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Abstract: In this paper for every number field K generated by a root α of a trinomial x7 + ax+ b ∈ Z[x]

and for every prime integer p, we calculate νp(i(K)), the highest power of p dividing the index i(K)

of the field K. In particular, we calculate the index i(K). As application, when the index of K is not
trivial, then K is not monogenic.
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1. Introduction

Let K be a number field of degree n, ZK its ring of integers, and dK its absolute discriminant.
It is well known that ZK is a free abelian group of rank n and by the fundamental theorem of
finite abelian groups, (ZK : Z[θ]) is a finite group for every primitive element θ ∈ ZK of K. Let
ind(θ) = (ZK : Z[θ]). ind(θ) is called the index of θ. The index of the number field K is defined by
i(K) = GCD((ZK : Z[θ]) | K = Q(θ) and θ ∈ ZK). A rational prime integer p dividing i(K) is called
a prime common index divisor of K. The number field K is called monogenic if it admits a Z basis
of type (1,θ, . . . ,θn−1) for some θ ∈ ZK. Remark that if ZK has a power integral basis, then i(K) = 1.
Therefore a field having a prime common index divisor is not monogenic. Monogenity of number
fields is a classical problem of algebraic number theory, going back to Dedekind, Hasse and Hensel,
see for instance [19,25,26] for the present state of this area. It is called a problem of Hasse to give an
arithmetic characterization of those number fields which are monogenic [23,25,26]. For any primitive
element θ ∈ ZK of K, it is well-known that

|△(θ)| = ind(θ)2 · |dK|

where △(θ) is the discriminant of the minimal polynomial of θ over Q [19].
Clearly, ind(θ) = 1 for some primitive element θ ∈ ZK of K if and only if (1,θ, . . . ,θn−1) is a power

integral basis of ZK.

The problem of testing the monogenity of number fields and constructing power integral bases
have been intensively studied during the last four decades mainly by Gaál, Györy, Nakahara, Pohst
and their collaborators (see for instance [1,16,32]). In 1871, Dedekind was the firstone who gave an
example of a number field with non trivial index, he considered the cubic field K generated by a
root of x3 − x2 − 2x− 8 and showed that the rational prime 2 splits completely in K ([5, § 5, page 30]).
According to a well known theorem of Dedekind ([24, Chapter I, Proposition 8.3]), if we suppose that K

is monogenic, then we would be able to find a cubic polynomial defining K, that splits completely into
distinct polynomials of degree 1 in F2[x]. Since there is only two distinct polynomials of degree 1 in
F2[x], this is impossible. In 1930, Engstrom was the first one who related the prime ideal factorization
and the index of a number field of degree less than 8 [13]. For any number field K of degree n ≤ 7,
he showed that νp(i(K)) is explicitly determined by the factorization of pZK into powers of prime
ideals of K for every positive rational prime integer p ≤ n. This motivated Narkiewicz to ask a very
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important question, stated as problem 22 in Narkiewicz’s book ([31, Problem 22]), which asks for
an explicit formula of the highest power νp(i(K)) for a given rational prime p dividing i(K). In [30],
Nakahara studied the index of non-cyclic but abelian biquadratic number fields. He showed that the
field index of such fields is in the set {1, 2, 3, 4, 6, 12}. In [17] Gaál et al. characterized the field indices
of biquadratic number fields having Galois group V4 and they proved that i(K) ∈ {1, 2, 3, 4, 6, 12}.
Recently, many authors are interested on monogenity of number fields defined by trinomials. Davis
and Spearman [6] studied the index of quartic number fields K generated by a root of such a quartic
trinomial F(x) = x4 + ax + b ∈ Z[x]. They gave necessary and sufficient conditions on a and b so that
a prime p is a common index divisor of K for p = 2, 3. Their method is based on the calculation of
the p-index form of K, using p-integral bases of K. El Fadil and Gaál [11] studied the index of quartic
number fields K generated by a root of a quadratic trinomial of the form F(x) = x4 + ax2 + b ∈ Z[x].
They gave necessary and sufficient conditions on a and b so that a prime p is a common index
divisor of K for every prime integer p. In [15], for a sextic number field K defined by a trinomial
F(x) = x6 + ax3 + b ∈ Z[x], Gaál studied the multi-monegenity of K; he calculated all possible power
integral bases of K. In [9], we extended Gaál’s studies by providing some cases where K is not
monogenic. Also in [10], for every prime integer p, we gave necessary and sufficient conditions on a

and b so that p is a common index divisor of K, where K is a number field defined by an irreducible
trinomial F(x) = x5 + ax2 + b ∈ Z[x]. In [8], we provided some sufficient conditions which guarantee
that i(K) is not trivial, and so K is not mongenic. In this paper, for a septic number field generated by a
root of a trinomial F(x) = x7 + ax + b ∈ Z[x] and for every prime integer p, we calculate νp(i(K)), the
highest power of p dividing the index i(K) of the field K. Our method is based on Newton’s polygon
techniques applied in prime ideal factorization, which is performed in [21,22] and in Montes’ thesis
defended in 1999. The author is very thankful to Professor Enric Nart who provided him a copy of
Montes’ thesis.

2. Main Results

Throughout this section K is a number field generated by a root α of an irreducible trinomial
F(x) = x7 + ax + b ∈ Z[x] and we assume that for every rational prime integer p, νp(a) ≤ 5 or νp(b) ≤ 6.

Along this paper, for every integer a ∈ Z and a prime integer p, let ap =
a

pνp(a)
.

We start with the following theorem, which characterizes when is Z[α] integrally closed?

Theorem 2.1. The ring Z[α] is integrally closed if and only if every prime integer p satisfies one of these

conditions:

1. If p|a and p|b, then νp(b) = 1.
2. If p = 2, p divides b and does not a, then (a, b) ∈ {(1, 0), (3, 2)} (mod 4).
3. If p = 3, p divides b and a ≡ −1 (mod 3), then (a, b) ∈ {(2, 0), (8, 3), (8, 6)} (mod 9).
4. If p = 3, p divides b and a ≡ 1 (mod 3), then (a, b) . (1, 0) (mod 9).
5. If p = 7, p divides a and does not divide b, then ν7(1− a− b6) = 1.
6. If p < {2, 3, 7}, p does not divide both a and b, then νp(77b6 + 66a7) ≤ 1.

The following example gives an infinite family of monogenic septic number fields defined by non
monogenic trinomials.

Proposition 2.2. Let K be the number field generated by a root α of F(x) = x7 + 2uax + 2vb ∈ Z[x], with

u ≥ v− 1, 2 ≤ v ≤ 6, GCD(6, b) = 1, 7 does not divide a, and for every odd prime integer p, if p does not divide

b, then p2 does not divide 77b6 + 66a7. Then F(x) is a non monogenic polynomial and K is a monogenic number

field.
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In the remainder of this section, for every prime integer p and for every values of a and b, we
calculate νp(i(K)). For every integers a and b, let △ = −(66a7 + 77b6) be the discriminant of F(x) and

for every prime integer p, let △p =
△

pνp(△)
.

Theorem 2.3. The following table provides the value of ν2(i(K)).

conditions ν2(i(K))

a ≡ 28 (mod 32) and b ≡ 0 (mod 32) 1
a ≡ 112 (mod 128) and b ≡ 0 (mod 128) 1

a ≡ 1 (mod 8) and b ≡ 2 (mod 4)
ν2(△) even and △2 ≡ 3 (mod 4) 1

a ≡ 3 (mod 8) and b ≡ 4 (mod 8) 1
a ≡ 3 (mod 4) and b ≡ 0 (mod 8) 3

(a, b) ∈ {(5, 2), (5, 6), (13, 2), (13, 14)} (mod 16) 1
Otherwise 0

Theorem 2.4. The following table provides the value of ν3(i(K)).

conditions ν3(i(K))

a ≡ 5 (mod 9) and b ∈ {3, 6} (mod 9) 1
a ≡ 8 (mod 9) and b ≡ 0 (mod 9) 2

a ≡ 2 (mod 9) and b ∈ {3, 6} (mod 9)
ν3(△) = 2k and k ≥ 5 1

a ≡ 2 (mod 9) and b ∈ {3, 6} (mod 9)
ν3(△) = 2k + 1, k ≥ 5 and △3 ≡ 1 (mod 3) 2

Otherwise 0

Theorem 2.5. For every prime integer p ≥ 5 and for every integers a and b such that F(x) = x7 + ax + b is

irreducible over Q, p does not divide i(K), where K is the number field defined by F(x).

Corollary 2.6. For every integers a and b such that F(x) = x7 + ax + b is irreducible over Q, i(K) ∈

{1, 2, 3, 6, 8, 9, 18, 24, 72}.

Remark 1. 1. The field K can be non monogenic even if the index i(K) = 1.
2. The unique method which allows to test whether K is monogenic is to calculate the solutions of the index

form equation of the field K (see for instance [18,19]).

3. A short introduction to prime ideal factorization based on Newton polygons

In 1894, Hensel developed a powerful approach by showing that for every prime integer p, the
prime ideals of ZK lying above p are in one–one correspondence with monic irreducible factors of
F(x) in Qp[x]. For every prime ideal corresponding to any irreducible factor in Qp[x], the ramification
index and the residue degree together are the same as those of the local field defined by the associated
irreducible factor [28]. Since then, to factorize pZK, we need to factorize F(x) in Qp[x]. Newton’s
polygon techniques can be used to refine the factorization. This is a standard method which is rather
technical but very efficient to apply. We have introduced the corresponding concepts in several former
papers. Here we only give a brief introduction which makes our proofs understandable. For a detailed
description, we refer to Ore’s Paper [34] and Guardia, Montes and Nart’s paper [20]. For every prime
integer p, let νp be the p-adic valuation of Qp and Zp the ring of p-adic integers. Let F(x) ∈ Zp[x]

be a monic polynomial and φ ∈ Zp[x] a monic lift of an irreducible factor of F(x) modulo p. Let
F(x) = a0(x) + a1(x)φ(x) + · · ·+ an(x)φ(x)

l be the φ-expansion of F(x), Nφ(F) the φ-Newton polygon
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of F(x) and N+
φ
(F) its principal part. Let Fφ be the field Fp[x]/(φ). For every side S of N+

φ
(F) with

length l and initial point (s, us), for every i = 0, . . . , l, let ci ∈ Fφ be the residue coefficient, defined as
follows:

ci =



















0, if (s + i, us+i) lies strictly above S,
(

as+i(x)

pus+i

)

mod (p,φ(x)), if (s + i, us+i) lies on S.

Let −λ = −h/e be the slope of S, where h and e are two positive coprime integers. Then d = l/e is the
degree of S. Let R1(F)(y) = tdyd + td−1yd−1 + · · ·+ t1y + t0 ∈ Fφ[y], called the residual polynomial of
F(x) associated to the side S, where for every i = 0, . . . , d, ti = cie. If R1(F)(y) is square free for each
side of the polygon N+

φ
(F), then we say that F(x) is φ-regular.

Let F(x) =
r

∏

i=1

φi
li be the factorization of F(x) into powers of monic irreducible coprime polynomials

over Fp, we say that the polynomial F(x) is p-regular if F(x) is a φi-regular polynomial with respect to
p for every i = 1, . . . , r. Let N+

φi
(F) = Si1 + · · ·+ Siri

be the φi-principal Newton polygon of F(x) with

respect to p. For every j = 1, . . . , ri, let R1i j
(F)(y) =

si j
∏

s=1

ψ
ai js

i js
(y) be the factorization of R1i j

(F)(y) in

Fφi
[y], where R1i j

(F)(y) is the residual polynomial of F(x) attached to the side Si j. Then we have the
following theorem of index of Ore:

Theorem 3.1. ([12, Theorems 1.7 and 1.9])

Under the above hypothesis, we have the following:

1.

νp((ZK : Z[α])) ≥
r

∑

i=1

indφi
(F).

The equality holds if F(x) is p-regular.
2. If F(x) is p-regular, then

pZK =
r

∏

i=1

ti
∏

j=1

si j
∏

s=1

p
ei j

i js

is the factorization of pZK into powers of prime ideals of ZK, where ei j is the smallest positive integer

satisfying ei jλi j ∈ Z and the residue degree of pi js over p is given by fi js = deg(φi) × deg(ψi js) for every

(i, j, s).

The Dedekind criterion can be reformulated as follows:

Theorem 3.2. ([7, Theorem 1.1])

Under the above hypothesis, let Ri(x) be the remainder of the Euclidean division of F(x) by φi(x). Then

νp((ZK : Z[α])) = 0 if and only if li = 1 or νp(Ri(x)) = 1 for every i = 1, . . . , r.

When the theorem of Ore fails, that is F(x) is not p-regular, then in order to complete the
factorization of F(x), Guardia, Montes, and Nart introduced the notion of high order Newton polygon. By
analogous to the first order, for each order r, the authors of [20] introduced the valuation ω2 of order r,
the key polynomial φ2(x) of such a valuation, Nr(F) the Newton polygon of any polynomial F(x) with
respect to ω2 and φ2(x), and for every side of Nr(F) the residual polynomial Rr(F), and the index of
F(x) in order r. For more details, we refer to [20].
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4. Proofs of our main results

Proof of Theorem 2.1.

1. If p divides a and b, then by Theorem 3.2, p does not divide (ZK : Z[α]) if and only if νp(b) = 1.
2. For p = 2, 2 divides b and does not a, we have F(x) = x(x − 1)2(x2 + x + 1)2. Let φ1 = x − 1

and φ2 = x2 + x + 1. Since F(x) = · · · − (4x − 2)φ2 + (a + 1)x + b and F(x) = · · ·+ (a + 7)φ1 +

(a + 1 + b), by Theorem 3.2, 2 does not divide (ZK : Z[α]) if and only if ν2(b + a + 1) = 1 and
ν2((a + 1)x + b) = 1 , which means b ≡ 1− a (mod 4) and a ≡ 1 (mod 4) or b ≡ 2 (mod 4). That is
(a, b) ∈ {(1, 0), (3, 2)} (mod 4).

3. For p = 3, 3 divides b and a ≡ 1 (mod 3), we have F(x) = x(x2 + 1)3. Let φ = x2 + 1. Since
F(x) = xφ3 − 3xφ2 + 3xφ + (a − 1)x + b, by Theorem 3.2, 3 does not divide (ZK : Z[α]) if
and only if ν3((a − 1)x + b) = 1, which means that a . 1 (mod 9) or b . 0 (mod 9). That is
(a, b) . (1, 0) (mod 9).

4. For p = 3, 3 divides b and a ≡ −1 (mod 3), we have F(x) = x(x − 1)3(x + 1)2. Let φ1 = x − 1
and φ2 = x + 1. Since F(x) = φ7

1 + 7φ6
1 + 21φ5

1 + 35φ4
1 + 35φ3

1 + 21φ2
1 + (a + 7)φ1 + (a + 1 + b)

and F(x) = φ7
1 − 7φ6

2 + 21φ5
2 − 35φ4

2 + 35φ3
2 − 21φ2

2 + (a + 7)φ2 + (b − a − 1), by Theorem 3.2,
3 does not divide (ZK : Z[α]) if and only if ν2(a + 1 + b) = 1 and ν3(b − a − 1) = 1. That is
(a, b) ∈ {(2, 0), (8, 3), (8, 6)} (mod 9).

5. For p = 7, if 7 divides a and 7 does not divide b, then F(x) = (x + b)7. Let φ = x + b. Then
F(x) = φ7 − 7bφ6 + 21b2φ5 − 35b3φ4 + 35b4φ3 − 21b5φ2 + (a + 7b6)φ+ (b− ab− b7), by Theorem
3.2, 7 does not divide (ZK : Z[α]) if and only if ν7(1− a− b6) = 1.

6. For p < {2, 3, 7} such that p does not divide both a and b, if p2 does not divide 66a7 + 77b6, then
by the formula △ = (ZK : Z[α])2dK, p does not divide (ZK : Z[α]). If p2 divides 66a7 + 77b6, then
let t be an integer such that 6at ≡ −7b (mod p2). Then (6a)6F′(t) = 7(−7b)6 + 66a7 ≡ 0 (mod p2)

and (6a)7F(t) ≡ 0 (mod p2). Thus (x− t)2 divides F(x) in Fp[x]. As F(t) is the remainder of the
Euclidean division of F(x) by x− t, by Theorem 3.2, p divides the index (ZK : Z[α]).

For the proofs of Theorems 2.3 and 2.4, we need the following lemma, which characterizes the
prime common index divisors of K.

Lemma 4.1. Let p be a rational prime integer and K be a number field. For every positive integer f , let P f be

the number of distinct prime ideals of ZK lying above p with residue degree f and N f the number of monic

irreducible polynomials of Fp[x] of degree f . Then p is a prime common index divisor of K if and only if P f > N f

for some positive integer f .

Proof of Theorem 2.3.
By virtue of Engstrom’s results [14], the proof is done if we provide the factorization of 2ZK into
powers of prime ideals of ZK. Based on Theorem 2.1, we deal with the cases: 2|a and 4|b or
(a, b) ∈ {(1, 2), (3, 0)} (mod 4).

1. If 2 divides a and 4 divides b, then for φ = x, we have F(x) = φ7 in F2[x].

(a) If Nφ(F) = S has a single side, that is ν2(a) ≥ ν2(b), then the side S is of degree 1. Thus there
is a unique prime ideal of ZK lying above 2.

(b) If Nφ(F) = S1 + S2 has two sides joining (0, ν2(b)), (1, ν2(a)), and (7, 0), that is ν2(a) + 1 ≤
ν2(b), then S1 is of degree 1, and so it provides a unique prime ideal of ZK lying above 2
with residue degree 1. Let d be the degree of S2.

i. If ν2(a) < {2, 3, 4}, then S2 is of degree 1, and so there are exactly two prime ideals of ZK

lying above 2 with residue degree 1 each.
ii. If ν2(a) = 2, then the slope of S2 is

−1
3

and R1(F)(y) = (y + 1)2 is the residual

polynomial of F(x) attached to S2. Thus we have to use second order Newton polygon
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techniques. Let ω2 be the valuation of second order Newton polygon; defined by

ω2(P(x)) = min{3ν2(pi) + ih, ß = 0, . . . , n} for every non-zero polynomial P =
n

∑

i=0

pix
i.

Let φ2 be the key polynomial of ω2 and let N2(F) the φ2-Newton polygon of F(x) with
respect to the valuation ω2. It follows that:
If ν2(b) = 3, then for φ2 = x3 + 2x + 2, we have F(x) = xφ2

2 + (4− 4x− 4x2)φ2 + 8x2 +

(a− 4)x + b− 8. It follows that if ν2(a− 4) = 3, then N2(F) = T has a single side joining
(0, 10) and (2, 7). Thus T is of degree 1, and so S2 provides a unique prime ideal of
ZK lying above 2. If ν2(a− 4) ≥ 4 and ν2(b− 8) ≥ 4, then N2(F) = T has a single side
joining (0, 11), (1, 9) and (2, 7), with R2(F)(y) = y2 + y + 1, which is irreducible over
F2 = F0. Thus S2 provides a unique prime ideal of ZK lying above 2 with residue
degree 2. Hence 2 is not a common index divisor of K.
If ν2(b) ≥ 4 and ν2(a + 4) = 3, then for φ2 = x3 + 2, we have F(x) = xφ2

2 − 4xφ2 + (a +

4)x + b is the φ2-expansion of F(x), and so N2(F) = T has a single side joining (0, 10)
and (2, 7). In this case the side T is of degree 1 and S2 provides a unique prime ideal of
ZK lying above 2. If ν2(b) = 4 and ν2(a + 4) ≥ 4, then for φ2 = x3 + 2, N2(F) = T has a
single side joining (0, 12) and (2, 7). Thus T is of degree 1, and so S2 provides a unique
prime ideal of ZK lying above 2.
If ν2(b) ≥ 5 and ν2(a + 4) = 4, then for φ2 = x3 + 2, we have F(x) = xφ2

2 − 4xφ2 + (a +

4)x+ b is theφ2-expansion of F(x) and N2(F) = T has a single side joining (0, 13), (1, 10)
and (2, 7). So T is of degree 2 with attached residual polynomial R2(F) = y2 + y + 1
irreducible over F2 = F0. Thus S2 provides a unique prime ideal of ZK lying above 2
with residue degree 2.
If ν2(b) ≥ 5 and ν2(a + 4) ≥ 5, then for φ2 = x3 + 2, N2(F) = T1 + T2 has two sides
joining (0, v) , (1, 10) and (2, 7) with v ≥ 15. So each Ti has degree 1, and so S2 provides
two prime ideals of ZK lying above 2 with residue degree 1 each. As S1 provides a
prime ideal of ZK lying above 2 with residue degree 1, we conclude that there are three
prime ideals of ZK lying above 2 with residue degree 1 each, and so 2 is a common index
divisor of K. In this last case, 2ZK = p111p

3
121p

3
131 with residue degree 1 each prime ideal

factor. Based on Engstrom’s result, we conclude that ν2(i(K)) = 1.
iii. For ν2(a) = 3, we have R1(F)(y) = y3 + 1 = (y2 + y + 1)(y + 1) is the residual

polynomial of F(x) attached to T1. Thus T1 provides a unique prime ideal of ZK lying
above 2, with residue degree 1 and a unique prime ideal of ZK lying above 2 with
residue degree 2. Thus ν2(i(K)) = 0.

iv. The case ν2(a) = 4 is similar to the case ν2(a) = 2. In this case ν2(i(K)) ≥ 1 if and only
if ν2(b) ≥ 7 and ν2(a + 16) ≥ 7. In this case, 2ZK = p111p

3
121p

3
131 with residue degree 1

each factor. Based on Engstrom’s result, we conclude that ν2(i(K)) = 1.

2. (a, b) ∈ {(1, 2), (3, 0)} (mod 4). In this case F(x) = x(x− 1)2(x2 + x + 1)2 modulo 2. Let φ = x− 1,
g(x) = x2 + x+ 1, F(x) = · · · − 21φ2 + (7+ a)φ+ (b+ a+ 1), and F(x) = (x− 3)g3 + (5+ 3x)g2 −

(4x + 2)g + (a + 1)x + b. Since x provides a unique prime ideal of ZK lying above 2, we conclude
that 2 is a common index divisor of K if and only if φ provides two prime ideals of ZK lying
above 2 of degree 1 each or φ provides a unique prime ideal of ZK lying above 2 of degree 2 and
g provides at least one prime ideal of ZK lying above 2 of degree 2 or also g provides two prime
ideals of ZK lying above 2 of degree 2 each. That is if and only if one of the following conditions
holds:

(a) If a ≡ 1 (mod 4) and b ≡ 2 (mod 4), then ν2(△) ≥ 7 and N+
g (F) has a single side of height

1, and so g provides a unique prime ideal p311 of ZK lying above 2 with residue degree 2.

For N+
φ
(F), let u =

−7b2

3a
. Then u ∈ Z2. Let F(x + u) = x7 + · · ·+ 21u5x2 + Ax + B, where

A = 7u6 + a =
−△

66a6
and B = u7 + au + b =

b△

67a7
. It follows that ν2(A) = ν2(B) = ν2(△)− 6,
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and so N+
φ
(F) = S1 has a single side joining (0, ν2(△) − 6) and (2, 0). Thus, if ν2(△) is

odd, then φ provides a unique prime ideal p211 of ZK lying above 2 with residue degree
1. If ν2(△) = 2(k + 3) for some positive integer k, then let F(x + u + 2k) = x7 + · · · +

21(u + 2k)5x2 + A1x + B1, where A1 = 7u6 + a + 3 · 2k+1u5 + 22kD = A + 3 · 2k+1u5 + 22kD

and B1 = B + A · 2k + 22k · 21u5 + 23kH = 22k(
b2△2

37a7
+ 21u5) + 23kH for some D ∈ Z2 and

H ∈ Z2. Thus, B1 = 22k(3 · a · b2△2 + 3 · a · b2) + 22k+3L for some L ∈ Z2. Hence if k ≥ 2, then
ν2(A1) = k + 1 and ν2(B1) ≥ 2k + 1. More precisely, if △2 ≡ 1 (mod 4), then ν2(B1) = 2k + 1,
and so φ provides a unique prime ideal p211 of ZK lying above 2 with residue degree 1. If
△2 ≡ 3 (mod 4), then ν2(B1) ≥ 2k + 2. It follows that if ν2(B1) = 2k + 2, and so φ provides a
unique prime ideal p211 of ZK lying above 2 with residue degree 2. If ν2(B1) ≥ 2k + 3, then
ν2(B1) ≥ 2k + 3, and so φ provides two prime ideals of ZK lying above 2 with residue degree
1 each. In these last two cases, we have 2 divides i(K) and ν2(i(K)) = 1.
For k = 1, we have ν2(△) = 8 and a ≡ 5 (mod 8). In this case F(x) = x(x− 1)2(x2 + x + 1)2

modulo 2. Let φ = x − 1, g(x) = x2 + x + 1, F(x) = · · · − 21φ2 + (7 + a)φ+ (b + a + 1),
and F(x) = (x − 3)g3 + (5 + 3x)g2 − (4x + 2)g + (a + 1)x + b. Since x provides a unique
prime ideal of of ZK lying above 2 with residue degree 1 and g provides a unique prime
ideal of of ZK lying above 2 with residue degree 2, we conclude that ν2(i(K)) ≥ 1 if and
only if φ provides a unique prime ideal of of ZK lying above 2 with residue degree 2 or
φ provides two distinct prime ideals of of ZK lying above 2 with residue degree 1 each.
If (a, b) ∈ {(5, 10), (13, 2)} (mod 16), then φ provides a unique prime ideal of ZK lying
above 2 with residue degree 2 and so ν2(i(K)) = 1. If (a, b) ∈ {(5, 10), (13, 10)} (mod 16),
then φ provides a unique prime ideal of ZK lying above 2 with residue degree 1 and
so ν2(i(K)) = 0. For (a, b) ∈ {(5, 6), (5, 14), (13, 6), (13, 14)} (mod 16), let us replace φ by
φ′ = x− 3 and consider the φ′-Newton polygon of F(x) with respect to ν2. It follows that
If (a, b) ∈ {(5, 6), (13, 14)} (mod 16), then φ′ provides two prime ideals of ZK lying above 2
with residue degree 1 each and so ν2(i(K)) = 1. If (a, b) ∈ {(5, 14), (13, 6)} (mod 16), then φ′

provides a unique prime ideal of ZK lying above 2 with residue degree 1 and so ν2(i(K)) = 0.
(b) a ≡ 3 (mod 4) and b ≡ −(a + 1) (mod 8) because N+

φ
(F) has two sides.

(c) If a ≡ 3 (mod 8) and b ≡ 0 (mod 8), then φ provides a unique prime ideal of ZK lying above
2 with residue degree 2 and g provides two prime ideals of ZK lying above 2 with residue
degree 2 each because N+

g (F) has a single side of degree 2 with (1 + x)y2 + y + x = (x +

1)(y− 1)(y− x) its attached residual polynomial of F(x). In this case 2ZK = p111p211p311p312

with residue degrees f111 = 1 and f211 = f311 = f312 = 2, and so ν2(i(K)) = 3.
(d) a ≡ 7 (mod 8) and b ≡ 0 (mod 8). In this case φ provides a unique prime ideal of ZK

lying above 2 with residue degree 2 and N+
g (F) has two sides. More precisely, 2ZK =

p111p211p311p321 with residue degrees f111 = 1 and f211 = f311 = f312 = 2, and so ν2(i(K)) =

3.
(e) If a ≡ 5 (mod 8) and b ≡ −(a + 1) (mod 16) because if b ≡ −(a + 1) (mod 32), then N+

φ
(F)

has two sides and if b ≡ −(a + 1) + 16 (mod 32), then N+
φ
(F) has a single side of degree 2,

which provides a single prime ideal of ZK lying above 2 with residue degree 2 and N+
g (F)

has a single side of degree 1. Thus there are 2 prime ideals of ZK lying above 2 with residue
degree 2 each.

(f) If a ≡ 5 (mod 8) and ν2(b + (a + 1)) = 2, then ν2(b − (a + 1)) ≥ 3. If ν2(b − (a + 1)) = 3,
then for φ = x + 1, we have N+

φ
(F) has a single side of degree 1. Since ν2(a + 1) = 1, then

N+
g (F) has a single side of height 1. Thus there are two prime ideals of ZK lying above 2

with residue degree 1 each and one prime ideal with residue degree 2. If ν2(b− (a + 1)) = 4,
then for φ = x + 1, we have N+

φ
(F) has a single side of degree 2 and its attached residual

polynomial of F is R1(F)(y) = y2 + y + 1. Since b ≡ 6 (mod 8), we conclude that N+
g (F) has

a single side of degree 1, then there are 2 prime ideals of ZK lying above 2 with residue
degree 2 each, and so 2 divides i(K). If ν2(b − (a + 1)) ≥ 5, then for φ = x + 1, we have
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N+
φ
(F) has two sides of degree 1 each, and so there are 3 prime ideals of ZK lying above 2

with residue degree 1 each, and so 2 divides i(K).

Proof of Theorem 2.4.
By virtue of Engstrom’s results [14], the proof is done if we provide the factorization of 3ZK into powers
of prime ideals of ZK. Based on Theorem 2.1, we deal with the cases:

1. 3|a and 9|b.
2. (a, b) < {(2, 0), (8, 3), (8, 6)} (mod 9).
3. (a, b) ≡ (1, 0) (mod 9).

1. 3|a and 9|b, then for φ = x, F(x) = φ7 in F3[x]. It follows that:

(a) If ν3(a) ≥ ν3(b), then Nφ(F) has a single side of degree 1, and so there is a unique prime
ideal of ZK lying above 3.

(b) If ν3(a) + 1 ≤ ν3(b), then Nφ(F) = S1 + S2 has two sides joining (0, ν3(b)), (1, ν3(a)), and
(7, 0). Since S1 is of degree 1, S1 provides a unique prime ideal of ZK lying above 3 with
residue degree 1. Thus ν3(i(K)) ≥ 1 if and only if S2 provides at least three prime ideals
of ZK lying above 3, with residue degree 1 each. If ν3(a) < {2, 3, 4}, then S2 is of degree
1, and so S2 provides exactly one prime ideal of ZK lying above 3, with residue degree 1
each. If ν3(a) ∈ {2, 4}, then S2 is of degree 2, and so S2 provides at most two prime ideal of
ZK lying above 3. Hence 3 is not a common index divisor of K. If ν3(a) = 3, then S2 is of
degree 3 and its attached residual polynomial of F(x) is R1(F)(y) = y3 + a3 = (y + a3)

3. So,
we have to use second order Newton polygon. Let ω2 be the valuation of second order
Newton polygon. ω2 is defined by ω2(P) = min{2ν3(pi) + i, i = 0, . . . , n} for every non zero

polynomial p =
n

∑

i=0

pix
i of Q3[x]. Let φ2 = x2 + 3a3 be a key polynomial of ω2 and N2(F)

the φ2-Newton polygon of F(x) with respect to ω2. It follows that: If a3 ≡ 1 (mod 3), then
for φ2 = x2 + 3, we have F(x) = xφ3

2 − 9xφ2
2 + 27xφ2 + (a− 27)x + b is the φ2-expansion of

F(x). We have the following cases:

i. If ν3(b) = 4, then N2(F) = T has a single side joining (0, 8) and (3, 7). Thus T is of
degree 1 and S2 provides a unique prime ideal of ZK lying above 3 with residue degree
1.

ii. If ν3(b) ≥ 5 and ν3(a− 27) = 4, then N2(F) = T has a single side joining (0, 9) and (3, 7).
Thus T is of degree 1 and S2 provides a unique prime ideal of ZK lying above 3 with
residue degree 1.

iii. If ν3(b) = 5 and ν3(a − 27) ≥ 5, then N2(F) = T has a single side joining (0, 10) and
(3, 7) and its attached residual polynomial of F is R2(F)(y) = xy3 + xy + b3, which is
irreducible over F2 = Fφ because φ is of degree 1. Thus S2 provides a unique prime
ideal of ZK lying above 3 with residue degree 3.

iv. If ν3(b) ≥ 6 and ν3(a− 27) ≥ 5, then N2(F) = T1 + T2 has two sides joining (0, v), (2, 9)
and (3, 7) with v ≥ 11. Thus T1 is of degree 1, T2 of degree 2 and R2(F)(y) = xy2 + x is
its attached residual polynomial of F(x), which is irreducible over F2 = Fφ. Thus S2

provides a unique prime ideal of ZK lying above 3, with residue degree 1 and a unique
prime ideal of ZK lying above 3 with residue degree 2.

Similarly, for a3 ≡ −1 (mod 3), let φ2 = x2 − 3. Then F(x) = xφ3
2 + 9xφ2

2 + 27xφ2 + (a +

27)x + b is the φ2-expansion of F(x). By analogous to the case a3 ≡ 1 (mod 3), in every

case 3 does not divide i(K). If a ≡ 1 (mod 3), then F(x) = x(x2 + 1)3 in F3[x]. So, there are
exactly a unique prime ideal of ZK lying above 3 with residue degree 1 and the other prime
ideals of ZK lying above 3 are of residue degrees at least 2 each prime ideal factor. Hence
ν3(i(K)) = 0.

(c) If a ≡ −1 (mod 3), then F(x) = x(x − 1)3(x + 1)3 in F3[x]. Let φ1 = x − 1, φ2 = x + 1,
F(x) = φ7

1 + 7φ6
1 + 21φ5

1 + 35φ4
1 + 35φ3

1 + 21φ2
1 + (7 + a)φ1 + (b + a + 1), and F(x) =

φ7
2 − 7φ6

2 + 21φ5
2 − 35φ4

2 + 35φ3
2 − 21φ2

2 + (7 + a)φ2 + (b− (a + 1)). It follows that:
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i. If a ≡ 8 (mod 9) and b ≡ 0 (mod 9), then ν3(b + (1 + a)) ≥ 2 and ν3(b − (1 + a)) ≥ 2.
Thus x a provides a unique prime ideal of ZK lying above 3 with residue degree 1, and
each φi provides two prime ideals of ZK lying above 3 with residue degree 1 each prime
ideal factor. In this two cases ν3(i(K)) = 2.

ii. If a ≡ 5 (mod 9) and b ≡ 3 (mod 9), then ν3(b + (1 + a)) ≥ 2 and ν3(b − (1 + a)) = 1.
Thus each of x and φ2 provides a unique prime ideal of ZK lying above 3 with residue
degree 1, and φ1 provides two prime ideals of ZK lying above 3 with residue degree
1 each. Similarly, if a ≡ 5 (mod 9) and b ≡ 6 (mod 9), then ν3(b − (1 + a)) ≥ 2 and
ν3(b + (1 + a)) = 1. Thus each of x and φ1 provides a unique prime ideal of ZK lying
above 3 with residue degree 1, φ2 provides two prime ideals of ZK lying above 3 with
residue degree 1 each. In these two cases ν3(i(K)) = 1.

iii. If a ≡ 2 (mod 9) and b ≡ (1+ a)± 9 (mod 27), then N+
φ2
(F) has a single side joining (0, 2)

and (3, 0) and N+
φ1
(F) has a single side joining (0, 1) and (3, 0). Thus there are 3 prime

ideals of ZK lying above 3 with residue degree 1 each, and so ν3(i(K)) = 0.
iv. Similarly, if a ≡ 2 (mod 9) and b ≡ −(1 + a) ± 9 (mod 27), then there are 3 prime ideals

of ZK lying above 3 with residue degree 1 each, and so ν3(i(K)) = 0.
v. If a ≡ 2 (mod 9) and ν3(b) = 1, then ν3(△) ≥ 8. Let u =

−7b3

2a
. Then u ∈ Z3. Letφ = x−u

and F(x + u) = x7 + · · ·+ 35u4x3 + 21u5x2 + Ax + B, where A = 7u6 + a =
−△

66a6
and

B = u7 + au + b =
b△

67a7
. It follows that ν3(A) = ν3(B) = ν3(△) − 6, and so N+

φ
(F) = S1

has a single side joining (0, ν3(△) − 6) and (3, 0). Remark that since ν3(b) = 1 and
ν3(B) ≥ 2, ν3(−u7 − au + b) = 1, and so (x + u) provides a unique prime ideal of ZK

lying above 3 with residue degree 1. Thus ν3(i(K)) ≥ 1 if and only if φ provides at least
two prime ideals of ZK lying above 3 with residue degree 1 each prime ideal factor.

A. If ν3(△) = 8, then N+
φ
(F) has a single side of degree one, and so φ provides a unique

prime ideal of ZK lying above 3 with residue degree 1.
B. If ν3(△) = 9, then N+

φ
(F) = S has a single side joining (0, 3) and (3, 0) with

R1(F)(y) = −u4y3 + u5y2 + B3 its attached residual polynomial of F(x). Since

a ≡ −1 (mod 3) and B =
b△

67a7
, we have u ≡ −b3 (mod 3) and B3 ≡ b3△3 (mod 3).

Thus R1(F)(y) = −y3 − b3y2 + b3△3. Since R1(F)(y) is square free and R1(F)(0) , 0,
then R1(F)(y) has at most one root in Fφ. Thus S provides at most a unique prime
ideal of ZK lying above 3 with residue degree 1. Therefore, ν3(i(K)) = 0.

C. If ν3(△) ≥ 10, then N+
φ
(F) = S1 + S2 has two sides joining (0, v − 6) and (3, 1). It

follows that Since S2 is of degree 1, it provides a unique prime ideal of ZK lying
above 3 with residue degree 1. Moreover, if ν3(△) is even then S1 is of degree 1, and
so φ provides two prime ideals of ZK lying above 3 with residue degree 1 each. In
this case ν3(i(K)) = 1. If ν3(△) = 2(k + 3) + 1, then S1 is of degree 2 with residual
polynomial R1(F)(y) = uy2 + b3△3. Since a ≡ −1 (mod 3), we have 2a ≡ 1 (mod 3)

and u ≡ −b3 (mod 3). Thus R1(F)(y) = −b3(y2 − △3). It follows that if (
△3

3
) = 1,

then R1(F)(y) has two different factors of degree 1 each, and so S1 provides two
prime ideals of ZK lying above 3 with residue degree 1 each. In this case there
are exactly five prime ideals of ZK lying above 3 with residue degree 1 each and

according to Engstrom’s results ν3(i(K)) = 2. But if (
△3

3
) = −1, then R1(F)(y) is

irreducible over Fφ = F3, and so S1 provides a unique prime ideal of ZK lying
above 3 with residue degree 2. In this last case there are exactly three prime ideals
of ZK lying above 3 with residue degree 1 each, and so ν3(i(K)) = 0.

Proof of Theorem 2.5.
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We start by showing that 5 does not divide i(K) for every integers of a and b such that x7 + ax + b

is irreducible. By virtue of Engstrom’s results [14], the proof is done if we provide the factorization of
5ZK into powers of prime ideals of ZK. By by the index formula △ = (ZK : Z[α])2dK, if 52 does not
divide △, then ν5(i(K)) = 0. So, we assume that 52 divides △.

1. So, 66a7 + 77b6 ≡ 0 (mod 5). Since a5 ≡ a (mod 5) and b5 ≡ b (mod 5), then a3 ≡ 2b2 (mod 5),
which means (a, b) ∈ {(0, 0), (3, 1), (2, 2), (2, 3), (3, 4)} (mod 5). In order to show that ν5(i(K)) = 0
it suffices to show that for every value (a, b) ∈ Z2 such that x7 + ax + b is irreducible and
(a, b) ∈ {(0, 0), (2, 1), (3, 2), (3, 3), (2, 34} (mod 5) there are at most four prime ideals of ZK lying
above 5 with residue degree 1, where K is the number field generated by a complex root of
x7 + ax + b .

(a) For (a, b) ≡ (0, 0) (mod 5), if ν5(a) ≥ ν5(b), then Nφ(F) = S has a single side and it is of
degree 1. Thus there is a unique prime ideal p of ZK lying above 5 with residue degree 1.
More precisely 5ZK = p7.
If ν5(a) + 1 ≤ ν5(b), then Nφ(F) = S1 + S2 has two sides. More precisely, S1 is of degree 1.
Let d be degree of S2. Since 6 is the length of S2, then d ∈ {1, 2, 3}. Thus S1 provides a unique
prime ideal p of ZK lying above 5 with residue degree 1 and S2 provides at most three prime
ideals p of ZK lying above 5 with residue degree 1 each.

(b) For (a, b) ≡ (3, 1) (mod 5), since F(x) = (x+ 4)2(x+ 3)(x4 + 4x3 + x2 + x+ 2) in F5[x], there
are at most three prime ideals p of ZK lying above 5 with residue degree 1 each.

(c) For (a, b) ≡ (2, 2) (mod 5), since F(x) = (x4 + 2x3 + 4x2 + 2x + 2)(x + 4)(x + 2)2 in F5[x],
there are at most three prime ideals p of ZK lying above 5 with residue degree 1 each.

(d) For (a, b) ≡ (2, 3) (mod 5), since F(x) = (x + 1)(x + 3)2(x4 + 3x3 + 4x2 + 3x + 2) in F5[x],
there are at most three prime ideals p of ZK lying above 5 with residue degree 1 each.

(e) For (a, b) ≡ (3, 4) (mod 5), since F(x) = (x4 + x3 + x2 + 4x+ 2)(x+ 1)2(x+ 2) in F5[x], there
are at most three prime ideals p of ZK lying above 5 with residue degree 1 each.

We conclude that in all cases ν5(i(K)) = 0.
For p ≥ 7, since the field K is of degree 7, there are at most 7 prime ideals of ZK lying above p. The fact
that there at least p ≥ 7 monic irreducible polynomial of degree f in Fp[x] for every positive integer
f ∈ {1, 2, 3}, we conclude that p does not divide i(K).

Proof of Proposition 2.2.
First according to Theorem 2.1 and the hypotheses of Example 2.2, 2 is the unique prime integer

candidate to divide ind(α). Let φ = x. Then F(x) = φ7 in F2[x] and Nφ(F) = S has a single side of
degree GCD(7, v) = 1. Thus F(x) is irreducible over Q2. Let K be the number field generated by
a root α of F(x). Since F(x) is irreducible over Q2, there is a unique valuation ω of K extending ν2.
By Theorem 3.1, we have ν2(ZK : Z[α]) ≥ indφ(F) ≥ 1, and so F(x) is not a monogenic polynomial.

Let θ =
αx

2y , where (x, y) is the unique solution of integers of the Diophantine equation vx− 7y = 1

and 0 ≤ x ≤ 6. Then θ ∈ K. Since v and 7 are coprime, we conclude that K = Q(θ). Let us show
that ZK = Z[θ], and so K is monogenic. By [13, Corollary 3.1.4], in order to show that θ ∈ ZK, we
need to show that ω(θ) ≥ 0, where ω is the unique valuation of K extending ν2. Since Nφ(F) = S

has a single side of slope −v/7, we conclude that ω(α) = v/7, and so ω(θ) =
xv

7
− y =

1
7

. Let g(x)

be the minimal polynomial of θ over Q. By the formula relating roots and coefficients of a monic

polynomial, we conclude that g(x) = x7 +
7

∑

i=1

(−1)isix
7−i, where si =

∑

k1<···<ki

θk1
· · ·θki

and θ1, . . . ,θ7

are the Qp-conjugates of θ. Since there is a unique valuation extending ν2 to any algebraic extension
of Q2, we conclude that ω(θi) = 1/7 for every i = 1, . . . , 7. Thus ν2(s7) = ω(θ1 · · ·θ7) = 7× 1/7 = 1
and ν2(si) ≥ i/7 for every i = 1, . . . , 6, which means that g(x) is a 2-Eisenstein polynomial. Hence 2
does not divide the index (ZK : Z[θ]). As 2 is the unique positive prime integer candidate to divide
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(Z[α] : Z[θ]), we conclude that for every prime integer p, p does not divide (ZK : Z[θ]), which means
that ZK = Z[θ].

5. Examples

Let F = x7 + ax + b ∈ Z[x] be a monic irreducible polynomial and K a number field generated by a
root α of F(x). In the following examples, we calculate the index of the field K. First based on Theorem
2.5, νp(i(K)) = 0 for every prime integer p ≥ 5. Thus we need only to calculate νp(i(K)) for p = 2, 3.

1. For a = 6 and b = 6, since F(x) is p-Eisenstein for every p = 2, 3, we conclude that F(x) is
irreducible over Q, 2 (resp. 3) does not divide (ZK : Z[α]). Thus 2 (resp. 3) does not divide i(K)),
and so i(K) = 1.

2. For a = 28 and b = 32, since F(x) is irreducible over F5, F(x) is irreducible over Q. By the first
item of Theorem 2.3, we have ν2(i(K)) = 1. By Theorem 2.4, ν3(i(K)) = 0. Thus i(K) = 2.

3. For a = 3 and b = 8, F(x) is irreducible over F5, F(x) is irreducible over Q. Again since
a ≡ 3 (mod 4) and b ≡ 0 (mod 8), by Theorem 2.3, ν2(i(K)) = 3. By Theorem 2.4, ν3(i(K)) = 0.
Thus i(K) = 8.

4. For a = −1 and b = 9, since F(x) is irreducible over F2, F(x) is irreducible over Q. Since 2ZK is a
prime ideal of ZK, ν2(i(K)) = 0. Also since a ≡ 8 (mod 9) and b ≡ 0 (mod 9), by Theorem 2.4,
ν3(i(K)) = 2. Thus i(K) = 9.

5. For a = 803 and b = 2112, since F(x) is irreducible over F5, F(x) is irreducible over Q. Since
a ≡ 3 (mod 4) and b ≡ 0 (mod 8), by Theorem 2.3, ν2(i(K)) = 3. Similarly since a ≡ 5 (mod 9)
and b ≡ 6 (mod 9), by Theorem 2.4, ν3(i(K)) = 1. Thus i(K) = 24.

6. For a = 35 and b = 72, since F(x) is irreducible over F11, F(x) is irreducible over Q. Since
a ≡ 3 (mod 4) and b ≡ 0 (mod 8), by Theorem 2.3, ν2(i(K)) = 3. Similarly since a ≡ 8 (mod 9)
and b ≡ 0 (mod 9), by Theorem 2.4, ν3(i(K)) = 2. Thus i(K) = 72.
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