potential collision [185]. However, the simplicity and 
interpretability of white-box models may struggle to attain the same level of predictive accuracy 
required for handling complex and dynamic real-world autonomous driving tasks, such as object 
detection. In addition, white-box models are often limited in their ability to effectively handle 
intricate and unseen scenarios, such as identifying subtle road hazards or reacting to unpredictable 
driver behavior [167,170,186]. 

In [169] (Figure 3), the authors presented a comprehensive discussion of the various levels of 
transparency that represent distinct aspects of interpretability and understanding in ML models. It 
consists of three distinct levels of transparency: (a) simulatability, (b) decomposability, and (c) algorithmic 
transparency, which serve as quintessence frameworks for understanding how the internal 
mechanisms of ML models can be made explainable and accessible to human stakeholders. Within 
transparency: 

 Simulatability denotes the ability to simulate the behavior of an ML model through interactive 
experimentation or human understanding. It enables users to replicate or anticipate the 
decisions made without necessitating in-depth technical knowledge of its underlying 
mechanisms or internal architecture. In this aspect, a model is considered simulatable if it can be 
effectively presented to stakeholders utilizing text, visualizations, or other accessible 
representations. Furthermore, a simulatable model enables users to reasonably anticipate its 
outputs based on a given set of inputs, fostering a more intuitive grasp of its decision-making 
processes [187]. 

 Decomposability refers to the ability to disaggregate an ML model into smaller and 
interpretable components, such as inputs, parameters, and computations. In essence, 
decomposability signifies the capability to explain the functioning of a model by examining its 
constituent elements, providing clarity about how specific inputs influence the outputs, how 
parameters are optimized, and how intermediate calculations are carried out to reach a final 
decision. For example, decomposability enables engineers to isolate and explain the contribution 
of individual subcomponents in autonomous driving, including object detection, trajectory 
planning, and control systems, which is critical for technical debugging, model refinement, and 
ensuring compliance with legal and ethical standards. However, in practice, achieving 
decomposability in intricate ML models, such as DNNs, can be challenging due to their non-
linear relationships and the distributed nature of their data representations [169,188]. 

 Algorithmic transparency, as the name suggests, pertains to the extent to which the internal 
workings and decision-making processes of an algorithm can be clearly understood, elucidated, 
and scrutinized. In essence, it emphasizes the visibility of how an algorithm operates, from its 
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initial design through to its decision outputs. In practical terms, algorithmic transparency 
ensures that the reasoning behind the algorithm decisions can be traced back to its underlying 
mathematical or computational principles, which are indispensable in identifying and rectifying 
potential biases, addressing embedded biases, and uncovering unintended behaviors that could 
compromise the precision and integrity of an ML system. In autonomous driving, 
understanding the decision-making processes of algorithms, such as how a vehicle decides when 
to stop or how it identifies and avoids obstacles, is vital in ensuring safety and adherence to 
regulatory standards. However, the main limitation of algorithmically transparent models is 
that these models must be fully accessible for analysis using mathematical methods, which is 
challenging for deep architectures due to the opaque nature of their loss landscapes (multiple 
interconnected hidden layers) [169,189–192]. 

The advancement of AI models (ML and DL models) has significantly amplified the need for 
explainability and interpretability, particularly in safety-critical domains such as autonomous 
driving. In these domains, it is imperative for AI systems to not only demonstrate high predictive 
accuracy but also deliver transparent and comprehensible explanations for their decisions to ensure 
safety, reliability, and adherence to regulatory and ethical guidelines. In XAI, the distinctions 
between black-box and white-box models underscores a fundamental trade-off in AI models 
development, i.e., achieving an optimal balance between interpretability and predictive performance. 
As discussed, black-box models are known for their ability to process complex scenarios with high 
accuracy but often lack transparency in understanding the underlying processes behind their 
decision-making. In contrast, white-box models emphasize interpretability and explainability, 
offering clear and understandable decision-making processes, but may face limitations in managing 
complex tasks. 

However, both paradigms play a pivotal role in addressing the interpretability challenges 
inherent in cutting-edge, sophisticated AI models, significantly contributing to enhanced 
accountability and transparency in ML and DL technologies. Besides, both paradigms are 
instrumental in fostering trust among human stakeholders, which is critical in ensuring the 
responsible and ethical implementation of autonomous systems within real-world environments. 
Therefore, addressing interpretability and explainability challenges in autonomous systems has 
become a primary focus within XAI research, which seeks to develop tools and techniques that can 
elucidate the decision-making processes of opaque systems and provide human stakeholders with 
actionable insights into their operations. 

3.1. XAI Strategies and Techniques 

XAI is an emerging field of research that aims to provide clear, comprehensible, and human-
centered explanations for the decisions generated by AI systems. Recent research has investigated 
several strategies and methodologies designed to elucidate the decision-making processes of intricate 
and opaque black-box models. XAI methods can be categorized into three main categories: (a) 
explanation level, (b) implementation level, and (c) model dependency [193]. Such categories offer a 
systematic framework for understanding the diverse approaches designed to enhance the 
interpretability and explainability of sophisticated ML and DL systems, especially in contexts where 
transparency is imperative. It enables researchers and practitioners to select appropriate methods or 
strategies tailored to specific applications and requirements. 

Explanation level refers to the scope and depth of insights delivered, addressing either the 
overarching behavior of the model or the rationale behind specific individual instances. This concept 
is subdivided into (a) global explanations and (b) local explanations. In global explanations, the emphasis 
is on providing a detailed overview of the model’s decision-making processes (at macro-level). In 
essence, this approach delivers a holistic understanding of the model’s behavior and how it operates 
across different inputs and conditions. In turn, it enhances the interpretability of the model, offering 
insights into its underlying operational structure and the factors that influence its overall 
performance during the decision-making processes [193]. Generalized Additive Model (GAM) are 
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among the XAI methodologies that provide insights into a model’s decision-making process at a 
global level [194]. GAM is a statistical modeling method designed to capture and analyze non-linear 
relationships between dependent and independent variables utilizing smooth functions to model the 
effects of each predictor [195]. For instance, the research shown in [196] utilized the GAM method to 
examine the relationships between kinematic variables of vehicles, such as position, velocity, and 
acceleration, during overtaking maneuvers. In contrast, local explanations aim to elucidate the 
rationale underlying specific predictions made by the model for individual instances. It is particularly 
valuable in situations where understanding individual predictions is important, such as analyzing 
specific driving scenarios in AVs. Therefore, this approach fosters trust in high-stakes autonomous 
systems, ensuring safety and accountability [162,193]. Grad-CAM or Gradient-weighted Class 
Activation Mapping is one of the prominent XAI techniques designed to interpret the decision-
making process of AI models at a local level. It is often adopted to visualize and elucidate localized 
decisions made by CNN-based models, particularly in image recognition and classification tasks 
[197]. For instance, [199] adopted the Grad-CAM technique to analyze DL detection models by 
generating heatmaps that visually explain the road semantic segmentation outputs, thereby 
providing a comprehensive understanding of the relevance of their outcomes. Nevertheless, Grad-
CAM may generate heatmaps that highlight regions unrelated to the detected objects in detection 
tasks, as its approach prioritizes feature importance without accounting for spatial sensitivity [198]. 

Implementation level refers to the stage at which interpretability and explainability are 
incorporated into AI models, focusing on when and how these aspects are integrated into the design 
and implementation of these models. This concept can be subdivided into (a) ante-hoc explanations 
and (b) post-hoc explanations. Ante-hoc explanation, also known as intrinsic explanation or pre-hoc 
explanation, refers to the interpretability mechanism that is inherently integrated into the design of 
the model during its development phase. Such explanations are designed to embed transparency and 
understandability into the model’s decision-making processes from the outset, ensuring that its 
operation remains explainable and transparent from the initial stage [193,199]. Bayesian Rule Lists 
(BRL) represent a prominent example of an ante-hoc explanations method. It leverages Bayesian 
principles to achieve an optimal balance between simplicity and predictive performance. BRL 
operates by composing probabilistic models that derive decision rules (IF-THEN rules) based on 
observed data, with a focus on selecting rules that jointly maximize the posterior probability of class 
labels. Therefore, BRL ensures that the resulting rule lists remain explainable and grounded in a 
robust statistical framework [183,200]. Figure 11 below depicts an example of how BRL can be used 
to explain the pedestrian crossing detection. In this instance, the model derives IF-THEN rule lists 
based on the input features, such as, vehicle speed, distance to pedestrians, weather conditions, and 
road type, to inform the decision-making process, determining whether the vehicle must stop, 
decelerate, or proceed with caution when detecting a potential pedestrian crossing scenario [11]. 
Contrarily, post-hoc explanations are applied after AI models, such as DNN or ensemble methods, 
have been trained. It aims to provide insights into the decision-making processes by analyzing how 
input features are translated into output decisions in opaque black-box models. Post-hoc explanation 
is critical for applications requiring model transparency, trust, and accountability, specifically when 
the model’s complexity hinders direct interpretation [199]. Local Interpretable Model-Agnostic 
Explanations (LIME) is a well-known post-hoc explanation technique that approximates the decision-
making processes of black-box models by constructing explainable and simplified models within the 
local vicinity of a specific prediction, thereby allowing stakeholders to gain insight into the reasons 
behind a model’s decision for a particular input. For example, [201] demonstrated a trust-aware 
approach for selecting AVs to participate in model training, aiming to ensure system performance 
and reliability. They utilized the LIME method to calculate the trust values and highlight key features 
that influenced the selection of each AV during the model training process. 
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Figure 11. A graphical representation of the Bayesian Rule Lists (BRL) technique in elucidating the decision-
making process for pedestrian crossing detection. The BRL rules shown in the illustration are derived in a 
preliminary manner based on our previous experimental analyses and discussions shown in [11]. Rule 1: If the 
pedestrian is detected within 5 m and the vehicle speed is greater than 30 km/h, then apply brakes immediately. 
Rule 2: Else if the pedestrian is detected within 10 m and the weather is clear, then reduce speed to 10 km/h. 
Rule 3: Else if the pedestrian is detected within 10 m and the weather is foggy or rain, then reduce speed to 5 
km/h. Rule 4: Else if no pedestrian is detected and the road is highway, then maintain current speed. Rule 5: 
Else, proceed with caution. 

Model dependency, as the name implies, pertains to the extent to which an explanation method 
is designed for a particular type of ML or DL model, or whether it possesses the versatility to be 
adopted across various model architectures. This concept can be subdivided into: (a) model-agnostic 
technique and (b) model-specific technique. Model-agnostic techniques are designed to provide 
interpretability independent of the underlying architecture of AI models. Model-agnostic methods 
are extensively utilized owing to their remarkable flexibility and adaptability, which enable them to 
interpret diverse models and use cases. These methods often provide post-hoc explanations and 
operate by examining the inputs and outputs of an AI model without requiring access to its internal 
parameters or structures [193,202]. Shapley Additive Explanations (SHAP) serves as a prominent 
example of model-agnostic explanations method. SHAP provides valuable insights into the 
contribution of individual input features to the output of an AI model. Moreover, it facilitates detailed 
and granular explanations that can either focus on specific individual predictions (local explanations) 
or provide an overall summary of feature importance across multiple predictions (global 
explanations) [203]. For instance, [204] proposed WhONet, a wheel odometry neural network that 
provides continuous positioning information using GNSS data with wheel encoders measurements 
from the vehicle. The SHAP method was adopted to interpret the predictions of vehicle positioning, 
thereby enhancing its reliability and ensuring greater transparency and accountability. Contrarily, 
model-specific techniques are designed to the unique characteristics and architecture of a specific ML 
or DL model. These methods leverage the intrinsic properties or mathematical properties of the 
model to provide detailed explanations of its decision-making processes. In other words, model-
specific explanation methods require modifications to the explanation framework when applied to 
different models [199]. Saliency maps exemplify a model-specific interpretability technique that 
provides pixel-level insights into the significance of input features. This method leverages gradient-
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based information to identify and highlight the regions of an input (image) that most significantly 
influence the decision-making processes of an AI model by assigning a salience score to each pixel or 
region [205]. In other words, a saliency map represents a heatmap that highlights the most visually 
prominent objects or regions within a given scene. It is imperative to learn that certain studies 
consider that saliency maps can be generalized to operate in a model-agnostic manner by altering 
their computation to the model’s input-output behavior rather than its internal gradients [206–208]. 
An illustrative application of saliency maps can be found in [209], where the authors proposed a 
saliency-based object detection algorithm to detect unknown obstacles in autonomous driving 
environments. This approach integrates the saliency map method into the detection algorithm to 
amplify image features, thereby emphasizing both known and unknown objects in the environment. 

Table 5 and 6 below provide a detailed overview of various interpretation techniques that are 
commonly employed in XAI to improve the interpretability and explainability of AI models. Table 5 
categorizes these techniques based on their interpretability level (e.g., local or global), their 
classification within XAI (e.g., model-agnostic, model-specific, ante-hoc, and post-hoc), and the types 
of data they are designed to support. Table 6 presents a comparative analysis, outlining the strengths 
and limitations of each interpretation technique. By consolidating this information, the tables offer 
valuable guidance for researchers and practitioners in identifying the most suitable techniques for 
specific applications. For a more in-depth exploration of additional interpretation methods (out of 
scope in this manuscript), readers are encouraged to refer to [167,171,179,183,184,193,194,199,210–
216]. 

Table 5. An overview of interpretation techniques for XAI. These techniques are categorized based on their 
interpretability level (e.g., local or global), their explainability classification (e.g., ante-hoc, post-hoc, model-
agnostic, and model-specific), and the types of input data (e.g., unstructured data – textual data, structured data 
– tabular, and image) that each technique can handle. The acronyms from top to bottom at the first column are: 
BRL – Bayesian Rule Lists; GAM – Generalized Additive Model; LIME – Local Interpretable Model-Agnostic 
Explanations; SHAP – Shapley Additive Explanation; Grad-CAM – Gradient-weighted Class Activation 
Mapping; DeepLIFT – Deep Learning Important Features; PDP – Partial Dependence Plot. This table has been 
adapted and revised based on [167,171,183,184,193,194,199,210–214,216]. 

Techniques 
Explanation 

Level 
Implementation 

Level 
Model 

Dependency Data Type 

Global Local Ante-hoc Post-hoc Agnostic Specific TabularImageTextual 
Decision Tree    -  -  - - 
Linear Model  -  -  -  - - 
BRL  -  - -   - - 
GAM  -  - -   - - 
LIME -  -   -    
SHAP   -   -    
Saliency Maps * -  -    -  - 
Grad-CAM -  -   - -  - 
Anchors -  -   -    
DeepLIFT   -   - -   
Counterfactuals -  -   -    
Sensitivity 
Analysis *  - -     

- - 

Distillation  - -  -     
PDP   - -  -  - - 
Feature 
Importance   -   -  

  

* Saliency maps and sensitivity analysis can be adapted to function in a model-agnostic manner by modifying 
their computation to focus on the input-output relationships of a model [206–208,214]. 
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Table 6. A comparative analysis of interpretation techniques, highlighting their respective strengths and 
limitations. This table has been revised and adapted based on [167,171,183,184,193,199–201,210–216]. The 
acronyms from top to bottom (first column) are BRL – Bayesian Rule Lists; GAM – Generalized Additive Model; 
LIME – Local Interpretable Model-Agnostic Explanations; SHAP – Shapley Additive Explanations; Grad-CAM 
– Gradient-weighted Class Activation Mappings; DeepLIFT – Deep Learning Important Features; PDP – Partial 
Dependence Plot. 

Techniques Strengths Limitations 
Decision Tree  Easy to understand. 

 Robust to outliers and missing 
values. 

 High interpretability. 
 Able to handle non-linear 

relationships. 

 Lack of stability, where small 
changes in training data can result 
in significant variations. 

 Prone to overfitting. 
 Non-smooth decision boundaries. 
 Not applicable to linear 

relationships. 
Linear Model  Simple and easy to implement. 

 Computationally inexpensive. 
 Generalize well to new datasets with 

linear relationships. 
 Transparent, no hidden layers or 

complex transformations. 

 Not applicable to non-linear 
relationships. 

 Oversimplified explanations may 
not be sufficient for safety-critical 
applications. 

 Coefficients of linear models 
become unstable and unreliable 
when input features are highly 
correlated. 

 Sensitive to outliers. 
BRL  The IF-THEN rules are easy to 

interpret. 
 Incorporation of prior knowledge, 

which can guide the learning process 
and improve model performance. 

 Automatic feature selection. 
 Can handle noisy and incomplete 

data by modeling uncertainty. 

 High computational cost. 
 Difficult to model complex and 

high-dimensional environments. 
 Sensitive to noisy or incomplete 

data. 
 Not feasible for large-scale systems 

due to scalability issues. 

GAM  Flexible – can handle linear and non-
linear relationships in data. 

 No black-box nature. 
 Provides clear and interpretable 

relationships between input features 
and predicted output. 

 Can include regularization 
techniques to control model 
complexity. 

 Computationally intensive in large 
datasets or high-dimensional data. 

 Sensitive to smoothing parameters. 
 Require large sample sizes to 

capture non-linear patterns 
effectively [217]. 

 Risk of overfitting in highly 
complex data. 

LIME  Computationally efficient. 
 Simple and intuitive for local 

interpretation. 
 Flexible, which can be applied to any 

ML models. 
 Works well on tabular, images, and 

text data. 

 Lacks precision in capturing global 
feature importance. 

 Sensitive to perturbations and may 
require hyperparameter tuning 
[218]. 

 Sensitive to small changes in data 
or the neighborhood around the 
instance [219]. 

 Limited to local context. 
SHAP  Versatile – can be applied to various 

ML models [220]. 
 High computational cost. 
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 Provides more accurate explanations 
than LIME. 

 Fair attribution to prevent unbiased 
explanations. 

 Can handle simple and complex 
models. 

 Can be manipulated by adversarial 
attacks [221]. 

 May require approximations in 
large, complex DNN that can 
reduce accuracy. 

 Assume feature independence.  
Saliency Maps  Intuitive visualization. 

 Can be applied during model 
inference. 

 Effective in explaining decisions of 
image-based models, such as CNN. 

 Supports model debugging. 

 Limited to gradient-based models 
 Sensitive to noise. 
 Lack of global interpretability. 
 Requires backpropagation, which 

can be computationally expensive. 
 Can be manipulated by adversarial 

attacks [222]. 
Grad-CAM  Intuitive visual explanations. 

 Localized insights. 
 Robust to adversarial perturbations 

in image classification tasks. 
 Supports model debugging by 

highlighting which areas of the input 
are important for predictions. 

 Lack ability to highlight fine-
grained details. 

 Computationally expensive to 
calculate gradients in deep models. 

 Does not effectively localize objects 
within an image when multiple 
instances of the same class are 
present [223]. 

Anchors  Less computation than SHAP. 
 Better generalizability than LIME 

[224]. 
 Can be applied to any ML models 

regardless of its architecture. 
 High fidelity. 

 Require tuning to provide optimal 
explanations [225]. 

 Requires discretization, highly 
configurable, and impactful setup. 

 Computationally intensive. 

DeepLIFT  Compatible with DNN. 
 Efficient explanation generation. 
 Captures complex interactions 

between features. 
 Scalable. 
 Local and global interpretability. 

 Sensitive to initialization. 
 Depends on a reference point or 

baseline, which might not always 
be appropriate in certain contexts. 

 Produce inconsistent results due to 
redefining gradients. 

 Struggle to offer global 
explanations for more complex and 
ensemble models. 

Counterfactuals  User centric – provides intuitive 
explanations with “what-if” 
scenarios. 

 Does not require access to the data 
or the model. 

 Easy to implement. 
 Provides actionable insights. 

 High computational cost in high-
dimensional models. 

 Ambiguity in interpretation and 
may require expert judgement in 
specific contexts. 

 Potential risk of neglecting 
complex relationships in data. 

 Inability to capture all aspects of 
model behavior, limiting the 
comprehensiveness of the 
explanation. 

Sensitivity 
Analysis 

 Provides intuitive explanations. 
 Provides unique solution, training 

free process, and fast computation 
[226]. 

 Identifies weak and prominent 
features. 

 Limited to global insights. 
 Require explicit modeling of 

complex feature interactions 
 Computationally expensive for 

complex models due to multiple 
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 Applicable to various model types 
without requiring access to internal 
parameters. 

evaluations for each input 
variation. 

 Generates noisy explanation maps  
Distillation  Simplifies complex models. 

 Can be applied across various ML 
models. 

 Does not require the creation of 
additional rules or decision 
pathways. 

 Maintains model’s performance 
while ensuring interpretability. 

 Dependence on the teacher model 
(complex model). 

 Potential loss of fine-grained 
details during compression. 

 Sensitive to hyperparameters. 
 Increase computational cost. 

PDP  Easy to implement. 
 Provides clear and causal 

interpretation. 
 Offers intuitive visualization. 
 Delivers global insights into the 

overall impact of individual features 
on predictions. 

 Assumes no correlation between 
features. 

 High computational cost in large 
datasets. 

 Restricted to marginal effects, 
showing the influence of a 
maximum of three features at once. 

 Potential to overlook 
heterogeneous effects. 

Feature 
Importance 

 Provides clear and intuitive 
explanations. 

 Identifies critical factors influencing 
decision-making [227]. 

 Aids in model debugging by 
detecting potential biases, errors, or 
overfitting through feature analysis. 

 Offers flexibility as a model agnostic 
approach. 

 Overlook complex feature 
interactions may be overlooked 
when decision-making processes 
are overly simplified. 

 Feature importance values are 
context dependent and may vary 
significantly across different data 
distributions or conditions. 

 High computational cost for large 
models. 

 Over-reliance on the assumption of 
feature independence, not suitable 
in scenarios where features are 
correlated [228,229]. 

3.2. Roles of XAI in Autonomous Vehicles and its Challenges 

AVs are inherently complex systems, incorporating advanced and intricate AI algorithms to 
perceive, navigate, and make real-time decisions in dynamic, often unpredictable environments. 
These decisions necessitate careful consideration of numerous factors, including prevailing traffic 
conditions, potential road hazards, and interactions with various road users – pedestrians, cyclists, 
and other vehicles. However, the inherent opacity of sophisticated ML and DL models, often 
described as the black-box nature of AI, poses significant challenges in translating complex decision-
making processes into transparent and understandable explanations, particularly in contexts where 
trustworthiness, safety, reliability, and accountability are imperative. For example, the rationale 
behind the decisions to apply brakes or swerve to avoid obstacles during autonomous driving might 
remain obscure to human stakeholders and may undermine the confidence in its reliability and 
ethical alignment. As a result, the integration of XAI holds paramount importance in addressing these 
challenges, as it directly impacts critical factors that are essential for the successful deployment, 
operation, and societal acceptance of these technologies [170]. 

XAI serves as a critical bridge between advanced AI-driven technologies and human 
understanding, providing explainable insights into the underlying decision-making processes of AI-
driven systems, especially in safety-critical domains such as AVs. One of the primary roles of XAI is 
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to improve transparency, which is a quintessence quality that enables human stakeholders to 
understand and evaluate the rationale behind the decisions made by autonomous driving systems. It 
demystifies the black-box nature of intricate AI algorithms and elucidates how inputs, such as sensor 
data, predetermined rules, and environmental conditions influence the decisions of acceleration, 
braking (deceleration), or navigating through complex traffic scenarios. These explanations are often 
presented using natural language depictions or visualizations, making the decision-making 
processes of autonomous driving systems more accessible and easier to interpret for diverse 
audiences [230]. For instance, an XAI-driven multi-sensor perception system of an AV can interpret 
and elucidate the relative contributions of each sensor in detecting obstacles, such as pedestrians, 
vehicles, or cyclists, while also providing the underlying rationale for specific decisions such as the 
decision to decelerate in response to detected hazards. In addition, the system may also integrate 
visual representations to demonstrate how sensor inputs shaped its decisions, thereby assuring end-
users that the vehicle’s decisions and actions are made based on robust and explainable 
interpretations of its environment. In instances where errors occur, XAI can assist engineers in tracing 
the decisions back to their originating data sources, which aids in diagnosing issues and improving 
detection precision; and ultimately contributes to the improved transparency and interpretability of 
the multi-sensor perception system [215,231–233]. 

However, XAI-driven systems still encounter various technical challenges that complicate their 
implementation and practical usability. Among these, one of the most prominent challenges is the 
inherent complexity of DL models, which serve as the backbone of many autonomous systems. DL 
models, especially DNNs, are integral to processing vast amounts of high-dimensional data and 
making real-time decisions. Nonetheless, their intricate architectures and reliance on sophisticated 
mathematical computations to achieve optimal performance in driving tasks, such as obstacle 
avoidance, path planning, and object detection, make it difficult to trace or elucidate the rationale 
behind a specific output. For example, providing an explanation for why an AV selects a particular 
route or reacts to hazards in a specific manner in real-time often requires advanced interpretability 
techniques, which are essential to achieve the level of explainability demanded in safety-critical 
systems for trust and accountability. Thus, achieving an optimal balance between interpretability and 
model performances remains an ongoing challenge in the development of XAI-driven systems [184]. 
Other technical challenges involve the need to explain real-time decisions in time-sensitive and 
safety-critical situations without introducing significant delays that could compromise the system’s 
performance. For instance, in multi-sensor systems, establishing a unified framework to incorporate 
multimodal data sources and elucidate the contribution of each sensor modality in real-time is a 
significant challenge as these systems scale in size to address various driving conditions. There is also 
the potential computational overhead associated with generating interpretable explanations without 
affecting real-time performances. Moreover, the challenge of establishing a universal explanation 
technique that applies to diverse and dynamic environments remains significant. This includes the 
difficulty of explaining decisions made in edge cases or unprecedented conditions, as well as the need 
to generalize explanations across different driving scenarios, operational contexts, stakeholder 
groups, and modes of transport (on-road versus off-road) [168,170]. 

Transparency, in turn, supports trustworthiness, which is a critical factor in promoting the 
widespread acceptance and successful adoption of AI-driven systems across various domains. In the 
early stages of technological advancement, machines and algorithms were often viewed as epitomes 
of trustworthiness and reliability due to their predictable, as their operations and actions were limited 
to executing predefined tasks that are explicitly programmed, leaving minimal scope for ambiguity 
or error in their decision-making processes. In recent years, the emergence of ML and DL algorithms 
has marked a significant paradigm shift, facilitating the creation of systems capable of autonomous 
reasoning and decision-making. However, this evolution has also introduced an element of 
unpredictability and opacity into the behavior of AI-driven systems, which in turn undermines the 
implicit trust due to the underlying complex and opaque reasoning behind their decisions [234]. From 
end-users’ perspective, the concept of trustworthiness in these systems extends beyond their 
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technical capabilities. It operates as a socio-psychological construct that impacts how individuals, 
communities, and societies perceive, interact with, and ultimately accept emerging technologies, 
specifically in autonomous driving systems [235]. One primary factor that affects trustworthiness 
from a socio-psychological perspective is the fear of the unknown, which stems from the inherent 
complexity and unpredictability of these technologies. This concern is especially significant in safety-
critical applications, where system failure or malfunctions can result in severe and far-reaching 
consequences. Besides, the lack of clear accountability in autonomous systems intensifies the fear of 
the unknown, creating significant uncertainty regarding responsibility in the event of system failures 
or accidents. Thus, the ambiguity surrounding liability and responsibility amplifies public 
apprehension and undermines trust in AI-driven applications [236]. Other socio-psychological 
factors influencing trustworthiness of AI systems include perceived behavioral control, which relates 
to the user’s capabilities to control or intervene the system when necessitated, privacy concerns, and 
perceived usefulness, which refers to the belief that the system will effectively achieve its intended 
purposes [235]. Thus, it is imperative to highlight transparency and explainability as the foundational 
elements of trustworthy AI [237]. 

From a regulatory perspective, the capability to provide explainable insights into AI systems has 
emerged as an imperative requirement across multiple jurisdictions. As AVs and other AI-driven 
systems become increasingly integrated into various aspects of society, regulatory authorities have 
emphasized the critical importance of ensuring transparency and interpretability in their decision-
making processes. Thus, the integration of XAI into such applications is important to complying with 
regulatory mandates and industry standards, as it provides critical mechanisms for comprehending, 
justifying, and validating the decisions and actions made by AI-driven systems. In addition, it plays 
an imperative role in supporting transparent investigations and aiding in the determination of 
liability in the event of an incident [184,238]. In April 2019, the High-Level Expert Group on AI (AI 
HLEG), appointed by the European Commission (EC), presented a human-centric approach for AI 
development, which outlines seven ethical guidelines aimed at supporting the development of AI 
systems that can be considered as trustworthy. Table 7 below outlines the seven ethical guidelines 
that AI systems must adhere to be deemed trustworthy [234,239,240]. Moreover, XAI is essential in 
addressing biases within autonomous systems, specifically in instances where such biases stem from 
unrepresentative training data or flawed algorithmic designs. By enhancing the transparency of the 
AI decision-making processes, XAI enables the identification and analysis of potential sources of bias 
that can lead to inequitable or unfair outcomes. This capability ensures that AI-driven systems 
operate in a fair and unprejudiced manner, thereby preventing the perpetuation of discriminatory 
practices and promoting unbiased decision-making [162,183]. Nonetheless, one of the ethical 
challenges of XAI is that it can be challenging to identify the appropriate level of explanation required 
for different scenarios. Therefore, it is essential to tailor explanations that suit the unique needs and 
expectations of different uses cases, thereby addressing the distinct requirements of various 
stakeholders [241]. Furthermore, the ethical challenges associated with data security and data privacy 
in XAI are significant and multifaceted. It requires an optimal balance between openness and 
confidentiality, certifying that sensitive data is not compromised or exposed to vulnerabilities, while 
simultaneously ensuring that the explanations provided are clear, interpretable, and meaningful 
[234,235]. 

Table 7. An overview of the seven essential criteria outlined in the established ethical guidelines by the High-
Level Expert Group on AI (AI HLEG) that AI systems must follow to be deemed as trustworthy. This table has 
been revised and adapted based on [234,239,240]. 

Criteria Explanations 
Human Agency and Oversight AI systems should enhance human decision-making and 

support fundamental rights while ensuring adequate 
oversight, rather than restricting or misleading human 
autonomy. This can be achieved through human-in-the-
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loop, human-on-the-loop, and human-in-command 
approaches. 

Technical Robustness and Safety AI systems must be resilient, secure, and safe, with 
contingency plans in place to address system failures or 
malfunctions. They must also be accurate, reliable, and 
reproducible to minimize and prevent unintentional harm. 

Privacy and Data Governance In addition to safeguarding privacy and data protection, 
effective data governance mechanisms must be established, 
ensuring data quality, integrity, and authorized access. End-
users should also maintain full control over their personal 
information, ensuring that such data is not used in ways 
that could be detrimental or harmful to their interests. 

Transparency Data, systems, and AI business models must be transparent, 
with traceability mechanisms ensuring accountability. 
Moreover, AI systems and their decisions should be 
explained in a way that is tailored to the relevant 
stakeholders, and it is essential that users are aware that 
they are interacting with AI and are informed of its 
capabilities and limitations. 

Diversity, Non-Discrimination, and 
Fairness 

Unfair bias must be eliminated to prevent negative 
outcomes such as the marginalization of vulnerable groups 
and the reinforcement of prejudice. AI systems should be 
accessible to all, regardless of disability, and involve 
relevant stakeholders throughout their lifecycle to promote 
inclusivity. 

Societal and Environmental Well-Being AI systems must be designed to benefit all humanity, 
including future generations, while prioritizing 
sustainability and environmental responsibility. 
Additionally, their impact on the environment, other living 
being, and society must be thoroughly evaluated and 
considered. 

Accountability Mechanisms must be established to ensure accountability 
for AI systems and their outcomes. Auditability, which 
allows for the evaluation of algorithms, data, and design 
processes, is essential, particularly in critical applications. 
Besides, accessible avenues for compensation should be 
provided. 

4. Conclusions and Future Research Recommendations 

In this manuscript, we investigated and explored the intersection of multi-sensor fusion and 
XAI, aiming on addressing the challenges associated with developing interpretable, trustworthy, and 
accurate AV systems. We began the survey by introducing the various applications of AVs in both 
on-road and off-road environments, and an overview of the commonly employed sensors integral to 
developing multi-sensor perception systems, which support critical functionalities, including object 
detection, obstacle avoidance, and localization and mapping. Subsequently, we presented a 
comprehensive overview of the various multi-sensor fusion strategies, highlighting their respective 
strengths and limitations. It gave valuable insights into the various fusion approaches from three 
primary aspects: (a) when should the sensor fusion occur, (b) where should the sensor fusion occur; 
and (c) what should the fusion do. Ultimately, selecting the most suitable approaches depends on the 
specific use cases, requirements, and available resources on the AVs. Additionally, we reviewed some 
of the cutting-edge multi-sensor fusion techniques and algorithms – traditional and advanced fusion 
algorithms, discussing their respective applications, strengths, and weaknesses. We also emphasized 
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the challenges involved in the deployment of reliable, safe, scalable, transparent, and comprehensible 
multi-sensor perception systems in real-world autonomous driving environments. Some of the key 
challenges are: 

 Sensor noise, which relates to the inaccuracies, inconsistencies, or irrelevant data introduced by 
individual sensors due to a combination of hardware limitations, external interference, or 
environmental conditions. 

 Heterogeneity of sensor modalities in AVs and the resulting system complexity. 
 Achieving an optimal balance between accuracy and computational efficiency. 
 Multi-sensor fusion systems are susceptible to malicious attacks, which pose significant risk to 

the integrity and reliability of their autonomous operation. 
 Lack of transparency, explainability, and interpretability in black-box AI models, especially in 

advanced DNN algorithms. 
Finally, we explored the core principles of XAI and provided a comprehensive overview of the 

several emerging XAI strategies and techniques that can be integrated during autonomous systems 
development to enhance the transparency, trustworthiness, and interpretability of these systems. We 
summarized the strengths and limitations of these approaches, offering valuable guidance for 
researchers and practitioners in identifying and selecting the most suitable strategies and 
methodologies for specific use cases. Moreover, we examined the significance of XAI in AI-driven 
systems, specifically in AVs, as well as the challenges associated with integrating XAI into real-time 
autonomous driving applications or other AI-driven technologies. The findings revealed that the lack 
of interpretability and transparency in advanced AI models, specifically in DNNs, remains a primary 
challenge due to the opaque, black-box nature of their model architectures and the inherent 
complexity of these systems. Eventually, the selection of suitable strategies and methodologies for 
incorporating XAI depends on the specific system requirements, computational resources, and the 
associated limitations, all while striving to attain an optimal balance between explainability and 
system performance. Moreover, several challenges comprise technical, ethical, social, and regulatory 
aspects, remain a main challenge that must be addressed to enable the successful deployment of XAI 
systems into the real-world environments while ensuring that such systems remain efficient, safe, 
transparent, trustworthy, and ethical. 

In summary, the development of methodologies that ensure real-time explainability for 
stakeholders without compromising safety and accuracy is paramount in the successful deployment 
of AVs and other AI-driven systems. It ensures that stakeholders, including end-users, engineers, 
operators, and regulators, can understand the reasoning behind critical decisions while it operates in 
complex and dynamic environments, fostering trust and enabling timely interventions when needed. 
Nonetheless, it is essential to customize the explanations to meet the specific needs and expectations 
of different use cases, thereby addressing the diverse requirements of various stakeholders. In 
autonomous driving, vehicles operate in real-time and must adapt to rapidly changing situations. It 
is imperative to attain an optimal balance between the computational requirements necessitated for 
accurate real-time decision-making and the need for explainability and transparency, without 
introducing delays that could result in potential hazardous outcomes. Hence, it is essential to develop 
efficient and scalable XAI methods that provide clear, comprehensible, and real-time explanations, 
while maintaining operational safety and decision-making accuracy of autonomous systems. Such 
methods are critical for fostering trust and accountability, aiding in error diagnosis, ensuring 
compliance with regulatory requirements, and supporting the ethical and responsible integration and 
deployment of autonomous technologies into real-world environments. 

Future research directions aimed at progressing the integration of XAI into real-time, high-stakes 
AVs or other AI-driven systems encompass a range of innovative and critical domains. Such 
explorations aim to address existing challenges and unlock new opportunities to enhance the safety, 
reliability, interpretability, transparency, and trustworthiness of these systems. A significant area of 
focus for future research involves the development of a unified context-aware evaluation framework 
for comparing and selecting interpretability techniques across multiple domains or, at a minimum, 
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achieving uniformity within specialized areas. It could contribute to the development of best 
practices in XAI, providing valuable, contextual, and adaptive insights that are aligned with specific 
goals, stakeholders, and operational constraints of different domains – cross-disciplinary, human-AI 
collaboration [170]. Over time, this would support the development of more transparent, reliable, 
and user-centric AI systems [184,242,243]. Moreover, it is essential to investigate and develop novel 
XAI approaches that facilitate the provision of accurate and computationally efficient real-time 
explanations, specifically in memory-constrained, real-time industrial systems like autonomous 
driving and healthcare [171]. Another promising direction for future research involves integrating 
causal relationships into XAI, with the objective of enhancing the capability of AI systems to offer 
more comprehensive explanations for their decisions. This approach aims to elucidate the underlying 
causal factors that impact the outcomes, thereby enabling a transparent understanding of the cause-
and-effect dynamics involved in the decision-making process [171,216,244,245]. 

Besides, it is important to investigate and refine cutting-edge multi-sensor fusion algorithms 
capable of processing and interpreting large-scale sensor data in real time. Such advancements are 
vital to ensuring the accuracy and reliability of autonomous systems in dynamic environments, while 
simultaneously providing clear and interpretable explanations of the underlying decision-making 
process. From an ethical and regulatory perspective, future research should prioritize the 
development of methodologies aimed at incorporating fairness, non-discrimination, and privacy 
protections into AI systems. Simultaneously, it is vital to ensure that these systems comply with 
emerging ethical and regulatory standards, thereby fostering trust and accountability within AI 
technology [171,246]. Other future research avenues may involve incorporating large language 
models (LLMs) to aid in the generation of clear, contextually relevant, and user-friendly explanations 
for various stakeholders, including passengers, regulators, and legal professionals [247,248]. 
Moreover, investigating the different methodologies for preventing adversarial attacks is vital in 
ensuring the security and integrity of AI systems, specifically in safety-critical applications 
[240,249,250]. Finally, improving the knowledge and skills of practitioners and researchers in XAI 
through continuous education and training will significantly contribute to the advancement of 
interpretability research and its practical applications. It is also important to develop accessible and 
effective educational frameworks aimed at fostering public understanding of AI systems, their 
capabilities and limitations, as well as their decision-making processes [184,235]. We hope that these 
research avenues will facilitate the development of AI models that are reliable, trustworthy, 
interpretable, and safe, thereby advancing the field of XAI and enhancing transparency and 
interpretability in AVs. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
3D   Three Dimensional 
AI   Artificial Intelligence 
AI HLEG  High-Level Expert Group on AI 
AV   Autonomous Vehicles 
BEV   Bird’s-Eye View 
BRL   Bayesian Rule Lists 
CNN   Convolutional Neural Networks 
DeepLIFT  Deep Learning Important Features 
DL   Deep Learning 
DNN   Deep Neural Network 
DST   Dempster-Shafer Theory 
EC   European Commission 
EM   Expectation-Maximization 
Faster R-CNN Faster Region-Convolutional Neural Network 
GAM   Generalized Additive Model 
GNSS  Global Navigation Satellite System 
GPS   Global Positioning System 
GPU   Graphics Processing Unit 
Grad-CAM  Gradient-weighted Class Activation Mapping 
HD   High-Definition 
HLF   High-Level Fusion 
IMU   Inertial Measurement Unit 
IoU   Intersection over Union 
KF   Kalman Filter 
KNN   K-Nearest Neighbors 
LIME   Local Interpretable Model-Agnostic Explanations 
LLF   Low-Level Fusion 
LLM   Large Language Model 
ML   Machine Learning 
MLF   Mid-Level Fusion 
MMLF  Mult-modal Multi-class Late Fusion 
NMS   Non-Maximum Suppression 
PDP   Partial Dependency Plots 
PF   Particle Filter 
RBM   Restricted Boltzmann Machine 
RL   Reinforcement Learning 
RMG   Rail Mounted Gantry 
RNN   Recurrent Neural Networks 
RPN   Region Proposal Network 
SAE   Society of Automation Engineers 
SCFT   Spatio-Contextual Fusion Transformer 
SHAP  Shapley Additive Explanations 
SPA   Soft Polar Association 
TPU   Tensor Processing Unit 
UKF   Unscented Kalman Filter 
XAI   Explainable Artificial Intelligence 
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