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Abstract: In this paper for every number field K generated by a root a of a trinomial x” + ax + b € Z|[x]
and for every prime integer p, we calculate v, (i(K)), the highest power of p dividing the index i(K)
of the field K. In particular, we calculate the index i(K). As application, when the index of K is not
trivial, then K is not monogenic.
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1. Introduction

Let K be a number field of degree n, Zg its ring of integers, and dy its absolute discriminant.
It is well known that Zg is a free abelian group of rank n and by the fundamental theorem of
finite abelian groups, (Zg : Z[0]) is a finite group for every primitive element 6 € Zg of K. Let
ind(0) = (Zx : Z[0]). ind(0) is called the index of 6. The index of the number field K is defined by
i(K) = GCD((Zx : Z[0]) | K = Q(60) and 6 € Zg). A rational prime integer p dividing i(K) is called
a prime common index divisor of K. The number field K is called monogenic if it admits a Z basis
of type (1,0,...,0" 1) for some 0 € Zg. Remark that if Zx has a power integral basis, then i(K) = 1.
Therefore a field having a prime common index divisor is not monogenic. Monogenity of number
fields is a classical problem of algebraic number theory, going back to Dedekind, Hasse and Hensel,
see for instance [19,25,26] for the present state of this area. It is called a problem of Hasse to give an
arithmetic characterization of those number fields which are monogenic [23,25,26]. For any primitive
element 6 € Zg of K, it is well-known that

A(O)| = ind(0)? - |dk|

where A(0) is the discriminant of the minimal polynomial of 6 over Q [19].
Clearly, ind(0) = 1 for some primitive element 0 € Z of K if and only if (1,0,...,0"!) is a power
integral basis of Z.

The problem of testing the monogenity of number fields and constructing power integral bases
have been intensively studied during the last four decades mainly by Gaal, Gy¢ry, Nakahara, Pohst
and their collaborators (see for instance [1,16,32]). In 1871, Dedekind was the firstone who gave an
example of a number field with non trivial index, he considered the cubic field K generated by a
root of x* — x> — 2x — 8 and showed that the rational prime 2 splits completely in K ([5, § 5, page 30]).
According to a well known theorem of Dedekind ([24, Chapter I, Proposition 8.3]), if we suppose that K
is monogenic, then we would be able to find a cubic polynomial defining K, that splits completely into
distinct polynomials of degree 1 in F;[x]. Since there is only two distinct polynomials of degree 1 in
5 [x], this is impossible. In 1930, Engstrom was the first one who related the prime ideal factorization
and the index of a number field of degree less than 8 [13]. For any number field K of degree n < 7,
he showed that v, (i(K)) is explicitly determined by the factorization of pZg into powers of prime
ideals of K for every positive rational prime integer p < n. This motivated Narkiewicz to ask a very

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202309.0481.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2023 doi:10.20944/preprints202309.0481.v1

20f12

important question, stated as problem 22 in Narkiewicz’s book ([31, Problem 22]), which asks for
an explicit formula of the highest power v, (i(K)) for a given rational prime p dividing i(K). In [30],
Nakahara studied the index of non-cyclic but abelian biquadratic number fields. He showed that the
field index of such fields is in the set {1,2,3,4,6,12}. In [17] Gaél et al. characterized the field indices
of biquadratic number fields having Galois group V4 and they proved that i(K) € {1,2,3,4,6,12}.
Recently, many authors are interested on monogenity of number fields defined by trinomials. Davis
and Spearman [6] studied the index of quartic number fields K generated by a root of such a quartic
trinomial F(x) = x* + ax + b € Z[x]. They gave necessary and sufficient conditions on a and b so that
a prime p is a common index divisor of K for p = 2,3. Their method is based on the calculation of
the p-index form of K, using p-integral bases of K. El Fadil and Gaal [11] studied the index of quartic
number fields K generated by a root of a quadratic trinomial of the form F(x) = x* + ax® + b € Z[x].
They gave necessary and sufficient conditions on 2 and b so that a prime p is a common index
divisor of K for every prime integer p. In [15], for a sextic number field K defined by a trinomial
F(x) = x® +ax® 4 b € Z[x], Gaél studied the multi-monegenity of K; he calculated all possible power
integral bases of K. In [9], we extended Gadl’s studies by providing some cases where K is not
monogenic. Also in [10], for every prime integer p, we gave necessary and sufficient conditions on a
and b so that p is a common index divisor of K, where K is a number field defined by an irreducible
trinomial F(x) = x° 4 ax? + b € Z[x]. In [8], we provided some sufficient conditions which guarantee
that i(K) is not trivial, and so K is not mongenic. In this paper, for a septic number field generated by a
root of a trinomial F(x) = x” +ax + b € Z(x] and for every prime integer p, we calculate v, (i(K)), the
highest power of p dividing the index i(K) of the field K. Our method is based on Newton'’s polygon
techniques applied in prime ideal factorization, which is performed in [21,22] and in Montes” thesis
defended in 1999. The author is very thankful to Professor Enric Nart who provided him a copy of
Montes’ thesis.

2. Main Results

Throughout this section K is a number field generated by a root « of an irreducible trinomial
F(x) = x” +ax + b € Z[x] and we assume that for every rational prime integer p, v,(a) < 5 or v, (b) < 6.
a

Along this paper, for every integer a € Z and a prime integer p, leta, = @
pr

We start with the following theorem, which characterizes when is Z[a] integrally closed?

Theorem 2.1. The ring Z[a] is integrally closed if and only if every prime integer p satisfies one of these

conditions:
1. Ifpla and plb, then v, (b) = 1.
2. If p = 2, p divides b and does not a, then (a,b) € {(1,0), (3,2)} (mod 4).
3. If p =3, p divides b and a = —1 (mod 3), then (a,b) € {(2,0), (8,3),(8,6)} (mod 9).
4. If p =3, p divides band a = 1 (mod 3), then (a,b) # (1,0) (mod 9).
5. Ifp = 7, p divides a and does not divide b, then v7(1 —a —b°®) = 1.
6. Ifp ¢ 12,3, 7}, p does not divide both a and b, then v,(7b® + 6%a7) < 1.

The following example gives an infinite family of monogenic septic number fields defined by non
monogenic trinomials.

Proposition 2.2. Let K be the number field generated by a root a of F(x) = x” + 2"ax + 2°b € Z[x], with
u>v-1,2<v<6 GCD(6,b) = 1,7 does not divide a, and for every odd prime integer p, if p does not divide
b, then p? does not divide 77b° + 6°a”. Then F(x) is a non monogenic polynomial and K is a monogenic number
field.
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In the remainder of this section, for every prime integer p and for every values of a and b, we
calculate v, (i(K)). For every integers a and b, let A = —(6°2” + 7”b°) be the discriminant of F(x) and

for every prime integer p, let A, = a) .

Theorem 2.3. The following table provides the value of v, (i(K)).

conditions v2(i(K))
a = 28 (mod 32) and b = 0 (mod 32)
a =112 (mod 128) and b = 0 (mod 128)
a=1(mod 8)and b =2 (mod 4)
vp(A) even and Ay = 3 (mod 4)
a =3 (mod 8) and b =4 (mod 8)
a=3(mod4)and b =0 (mod 8)
(0,b) €((5,2),(5,6), (13,2), (13, 14)} (mod 16)
Otherwise

= =

Ol W[ |-

Theorem 2.4. The following table provides the value of v3(i(K)).

conditions v3(i(K))
a=5(mod9)andb € (3,6} (mod 9)

a=8(mod9)andb=0(mod?9)
a=2(mod9)andb € (3,6} (mod 9)
va3(A) =2kandk >5 1
a=2(mod9)andb € (3,6} (mod 9)
v3(Aa) =2k+1, k>5and A3 =1 (mod 3) 2
Otherwise 0

Theorem 2.5. For every prime integer p > 5 and for every integers a and b such that F(x) = x” +ax + b is
irreducible over Q, p does not divide i(K), where K is the number field defined by F(x).

Corollary 2.6. For every integers a and b such that F(x) = x” + ax + b is irreducible over Q, i(K) €
{1,2,3,6,8,9,18,24,72}.

Remark 1. 1. The field K can be non monogenic even if the index i(K) = 1.
2. The unique method which allows to test whether K is monogenic is to calculate the solutions of the index
form equation of the field K (see for instance [18,19]).

3. A short introduction to prime ideal factorization based on Newton polygons

In 1894, Hensel developed a powerful approach by showing that for every prime integer p, the
prime ideals of Zg lying above p are in one—one correspondence with monic irreducible factors of
F(x) in Qp[x]. For every prime ideal corresponding to any irreducible factor in Qp[x], the ramification
index and the residue degree together are the same as those of the local field defined by the associated
irreducible factor [28]. Since then, to factorize pZg, we need to factorize F(x) in Qp[x]. Newton’s
polygon techniques can be used to refine the factorization. This is a standard method which is rather
technical but very efficient to apply. We have introduced the corresponding concepts in several former
papers. Here we only give a brief introduction which makes our proofs understandable. For a detailed
description, we refer to Ore’s Paper [34] and Guardia, Montes and Nart’s paper [20]. For every prime
integer p, let v, be the p-adic valuation of Q, and Z, the ring of p-adic integers. Let F(x) € Zjy|[x]
be a monic polynomial and ¢ € Z,[x] a monic lift of an irreducible factor of m modulo p. Let
F(x) = ap(x) 4 a1(x)p(x) + - - + a,(x)p(x) be the ¢-expansion of F(x), N (F) the ¢-Newton polygon

do0i:10.20944/preprints202309.0481.v1
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of F(x) and N/ (F) its principal part. Let I, be the field Fy[x]/(¢). For every side S of N/ (F) with

¢ ¢
length I and initial point (s, us), for every i =0,...,1, letc; € ]Fq, be the residue coefficient, defined as
follows:
0, if (s + i, us1;) lies strictly above S,
ci = (“SPJ;;SSC)) mod (p, p(x)), if (s+1i,usy;) liesonS.

Let —A = —h/ebe the slope of S, where I and e are two positive coprime integers. Then d = [/e is the

degree of S. Let Ry (F)(y) = tay + ty1y"™ 4+ -+ hy+1y € Fy[y], called the residual polynomial of

F(x) associated to the side S, where for every i = 0, ...,d, t; = c;. If R1(F)(y) is square free for each

side of the polygon N(; (F), then we say that F(x) is ¢-regular.

r
Ty —li N . . . . .
Let F(x) = H ¢; be the factorization of F(x) into powers of monic irreducible coprime polynomials
i=1

over [y, we say that the polynomial F(x) is p-regular if F(x) is a ¢;-regular polynomial with respect to

pforeveryi=1,...,r. Let N;r_ (F) = Sit + - -- + Sjy, be the ¢;-principal Newton polygon of F(x) with
Si]'

respect to p. For every j =1,...,7;, let Ry (F)(y) = H gb?]lf (y) be the factorization of Ry, (F)(y) in
s=1

F,[yl, where Ry, (F)(y) is the residual polynomial of F(x) attached to the side S;;. Then we have the
following theorem of index of Ore:

Theorem 3.1. ([12, Theorems 1.7 and 1.9])
Under the above hypothesis, we have the following:

1.

The equality holds if F(x) is p-regular.
2. IfF(x) is p-regular, then

i=1 j=1s=1

~

is the factorization of pZg into powers of prime ideals of Z, where e;; is the smallest positive integer
satisfying e;jAi; € Z and the residue degree of p;js over p is given by fijs = deg(¢;) x deg(1;js) for every
(i,],s).

The Dedekind criterion can be reformulated as follows:

Theorem 3.2. ([7, Theorem 1.1])
Under the above hypothesis, let R;(x) be the remainder of the Euclidean division of F(x) by ¢i(x). Then
vp((Zk : Z[a])) = 0 ifand only if I; = 1 or vy(R;(x)) = 1 forevery i =1,...,r.

When the theorem of Ore fails, that is F(x) is not p-regular, then in order to complete the
factorization of F(x), Guardia, Montes, and Nart introduced the notion of high order Newton polygon. By
analogous to the first order, for each order r, the authors of [20] introduced the valuation w; of order r,
the key polynomial ¢, (x) of such a valuation, N, (F) the Newton polygon of any polynomial F(x) with
respect to wy and ¢, (x), and for every side of N,(F) the residual polynomial R,(F), and the index of
F(x) in order r. For more details, we refer to [20].
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4. Proofs of our main results

Proof of Theorem 2.1.

1. If p divides a and b, then by Theorem 3.2, p does not divide (Zx : Z[a]) if and only if v, (b) = 1.

2. For p = 2, 2 divides b and does not 4, we have F(x) = x(x—1)2(x> + x + 1) Let ¢ =x-1
and ¢ = ¥* + x + 1. Since F(x) = -+ — (4x—2)Ppp + (a+ 1)x +band F(x) = -+ (a + 7)1 +
(a4+1+70), by Theorem 3.2, 2 does not divide (Zk : Z[a]) if and only if vo(b+a+1) = 1 and
va((a+1)x+0b) =1, whichmeansb =1-a (mod 4) anda =1 (mod 4) or b = 2 (mod 4). That is
(a,b) €{(1,0),(3,2)} (mod 4).

3. For p = 3, 3 divides b and a = 1 (mod 3), we have F(x) = x(x® +1)°. Let ¢ = x* 4 1. Since
F(x) = x¢° - 3x¢? + 3x¢ + (a — 1)x + b, by Theorem 3.2, 3 does not divide (Zg : Z[a]) if
and only if v3((a — 1)x +b) = 1, which means thata # 1 (mod 9) or b # 0 (mod 9). That is
(a,b) # (1,0) (mod 9). L

4. For p = 3,3 divides b and a = —1 (mod 3), we have F(x) = x(x—1)3(x + 1)%. Let ¢y = x—1
and ¢ = x + 1. Since F(x) = ¢7 + 7¢$ + 217 + 35¢7 + 35¢° + 21¢3 + (a+ 7)1 + (a+1+b)
and F(x) = ¢7 — 765 + 21¢5 — 35¢; + 35¢3 — 21¢5 + (a + 7)o + (b —a — 1), by Theorem 3.2,
3 does not divide (Zg : Z[a]) if and only if vo(a+1+b) = 1 and v3(b—-a—1) = 1. Thatis
(a,b) €{(2,0),(8,3),(8,6)} (mod 9).

5. For p = 7, if 7 divides a and 7 does not divide b, then F(x) = (x+b)”. Let ¢ = x +b. Then
F(x) = ¢7 = 7b¢® + 216%¢° — 35b°¢p* + 356*¢° — 216°¢? + (a + 7b°)¢p + (b —ab — b7 ), by Theorem
3.2, 7 does not divide (Zx : Z[a]) if and only if v;(1 —a —b°) = 1.

6. For p ¢ {2,3,7} such that p does not divide both a and b, if pz does not divide 62’ + 771°, then
by the formula A = (Zg : Z[a])?dx, p does not divide (Z : Z[a]). If p* divides 6°a” + 77b°, then
let t be an integer such that 6at = —~7b (mod p?). Then (6a)°F’(t) = 7(~7b)® + 6°” = 0 (mod p?)
and (6a)”F(t) = 0 (mod p?). Thus (x — t)? divides F(x) in Fp[x]. As F(t) is the remainder of the
Euclidean division of F(x) by x — t, by Theorem 3.2, p divides the index (Zg : Z[a]).

For the proofs of Theorems 2.3 and 2.4, we need the following lemma, which characterizes the
prime common index divisors of K.

Lemma 4.1. Let p be a rational prime integer and K be a number field. For every positive integer f, let P be
the number of distinct prime ideals of Zy lying above p with residue degree f and Ny the number of monic
irreducible polynomials of ¥y [x] of degree f. Then p is a prime common index divisor of K if and only if Pr > Ny
for some positive integer f.

Proof of Theorem 2.3.
By virtue of Engstrom’s results [14], the proof is done if we provide the factorization of 2Zg into
powers of prime ideals of Zg. Based on Theorem 2.1, we deal with the cases: 2|z and 4|b or
(a,b) €{(1,2),(3,0)} (mod 4).

1. If 2 divides a and 4 divides b, then for ¢ = x, we have F(x) = ¢’ in Fy[x].

(a) If Ny (F) = S has a single side, that is v2(a) > v2(b), then the side S is of degree 1. Thus there

is a unique prime ideal of Zg lying above 2.
(b) If Ny (F) = S1 + S has two sides joining (0,v2(b)), (1,v2(a)), and (7,0), thatis vp(a) +1 <

va(b), then S; is of degree 1, and so it provides a unique prime ideal of Zg lying above 2
with residue degree 1. Let d be the degree of S5.

i. Ifvy(a) ¢ {2,3,4}, then S; is of degree 1, and so there are exactly two prime ideals of Zg
lying above 2 with residue degree 1 each.
ii. If vo(a) = 2, then the slope of S, is 5 and R;(F)(y) = (y+ 1) is the residual

polynomial of F(x) attached to Sy. Thus we have to use second order Newton polygon
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techniques. Let wy be the valuation of second order Newton polygon; defined by
n

w2(P(x)) = min{3vy(p;) +ih,8 = 0,...,n} for every non-zero polynomial P = Z pix'.
Let ¢ be the key polynomial of w; and let N (F) the ¢-Newton polygon of F (ch) Owi’ch
respect to the valuation wy. It follows that:

If v (b) = 3, then for ¢p = x° + 2x + 2, we have F(x) = x5 + (4 — 4x — 4x%)pp + 8x* +
(a—4)x + b—8. It follows that if vo(a —4) = 3, then N, (F) = T has a single side joining
(0,10) and (2,7). Thus T is of degree 1, and so S, provides a unique prime ideal of
Zg lying above 2. If vo(a—4) > 4 and v, (b — 8) > 4, then N»(F) = T has a single side
joining (0,11), (1,9) and (2,7), with Ry (F)(y) = y* 4+ y + 1, which is irreducible over
F, = Fyp. Thus S, provides a unique prime ideal of Zk lying above 2 with residue
degree 2. Hence 2 is not a common index divisor of K.

If v(b) > 4 and v(a +4) = 3, then for ¢ = x° + 2, we have F(x) = x¢3 — 4x¢p + (a +
4)x + b is the ¢-expansion of F(x), and so N»(F) = T has a single side joining (0, 10)
and (2,7). In this case the side T is of degree 1 and S, provides a unique prime ideal of
Zy lying above 2. If vp(b) = 4 and vy (a + 4) > 4, then for ¢ = x> +2, Ny(F) = Thas a
single side joining (0,12) and (2,7). Thus T is of degree 1, and so S, provides a unique
prime ideal of Zk lying above 2.

If v2(b) > 5and vp(a +4) = 4, then for ¢, = x> +2, we have F(x) = x¢3 — 4x¢p + (a +
4)x + b is the ¢p-expansion of F(x) and N, (F) = T has a single side joining (0, 13), (1,10)
and (2,7). So T is of degree 2 with attached residual polynomial Ry(F) = y* +y +1
irreducible over F, = IFy. Thus S, provides a unique prime ideal of Zk lying above 2
with residue degree 2.

If vo(b) = 5 and vo(a +4) > 5, then for ¢ = x> +2, Ny(F) = T; + T has two sides
joining (0,v), (1,10) and (2,7) with v > 15. So each T; has degree 1, and so S, provides
two prime ideals of Zg lying above 2 with residue degree 1 each. As S; provides a
prime ideal of Zg lying above 2 with residue degree 1, we conclude that there are three
prime ideals of Zg lying above 2 with residue degree 1 each, and so 2 is a common index
divisor of K. In this last case, 2Zg = P111 p‘;’ﬂ pi’m with residue degree 1 each prime ideal

factor. Based on Enghtrom s result we c03nclude that v, (i(K)) =
iii. For v(a) = 3, we have Ry (F =yv+1=(y + v+ 1)(y+ 1) is the residual

polynomial of F(x) attached to Tl. Thus T; provides a unique prime ideal of Zg lying
above 2, with residue degree 1 and a unique prime ideal of Zg lying above 2 with

_ residue degree 2. Thus v, fz(K)) 0. _ , )
iv. The case vy(a) = 4 is similar to'the case vo(a) = 2. In this case v;(i(K)) > 1if and only

ifvo(b) =7 and vo(a+16) = 7. In this case, 2Zg = p111 p?m p%l with residue degree 1
each factor. Based on Engstrom’s result, we conclude that v, (i(K)) = 1.

2. (a,b) € {(1,2),(3,0)} (mod 4). In this case F(x) = x(x —1)%(x> + x4+ 1)> modulo 2. Let ¢ = x—1,
gx) =22 +x+1,F(x) =--=21¢* + (7+a)p+ (b+a+1),and F(x) = (x—3)g> + (5+3x)g* -
(4x +2)g + (a+ 1)x + b. Since x provides a unique prime ideal of Zg lying above 2, we conclude
that 2 is a common index divisor of K if and only if ¢ provides two prime ideals of Zg lying
above 2 of degree 1 each or ¢ provides a unique prime ideal of Zg lying above 2 of degree 2 and
g provides at least one prime ideal of Zg lying above 2 of degree 2 or also g provides two prime
ideals of Zg lying above 2 of degree 2 each. That is if and only if one of the following conditions
holds:

(@) Ifa =1 (mod 4) and b = 2 (mod 4), then v,(A) > 7 and N; (F) has a single side of height
1, and so g provides a unique prime ideal p3;; of Zg lying above 2 with residue degree 2.

—7b
For N$(P), letu = 72. Then u € Zy. Let F(x +u) = x” + -+ + 21u°x* + Ax + B, where

-A b
andB=u’4+au+b= 22 Tt follows that 2 (A) = v2(B) =12(a) -6,

_ 7,6 _
A=7u +u—66a6 77

do0i:10.20944/preprints202309.0481.v1
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and so N;)“ (F) = S1 has a single side joining (0,v2(A) —6) and (2,0). Thus, if v2(A) is
odd, then ¢ provides a unique prime ideal py11 of Zg lying above 2 with residue degree
1. If vp(a) = 2(k+3) for some positive integer k, then let F(x +u +2¢) = x/ +--- +
21(u + 26)°x% + Ajx + By, where Ay = 7u® +a +3- 2815 122D = A 4-3. 2815 4 2% D

A
and By = B+ A -2k + 2% 2145 4+ 2%k = 22"(?7—3 +21u°) 4 2%H for some D € Z, and
a

H € Z,. Thus, B = 22k(3 ca-byry+3-a-by) + 22437, for some L € Zy. Hence if k > 2, then
v2(A1) = k+1and vo(Bq) > 2k + 1. More precisely, if Ay = 1 (mod 4), then v2(By) = 2k +1,
and so ¢ provides a unique prime ideal py11 of Zk lying above 2 with residue degree 1. If
Ay =3 (mod 4), then v2(B1) > 2k + 2. It follows that if v (B1) = 2k + 2, and so ¢ provides a
unique prime ideal py11 of Zg lying above 2 with residue degree 2. If vo(B1) > 2k + 3, then
v2(B1) > 2k + 3, and so ¢ provides two prime ideals of Zg lying above 2 with residue degree
1 each. In these last two cases, we have 2 divides i(K) and v, (i(K)) = 1.

Fork =1, we have 15(A) = 8 and a = 5 (mod 8). In this case F(x) = x(x = 1)2(x% + x + 1)?
modulo 2. Let¢ = x—1,g(x) = x* +x+1, F(x) = -~ =21¢* + (7 +a)p + (b+a+ 1),
and F(x) = (x—3)¢%>+ (5 +3x)g* — (4x +2)g + (a4 1)x + b. Since x provides a unique
prime ideal of of Zk lying above 2 with residue degree 1 and g provides a unique prime
ideal of of Zg lying above 2 with residue degree 2, we conclude that v, (i(K)) > 1 if and
only if ¢ provides a unique prime ideal of of Zg lying above 2 with residue degree 2 or
¢ provides two distinct prime ideals of of Zg lying above 2 with residue degree 1 each.
If (a,b) € {(5,10),(13,2)} (mod 16), then ¢ provides a unique prime ideal of Zg lying
above 2 with residue degree 2 and so v, (i(K)) = 1. If (a,b) € {(5,10), (13,10)} (mod 16),
then ¢ provides a unique prime ideal of Zg lying above 2 with residue degree 1 and
so 12 (i(K)) = 0. For (a,b) € {(5,6),(5,14), (13,6), (13,14)} (mod 16), let us replace ¢ by
¢’ = x — 3 and consider the ¢’-Newton polygon of F(x) with respect to v;. It follows that
If (a,b) €{(5,6),(13,14)} (mod 16), then ¢’ provides two prime ideals of Zg lying above 2
with residue degree 1 each and so v»(i(K)) = 1. If (a,b) € {(5,14), (13,6)} (mod 16), then ¢’
provides a unique prime ideal of Zg lying above 2 with residue degree 1 and so v, (i(K)) = 0.

(b) a=3(mod 4) and b =—(a+ 1) (mod 8) because N (F) has two sides.

(c) Ifa = 3 (mod 8) and b = 0 (mod 8), then ¢ provides a unique prime ideal of Zg lying above
2 with residue degree 2 and g provides two prime ideals of Zk lying above 2 with residue
degree 2 each because N;(F) has a single side of degree 2 with (1 +x)y* +y+x = (x +
1)(y —1)(y — x) its attached residual polynomial of F(x). In this case 2Zg = p111P211P311P312

with residue degrees fi11 = 1 and f11 = f311 = f312 = 2, and so v, (i(K)) = 3.
(d) a =7 (mod 8) and b = 0 (mod 8). In this case ¢ provides a unique prime ideal of Zg

lying above 2 with residue degree 2 and Ng,r (F) has two sides. More precisely, 2Zg =
P111P211P311 P321 with residue degrees fi11 = 1and fo11 = f311 = f312 = 2, and so v2 (i(K)) =

3.
(e) Ifa=5(mod8)and b =—(a+1) (mod 16) because if b = —(a + 1) (mod 32), then N;: (F)
has two sides and if b = —(a + 1) + 16 (mod 32), then N (F) has a single side of degree 2,

¢
which provides a single prime ideal of Zg lying above 2 with residue degree 2 and N; (F)

has a single side of degree 1. Thus there are 2 prime ideals of Zg lying above 2 with residue

degree 2 each.
() fa=5(mod8)and va(b+ (a+1)) =2, thenvo(b—(a+1)) 23. Ifvp(b—(a+1)) =3,

then for ¢ = x + 1, we have N(; (F) has a single side of degree 1. Since v3(a + 1) = 1, then
Ny (F) has a single side of height 1. Thus there are two prime ideals of Zg lying above 2
with residue degree 1 each and one prime ideal with residue degree 2. If vo(b— (a+1)) =4,
then for ¢ = x + 1, we have N(}f (F) has a single side of degree 2 and its attached residual

polynomial of F is Ry (F)(y) = y* + y + 1. Since b = 6 (mod 8), we conclude that Ng,r (F) has

a single side of degree 1, then there are 2 prime ideals of Zg lying above 2 with residue
degree 2 each, and so 2 divides i(K). If vo(b— (a+1)) > 5, then for ¢ = x + 1, we have
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N(‘; (F) has two sides of degree 1 each, and so there are 3 prime ideals of Zk lying above 2

with residue degree 1 each, and so 2 divides i(K).
Proof of Theorem 2.4.
By virtue of Engstrom’s results [14], the proof is done if we provide the factorization of 3Zg into powers
of prime ideals of Zg. Based on Theorem 2.1, we deal with the cases:

1. 3|a and 9b.
2. (a,b) ¢ {(2,0),(8,3), (8,6)} (mod 9).
3. (a,b) = (1,0) (mod 9).

1. 3|z and 9|b, then for ¢ = x, F(x) = ¢’ in F3[x]. It follows that:

(a) Ifvz(a) > v3(b), then Ny (F) has a single side of degree 1, and so there is a unique prime

ideal of Zg lying above 3.
(b) If v3(a) +1 < v3(b), then Ny (F) = S1 + S7 has two sides joining (0,v3(b)), (1,v3(a)), and

(7,0). Since S; is of degree 1, S; provides a unique prime ideal of Zk lying above 3 with
residue degree 1. Thus v3(i(K)) > 1 if and only if S, provides at least three prime ideals
of Zk lying above 3, with residue degree 1 each. If v3(a) ¢ {2,3,4}, then S; is of degree
1, and so S, provides exactly one prime ideal of Zg lying above 3, with residue degree 1
each. If v3(a) € {2,4}, then S, is of degree 2, and so S, provides at most two prime ideal of
Zx lying above 3. Hence 3 is not a common index divisor of K. If v3(a) = 3, then S; is of
degree 3 and its attached residual polynomial of F(x) is Ry (F)(y) = y° +a3 = (y +a3)>. So,
we have to use second order Newton polygon. Let w; be the valuation of second order
Newton polygon. w; is defined by wy(P) = min{2v3(p;) +1i, i = 0,...,n} for every non zero
n

polynomial p = z pix’ of Q3[x]. Let ¢p = x* + 3a3 be a key polynomial of w, and N (F)

the ¢o-Newton ploloygon of F(x) with respect to w». It follows that: If a3 = 1 (mod 3), then
for ¢ = x* + 3, we have F(x) = x¢3 — 9x3 + 27x¢, + (a — 27)x + b is the ¢»-expansion of
F(x). We have the following cases:
i. If v3(b) = 4, then N»(F) = T has a single side joining (0,8) and (3,7). Thus T is of
degree 1 and S, provides a unique prime ideal of Zk lying above 3 with residue degree

1.
ii. Ifv3(b) = 5and v3(a —27) = 4, then N»(F) = T has a single side joining (0,9) and (3,7).
Thus T is of degree 1 and S, provides a unique prime ideal of Zg lying above 3 with

residue degree 1.
iii. If v3(b) =5 and v3(a —27) > 5, then N»(F) = T has a single side joining (0,10) and

(3,7) and its attached residual polynomial of F is Ry(F)(y) = xy° + xy + b3, which is
irreducible over F, = F,, because ¢ is of degree 1. Thus S; provides a unique prime

ideal of Zg lying above 3 with residue degree 3.
iv. If v3(b) > 6 and'v3(a —27) > 5, then Np(F) = Ty + T has two sides joining (0,v), (2,9)

and (3,7) with v > 11. Thus Ty is of degree 1, T, of degree 2 and R, (F)(y) = xy* + x is
its attached residual polynomial of F(x), which is irreducible over F, = Fy. Thus S;
provides a unique prime ideal of Zk lying above 3, with residue degree 1 and a unique
prime ideal of Zk lying above 3 with residue degree 2.
Similarly, for a3 = —1 (mod 3), let ¢» = x> — 3. Then F(x) = x¢; + 9x¢3 + 27x¢h + (a +
27)x + b is the ¢y-expansion of F(x). By analogous to the case a3 = 1 (mod 3), in every
case 3 does not divide i(K). If 2 = 1 (mod 3), then F(x) = x(x*> + 1) in F3[x]. So, there are
exactly a unique prime ideal of Zg lying above 3 with residue degree 1 and the other prime
ideals of Zg lying above 3 are of residue degrees at least 2 each prime ideal factor. Hence

v3(i(K)) = 0. _ ‘
(c) If a = =1 (mod 3), then F(x) = x(x—1)°(x +1)% in F3[x]. Letp; = x—1, ¢ = x +1,

F(x) = ¢7 + 7¢S + 21¢3 + 3547 + 35¢° + 21¢2 + (7 +a)p1 + (b +a+ 1), and F(x) =
P5 =75 + 21¢p3 — 35¢5 + 3503 — 213 + (7 +a)z + (b— (a+1)). It follows that:
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i. Ifa=8(mod9)and b =0 (mod9), thenvz(b+ (1+a)) >2and v3(b-(1+a)) > 2.
Thus x a provides a unique prime ideal of Zg lying above 3 with residue degree 1, and
each ¢; provides two prime ideals of Zg lying above 3 with residue degree 1 each prime

ideal factor. In this two cases v3 é gK)) =2.
ii. fa=5(mod9)and b =3 (modY), thenvz(b+ (1+a)) 22and v3(b—-(1+a)) = 1.

Thus each of x and ¢, provides a unique prime ideal of Zg lying above 3 with residue
degree 1, and ¢ provides two prime ideals of Zg lying above 3 with residue degree
1 each. Similarly, if 2 = 5 (mod 9) and b = 6 (mod 9), then v3(b— (1+4a)) > 2 and
v3(b+ (14a)) = 1. Thus each of x and ¢; provides a unique prime ideal of Zg lying
above 3 with residue degree 1, ¢, provides two prime ideals of Zg lying above 3 with

. residue degree 1 each. In these two cases v &1
iii. fa=2(@mod9)andb = (1+a)+9 (mod 273 t enNJr

and (3,0) and N(’T)F (F) has a single side joining (0, 1) and (3,0). Thus there are 3 prime

ideals of Z lying above 3 w1th residue degree 1 each, and so v
iv. Similarly, ita’= Z(mod 9) and b = —(1 + a§+ 9 (mod 27), then 3|1ere are 3 prime ideals

of Zg lying above 3 with residue degree 1 each, and so 13(i(K)) = 0.
v. Ifa =2(mod 9) andv3(b) = 1,thenvs(a) > 8. Letu = . Thenu € Z3. Letp = x—u

) has a single side joining (0, 2)

-A
and F(x +u) = x4 -+ +35u*x® 4 21u°x® + Ax + B, whereA =7ub +a = o0 and

B=u"+au+b= 6b_ It follows that v3(A) = v3(B) = v3(A) — 6, and so N(;( ) =51

has a single side joining (0,v3(A) —6) and (3,0). Remark that since v3(b) = 1 and
v3(B) > 2, v3(-u” —au +b) = 1, and so (x + u) provides a unique prime ideal of Zg
lying above 3 with residue degree 1. Thus v3(i(K)) > 1 if and only if ¢ provides at least
two prime ideals of Zk lying above 3 with residue degree 1 each prime ideal factor.

A. Ifvs(a) = 8, then N(; (F) has a single side of degree one, and so ¢ provides a unique

}Jrnne ideal of Z lying above 3 with residue degree 1.

f v3(A) = 9, then o (F) = S has a single side joining (0,3) and (3,0) with

Ri(F)(y) = —u*y® + u’y* + Bj its attached residual polynomial of F(x). Since

a=-1(mod3)and B = 67_A7' we have u = —b3 (mod 3) and B3 = b3A3 (mod 3).
a

Thus Ry (F)(y) = —y° — b3y* + b3as. Since Ry (F)(y) is square free and Ry (F)(0) # 0,

then Ry (F)(y) has at most one root in F,. Thus S provides at most a unique prime

ideal of Zg lying above 3 with residue de%ree 1. Therefore, v3(i (K)g =0.
C. If v3(A) > 10, then N¢> (F) = 51+ S2 has two sides joining (0,9 —6) and (3,1). It

follows that Since S, is of degree 1, it provides a unique prime ideal of Zg lying
above 3 with residue degree 1. Moreover, if v3(A) is even then Sy is of degree 1, and
so ¢ provides two prime ideals of Zg lying above 3 with residue degree 1 each. In
this case v3(i(K)) = 1. If v3(a) = 2(k + 3) + 1, then Sy is of degree 2 with residual
polynomial Ry (F)(y) = uy? + b3As. Since a = —1 (mod 3), we have 2a = 1 (mod 3)
and u = —b3 (mod 3). Thus Ry (F)(y) = —b3(y* — a3). It follows that if (%) =1,
then R (F)(y) has two different factors of degree 1 each, and so S; provides two
prime ideals of Zg lying above 3 with residue degree 1 each. In this case there
are exactly five prime ideals of Zk lying above 3 with residue degree 1 each and
according to Engstrom’s results v3(i(K)) = 2. But if (%) = -1, then Ry (F)(y) is
irreducible over Fy, = 3, and so S; provides a unique prime ideal of Zk lying
above 3 with residue degree 2. In this last case there are exactly three prime ideals
of Zg lying above 3 with residue degree 1 each, and so v3(i(K)) = 0.

Proof of Theorem 2.5.
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We start by showing that 5 does not divide i(K) for every integers of a and b such that x” 4 ax + b
is irreducible. By virtue of Engstrom’s results [14], the proof is done if we provide the factorization of
5Zx into powers of prime ideals of Zg. By by the index formula A = (Zg : Z[a])?dk, if 5> does not
divide A, then v5(i(K)) = 0. So, we assume that 5% divides A.

1. So, 6%” +77b° = 0 (mod 5). Since a° = a (mod 5) and b® = b (mod 5), then a® = 2b* (mod 5),
which means (a,b) € {(0,0), (3,1),(2,2),(2,3), (3,4)} (mod 5). In order to show that v5(i(K)) = 0
it suffices to show that for every value (a,b) € Z? such that x” 4 ax + b is irreducible and
(a,b) €{(0,0),(2,1),(3,2),(3,3), (2,34} (mod 5) there are at most four prime ideals of Zg lying
above 5 with residue degree 1, where K is the number field generated by a complex root of
X dax+b.

(a) For (a,b) = (0,0) (mod 5), if v5(a) > v5(b), then Ny(F) = S has a single side and it is of
degree 1. Thus there is a unique prime ideal p of Zg lying above 5 with residue degree 1.
More precisely 5Zg = p’.

Ifvs(a) +1 < vs5(b), then Ny (F) = Sy + Sy has two sides. More precisely, Sy is of degree 1.
Let d be degree of Sy. Since 6 is the length of Sy, then d € {1,2,3}. Thus S; provides a unique
prime ideal p of Zg lying above 5 with residue degree 1 and S, provides at most three prime

ideals p of Zg lying above 5 with residue degree 1 each.
(b) For (a,b) = (3,1) (mod 5), since F(x) = (x +4)%(x +3) (x* +4x% + x* + x 4+ 2) in F5[x], there

are at most three prime ideals p of Zx lymg above 5 w1th residue degree 1 each.

(c) For (a,b) = (2,2) (mod 5), since F(x) = (x* 4+ 2x> + 40 + 2x +2)(x + 4) (x +2)? in F5]x],
there are at most three prrme ideals p of Zg lying above 5 with res1due degree 1 each.

(d) For (a,b) = (2,3) (mod 5), since F(x) = (x4 1)(x + 3)%(x* 4 3x% 4 4x% + 3x +2) in Fs[x],
there are at most three prime ideals p of ZK lymg above 5 with re51due degree 1 each.

(e) For (a,b) = (3,4) (mod 5), since F(x) = (x* +x% +x% + 4x +2)(x + 1)%(x 4 2) in F5[x], there
are at most three prime ideals p of Zk lying above 5 with residue degree 1 each.

We conclude that in all cases v5(i(K)) = 0.

For p > 7, since the field K is of degree 7, there are at most 7 prime ideals of Zg lying above p. The fact
that there at least p > 7 monic irreducible polynomial of degree f in [F,[x] for every positive integer
f €{1,2,3}, we conclude that p does not divide i(K).

Proof of Proposition 2.2.

First according to Theorem 2.1 and the hypotheses of Example 2.2, 2 is the unique prime integer
candidate to divide ind(x). Let ¢ = x. Then F(x) = ¢ in F[x] and Ng(F) = S has a single side of
degree GCD(7,v) = 1. Thus F(x) is irreducible over Q,. Let K be the number field generated by
a root a of F(x). Since F(x) is irreducible over Q, there is a unique valuation w of K extending v;.

By Theorem 3.1, we have vo(Zk : Z[a]) > indy(F) 2 1, and so F(x) is not a monogenic polynomial.
x
Let 0 = where (x, y) is the unique solution of integers of the Diophantine equation vx -7y = 1

and 0 < x < 6. Then O € K. Since v and 7 are coprime, we conclude that K = Q(6). Let us show
that Zx = Z[6], and so K is monogenic. By [13, Corollary 3.1.4], in order to show that 6 € Zg, we

need to show that w(0) > 0, where w is the unique valuation of K extending v>. Since Ny(F) = S

1
has a single side of slope —v/7, we conclude that w(a) = v/7, and so w(0) = g —y= Let g(x)

be the minimal polynomial of 6 over Q. By the formula relating roots and coefficients of a monic

polynomial, we conclude that g(x) = =x"+ Z isix”~! where s; = Z Ok, -+ O, and 04, ..., 07
k]<'“<ki

are the Q,-conjugates of 6. Since there is a uruque valuation extending v, to any algebraic extension

of Qz, we conclude that w(6;) = 1/7 foreveryi=1,...,7. Thus va(sy) = w(01---07) =7x1/7 =1

and v, (s;) = i/7 for everyi=1,...,6, which means that g(x) is a 2-Eisenstein polynomial. Hence 2

does not divide the index (Zg : Z[0]). As 2 is the unique positive prime integer candidate to divide
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(Z[a] : Z[6]), we conclude that for every prime integer p, p does not divide (Zg : Z[6]), which means
that Zg = Z[Q]

5. Examples

Let F = x” + ax + b € Z[x] be a monic irreducible polynomial and K a number field generated by a
root a of F(x). In the following examples, we calculate the index of the field K. First based on Theorem
2.5,v,(i(K)) = 0 for every prime integer p > 5. Thus we need only to calculate v, (i(K)) for p = 2,3.

1. Fora = 6 and b = 6, since F(x) is p-Eisenstein for every p = 2,3, we conclude that F(x) is
irreducible over Q, 2 (resp. 3) does not divide (Zg : Z[a]). Thus 2 (resp. 3) does not divide i(K)),
and so i(K) = 1. .

2. Fora = 28 and b = 32, since F(x) is irreducible over F5, F(x) is irreducible over Q. By the first
item of Theorem 2.3, we have v, (i(K)) = 1. By Theorem 2.4, v3(i(K)) = 0. Thus i(K) = 2.

3. Fora =3and b = §, m is irreducible over F5, F(x) is irreducible over Q. Again since
a =3 (mod4) and b = 0 (mod 8), by Theorem 2.3, v5(i(K)) = 3. By Theorem 2.4, v3(i(K)) = 0.
Thus i(K) = 8. _

4. Fora = —1and b = 9, since F(x) is irreducible over Fy, F(x) is irreducible over Q. Since 2Z is a
prime ideal of Zg, v2(i(K)) = 0. Also since a = 8 (mod 9) and b = 0 (mod 9), by Theorem 2.4,
v3(i(K)) = 2. Thus i(K) = 9. .

5. For a = 803 and b = 2112, since F(x) is irreducible over F5, F(x) is irreducible over Q. Since
a =3 (mod4) and b = 0 (mod 8), by Theorem 2.3, v,(i(K)) = 3. Similarly since a = 5 (mod 9)
and b = 6 (mod 9), by Theorem 2.4, v3(i(K)) = 1. Thus i(K) = 24.

6. For a = 35 and b = 72, since F(x) is irreducible over Fq1, F(x) is irreducible over Q. Since
a =3 (mod4) and b = 0 (mod 8), by Theorem 2.3, v (i(K)) = 3. Similarly since 2 = 8 (mod 9)
and b = 0 (mod 9), by Theorem 2.4, v3(i(K)) = 2. Thus i(K) = 72.
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