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Abstract: A quantum particle constrained between two high potential barriers provides a
paradigmatic example of a system sustaining quasi bound (or resonance) states. When the system is
prepared in one of such quasi bound states, the wave function approximately maintains its shape
but decays in time in a nearly exponential manner radiating into the surrounding space, the lifetime
being of the order of the reciprocal of the width of the resonance peak in the transmission spectrum.
Naively, one could think that adding more lateral barriers would preferentially slow down or prevent
the quantum decay since tunneling is expected to become less probable and because of quantum
backflow induced by multiple scattering processes. However, this is not always the case and in the
early stage of the dynamics quantum decay can be accelerated (rather than decelerated) by additional
lateral barriers, even when the barrier heights are arbitrarily large. The decay acceleration originates
from resonant tunneling effects and is associated to large deviations from an exponential decay law.
We discuss such a counterintuitive phenomenon by considering the hopping dynamics of a quantum
particle on a tight-binding lattice with on-site potential barriers.

Keywords: quantum tunneling; quasi bound states; tight binding lattices

1. Introduction

Quantum tunneling is ubiquitous in quantum mechanics where a particle has a non-zero
probability of passing through a classically forbidden energy barrier, even though it doesn’t have
enough energy to overcome that barrier according to classical physics [1,2]. This behavior arises from
the wave-like nature of particles at the quantum level, and can be thus observed also for classical waves
such as light and sound waves (see e.g. [3-6]). One of the main predictions of quantum tunneling
is the instability and decay of a quantum particle trapped by potential barriers of finite heights, a
prototypal example being a-decay in nuclear physics [7,8]. Perhaps the simplest one-dimensional
quantum mechanical model possessing quasi-stationary (resonance) states, decaying via tunneling
leakage, is the double rectangular potential barrier model [Figure 1(a)], which was introduced in a
famous paper by Gamov to model a decay [7]. When the barrier height V; is infinite, the system
sustains a set of stationary (non-decaying) bound states at some quantized energies, however when
the barrier height V) is not infinite some of these states, those with energies close to the bottom of
the barriers, become metastable, i.e. they become resonance states (also known as Gamow or Siegert
states, or quasi-bound states; see e.g. [9-14] and references therein). This means that an initial wave
function prepared in a bound state of the infinite barrier approximately maintains its shape but decays
in time in a nearly exponential manner through tunneling leakage across the barriers, generating
small-amplitude outgoing waves that spread outward the barrier region [9-11]. The signature of
resonance states are the characteristic Breit-Wigner resonance peaks in the transmission spectrum of
the double potential barrier, and the lifetimes of the resonance states are of the order of the reciprocal
of the widths of the Breit-Wigner resonances [11] [see Figure 1(b)].

The quantum decay does not strictly follow a simple exponential decay law, and deviations from
an exponential decay universally arise in the short and long time scales [15-20], leading to Zeno-like
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dynamics, i.e. the deceleration (Zeno effect) or the acceleration (anti-Zeno effect) of the decay by
frequent observations of the system (see, e.g., [21-25] and references therein). Strong deviations from
an exponential decay law are generally observed because of interference between different decay
pathways, strong coupling with a featureless bath or with an engineered bath, which introduce memory
effects and non-markovian behavior, or in the presence of edge effects or localized states, such as in
disordered systems, leading to revivals and limited quantum decay [26-28].

Quantum leakage dynamics in the double-barrier potential is clearly modified when lateral
barriers are added. Such additional barriers introduce interference effects and make the quantum
decay greatly non-exponential rather generally. Naively, one could think that additional barriers
would preferentially slow down the decay, since the tunneling is expected to become less probable
and because of the back flow into the original excitation region. For example, for stochastic barriers
one expects Anderson localization [29,30], leading to a highly non-markovian dynamics, Rabi-like
oscillations and limited quantum decay [27,28,31]. However, this picture may fail in other cases as
multiple interference effects could play in a reversed way.

In this work we unveil the rather counterintuitive effect of quantum decay acceleration of a
resonance state in the double barrier model induced by additional later barriers: rather than slowing
down the decay, they can greatly accelerate the quantum decay, even when the height of barriers are
unbounded. This unusual phenomenon is explained in terms of resonant tunneling (hopping) and
studied by considering in details the decay of resonance states in potential barriers on a tight-binding
lattice, which can be emulated in photonic settings using evanescently-coupled optical waveguide
lattices [32-34] or grating structures [35-37].
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Figure 1. (a) Schematic of a double rectangular potential barrier sustaining resonance (quasi-bound)
states at energies E = Ej, Ey, .... Barrier height is Vj, barrier width is b and barrier distance is d = a + b.
(b) Spectral transmittance |t(E)|? of the two-barrier potential versus energy of the incidence wave.
Parameter values are a = b = 1, V; = 20. The inset in (b) shows an enlargement of the first resonance
at energy E = E;, which is well approximated by a Lorentzian curve (Breit-Wigner resonance). The
two resonance peaks in (b) correspond to the quasi bound states depicted in (a) by the solid red curves.
In the high potential barrier limit, the quasi bound state can be approximately written as in Eq.(6),
where 6(x, t) describes the small-amplitude outgoing waves escaping from the barrier region owing to
evanescent tunneling (oscillating tails in the plots) and T = 1/AE is the lifetime, which is the inverse of
the width AE of the corresponding resonance peak in (b).

2. Acceleration and deceleration of quantum decay in the double barrier model: some
preliminary considerations

Before considering quantum decay in tight-binding models with on-site potential barriers, it is
worth presenting some preliminary results and discussion on the decay dynamics of resonance states

in the Gamov’s model for the continuous Schrodinger equation in one spatial dimension, which is
written in dimensionless units as

imh == + V()Y 1)

where ¢ = (x,t) is the wave function and V(x) is the potential. Let us first assume that V(x)
describes a double rectangular barrier, with barrier height Vj, barrier width b and barrier distance
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d = b+ a [Figure 1(a)]. Figure 1(b) shows a typical behavior of spectral transmittance |¢(E)|? versus
energy E of the incidence plane wave. The transmission amplitude f(E) can be calculated by standard

textbook methods and reads
t2 exp(ikoa)

HE) =

= 2
1 — r2 exp(2ikoa) @)

where r1(E) and t; (E) are the reflection and transmission amplitudes of the single barrier, given by

. 4k0k1 eXp(lklb)
h(E) = (ko + k1) — (ko — k1)? exp(2ik1b) ¥
n(E) = (k3 — k3) sin(kyb) @)

(k3 + k2) sin(kyb) + 2ikoky cos(k1b)

and
koE\/E, klg\/E—V(). (5)

The spectral transmittance clearly shows resonance peaks at some energies [two peaks at energies
E = E;, E; in the plot of Figure 1(b)], which correspond to quasi bound states. In the high-barrier limit,
i.e. very narrow resonances [such as the first resonance at E = E; shown in the inset of Figure 1(b)],
the resonance curve is Lorentzian-shaped to a high degree of approximation (Breit-Wigner resonance)
and the corresponding quasi bound state can be roughly speaking written as

P(x,t) = ¢p(x,0) exp(—iEt — t/27) + 6(x, t) (6)

where (x,0), E are close to the bound state wave function and corresponding (possibly shifted)
eigenenergy in the infinite V{y = co limit, T = 1/AE is the lifetime of the quasi bound state, AE is the
full-width at half-maximum of the Breit-Wigner resonance, and 6(x, t) describes the small-amplitude
outgoing waves in the outer regions of the barriers [see Figure 1(a)]. An example of a nearly-exponential
decay of the lowest resonance state is shown in Figure 2(b), which depicts the decay behavior of the
survival probability to find the particle between the two barriers,

a/2
P(t) = [ dxly(x, )P )
—a/2

normalized to its initial value P(0). Here, (x,0) is assumed to be close to the lowest-energy bound
state of the same barrier model but with Vjy = o0, i.e. ¢(x,0) o cos(7tx/a) for |x| < a/2and (x,0) =0
otherwise, propagated for a short time interval (At = 3) to remove fast transient oscillations in the
behavior of P(t). The results are obtained by numerical integration of the time-dependent Schrodinger
equation (1) using an accurate pseudospectral split-step method. The decay dynamics [solid curve 1 in
Figure 2(b)] is quite well fitted by an exponential curve [dashed curve 1 in Figure 2(b)] with a lifetime
close to the theoretical value T = 1/AE; ~ 322.6 predicted from the spectral width AE; ~ 0.0031 of the
lowest Breit-Wigner resonance peak. A similar behavior is found when the system is initially prepared
in the second resonance state, i.e. {(x,0) o sin(27rx/a) for |x| < a/2 and (x,0) = 0 otherwise, the
exponential decay displaying a much shorter lifetime (t = 1/AE, ~ 4.50), according to the larger
width AE; of the second resonance peak in Figure 1(b).

Clearly, the decay dynamics is greatly modified and can largely deviate from an exponential law
when we consider additional lateral barriers, because the outgoing waves that escape via tunneling
from the two barriers can be back reflected and re-injected into the original spatial region |x| < a/2.
The final decay law P(t) is the result of a complex multiple interference process which, depending
on the choice of the additional barriers, can either decelerate or accelerate the decay. The fact that
additional barriers can slow down the decay of the survival probability is not surprising, however it is
more elusive how and why the decay can be accelerated in some cases. One of the main mechanism
that explains decay acceleration is resonant tunneling (see e.g. [38]). This point can be illustrated by

doi:10.20944/preprints202309.0917.v1
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considering, as an example, the case of an array of equally-spaced barriers; see Figure 2(a). Besides
the two barriers as in Figure 1(a), we now add a sequence of equally-spaced barriers of height Wy,
same space separation d = a + b, and barrier width w. Barrier height Wy and width w can be rather
generally different than Vj and a. Curves 2 and 3 in Figure 2(b) show the decay dynamics of the
survival probability when either or both w and W) differ than b and Vj, clearly indicating that the
additional barriers decelerate the decay. However, a striking effect is observed when w = b and
Wo = W: the decay of survival probability is much faster and the decay dynamics greatly deviates
from an exponential law [curve 4 in Figure 2(b)]. The decay acceleration can be explained on the basis
of resonant tunneling (hopping) between resonant quasi bound states that are sustained by adjacent
double-potential barriers, as schematically shown in Figure 2(c). In fact, for w = b and Wy = ;) the
potential V(x) is strictly periodic with period d = a + b, and such a periodic potential corresponds to
the well-known Kronig-Penney model in solid-state physics [39,40]. Basically, the various resonant
quasi-bound states sustained in adjacent double-barriers hybridize and give rise to a set of bands. The
dispersion curves E = E(k) of the various bands are defined implicitly by the relation (see e.g. [40])
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Figure 2. (a) Schematic of a quasi bound state in the double barrier model (bold solid curve),
that radiates in space with additional later barriers (thin solid curves). All barriers are equally
spaced by a distance d. The size w and height Wy of the lateral barriers can differ than those
of the two central barriers. (b) Numerically-computed decay behavior of the survival probability
P(t) = ffﬁz dx|ip(x,t)|?, normalized to its initial value P(0), for Vy = 20,a = b = 1,d = 2, and for
a few different values of w and Wy. Curve 1: quasi bound state radiating in free space (Wy = 0); the
dashed curve is the exponential decay law with lifetime T = 1/AE; ~ 322.6 predicted by the width
of the first resonance peak in the spectrum of Figure 1(b). Curve 2: Wy = V) =20, w = b/2 = 0.5.
Curve 3: Wy = Vp/5 =4, w =b/2 = 0.5. Curve 4: Wy = Vy = 20, w = b = 1; the dashed curve 4
is the decay behavior P(t) = |Jo(2xt)|? predicted by the tight-binding analysis of resonant tunneling
[Eq.(10)]. (c) The Kronig-Penney model for Wy = Vjy and w = b. The set of resonant quasi-bound states
trapped in adjacent double-barrier potentials form an energy band, and excitation can hop between
adjacent cells of the crystal with a hopping rate «. (d) Geometrical construction of the energy bands for
the Kronig-Penney model. The solid curve shows the behavior of the function f(E) versus energy E;
the function f(E) is defined by Eq.(8) in the main text. The allowed energy bands are determined by
the inequality |f(E)| < 1 and are indicated as band 1, band 2, band 3 in the figure. The narrow band
1 arises from the hybridization of the lowest-energy resonant quasi bound states sustained by each
double potential barrier (unit cell) in the crystal.

cos(kd) = f(E)
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where we have set

f(E) = cos(aVE) cos(b/E — Vg) — ZZI;S(ISYOVO) sin(aVE) sin(b\/E — Vp). (8)

In the above equation, k is the Bloch wave number, which varies in the first Brillouin zone —7t/d < k <
rt/d. The band dispersion curves, defined by the relation cos(kd) = f(E), can be solved graphically,
as shown in Figure 2(d). The low-energy narrow-band in Figure 2(d), indicated as band 1 and centered
ataround E = E; =~ 4.589, arises from the weak overlapping (hybridization) of resonant quasi-bound
states with energies E; in adjacent unit cells of the crystal, and its bandwidth 4x ~ 0.1884 defines the
hopping amplitude x between adjacent sites within a tight-binding description. In the nearest-neighbor
approximation, an initial excitation of one of such quasi-bound mode can jump from one unit cell to its
neighbor in either direction with a rate x, and the spreading dynamics is ballistic and governed by the
set of coupled equations (see e.g. [40—42] )

dipy

dt

i = _K(¢n+1 + an,]) )
where ¥, is the amplitude of the quasi bound state at the n-th unit cell. The decay behavior of the
survival probability is then given analytically in terms of ]y Bessel function, namely [41]

P(t) = |Jo(2xt)|*. (10)

The solid curve 4 in Figure 2(b) shows the numerically-computed behavior of P(t) for V) = Wy = 20
and a = b = w = 1, which is very well fitted by the theoretical prediction given by Eq.(10) (dashed
curve 4), in which the hopping rate ¥ ~ 0.0471 is estimated from the width of the narrow band of
Figure 2(d). Clearly, the decay of survival probability greatly deviates from an exponential curve and
in the early stage it is much faster than other cases [curves 1-3 in Figure 2(b)], where resonant tunneling
is prevented: the hopping dynamics enabled by resonant tunneling makes the decay faster.

3. Decay acceleration by resonant tunneling in tight-binding lattices

The phenomenon of decay acceleration in the early stage of the dynamics mediated by hopping
between adjacent resonant quasi bound states, discussed in the previous section, suggests to re-examine
quantum decay and tunneling effects in the framework of simple tight-binding models [32,43,44]. Such
models, besides to be simpler to study and simulate, can be readily implemented in photonic settings
using engineered arrays of evanescently-coupled optical waveguides. In fact, they have served over
the past two decades as feasible laboratory tools for the observation of non-exponential decay features
and Zeno dynamics with photons [5,33,34,45-47]. The simplest two-barrier system sustaining one
resonance state on a tight-binding lattice is described by the Hamiltonian [Figure 3(a)]

H= Y (In)(n+ 1]+ [n+1){n)) + Vo ¥ |n)(n] a1
n n==+1

where « is the hopping rate between adjacent sites of the lattice and Vj is the on-site potential barrier
at the two sites n = +1. For the sake of definiteness we assume V > 0, however on a lattice a quasi
bound state is also sustained for Vj < 0. Indicating by ¢, the wave amplitude at the n-th lattice site,
i.e. after letting | (t)) = ¥, ¥ (t)|n), the Schrodinger equation id¢|((t)) = H|y(t)) yields the set of
coupled equations

i

d

P k(i + ) + Vol + 9o, (12)
In the high-barrier limit Vo > «, an initial excitation at time t = 0 of site n = 0, trapped between
the two high potential barriers, is metastable and the survival probability, P(t) = |y (t)|%, decays

in time nearly exponentially, as observed in numerical simulations of Eqs.(12) assuming the initial
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conditions ¢, (0) = 0n,0; see curve 1 in Figure 3(c). Note that a small-amplitude and fast oscillation is
superimposed to the exponential decay, the amplitude of the oscillations vanishing in the Vj/x — oo
limit. The lifetime of the quasi-bound state at site # = 0 can be readily estimated by adiabatic
elimination from the dynamics of the small amplitudes at the sites ¢+ 1. In fact, in the high barrier limit
Vo/x > 1 one can assume in Eqs.(12) |(dyq —1/dt)| < Vp|1 —1],and thus

Py =~ %(lﬁo +12), Yoq %0(1/}0 +¥-2). (13)

Taking into account for symmetry reasons that ¢, (t) = ¢, (t), after letting ¢o(t) = ¢o(t) exp(iQt)
and ¢, (t) = V24,1 (t) exp(iQt) for n > 1, from Eqgs.(12) and (13) one obtains

.d
z% = Q¢o—xi01
.dc
17; = —K1@g — KCp (14)
.d
z% = —«k(cpp1+cp1) (1>2)
where we have set 5 )
K= @ , =_K (15)

W'
The reduced model (14) can be cast in the standard Friedrichs-Lee (or Fano-Anderson) model,

describing the decay of a single bound state weakly coupled to a featureless tight-binding continuum
(see e.g. [34,48,49]), and in the markovian approximation the survival probability can be calculated as

P(t) = |go(t)|* ~ exp(—t/7) (16)
where the lifetime 7 is given by (see Appendix A for details)

VZ
T=— =20

2K3 TN

(17)

The exponential decay predicted by Eqs.(16) and (17) turns out to be in good agreement with the exact
decay behavior found by numerical simulations [compare solid and dashed curves 1 in the inset of
Figure 3(c)].

When lateral barriers are introduced, the decay dynamics is rather generally modified and does
not follow anymore the exponential law Eq.(16). In order to observe decay acceleration by resonant
tunneling as suggested in Sec.2 above, the potential barriers are added at odd potential sites solely; see
Figure 3(b). The Hamiltonian of the system reads

H=—«) (In)(n+1|+[n+1)(n]) + ) Waln)(n| (18)
n n

where W, is the strength of the potential barrier at odd lattice sites, with W11 = Vy and W, = 0 for n
even. We mention that in photonics the tight-binding model (18) can be implemented using arrays of
evanescently coupled optical waveguides, in which a uniform coupling constant x and engineered
propagation constant shifts W, are realized by judicious design of waveguide widths and spacing. For
example, a linear gradient potential was realized in semiconductor waveguide arrays to demonstrate
optical Bloch oscillations in Ref. [50].

After adiabatic elimination of the small amplitudes 1 as discussed above [Eq.(13)], the decay
dynamics of ¢ (t) could be framed in the form of a single-level Fano-Anderson model, where the
additional barriers W, clearly structure the continuum of states into which the state |0) is coupled, and
could induce localization phenomena responsible for strong backflow and revivals in the dynamics
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[26-28]. It is precisely these effects that make it possible decay acceleration in the early stage of the
dynamics. The canonical Fano-Anderson form describing the decay process for the Hamiltonian (18)
is detailed in the Appendix A, which derives the general form of the memory function entering in
the integro-differential equation describing the decay dynamics of the amplitude ¢(¢). The memory
function basically includes all the multiple reflection phenomena and delay effects arising from wave
scattering of additional lateral barriers, which make the decay strongly non-markovian. The form
of the memory function depends in a complex way on the eigenstates of the bath Hamiltonian, and
even if its form might be calculated analytically in very special cases [51], it is hard to provide general
insights into the decay dynamics as governed by the integro differential equation. However, for our
purposes we do not need to resort to the canonical Fano-Anderson model and in the following analysis
we will provide some direct examples of quantum decay acceleration adopting the full Hamiltonian
(18). To this aim, it is worth noting that the system described by Eq.(18) is bipartite, and thus one can
write the wave function as |¢(t)) = Y, (ax(t)|2n) + b,(t)|2n + 1)). The evolution equations for the
wave amplitudes a, and b, at even and odd lattice sites read

.da

iy = by +ba) (19)
.dby,

ZW = 77((6171 + an+l) + W2n+1bn (20)

which should be solved with the initial condition a,,(0) = 6,9 and b,(0) = 0.

Let us now discuss a few prototypal examples of decay acceleration, observed in the early stage
of the dynamics, induced by the additional lateral barriers.

(i) The first example of decay acceleration is obtained by assuming W, = V; for n odd, which is
the discrete analogue of the Kronig-Penney model considered in the previous section [Figure 2(c)]. In
this case the Hamiltonian (18) describes a bipartite lattice sustaining two bands. In the high barrier
limit Vj >> «, to calculate the decay of the survival probability we can adiabatically eliminate the small
amplitudes by, from the dynamics by letting

by = %(an + 1) (21)
so that from Eq.(19) one obtains
iddi: =y (g + g+ 2ay) 22)
where we have set 2
=g (23)

The solution to Eq.(22) with the initial condition a,(0) = 4, is given in terms of Bessel ] function
[41,42] and the corresponding decay behavior of the survival probability reads

P(t) = |ag(t)|* = J§(2x1). (24)

Curve 2 in Figure 3(c) shows the numerically-computed decay behavior of P(t) for Vp/x = 10, which
turns out to be quite well fitted by the theoretical prediction given by Eq.(24). Clearly, the decay largely
deviates from an exponential law and, most importantly, it is accelerated as compared to curve 1, at
least in the early-to-intermediate time scale of the decay.
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Figure 3. (a) Schematic of a double barrier potential on a tight-binding lattice. A quasi-bound state
trapped between the two high barriers radiates into the lattice. (b) The multi-barrier model. Additional
potential barriers are introduced at odd lattice sites. (c) Decay of the survival probability P(t) = |¢q(t)|?
for a few different settings of potential barriers and for ¥ = 1, Vj = 10. Curve 1 is the nearly-exponential
decay behavior of the double-barrier model of panel (a), i.e. in the absence of additional lateral barriers.
The almost overlapped dashed curve is the exponential decay law predicted by Eq.(16). Curve 2 is the
decay curve obtained for W,, = V = 10, and the almost overlapped dashed curve is the theoretical
prediction given by Eq.(24). Curve 3 is the decay behavior for the Bernoulli model with V; = Vj,
Vo = Vy/2 and p = 0.5. Curve 4 is the decay behavior corresponding to the symmetric Stark potential
barrier model with F = 1. Curve 5 is the decay behavior for the parabolic potential barrier model with
F = 0.1. The inset in (c) shows an enlargement of the decay dynamics in the early stage.

(ii) As a second example of decay acceleration, let us assume that at odd sites n, with n # +1, the
potential W, can take two possible values, either W, = V; or W, = V,, with probabilities p and 1 — p,
respectively (Bernoulli model [52]). Curve 3 in Figure 3(c) shows the numerically-computed decay
behavior of the survival probability for V; = Vy, Vo = V/2, Vo/x =10 and p = 1/2, averaged over
200 realizations. Also in this case one can clearly observe an acceleration of the decay in the early stage
of the dynamics, in spite of Anderson localization can take place in this model (see Appendix B). This
means that, unlike the previous example (i), at long times the decay is not complete.

(iii) The third example of decay acceleration concerns with deterministic potential barriers with
continuously-increasing and unbounded heights, namely we assume symmetric Stark potential barriers
with W_,, = W, and

(25)

{F(nl) n>1, nodd
W, =
0 n even.

Curve 4 in Figure 3(c) shows the numerically-computed behavior of the survival probability P(t) =
lag(t)|? for Vo/x = 10 and F = 1, clearly showing the acceleration of the decay in early stage of
the decay. This is a rather striking and unexpected result, given that the added barriers have a
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monotonously increasing and unbounded height and the corresponding Hamiltonian (18) has an
almost pure point spectrum with localized eigenstates (see Appendix B and [53]).

(iv) The fourth example of decay acceleration is analogous to the previous case, but with a
quadratic (rather than linear) increase of barrier heights, i.e. we assume W_,, = W, and

2
0 n even. (26)

W, — { F(n—1)> n>1, nodd
Curve 5 in Figure 3(c) shows the numerically-computed behavior of the survival probability P(t) =
lao(t)|? for Vo/x = 10 and F = 0.1, clearly showing the acceleration of the decay in early stage, with
strong revival at longer times.

It should be remarked that decay acceleration mediated by the resonant tunneling effect, observed
in all above models, occurs only in the early stage of the dynamics, as shown in Figure 3(c). In fact, at
long times the the survival probability P(t) can become smaller when there are no additional lateral
barriers, because the backflow arising from multiple scattering processes and localization effects,
responsible for strong non-markovianity and deviation of the decay from an exponential curve, induce
revival effects in the survival probability, which are prevented in the simple two-barrier case.

4. Conclusion

The decay of a resonance state trapped in a double potential barrier provides one of the simplest
models of unstable quantum systems, which was introduced in a landmark paper by Gamov to explain
« decay in nuclear physics. A main question, which has been so far largely overlooked, is whether
quantum decay of a metastable state in the double-barrier model can be accelerated by additional
lateral barriers. Such additional barriers clearly induce multiple scattering and interference effects,
that greatly modify the decay dynamics: the outgoing waves that escape via tunneling from the two
barriers can be back reflected and re-injected into the original spatial region by the later barriers. The
resulting decay behavior can strongly deviate from an exponential law and is the result of a complex
multiple interference process which, depending on the choice of the additional barriers, can either
decelerate or accelerate the decay. The fact that additional barriers can slow down the decay of the
survival probability is not surprising, however it is more elusive how and why the decay can be
accelerated in some cases. In this work we have shown that a main mechanism that can induce decay
acceleration, at least in the early stage of the decay, is resonant tunneling. We have illustrated such a
phenomenon by considering in details the decay dynamics of resonant states in tight binding models,
showing that decay acceleration can be observed even when the later barriers are increasingly higher
and higher or have some stochastic distribution. The predicted effects could be observable in photonic
tunneling experiments using engineered integrated waveguide array circuits.
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Appendix A. Fano-Anderson form of the quantum decay on the lattice

In this Appendix we derive the canonical Fano-Anderson (or Friedrichs-Lee) form of the quantum
decay on the lattice described by the Hamiltonian (18). After letting |¢(¢)) = Y, ¥ (t)|n), the evolution
equations for the amplitudes ¥, (t) read

dyy,
dt

i

= =K (Y41 + Pu-1) + Watpu. (A1)

For the sake of simplicity, we assume that the potential W,, is symmetric around n = 0,i.e. W_;, = Wj,.
In this case, for the initial condition ¢, (0) = d,, the solution to Eq.(Al) satisfies the constraint
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P_u(t) = Pu(t), so that we can limit to consider the evolution equations for the amplitudes ¢, 11, 2,
... which read explicity

d

i% - (A2)
d

i% = Ko — Ky + Voyr (A3)
d

i% = —K§1—Ky3 (A4)

id;#’tn = —K(Pn+1+Pn_1) + Wapn (n > 3). (A5)

In the large Vj/x > 1 limit, we can adiabatically eliminate from the dynamics the amplitude ¢, by
assuming |d(y /dt)| < Vo in Eq.(A3). This yields

K
P1(t) =~ VO(% + ). (A6)
After letting
) 1 )
Po(t) = @o(t) exp(ix®t/Vp), ¥u(t) = Vot exp(ix*t/Vp) (n>2) (A7)
from Eqgs.(A1-A7) one obtains
.d
z% = Q¢o—xi01 (A8)
.dc
1d—t1 = —K1@g —KC2 (A9)
.d
i = —k(Cusr+n) + Vaen (n122) (A10)
where we have set
V2K? 2 K2
Klz?o, QE_VO, VnEWn+1+VOZ Vl+1_Q' (A11)

To obtain the canonical form of Fano-Anderson model, let us indicate by

u® = (@ @ @ T

1 Uy Uy,

and w, the eigenvectors and corresponding eigenvalues (energies) of the semi-infinite matrix
Hamiltonian H, defined by

0 —-x O 0 0 0 o0
—-x Vo —x 0 0 0 O
0 —-x V3 —x O 0 O
= Al2
& 0 0 —«x V, —x 0 O ( )
0 0 0 —x Vs —x O

where « is a discrete index (for localized states) or a continuous variable (for extended states). The
eigenstates are assumed to satisfy the orthonormal condition (u@af)) = «,p for discrete indices

doi:10.20944/preprints202309.0917.v1
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(point spectrum), or (u®|uf)) = §(a — B) for continuous indices (continuous spectrum). After
expanding the amplitudes ¢, (t) as a series (or integral) of the eigenstates of #, i.e. after letting

en(t) = Y 0a(H)ull, (A13)

from Eqs.(A8-A10) and (A13) one readily obtains the following set of evolution equations

.d
1% = Qg¢o— Zgaea (A14)
o
.do .
zd—: = waby — 2P0 (A15)
where we have set
g,x = K1u§“).

In Eqs.(A13) and (A14), it is understood that the sum over a should be replaced by an integral over «
for the continuous part of the spectrum of H. In their present form, Eqs.(A14) and (A15) can be derived
from the single-level Fano-Anderson (or Friedrichs-Lee) Hamiltonian [24,48,49]

Hra = Q[0)(0] + Y wala)(a| — Y (g2]0) (x| + H.c.) (A16)

14

which describes the decay of a single level |0) of frequency Q) coupled to a discrete or continuous set
of states |a) (the bath), with frequencies w,, by a spectral coupling function g,. We mention that, in
the most general case where the parity condition W_,, = W, is not satisfied, one can still obtain a
Fano-Anderson Hamiltonian as Eq.(A16), but the level |0) turns out to be coupled to two baths with
different spectral coupling functions.

After eliminating from the dynamics the variables 6, (t) by formally solving Eq.(A15) with the
initial condition 6,(0) = 0 and after letting ¢o(t) = A(t) exp(—iQt), from Eq.(14) one obtains the
following integro-differential equation describing the decay dynamics of the amplitude A(t)

dA o0
i = | gt - A (A17)
0
where G(7) is the memory function, defined by

G(t) = —i ) |gul® exp[—i(wu — Q7). (A18)

Only when the single level |0) is weakly coupled to a featureless continuum of states with a short
memory time T, — the memory time T, is the characteristic decay time of the memory function G(7)-
one can use the markovian (or Weisskopf-Wigner) approximation [22], and the decay dynamics is well
described by an exponential law. In this case Eq.(A18) reduces to a simple differential equation, i.e.

dA

i = A(1)(AR — i) (A19)

where we have set Ag —iA] = fooo dtG (1) defining the Lamb shift (Ag) and decay rate (Aj). After
letting Y, — [ dua in Eq.(A18) and following a standard procedure, the explicit form of the decay rate
A1 and Lamb shift Ag can be calculated as

A=l @Pp(Q) , A= P [ de SR (A20)

where g(w) = g,—4(c) is the spectral coupling function and p(w) = 1/(dw/da) is the density of states.
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As an example of a nearly-exponential decay, let us consider the quantum decay in the absence of
lateral barriers, i.e. with W, = 0, corresponding to V;, = —() in Eq.(A12). In this case the spectrum
of the matrix Hamiltonian H [Eq.(A12)] is absolutely continuous, and neglecting the small defect
(impurity potential) at the edge, its energy spectrum and corresponding eigenfunctions read (see e.g.
[49])

wy = —0 —2xcosa, uﬁla) =1/ % sin(an) (A21)

where 0 < & < 77 is a continuous parameter. In this case, the spectral coupling function and density of
states are readily calculated as

2@) = o= S 4~ @+ O, plw) = /e e 14 (Az)

Taking into account that |Q}| < «, from Eqgs.(A20) and (A22) one obtains

K
Ap~ -1 A23
1 (A23)
and thus the lifetime 7 reads .
K

which is Eq.(17) given in the main text.

Appendix B. Some qualitative properties of the energy spectrum and weak localization

In this Appendix we present some discussion about the energy spectrum of the tight-binding
bipartite Hamiltonian H defined by Eq.(18) in the main text. After letting (a,(t),b,(t))T =
(A, B) exp(—iEt), from Egs.(19) and (20) one obtains the spectral problem

Eay = —x(by+ bn—l) (A25)
Eb, = —«(an+ap+1)+ Wayusi1bn. (A26)

It can be readily shown that the energy E = 0 belongs to the spectrum of H with wave function in one
sublattice solely
a, =(-1)", b, =0 (A27)

corresponding to an extended (improper) eigenstate. For E # 0, from Eq.(A25) one can express the
amplitudes a, in one sublattice in terms of the amplitudes b, in the other sublattice, i.e.

K
an = _E(bn +by1). (A28)

Substitution of Eq.(A28) into Eq.(A26), after letting b, = (—1)" ¢, one obtains

E E?
— ®(Puy1 + @u1 — 2¢n) + (K) Woy 190 = ?(Pn- (A29)

Equation (A29) can be regarded as the spectral problem on a tight-binding lattice in the potential
Vi = (E/x)Way, 1 with an energy-dependent amplitude, vanishing as E — 0.

Clearly, if Wy, 1 is constant, like in the example (i) considered in Sec.3, or a periodic function of
index 1, the energy spectrum is absolutely continuous and H does not sustain any localized state. In
this case we expect the decay of survival probability to be complete. Conversely, if W5, 1 describes
some disordered potential, such as the Anderson-Bernoulli model [52] considered in the example (ii) of
Sec.3, or a deterministic potential with |W5,, ;1| monotonously increasing and unbounded as |n| — oo,
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such as the symmetric Stark potential or the parabolic potentials discussed in the examples (iii) and
(iv) of Sec.3, all eigenstates with E # 0 are strictly speaking localized. This is because any uncorrelated
disordered potential of arbitrarily small amplitude in one dimension, or any unbounded potential of
small amplitude which is monotonously increasing with ||, have all eigenstates localized. However,
an infinitely countable set of eigenenergies, with weakly extended eigenstates, accumulate toward the
zero energy point E = 0 of the extended state, with a diverging localization length of corresponding
eigenstates. Such a property can be proven rigorously in some special potential models, such as the
Stark potential model [53] or other integrable models such as the Maryland model [54]. More generally,
for small energies |E /x| — 0 the potential entering in Eq.(A5) is almost vanishing and thus we expect
that any eigenstate, if localized, should have a large localization length, diverging as E — 0. For
random potentials, this result, i.e. the divergence of the localization length as E — 0, is rigorously
proven in [55]. Interestingly, from Eq.(A28) it follows that the occupation of the eigenstates with
energy close to zero is mostly restricted to one sublattice, namely |a,| > |b,|. Such weakly-localized
eigenstates are nearly resonant with the quasi-bound state localized at site n = 0, between the two high
barriers. The quasi bound state can thus couple with such weakly localized states, while other strongly
localized states with high energy do not play any main role in the decay dynamics. This means that
the decaying quasi-bound state couples to a set of discrete and weakly-localized states of the bath,
which is responsible rather generally for memory (non-markovian) effects and strong deviations from
an exponential decay law. This explains why the long-time dynamics displays strong revival effects
and also limited decay, such as those observed in models (iii), (iv) and (v) discussed in the main text
[see Figure 3(c)].
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