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Article 
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Abstract: Carbon accumulation and structural development are key indicators of the progress of 
forest-ecosystem restoration. However manual techniques of measuring them are time-consuming, 
labor-intensive and costly. Therefore, we tested four instrument-based metrics, as potential 
alternatives to conventional measurements, in a control site (non-restored), reference forest and 1½- 
and 11½-year-old forest undergoing restoration by the framework species method (FSM). Vegetation 
area index (VAI) from terrestrial LiDAR, leaf area index (LAI) from a plant canopy analyser, and 
canopy cover from hemispherical photography (CC_HP) and a densiometer (CC_D), clearly 
distinguished among the control site and 1½- and 11½-year-old-restoration (<0.05) (except for CC_HP 
in the control plot). They correlated well (R=0.58-0.80) with manual metrics (tree stocking density 
(TSD), basal area (BA) and above-ground carbon (AGC)), although the correlations weakened, with 
increasing structural development. However, the instrument-based metrics failed to reflect a 
doubling in AGC between 11½-year-old restoration and the reference forest, by under-estimating 
increases in structural development beyond canopy closure. CC_D is recommended for monitoring 
structural development, during early forest restoration, due to its cost-effectiveness, ease of use and 
minimal disturbance of the forest understory. After canopy closure, AGC remains the most useful 
metric to gauge how closely restoration achieves reference-forest conditions. After 11½ years of 
implementing the FSM, AGC had reached 49% (65.9 tC/ha, ±SD 30.44) of the reference forest level (137.4 
tC/ha, ±SD 83.19).      

Keywords: Forest landscape restoration; Forest monitoring; Forest carbon; Forest structure; 
Structural metrics; Forest differentiation 
 

1. Introduction 

Throughout the tropics, efforts to restore forest ecosystems on degraded land are intensifying, 
as billions of trees are planted to combat biodiversity loss and to meet the ambitious targets of global 
and regional initiatives to tackle climate change [1,2]. As evidence accumulates that restoring tropical 
forest ecosystems sequesters carbon more rapidly than other land-use-change (LUC) solutions to 
climate change [3,4], the need for more efficient and less intrusive monitoring, to verify such results, 
grows.  

Forest restoration usually combines assisted natural regeneration [5] with tree planting, to 
recover ecosystem biomass, structural complexity, biodiversity and ecological functionality close to 
pre-disturbance levels. Both planted and naturally regenerating trees are subject to intensive 
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maintenance (weeding and fertilizer application) over the first two years, to initiate canopy closure, 
after which, the ecosystem ideally becomes self-sustaining [6]. Progress towards achieving these 
goals requires frequent and accurate monitoring, so that restoration methods, including species 
selection and maintenance regimes, can be adjusted for optimum results. 

Monitoring is conventionally performed by measuring tree heights (with a pole or clinometer) 
and tree girth at breast height (with tape measures). When combined with species-specific wood-
density data (usually obtained from online databases [7]), such ground-based measurements can be 
used to estimate above-ground tree carbon (AGC), using allometric equations [8–10]. In northern 
Thailand, Pothong et al. developed such equations, specifically for the forest trees of the region [11]. 

Such field measurements are labor-intensive, often involving large teams of people, who can 
inadvertently trample young tree seedlings, which could impede the forest’s future carbon-
absorption capacity. Furthermore, these measurements are rooted in traditional production-forestry 
practices; they do not directly assess those tree components responsible for carbon absorption into 
the ecosystem via photosynthesis, i.e., the leaves and their arrangement in tree crowns. To anticipate 
future carbon-storage potential of forests undergoing restoration, it therefore makes sense to include 
forest-canopy metrics, as they are likely to be related to a forest’s subsequent photosynthetic capacity. 
Canopy cover (CC) is one such metric; the proportion of forest floor that is covered by the 
amalgamation of tree crowns, which form the forest canopy [12,13]. 

Therefore, in this paper, we compare conventional manual tree measurements with four 
instrument-based methods, which focus on various forest-canopy metrics: (i) vegetation area index 
(VAI), derived from terrestrial LiDAR point clouds [14], ii) leaf area index (LAI) [15], using a plant 
canopy analyser, (iii) canopy cover from hemispherical photography (CC_HP) [16]. and (iv) canopy 
cover, using a forest densiometer CC_D [17].  

Our study also explored some of the limitations of these techniques e.g. woody elements that 
obscure leaves, over- or under-exposed hemispherical photos and nonuniform distribution of points 
in LiDAR point clouds [18–20]. 

We tested the hypothesis that forest canopy metrics, measured by the four instrument-based 
techniques listed above, could be used to monitor and differentiate states of restoration of upland 
evergreen-forest in northern Thailand. 

2. Materials and Methods 

Study Sites 

Data were collected from 18th November to 17th December 2023 at the Mon Cham viewpoint, 
near the village of Nong Hoi in Chiang Mai Province, northern Thailand (18° 56´ 18.0˝ N, 98° 49´ 16.7˝ 
E), in the upland evergreen-forest zone, at an elevation of 1,300 m above sea level. The original 
vegetation of the site had been upland evergreen forest [21], which had been mostly been cleared and 
converted to agriculture in the 1960-70’s, subsequently abandoned, and overgrown by herbaceous 
weeds and grasses. 

Four contrasting study sites were demarcated (Figure 1) in close proximity to one another: i) 
remnant undisturbed forest (reference forest [22]: RF), ii) 11½-year-old restoration forest, planted 
with trees in 2012 (R12), iii) 1½-year-old restoration forest, planted with trees in 2022 (R22) and iv) 
degraded land, dominated by herbaceous weeds, not planted for restoration (non-planted control: 
CT). 

The framework species method (FSM) had been applied in the two restoration sites. This method 
of forest-ecosystem restoration involves planting tree species that are characteristic of the reference 
forest, which also exhibit high survival and growth rates on exposed areas, and are able to inhibit 
herbaceous weed growth and attract seed-dispersing animals (by producing fruits or habitat 
structures at a young age) [23]. The FSM is known for rapid carbon accumulation, with above ground 
tree carbon approaching that of reference forest within 20-30 years [24].  
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Figure 1. Sample-plot locations at Mon Cham, within each of the four study sites: RF (the reference forest, 0.68 
ha), R12 (restoration forest planted in 2012, 0.51 ha), R22 (restoration forest planted 2022, 1.26 ha) and in CT (non-
planted control site, 0.23 ha). 

2.2. Conventional Manual Assessment of Above-Ground Tree Carbon Using an Allometric Model and Basal 
Area 

In each of the four study sites, eight circular sample plots of radius 5 m were established. Within 
each circle, the height (m) and girth at breast height (GBH (cm) of all trees with GBH > 5 cm were 
measured. GBH was measured using a tape measure, whilst tree heights were determined using an 
extendable pole (for trees up to 10 m tall) or a clinometer (for trees taller than 10 m). GBH was 
converted to tree diameter at breast height (DBH) by dividing by pie. 

The species of each tree was recorded by an experienced team of restoration ecologists and the 
species-specific wood density obtained either from Pothong et al. [11] or from the Global Wood 
Density Database [7]. For species with multiple published values of wood density, the species mean 
was used. For non-listed species, genus means were used and for those without genus means, the 
mean value for all northern Thailand trees in Pothong’s study was substituted (0.52 g/cm3).  

The following allometric equation from Pothong et al.’s study of northern Thailand trees was 
used to estimate the above-ground biomass of each tree (Equation 1). We also applied an average 
carbon content value of 44.84% (also reported by Pothong et al. for the trees of northern Thailand). 
Thus, the amount of carbon stored in each tree could be estimated using equations 1 and 2. 

 AGB = a × (DBH2 × H ×WD)b (1) 

Above-ground Carbon (AGC) = 0.4484 × AGB
 (2) 

where, AGB is an individual tree’s above-ground biomass (kg), DBH is tree diameter at breast height 
(cm) (GBH/pie), H is tree height (m) and WD is wood density (g/cm3). The values used for the 
parameters ‘a’ and ‘b’ were 0.134 and 0.847, respectively, for trees of D=1.6 to 20.0 and 0.067 and 0.976, 
respectively, for trees of D>20.0 cm, empirically derived by Pothong et al. [11], from felling and 
measuring 76 trees. AGC of all trees in each circle was summed, and the mean total/circle converted 
into an estimate of tons per hectare for each of the four sites. 
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Basal area (BA) is a useful index of forest structure as it combines numbers of trees per unit area 
(tree stocking density, TSD) with their sizes. It is the proportion of a sample area occupied by the sum 
of the cross-sectional areas (1.3 m above ground) of all tree stems in the plot, expressed as m2 stems 
per hectare [25]. The stem cross-sectional area of each tree was calculated from the GBH 
measurements, mentioned above (equation 3):   

 BAi = GBH2 / (4π × 104) (3) 
where BAi is individual tree stem basal area (m2), GBH is tree girth at breast height (cm). Summation 
of all individual-tree BAs were used to indicate BA of each plot in m2/ha (equation 4): 

 BA = Σ BAi × (10,000 / 78.5) (4) 

2.3. Vegetation Area Index (VAI) Derived from LiDAR Point Clouds 

In each of the same circular sample plots, a vegetation area index was derived from terrestrial 
laser scanning, using a FARO Focus core LiDAR scanner (Faro Technologies, USA), mounted on a 
tripod, to acquire the 3-D structure of the forest as a point cloud. The scanner was set to 1/16 
resolution and 4x scan quality (each point being scanned four times) in all sample circles. Color and 
texture were added to the point cloud from the parallel RGB camera. The scanner was controlled by 
an Apple iPad Air 3 (Apple Inc., 2018) via Wi-Fi. The scans were repeated in five positions in each 
circle: in the plot center and on the circular plot circumference in the due north, east, south and west 
positions (Figure 2). This approach was recommended by Liang et al. [26] to deal with the problem 
of trees obscuring each other within a single scan. To combine all five scans, into a single point cloud, 
five references spheres were placed in fixed positions in each of the sample plots, shown in Figure 
2a. These reference spheres were custom-made by placing a 20-cm sphere pole light (Luzino; Jewel 
P08-WH) on a 1.5-m camera stand (Figure 2b). Furthermore, the reference spheres were marked with 
colored masking tape, to prevent confusion during merging the scans (scan registration). 

All scan data in each plot were processed using Faro SCENE software (version 2023.1.0; Faro 
Technologies, Inc. USA). For merging the five point-clouds in each plot, we employed the manual 
registration method, using reference sphere identifications [27]. During manual registration, the 
software positions each individual model into the main model one at a time. 

Figure 2. (a) Setup for measurements in each 5-m radius sample plot. Measurements at the central point of each 
plot were made by LiDAR, PCA, forest densiometer, hemispherical photography (HP). (b) one of the reference 
spheres used for merging LiDAR point clouds. 

At least two identical locations or objects (reference spheres in our case) must be spotted in each 
pair of scans (Figure 3a). Typically, the mark sphere tool was used to locate the reference sphere. 
However, if the sphere was obstructed, the tool can fail to fully detect it. In such cases, a mark point 
was used to assign the reference spot on part of the sphere or surrounding area. After registration, 
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the merged model was trimmed to a 10 m × 10 m square, to fit the circles (5 m radius) used for AGC 
measurements. The point cloud was then exported in LAS format for VAI analysis. 

Figure 3. (a) Two reference spheres spotted in both scan points of view; (b) the classified and flattened model. 

Model analysis involved (i) model preparation [28] and (ii) index calculation [20] (Fig. 4). Model 
preparation was performed using the lidR package [29] in R language [30]. First, a digital terrain 
model (DTM) was created, using the ‘classify ground’, ‘filter ground’ and ‘rasterize terrain’ functions, 
sequentially. The DTM was then subjected to height normalization, using the ‘normalize height’ 
function to flatten the ground. Then, points lower than 1.2 m were removed, to eliminate ground 
flora including small tree saplings. 

VAI was then calculated from the processed 3D LiDAR point cloud (Figure 4). VAI is defined as 
the total surface area of all vegetation components (leaves, stems, branches, etc.) per unit ground area 
(a dimensionless proportion) [20,28]. To calculate VAI, the number of points was observed within 
subsample boxes called “voxels”. For the dimensions of each voxel see equations 5 and 6.  

 Voxel dimension = u(length)×u(width)×D (5) 
where u is 10×res (mm) and D is the average width of the leaves (m). 

 res = R ∙ ∆Ψ (6) 
where res is the model resolution (mm), R is the distance to the observed point (m), and ∆Ψ is the 
angular resolution of the scanner (microradian, μrad). 

Within each voxel, the number of points was limited to three, to address unevenness of point 
distributions. Subsequently, the total number of points in all voxels was multiplied by the average 
area of a single leaf, to calculate the VAI value of the model (equation 7) [20]. 
 

 𝑉𝐴𝐼 ൌ  ே௢.௢௙ ௉௢௜௡௧௦ ൈ௔௩௚ ௦௜௡௚௟௘ ௟௘௔௙ ௔௥௘௔ ሺ௠మሻ்௢௧௔௟ ௚௥௢௨௡ௗ ௔௥௘௔ ሺ௠మሻ   (7) 
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Figure 4. Workflow of VAI calculation from a point cloud model, obtained with a terrestrial LiDAR scanner. 
Upper; model preparation, lower; index calculations. Here, u is ten times the resolution (10×res; mm), and D is 
the average width of the leaves (m). 

All model processing was done on a Victus 16 laptop (HP Inc., 2021) with AMD Ryzen 5 5600H 
CPU, NVIDIA GeForce RTX 3050 laptop GPU, and 16 GB DDR4 3200 MHz RAM. 

2.4. Leaf Area Index (LAI) Using Plant Canopy Analyser 

A Li-Cor LAI 2200c (Li-Cor Biosciences, Inc., USA) plant-canopy analyser was used to measure 
LAI values in the sample plots. The scanner compares light conditions above the canopy—A (sky)—
with those below it—B (target) . Since our study employed a single optical sensor, the A readings 
were made using the 4A sequence shown in Table 1 [31], to measure the average light conditions of 
the sky (K record). 

Table 1. Attachments and readings for the 4A sequence used to compile the K record. 

Reading Attachments 
# Diffuser Shade 
1  - 
2   

3 - - 
4 -  

 
To provide shade, the sensor was placed in the operator’s shadow. All readings were done facing 

the same direction. How frequently the K record was made depended on sky conditions. For 
example, when the sky was clear and cloudless, the K record procedure was conducted hourly. 
However, when scattered clouds resulted in changeable sky conditions, the A and B measures were 
made in close succession.  

The below-canopy B reading was made at the central point of each sample plot, 1.2 m above the 
ground. Scans were done three times in each plot with the sensor facing north. All readings in every 
plot were performed with the 270° view cap on (Figure 5) to avoid direct sunlight and the operator’s 
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shade [31]. The time at which each reading was  made was recorded for configuration during post-
processing. 
 

Figure 5. View caps. 

All readings from the LAI-2200c were imported into the FV2200 software (version 2.1.1; Li-Cor 
Biosciences, Inc., USA) via a USB cable. Corresponding K values were assigned with all 
configurations and parameters selected according to the sampling conditions and compared with B 
values to calculate LAI (equations 8 and 9). 
 

 ஽௜௙௙௨௦௘ ௜௡௧௘௡௦௜௧௬ ௕௘௟௢௪ ௧௛௘ ௖௔௡௢௣௬ ௔௧ ௩௜௘௪ ௔௡௚௟௘ ఏ஽௜௙௙௨௦௘ ௜௡௧௘௡௦௜௧௬ ௔௕௢௩௘ ௧௛௘ ௖௔௡௢௣௬ ௔௧ ௩௜௘௪ ௔௡௚௟௘ ఏ ൌ  𝑇ሺ𝜃ሻ
 (8) 
 
where T(θ) is gap fraction of the given view angle (ring). 
 
 𝐿𝐴𝐼 ൌ  െ2 ∑ lnሺ𝑇ሺ𝜃௜ሻሻ cos 𝜃௜ 𝜔 ሺ𝜃௜ሻହ௜ୀଵ  (9) 

 
where ω (θi) is the constant weight factor for each ring, and i refers to each of the detector rings with 
view angle centered at θi. 

2.5. Canopy Cover from Hemispherical Photography  

Hemispherical photographs were taken with a digital camera (Fujifilm model X-E4; Fujifilm 
Corporation, Japan) fitted with a MEIKE 6.5mm F/2.0 fisheye lens (Hongkong MEIKE Digital 
Technology Co., Ltd, China). The camera was attached to a tripod 1.2-m above the ground at the 
center of each sample plot, with the lens pointing direct upwards towards the zenith. The flash socket 
of the camera was always positioned in the north direction. The exposure values (EV) were 
incrementally reduced by 0.3 until no overexposed pixels were detected on the camera screen [32]. 
Before every exposure, the operator positioned himself below the camera, to ensure that no 
extraneous elements are visible within the frame. 

The photos were imported into ImageJ (version 1.48) [33] and analyzed using the Hemispherical 
2.0 plug-in [16] for canopy parameter analysis. The software converted raw hemispherical 
photographs (Figure 6a) into black and white binarized photographs (Figure 6b). Canopy cover was 
calculated as the percentage of white pixels in the binarized image.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 April 2025 doi:10.20944/preprints202504.1795.v1

https://doi.org/10.20944/preprints202504.1795.v1


 8 of 20 

 

 

Figure 6. (a) an input hemispherical photograph from the fisheye lens from the R22-10 plot, captured on 
November 18, 2023; (b) the corresponding output binarized-hemispherical photograph for gap-fraction analysis 
(black = sky; white = canopy). 

2.6. Canopy Cover from Forest Densiometer 

A spherical densitometer, model A, (Forest Densiometers, USA, Figure 7a) was also used to 
quantify canopy cover in each sample plot. The instrument consisted of a convex mirror with a grid 
of 24 squares engraved upon its surface. To estimate canopy cover (CC), the instrument was leveled 
horizontally 1.2 m above the ground. Each square was mentally divided into quarters. The number 
of quarter-squares reflecting mostly sky was counted and multiplied by 1.04, to obtain an estimate of 
the gap-fraction per cent (because there were 96 (not 100) quarter squares in the grid) (Figure 7b). The 
gap-fraction per cent was subtracted from one hundred, to derive an estimate of the canopy-cover 
per cent (equation 10). This was repeated four times in each sample plot (facing each of the cardinal 
points) and the values averaged. 

 CC = 100 - (GF × 1.04) (10) 
where CC is canopy cover (%) and GF is the number of quarter squares with visible sky. For example, 
Figure 7b shows ten open quarter squares, corrected to 10.4%. Therefore the estimated canopy cover 
is 89.6%. Images of the forest densiometer were captured from the sample plots with the operator’s 
perspective, for future evaluation. 

Figure 7. (a) Forest densiometer model A; (b) example of forest densiometer corners counted (red dots) in the 
R12-5 plot taken on November 18, 2023. 

3. Results 
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In thirty-two 5-m-radius circular sample plots, the mean values of all metrics, trended similarly 
across all four sites; from lowest values in the non-planted control site (CT), increasing sequentially 
from younger (R22) to older (R12) restoration sites and reaching maximum values in the reference 
forest (Table 2, S1).  

Increases in mean VAI, LAI and CC_D, between CT and R22 (control and 1½ year-old 
restoration), were significant (P<0.05, ANOVA) and substantial (per cent increases of 157, 131 and 
1,171 for VAI, LAI and CC_D respectively). 

All metrics clearly distinguished between young and older restoration. Increases in all metrics 
between 1½ (R22) and 11½-year-old restoration (R12)—both instrument-based and manual—were 
significant (P<0.05) and substantial (per cent increases of  77.5, 115.0, 49.0, 45.4 for VAI, LAI, CC_HP, 
CC_D and 419.9, 149.0 and 335.0 for AGC, TSD and BA, respectively). 

Comparing metrics between R12 and the reference forest revealed how closely structural 
development of the 11½ year old restoration approached that of reference forest. Instrument-based 
metrics in R12 had increased to 89.6-97.7% of reference-forest values by 11½ years and the small 
differences between R12 and RF were statistically insignificant (P>0.05). Considering the manual 
metrics, mean TSD in R12 was 81.3% of the RF value, whilst mean BA in R12 was 73.3% of the RF 
value. Again, neither of these differences were statistically significant (P>0.05) i.e. all instrument 
metrics, and two of the manual metrics  did not clearly distinguish between advanced restoration 
and the reference forest. Only AGC, was significantly lower in the R12 site than in the reference forest, 
attaining 47.9% of the reference-forest value (in 11½ years) (P<0.05). 

Figure 8a presents correlation coefficients (r), indicating the strengths of the relationships 
between the metrics, across all 32 plots. Most of the metrics were highly correlated with one another. 
Considering the question of how well instrument-based metrics (VAI, LAI, CC_HP and CC_D) might 
be able to replace manual ones (AGC, TSD and BA), correlations between AGC and instrument-based 
metrics were moderate, with CC_HP having the strongest relationship (r=0.67). However, the 
relationships between AGC and the other instrument-based metrics were only very slightly weaker 
(VAI, r=0.64; LAI, r=0.63 and CCD_D, r=0.58). 

Table 2. Mean metric values and one-way ANOVA results from each sampling site. CT; non-planted control, 
R22; restoration forest planted in 2022, R12; restoration forest planted in 2012 and RF; reference forest. 
VAI=vegetation area index; LAI=leaf area index; CC_HP and CC_D are canopy cover by hemispherical 
photography and densiometer respectively; AGB and AGC are above-ground biomass and carbon; TSD= tree 
stockings density and BA= basal area. 

Values not sharing the same superscript are significantly different among sites (p < 0.05). 

Site 

Instrument-based measurements Conventional manual measurements 

VAI LAI CC_HP CC_D TSD BA AGC 

Mean ± SD Mean ± SD Mean ± SD 

(%) 

Mean ± SD 

(%) 

Mean ± SD 

(stems/ha) 

Mean ± SD 

(m2/ha) 

Mean ± 

SD 

(tC/ha) 

CT 0.370a ± 0.45 0.765a ± 1.08 52.073a ± 10.50 4.840a ± 10.39 0.000a ± 0.00 0.000a ± 0.00 0.000a ± 

0.00 

R22 0.950b ± 0.49 1.771b ± 1.23 57.260a ± 19.20 61.520b ± 29.32 780.255b ± 

516.05 

7.850b ± 6.77 12.668b 

± 13.38 

R12 1.686c ± 0.27 3.807c ± 0.90 85.299b ± 5.64 89.470c ± 5.26 1942.675c ± 

552.13 

34.146c ± 

13.41 

65.866c ± 

30.44 

RF 1.725c ± 0.10 4.246c ± 0.37 92.977b ± 1.29 93.630c ± 1.96 2388.535c ± 

1043.28 

46.549c ± 

24.36 

137.451d 

± 83.19 
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Correlations between TSD and instrument-based metrics were all stronger. The strongest 
relationship was with LAI (r=0.80), but it was only marginally stronger than the relationships 
between TSD and the other three instrument-based metrics. Correlations of instrument-based metrics 
with BA were also strong. The strongest relationship was with CC_HP (r=0.75), which was only 
slightly stronger than with the other instrument-based metrics.  

Correlation coefficients within each study site, based on eight circular sample plots in each 
(Figure 8b-e), were generally weaker and somewhat erratic, probably due to the smaller sample sizes. 
Since no trees were present in the sample plots in CT, no correlations between instrument-based 
metrics and manual metrics could be derived (Figure 8b). 

In the young restoration plot (R22), those instrument-based metrics, which had the strongest 
relationships with manual metrics, were CC_HP and LAI with TSD (r=0.71 and 0.65 respectively) and 
VAI with AGC (r=0.63) (Figure 8c). In the older restoration plot (R12), the strongest correlations 
between instrument-based and manual metric were between VAI with AGC (r=0.67) and BA (r=0.55) 
(Figure 8d). In the reference forest, correlations were weaker. CC_HP correlated most strongly with 
BA (r=0.42) (Figure 8e). Other correlations between instrument-based and manual metrics were much 
weaker. 

Discussion 

This study compared instrument-based metrics (VAI, LAI, CC_HP, and CC_D) with 
conventional metrics, derived from direct, manual, tree measurements (AGC, TSD and BA), to 
monitor forest structural recovery during restoration by the framework species method (FSM) [23]. 
The relative advantages and disadvantages of all seven metrics investigated are summarized in Table 
3. The study also demonstrated the extent of development of forest structure achievable over the first 
decade after implementing the FSM.  

4.1. Instruments and metrics  

Information content of the instrument-based metrics increased from CC_D and CC_HP (degree 
of canopy closure), to LAI (canopy density including beyond initial canopy closure) and VAI (canopy 
physical structural complexity – including leaves and branches etc.).  
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Figure 8. Correlation coefficient (r) matrices among all metrics; four instrument based: vegetation area index 
(VAI) from terrestrial laser scanning, leaf area index (LAI) from a plant canopy analyser (PCA), and canopy 
cover from hemispherical photography (CC_HP) and a densitometer (CC_D), and three manual: above ground 
tree carbon (AGC), tree stocking density (TSD) and basal area (BA). . 
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4.1.1. LiDAR and VAI 

The advantage of terrestrial LiDAR is that it physically scans all forest structures (including 
leaves and branches) and combines them all into a single index—in this case VAI. Thus, the 
information content of the derived metric is much higher than that of the other instrument-based 
metrics in this study. The technique clearly distinguished differences in structural development 
between the CT, R22 and R12 plots, but not between the R12 and RF plots (Table 2). VAI also 
correlated well with all manual metrics, when considering the combined data from all plots (Figure 
8a). 

However, the method appeared to underestimate forest structural development in RF. VAI 
values in R12 and RF were statistically indistinguishable, whereas AGC in R12 was, significantly, less 
than half of that in RF. A problem with using terrestrial LiDAR in dense forest is that low branches 
and other close objects can block scanning of more distant structures, particularly those in the canopy 
[26,34]. This may have reduced the VAI in RF, such that the difference in mean VAI’s between R12 
and RF was less than expected, when compared with the difference in AGC measurements. It might 
also explain the low correlation coefficients between VAI and the manual metrics in both R12 and RF 
(Figure 8d & e).  

In an attempt to address this issue, we combined five scans per plot (Figure 2), since previous 
researchers have shown that using multiple scans (3-5) improves accuracy of the technique, 
compared to a single scan [34]. Despite this, under-estimation of VAI in RF was still apparent at the 
1/16 resolution and 4x scan quality, used for this study. Higher resolutions should therefore be tested 
in the future, although high-resolution scanning considerably increases the fieldwork time needed.  

In contrast, Ehbrecht et al. [35] successfully used single scans to generate the newly developed 
“stand structural complexity index” (SSCI), which holistically quantifies the spatial arrangement of 
plant material in forests. Furthermore, combining terrestrial and airborne LiDAR point clouds, has 
also generated some impressive results for capturing forest structures recently, under various 
environmental conditions [36]. 

Therefore, we recommend further studies on the effects of scanning configuration and 
resolution, and on combining terrestrial and aerial LiDAR point clouds. 

Considering the practicalities of using LiDAR for monitoring forest-restoration progress, setting 
up the tripod in five locations within 10-m-diameter circles resulted in considerable trampling of tree 
saplings in the undergrowth, which may affect subsequent forest regeneration. The instrument, the 
reference spheres and their tripods are bulky and great care must be taken when transporting them 
and setting them up. Post-processing of  point clouds involves a steep learning curve. Crucially, 
terrestrial LiDAR scanners are very expensive (30,000-100,000 USD). The prospect of routinely using 
them to verify carbon credits, for example [14], seems remote, until they become more affordable and 
user-friendly. 

4.1.2. Plant Canopy Analyser and LAI 

A plant canopy analyser uses algorithms to infer an index of canopy density indirectly from the 
attenuation of light, as it passes through the forest canopy; it does not register forest structure directly, 
like LiDAR does. An LAI of <1 indicates incomplete canopy closure; 1 indicates cover by a single 
layer of leaves (on average); 2 by a double layer of leaves—and so on. Even after complete canopy 
closure, differences in light readings between the open sky and beneath the forest canopy should 
increase further, with increasing canopy density, i.e. the metric should not saturate at 100% canopy 
cover.  
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Table 3. The pros and cons of four instrument-based and three manual metrics for tracking progress of forest-structure development during forest-ecosystem restoration. 

 
 
 

Method Metric Cost  
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Plant canopy 
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Leaf area index  
(LAI) 
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LAI and VAI results were similar, in that LAI distinguished differences in canopy development 
between the CT, R22 and R12 plots, but not between the R12 and RF plots (Table 2). Similarly, LAI 
also correlated well with all manual metrics, when considering the combined data from all plots 
(Figure 8a). As with VAI, however, the failure of LAI to distinguish between advanced restoration 
(R12) and the reference forest (RF), did not reflect the more than doubling of AGC between the two 
sites. Furthermore, correlations with manual metrics in the denser plots (R12 and RF) were poor. 
Therefore, it seems that further increases in the canopy density, post-canopy-closure, are poorly 
related with further light attenuation. 

Costing around 1000-15,000 USD, plant canopy analyzers are cheaper than LiDAR. They are 
easier to deploy than LiDAR, and can be used by a single observer, thus minimizing trampling of 
young tree seedlings. However, the need to make frequent open-sky readings (using a single sensor 
device) imposes difficulties. If the below-canopy sample points are far from the forest edge, the time 
interval between open-sky and under-canopy readings becomes unacceptably long, particularly 
when cloud conditions are changeable [31]. This highlights the difficulty of using a passive-sensor 
device under variable ambient light conditions.  

4.1.3. Canopy Cover 

Both the hemispherical camera and the densitometer measure canopy cover (CC)  by 
subtracting the amount of visible sky from a ground-up view of the forest canopy and assigning 
remaining pixels as “canopy”. Once no sky becomes visible (i.e. complete canopy closure), however, 
they return a CC of 100%, no matter how many additional layers of leaves and branches grow and 
augment canopy density thereafter [37–39]. 

The pattern of CC_D results was the same as those of VAI and LAI. The metric distinguished 
between the CT, R22 and R12 plots, but not between the R12 and RF plots (Table 2). It did not reflect 
the doubling of AGC between R12 and RF. CC_D correlated similarly well with the manual metrics 
across all plots (Figure 8a). Once again, correlations with manual metrics in the denser plots (R12 and 
RF) were mostly very low (except for TSD in R12 r=0.48) (Figure 8d).  

Hemispherical photography registered an obvious anomaly—52.1% canopy closure in the 
control site (CT), where no trees grew (compared with 4.8% from the densiometer) (Table 2). 
Although the camera’s exposure value (EV) was manually adjusted, to prevent over- or under-
exposure (which may lead to errors in the CC estimation [32]), the camera still included trees at the 
edge of the plot in images, due to the steep slope and the wide field of view of the hemispherical lens 
(zenith angle = 90°) (Figure S2). To mitigate this in the future, hemispherical photos should be 
analyzed by other methods with smaller zenith angles, such as Can-Eye software (zenith angle = 60°), 
to identify vegetation cover on steep terrain with more certainty [40,41].  

In common with all other instrument-based metrics CC_HP was significantly higher in R12 than 
in R22, but the metric failed to distinguish between R12 and RF. As with other instrument-based 
metrics, correlations with manual metrics weakened as structural development increased (Figure 8c-
e).  

The main difference between the two canopy-cover instruments is that hemispherical 
photography employs a precise, objective procedure to subtract sky pixels from an image, whereas 
readings from a densiometer are more subjective, particularly if the instrument and viewing angle 
are not perfectly steady. However, a densitometer can be operated by non-skilled personnel, as it 
simply involves counting spots on a grid. In contrast, set-up and operation of a hemispherical camera 
are highly technical, and post processing images requires considerable expertise and training. 
Furthermore, hemispherical cameras are more expensive (1200-1500 USD) than densiometers (200-
300 USD). 

4.2. Conventional Forest Surveys – Manual Metrics 

All manual metrics were obtained from the same survey of trees of GBH>5 cm in all circular 
sample plots, using conventional, standard, survey techniques, carried out by teams of 5-6 people. 
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The information content of the metrics increased from TSD (tree counts) to BA (tree counts and tree 
sizes (GBH)) and AGC (tree counts, sizes (GBH and height) and wood density).  

Structure is built from biomass, of which 45% is carbon (Eqn.2). Therefore, as AGC increases, so 
should the structural complexity of the forest, as the carbon becomes partitioned among an increasing 
diversity of structural components. This should have been reflected by strong correlations of AGC 
with instrument-based metrics of structural development. In general, correlations of AGC with 
instrument-based metric were moderate, becoming weak in the R12 and RF plots. This may have 
been because calculation of AGC is sensitive to wood density (Eqn. 1), a variable which was 
“invisible” to all the instrument-based metrics. Furthermore, all four instrument-based metrics failed 
to reflect the doubling of AGC between R12 and RF, suggesting their inability to register further 
increases in forest structural complexity, beyond canopy closure.         

It is interesting to note that correlation of manual metrics with all instrument-based metrics 
declined with increasing information content of the manual metrics i.e. TSD correlated most strongly 
with all four instrument-based metrics, followed by BA, with AGC correlating most weakly (Figure 
8a). This may have been because potential sources of variability increase with information content. 
This assertion was supported by calculating the coefficients of variation (CV) from the data in Table 
2 (standard deviation expressed as a percentage of the mean, Table S2). CVs were highest for AGC 
and lowest for TSD, consistently across all 3 forested sites. 

The most common sources of potential error in field measurements included determining if trees 
on the perimeter of the circular sample plots should be counted in or not, and the difficulty of seeing 
tree tops for height measurements in R12 and RF, where high canopy density obscured the view. 
Field surveys are costly, due to high labour and transport requirements. Furthermore with the large 
teams of surveyors, required, trampling of young tree seedlings is inevitable, potentially impeding 
future understory development and carbon absorption. 

4.3. Recovery of Forest Structural Complexity by the Framework Species Method 

Figure 9 shows visually how effective the FSM is at restoring forest structure over the first 
decade following initial implementation.   

Figure 9. (a) Initial conditions at the R12 restoration site on planting day (28/07/2012), with the edge of the 
adjacent reference forest (RF) visible top left. Note the landmark bamboo clump lower left. (b) A closer view of 
the same site 11½ years later (08/11/2023). The restored forest (right) is almost indistinguishable from the 
reference forest (left). . 

The data, presented above, verify and quantify this visible recovery of forest structure. Planting 
of framework tree species augmented natural regeneration, to achieve an initial stocking density of 
3100 stems/ha, mostly of saplings 30-60 cm tall. However, the TSD metric, included only those 
saplings and trees that had survived and grown large enough to attain a GBH of 5 cm of more by the 
survey time. By 1½ years, the R22 mean values of TSD, BA and AGC amounted to 32.7%, 16.9% and 

(b
) 

(b
) 

(a
) 
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9.2% of the mean reference-forest (RF) values (all significantly lower, P<0.05, Table 2)—due almost 
entirely to a few remnant forest trees that remained on the site at planting time. However, by 11½ 
years, the R12 mean values of TSD, BA and AGC had increased to 81.3%, 73.3% and 47.9% of the 
mean RF values respectively. R12 values of TSD and BA were statistically indistinguishable from RF 
values. However, mean AGC in the R12 plot remained significantly lower than the RF value. The 
result for mean AGC was remarkably close to that from another study of carbon accumulation during 
restoration of evergreen forest above Ban Mae Sa, 10 km to the south-east, at the same elevation also 
using the FSM. In that study, mean tree carbon accumulated in 12-year-old restoration plots was 49% 
of the mean reference forest value [42]. The close reproducibility of the result strongly suggests that 
during application of the FSM, carbon accumulation lags behind other metrics of structural 
development, with instrument-based canopy metrics approaching reference-forest values earlier 
than measurements of forest-carbon. 

5. Conclusions 

In conclusion, whilst all instrument-based techniques successfully distinguished among early 
restoration stages, once canopy closure reached about 85-90%, they failed to distinguish further 
progression towards reference forest conditions. This conclusion was also supported by the fact that 
correlations between instrument-based and manual metrics weakened with increasing forest 
structural development. 

Of the four instrument-based metrics tested in our study, we recommend CC_D as the most cost-
effective indicator of forest structural development, up until the point of canopy closure, for the 
following reasons:  

1. It distinguished among CT, R22, and R12 almost as well as the other metrics (Table 2). 
2. It correlated well with other instrument-based metrics across all plots. 
3. It showed comparable strength of correlation with manual metrics (R = 0.58–0.77; Figure 8a). 
4. A single person can operate it, thus minimizing trampling of seedlings. 
5. It is simple to use with minimal training. 
6. Results are immediate, with no need for complex post-processing.  
7. It cost is only a fraction of that of the other instruments evaluated. 

Beyond canopy closure, however, manual measurement of AGC remains the most reliable 
indicator of forest structural development, combining direct measurements of tree size and wood 
density with stocking density. However, the high labour requirement and high cost of carbon 
surveys, and their potential impact on understorey development, remain as strong deterrents to its 
widespread use. 

There remains a need for more reliable and cost-effective methods to track carbon accumulation 
and structural development during forest-ecosystem restoration. To avoid damaging the forest 
understory through ground surveys, canopy-based indices, derived from drone imagery, may offer 
the best solution [43]. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
AGB Above-ground biomass 

AGC Above ground carbon 

BA Stem basal area 

CC Canopy cover 

CC_D Canopy cover from forest densiometer 

CC_HP Canopy cover from hemispherical photography 

CT Non-planted control 

DBH Tree diameter at breast height 

DTM Digital terrain model  

EV Exposure value  

FSM Framework species method 

GBH Tree girth at breast height 

HP Hemispherical photograph 

LAI Leaf area index 

LiDAR Light Detection and Ranging 

PCA Plant canopy analyser 

R12 Restoration forest planted in 2012 (11½ years old) 

R22 Restoration forest planted in 2022 (1½ years old) 

RF Reference forest 

TLS Terrestrial laser scanning 

TSD Tree stocking density 

VAI Vegetation area index 
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