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Abstract: A quantum particle constrained between two high potential barriers provides a

paradigmatic example of a system sustaining quasi bound (or resonance) states. When the system is

prepared in one of such quasi bound states, the wave function approximately maintains its shape

but decays in time in a nearly exponential manner radiating into the surrounding space, the lifetime

being of the order of the reciprocal of the width of the resonance peak in the transmission spectrum.

Naively, one could think that adding more lateral barriers would preferentially slow down or prevent

the quantum decay since tunneling is expected to become less probable and because of quantum

backflow induced by multiple scattering processes. However, this is not always the case and in the

early stage of the dynamics quantum decay can be accelerated (rather than decelerated) by additional

lateral barriers, even when the barrier heights are arbitrarily large. The decay acceleration originates

from resonant tunneling effects and is associated to large deviations from an exponential decay law.

We discuss such a counterintuitive phenomenon by considering the hopping dynamics of a quantum

particle on a tight-binding lattice with on-site potential barriers.

Keywords: quantum tunneling; quasi bound states; tight binding lattices

1. Introduction

Quantum tunneling is ubiquitous in quantum mechanics where a particle has a non-zero

probability of passing through a classically forbidden energy barrier, even though it doesn’t have

enough energy to overcome that barrier according to classical physics [1,2]. This behavior arises from

the wave-like nature of particles at the quantum level, and can be thus observed also for classical waves

such as light and sound waves (see e.g. [3–6]). One of the main predictions of quantum tunneling

is the instability and decay of a quantum particle trapped by potential barriers of finite heights, a

prototypal example being α-decay in nuclear physics [7,8]. Perhaps the simplest one-dimensional

quantum mechanical model possessing quasi-stationary (resonance) states, decaying via tunneling

leakage, is the double rectangular potential barrier model [Figure 1(a)], which was introduced in a

famous paper by Gamov to model α decay [7]. When the barrier height V0 is infinite, the system

sustains a set of stationary (non-decaying) bound states at some quantized energies, however when

the barrier height V0 is not infinite some of these states, those with energies close to the bottom of

the barriers, become metastable, i.e. they become resonance states (also known as Gamow or Siegert

states, or quasi-bound states; see e.g. [9–14] and references therein). This means that an initial wave

function prepared in a bound state of the infinite barrier approximately maintains its shape but decays

in time in a nearly exponential manner through tunneling leakage across the barriers, generating

small-amplitude outgoing waves that spread outward the barrier region [9–11]. The signature of

resonance states are the characteristic Breit-Wigner resonance peaks in the transmission spectrum of

the double potential barrier, and the lifetimes of the resonance states are of the order of the reciprocal

of the widths of the Breit-Wigner resonances [11] [see Figure 1(b)].

The quantum decay does not strictly follow a simple exponential decay law, and deviations from

an exponential decay universally arise in the short and long time scales [15–20], leading to Zeno-like
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dynamics, i.e. the deceleration (Zeno effect) or the acceleration (anti-Zeno effect) of the decay by

frequent observations of the system (see, e.g., [21–25] and references therein). Strong deviations from

an exponential decay law are generally observed because of interference between different decay

pathways, strong coupling with a featureless bath or with an engineered bath, which introduce memory

effects and non-markovian behavior, or in the presence of edge effects or localized states, such as in

disordered systems, leading to revivals and limited quantum decay [26–28].

Quantum leakage dynamics in the double-barrier potential is clearly modified when lateral

barriers are added. Such additional barriers introduce interference effects and make the quantum

decay greatly non-exponential rather generally. Naively, one could think that additional barriers

would preferentially slow down the decay, since the tunneling is expected to become less probable

and because of the back flow into the original excitation region. For example, for stochastic barriers

one expects Anderson localization [29,30], leading to a highly non-markovian dynamics, Rabi-like

oscillations and limited quantum decay [27,28,31]. However, this picture may fail in other cases as

multiple interference effects could play in a reversed way.

In this work we unveil the rather counterintuitive effect of quantum decay acceleration of a

resonance state in the double barrier model induced by additional later barriers: rather than slowing

down the decay, they can greatly accelerate the quantum decay, even when the height of barriers are

unbounded. This unusual phenomenon is explained in terms of resonant tunneling (hopping) and

studied by considering in details the decay of resonance states in potential barriers on a tight-binding

lattice, which can be emulated in photonic settings using evanescently-coupled optical waveguide

lattices [32–34] or grating structures [35–37].

Figure 1. (a) Schematic of a double rectangular potential barrier sustaining resonance (quasi-bound)

states at energies E = E1, E2, .... Barrier height is V0, barrier width is b and barrier distance is d = a + b.

(b) Spectral transmittance |t(E)|2 of the two-barrier potential versus energy of the incidence wave.

Parameter values are a = b = 1, V0 = 20. The inset in (b) shows an enlargement of the first resonance

at energy E = E1, which is well approximated by a Lorentzian curve (Breit-Wigner resonance). The

two resonance peaks in (b) correspond to the quasi bound states depicted in (a) by the solid red curves.

In the high potential barrier limit, the quasi bound state can be approximately written as in Eq.(6),

where θ(x, t) describes the small-amplitude outgoing waves escaping from the barrier region owing to

evanescent tunneling (oscillating tails in the plots) and τ = 1/∆E is the lifetime, which is the inverse of

the width ∆E of the corresponding resonance peak in (b).

2. Acceleration and deceleration of quantum decay in the double barrier model: some
preliminary considerations

Before considering quantum decay in tight-binding models with on-site potential barriers, it is

worth presenting some preliminary results and discussion on the decay dynamics of resonance states

in the Gamov’s model for the continuous Schrödinger equation in one spatial dimension, which is

written in dimensionless units as

i
∂ψ

∂t
= −∂2ψ

∂x2
+ V(x)ψ (1)

where ψ = ψ(x, t) is the wave function and V(x) is the potential. Let us first assume that V(x)

describes a double rectangular barrier, with barrier height V0, barrier width b and barrier distance
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d = b + a [Figure 1(a)]. Figure 1(b) shows a typical behavior of spectral transmittance |t(E)|2 versus

energy E of the incidence plane wave. The transmission amplitude t(E) can be calculated by standard

textbook methods and reads

t(E) =
t2
1 exp(ik0a)

1 − r2
1 exp(2ik0a)

(2)

where r1(E) and t1(E) are the reflection and transmission amplitudes of the single barrier, given by

t1(E) =
4k0k1 exp(ik1b)

(k0 + k1)2 − (k0 − k1)2 exp(2ik1b)
(3)

r1(E) =
(k2

0 − k2
1) sin(k1b)

(k2
0 + k2

1) sin(k1b) + 2ik0k1 cos(k1b)
(4)

and

k0 ≡
√

E , k1 ≡
√

E − V0. (5)

The spectral transmittance clearly shows resonance peaks at some energies [two peaks at energies

E = E1, E2 in the plot of Figure 1(b)], which correspond to quasi bound states. In the high-barrier limit,

i.e. very narrow resonances [such as the first resonance at E = E1 shown in the inset of Figure 1(b)],

the resonance curve is Lorentzian-shaped to a high degree of approximation (Breit-Wigner resonance)

and the corresponding quasi bound state can be roughly speaking written as

ψ(x, t) = ψ(x, 0) exp(−iEt − t/2τ) + θ(x, t) (6)

where ψ(x, 0), E are close to the bound state wave function and corresponding (possibly shifted)

eigenenergy in the infinite V0 = ∞ limit, τ = 1/∆E is the lifetime of the quasi bound state, ∆E is the

full-width at half-maximum of the Breit-Wigner resonance, and θ(x, t) describes the small-amplitude

outgoing waves in the outer regions of the barriers [see Figure 1(a)]. An example of a nearly-exponential

decay of the lowest resonance state is shown in Figure 2(b), which depicts the decay behavior of the

survival probability to find the particle between the two barriers,

P(t) =
∫ a/2

−a/2
dx|ψ(x, t)|2, (7)

normalized to its initial value P(0). Here, ψ(x, 0) is assumed to be close to the lowest-energy bound

state of the same barrier model but with V0 = ∞, i.e. ψ(x, 0) ∝ cos(πx/a) for |x| < a/2 and ψ(x, 0) = 0

otherwise, propagated for a short time interval (∆t = 3) to remove fast transient oscillations in the

behavior of P(t). The results are obtained by numerical integration of the time-dependent Schrödinger

equation (1) using an accurate pseudospectral split-step method. The decay dynamics [solid curve 1 in

Figure 2(b)] is quite well fitted by an exponential curve [dashed curve 1 in Figure 2(b)] with a lifetime

close to the theoretical value τ = 1/∆E1 ≃ 322.6 predicted from the spectral width ∆E1 ≃ 0.0031 of the

lowest Breit-Wigner resonance peak. A similar behavior is found when the system is initially prepared

in the second resonance state, i.e. ψ(x, 0) ∝ sin(2πx/a) for |x| < a/2 and ψ(x, 0) = 0 otherwise, the

exponential decay displaying a much shorter lifetime (τ = 1/∆E2 ≃ 4.50), according to the larger

width ∆E2 of the second resonance peak in Figure 1(b).

Clearly, the decay dynamics is greatly modified and can largely deviate from an exponential law

when we consider additional lateral barriers, because the outgoing waves that escape via tunneling

from the two barriers can be back reflected and re-injected into the original spatial region |x| < a/2.

The final decay law P(t) is the result of a complex multiple interference process which, depending

on the choice of the additional barriers, can either decelerate or accelerate the decay. The fact that

additional barriers can slow down the decay of the survival probability is not surprising, however it is

more elusive how and why the decay can be accelerated in some cases. One of the main mechanism

that explains decay acceleration is resonant tunneling (see e.g. [38]). This point can be illustrated by
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considering, as an example, the case of an array of equally-spaced barriers; see Figure 2(a). Besides

the two barriers as in Figure 1(a), we now add a sequence of equally-spaced barriers of height W0,

same space separation d = a + b, and barrier width w. Barrier height W0 and width w can be rather

generally different than V0 and a. Curves 2 and 3 in Figure 2(b) show the decay dynamics of the

survival probability when either or both w and W0 differ than b and V0, clearly indicating that the

additional barriers decelerate the decay. However, a striking effect is observed when w = b and

W0 = V0: the decay of survival probability is much faster and the decay dynamics greatly deviates

from an exponential law [curve 4 in Figure 2(b)]. The decay acceleration can be explained on the basis

of resonant tunneling (hopping) between resonant quasi bound states that are sustained by adjacent

double-potential barriers, as schematically shown in Figure 2(c). In fact, for w = b and W0 = V0 the

potential V(x) is strictly periodic with period d = a + b, and such a periodic potential corresponds to

the well-known Kronig-Penney model in solid-state physics [39,40]. Basically, the various resonant

quasi-bound states sustained in adjacent double-barriers hybridize and give rise to a set of bands. The

dispersion curves E = E(k) of the various bands are defined implicitly by the relation (see e.g. [40])

Figure 2. (a) Schematic of a quasi bound state in the double barrier model (bold solid curve),

that radiates in space with additional later barriers (thin solid curves). All barriers are equally

spaced by a distance d. The size w and height W0 of the lateral barriers can differ than those

of the two central barriers. (b) Numerically-computed decay behavior of the survival probability

P(t) =
∫ a/2
−a/2 dx|ψ(x, t)|2, normalized to its initial value P(0), for V0 = 20, a = b = 1, d = 2, and for

a few different values of w and W0. Curve 1: quasi bound state radiating in free space (W0 = 0); the

dashed curve is the exponential decay law with lifetime τ = 1/∆E1 ≃ 322.6 predicted by the width

of the first resonance peak in the spectrum of Figure 1(b). Curve 2: W0 = V0 = 20, w = b/2 = 0.5.

Curve 3: W0 = V0/5 = 4, w = b/2 = 0.5. Curve 4: W0 = V0 = 20, w = b = 1; the dashed curve 4

is the decay behavior P(t) = |J0(2κt)|2 predicted by the tight-binding analysis of resonant tunneling

[Eq.(10)]. (c) The Kronig-Penney model for W0 = V0 and w = b. The set of resonant quasi-bound states

trapped in adjacent double-barrier potentials form an energy band, and excitation can hop between

adjacent cells of the crystal with a hopping rate κ. (d) Geometrical construction of the energy bands for

the Kronig-Penney model. The solid curve shows the behavior of the function f (E) versus energy E;

the function f (E) is defined by Eq.(8) in the main text. The allowed energy bands are determined by

the inequality | f (E)| ≤ 1 and are indicated as band 1, band 2, band 3 in the figure. The narrow band

1 arises from the hybridization of the lowest-energy resonant quasi bound states sustained by each

double potential barrier (unit cell) in the crystal.

cos(kd) = f (E)
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where we have set

f (E) = cos(a
√

E) cos(b
√

E − V0)−
2E − V0

2
√

E(E − V0)
sin(a

√
E) sin(b

√

E − V0). (8)

In the above equation, k is the Bloch wave number, which varies in the first Brillouin zone −π/d < k ≤
π/d. The band dispersion curves, defined by the relation cos(kd) = f (E), can be solved graphically,

as shown in Figure 2(d). The low-energy narrow-band in Figure 2(d), indicated as band 1 and centered

at around E = E1 ≃ 4.589, arises from the weak overlapping (hybridization) of resonant quasi-bound

states with energies E1 in adjacent unit cells of the crystal, and its bandwidth 4κ ≃ 0.1884 defines the

hopping amplitude κ between adjacent sites within a tight-binding description. In the nearest-neighbor

approximation, an initial excitation of one of such quasi-bound mode can jump from one unit cell to its

neighbor in either direction with a rate κ, and the spreading dynamics is ballistic and governed by the

set of coupled equations (see e.g. [40–42] )

i
dψn

dt
= −κ(ψn+1 + ψn−1) (9)

where ψn is the amplitude of the quasi bound state at the n-th unit cell. The decay behavior of the

survival probability is then given analytically in terms of J0 Bessel function, namely [41]

P(t) = |J0(2κt)|2. (10)

The solid curve 4 in Figure 2(b) shows the numerically-computed behavior of P(t) for V0 = W0 = 20

and a = b = w = 1, which is very well fitted by the theoretical prediction given by Eq.(10) (dashed

curve 4), in which the hopping rate κ ≃ 0.0471 is estimated from the width of the narrow band of

Figure 2(d). Clearly, the decay of survival probability greatly deviates from an exponential curve and

in the early stage it is much faster than other cases [curves 1-3 in Figure 2(b)], where resonant tunneling

is prevented: the hopping dynamics enabled by resonant tunneling makes the decay faster.

3. Decay acceleration by resonant tunneling in tight-binding lattices

The phenomenon of decay acceleration in the early stage of the dynamics mediated by hopping

between adjacent resonant quasi bound states, discussed in the previous section, suggests to re-examine

quantum decay and tunneling effects in the framework of simple tight-binding models [32,43,44]. Such

models, besides to be simpler to study and simulate, can be readily implemented in photonic settings

using engineered arrays of evanescently-coupled optical waveguides. In fact, they have served over

the past two decades as feasible laboratory tools for the observation of non-exponential decay features

and Zeno dynamics with photons [5,33,34,45–47]. The simplest two-barrier system sustaining one

resonance state on a tight-binding lattice is described by the Hamiltonian [Figure 3(a)]

H = −κ ∑
n

(|n〉〈n + 1|+ |n + 1〉〈n|) + V0 ∑
n=±1

|n〉〈n| (11)

where κ is the hopping rate between adjacent sites of the lattice and V0 is the on-site potential barrier

at the two sites n = ±1. For the sake of definiteness we assume V0 > 0, however on a lattice a quasi

bound state is also sustained for V0 < 0. Indicating by ψn the wave amplitude at the n-th lattice site,

i.e. after letting |ψ(t)〉 = ∑n ψn(t)|n〉, the Schrödinger equation i∂t|ψ(t)〉 = H|ψ(t)〉 yields the set of

coupled equations

i
dψn

dt
= −κ(ψn+1 + ψn−1) + V0(ψ1 + ψ−1). (12)

In the high-barrier limit V0 ≫ κ, an initial excitation at time t = 0 of site n = 0, trapped between

the two high potential barriers, is metastable and the survival probability, P(t) = |ψ0(t)|2, decays

in time nearly exponentially, as observed in numerical simulations of Eqs.(12) assuming the initial
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conditions ψn(0) = δn,0; see curve 1 in Figure 3(c). Note that a small-amplitude and fast oscillation is

superimposed to the exponential decay, the amplitude of the oscillations vanishing in the V0/κ → ∞

limit. The lifetime of the quasi-bound state at site n = 0 can be readily estimated by adiabatic

elimination from the dynamics of the small amplitudes at the sites ψ±1. In fact, in the high barrier limit

V0/κ ≫ 1 one can assume in Eqs.(12) |(dψ1,−1/dt)| ≪ V0|ψ1,−1|,and thus

ψ1 ≃ κ

V0
(ψ0 + ψ2) , ψ−1 ≃ κ

V0
(ψ0 + ψ−2). (13)

Taking into account for symmetry reasons that ψ−n(t) = ψn(t), after letting ϕ0(t) = ψ0(t) exp(iΩt)

and cn(t) =
√

2ψn+1(t) exp(iΩt) for n ≥ 1, from Eqs.(12) and (13) one obtains

i
dϕ0

dt
= Ωϕ0 − κ1c1

i
dc1

dt
= −κ1 ϕ0 − κc2 (14)

i
dcn

dt
= −κ(cn+1 + cn−1) (n ≥ 2)

where we have set

κ1 ≡
√

2κ2

V0
, Ω ≡ − κ2

V0
. (15)

The reduced model (14) can be cast in the standard Friedrichs-Lee (or Fano-Anderson) model,

describing the decay of a single bound state weakly coupled to a featureless tight-binding continuum

(see e.g. [34,48,49]), and in the markovian approximation the survival probability can be calculated as

P(t) = |ϕ0(t)|2 ≃ exp(−t/τ) (16)

where the lifetime τ is given by (see Appendix A for details)

τ =
κ

2κ2
1

=
V2

0

4κ3
. (17)

The exponential decay predicted by Eqs.(16) and (17) turns out to be in good agreement with the exact

decay behavior found by numerical simulations [compare solid and dashed curves 1 in the inset of

Figure 3(c)].

When lateral barriers are introduced, the decay dynamics is rather generally modified and does

not follow anymore the exponential law Eq.(16). In order to observe decay acceleration by resonant

tunneling as suggested in Sec.2 above, the potential barriers are added at odd potential sites solely; see

Figure 3(b). The Hamiltonian of the system reads

H = −κ ∑
n

(|n〉〈n + 1|+ |n + 1〉〈n|) + ∑
n

Wn|n〉〈n| (18)

where Wn is the strength of the potential barrier at odd lattice sites, with W±1 = V0 and Wn = 0 for n

even. We mention that in photonics the tight-binding model (18) can be implemented using arrays of

evanescently coupled optical waveguides, in which a uniform coupling constant κ and engineered

propagation constant shifts Wn are realized by judicious design of waveguide widths and spacing. For

example, a linear gradient potential was realized in semiconductor waveguide arrays to demonstrate

optical Bloch oscillations in Ref. [50].

After adiabatic elimination of the small amplitudes ψ±1 as discussed above [Eq.(13)], the decay

dynamics of ψ0(t) could be framed in the form of a single-level Fano-Anderson model, where the

additional barriers Wn clearly structure the continuum of states into which the state |0〉 is coupled, and

could induce localization phenomena responsible for strong backflow and revivals in the dynamics
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[26–28]. It is precisely these effects that make it possible decay acceleration in the early stage of the

dynamics. The canonical Fano-Anderson form describing the decay process for the Hamiltonian (18)

is detailed in the Appendix A, which derives the general form of the memory function entering in

the integro-differential equation describing the decay dynamics of the amplitude ψ0(t). The memory

function basically includes all the multiple reflection phenomena and delay effects arising from wave

scattering of additional lateral barriers, which make the decay strongly non-markovian. The form

of the memory function depends in a complex way on the eigenstates of the bath Hamiltonian, and

even if its form might be calculated analytically in very special cases [51], it is hard to provide general

insights into the decay dynamics as governed by the integro differential equation. However, for our

purposes we do not need to resort to the canonical Fano-Anderson model and in the following analysis

we will provide some direct examples of quantum decay acceleration adopting the full Hamiltonian

(18). To this aim, it is worth noting that the system described by Eq.(18) is bipartite, and thus one can

write the wave function as |ψ(t)〉 = ∑n(an(t)|2n〉+ bn(t)|2n + 1〉). The evolution equations for the

wave amplitudes an and bn at even and odd lattice sites read

i
dan

dt
= −κ(bn−1 + bn) (19)

i
dbn

dt
= −κ(an + an+1) + W2n+1bn (20)

which should be solved with the initial condition an(0) = δn,0 and bn(0) = 0.

Let us now discuss a few prototypal examples of decay acceleration, observed in the early stage

of the dynamics, induced by the additional lateral barriers.

(i) The first example of decay acceleration is obtained by assuming Wn = V0 for n odd, which is

the discrete analogue of the Kronig-Penney model considered in the previous section [Figure 2(c)]. In

this case the Hamiltonian (18) describes a bipartite lattice sustaining two bands. In the high barrier

limit V0 ≫ κ, to calculate the decay of the survival probability we can adiabatically eliminate the small

amplitudes bn from the dynamics by letting

bn ≃ κ

V0
(an + an+1) (21)

so that from Eq.(19) one obtains

i
dan

dt
= −κ1(an+1 + an−1 + 2an) (22)

where we have set

κ1 ≡ κ2

V0
(23)

The solution to Eq.(22) with the initial condition an(0) = δn,0 is given in terms of Bessel J0 function

[41,42] and the corresponding decay behavior of the survival probability reads

P(t) = |a0(t)|2 = J2
0 (2κ1t). (24)

Curve 2 in Figure 3(c) shows the numerically-computed decay behavior of P(t) for V0/κ = 10, which

turns out to be quite well fitted by the theoretical prediction given by Eq.(24). Clearly, the decay largely

deviates from an exponential law and, most importantly, it is accelerated as compared to curve 1, at

least in the early-to-intermediate time scale of the decay.
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Figure 3. (a) Schematic of a double barrier potential on a tight-binding lattice. A quasi-bound state

trapped between the two high barriers radiates into the lattice. (b) The multi-barrier model. Additional

potential barriers are introduced at odd lattice sites. (c) Decay of the survival probability P(t) = |ψ0(t)|2
for a few different settings of potential barriers and for κ = 1, V0 = 10. Curve 1 is the nearly-exponential

decay behavior of the double-barrier model of panel (a), i.e. in the absence of additional lateral barriers.

The almost overlapped dashed curve is the exponential decay law predicted by Eq.(16). Curve 2 is the

decay curve obtained for Wn = V0 = 10, and the almost overlapped dashed curve is the theoretical

prediction given by Eq.(24). Curve 3 is the decay behavior for the Bernoulli model with V1 = V0,

V2 = V0/2 and p = 0.5. Curve 4 is the decay behavior corresponding to the symmetric Stark potential

barrier model with F = 1. Curve 5 is the decay behavior for the parabolic potential barrier model with

F = 0.1. The inset in (c) shows an enlargement of the decay dynamics in the early stage.

(ii) As a second example of decay acceleration, let us assume that at odd sites n, with n 6= ±1, the

potential Wn can take two possible values, either Wn = V1 or Wn = V2, with probabilities p and 1 − p,

respectively (Bernoulli model [52]). Curve 3 in Figure 3(c) shows the numerically-computed decay

behavior of the survival probability for V1 = V0, V2 = V0/2, V0/κ = 10 and p = 1/2, averaged over

200 realizations. Also in this case one can clearly observe an acceleration of the decay in the early stage

of the dynamics, in spite of Anderson localization can take place in this model (see Appendix B). This

means that, unlike the previous example (i), at long times the decay is not complete.

(iii) The third example of decay acceleration concerns with deterministic potential barriers with

continuously-increasing and unbounded heights, namely we assume symmetric Stark potential barriers

with W−n = Wn and

Wn =

{

F(n − 1) n ≥ 1, n odd

0 n even.
(25)

Curve 4 in Figure 3(c) shows the numerically-computed behavior of the survival probability P(t) =

|a0(t)|2 for V0/κ = 10 and F = 1, clearly showing the acceleration of the decay in early stage of

the decay. This is a rather striking and unexpected result, given that the added barriers have a
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monotonously increasing and unbounded height and the corresponding Hamiltonian (18) has an

almost pure point spectrum with localized eigenstates (see Appendix B and [53]).

(iv) The fourth example of decay acceleration is analogous to the previous case, but with a

quadratic (rather than linear) increase of barrier heights, i.e. we assume W−n = Wn and

Wn =

{

F(n − 1)2 n ≥ 1, n odd

0 n even.
(26)

Curve 5 in Figure 3(c) shows the numerically-computed behavior of the survival probability P(t) =

|a0(t)|2 for V0/κ = 10 and F = 0.1, clearly showing the acceleration of the decay in early stage, with

strong revival at longer times.

It should be remarked that decay acceleration mediated by the resonant tunneling effect, observed

in all above models, occurs only in the early stage of the dynamics, as shown in Figure 3(c). In fact, at

long times the the survival probability P(t) can become smaller when there are no additional lateral

barriers, because the backflow arising from multiple scattering processes and localization effects,

responsible for strong non-markovianity and deviation of the decay from an exponential curve, induce

revival effects in the survival probability, which are prevented in the simple two-barrier case.

4. Conclusion

The decay of a resonance state trapped in a double potential barrier provides one of the simplest

models of unstable quantum systems, which was introduced in a landmark paper by Gamov to explain

α decay in nuclear physics. A main question, which has been so far largely overlooked, is whether

quantum decay of a metastable state in the double-barrier model can be accelerated by additional

lateral barriers. Such additional barriers clearly induce multiple scattering and interference effects,

that greatly modify the decay dynamics: the outgoing waves that escape via tunneling from the two

barriers can be back reflected and re-injected into the original spatial region by the later barriers. The

resulting decay behavior can strongly deviate from an exponential law and is the result of a complex

multiple interference process which, depending on the choice of the additional barriers, can either

decelerate or accelerate the decay. The fact that additional barriers can slow down the decay of the

survival probability is not surprising, however it is more elusive how and why the decay can be

accelerated in some cases. In this work we have shown that a main mechanism that can induce decay

acceleration, at least in the early stage of the decay, is resonant tunneling. We have illustrated such a

phenomenon by considering in details the decay dynamics of resonant states in tight binding models,

showing that decay acceleration can be observed even when the later barriers are increasingly higher

and higher or have some stochastic distribution. The predicted effects could be observable in photonic

tunneling experiments using engineered integrated waveguide array circuits.

Funding: This research was funded by Agencia Estatal de Investigacion (MDM-2017-0711).

Data Availability Statement: No data were generated or analyzed in the presented research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Fano-Anderson form of the quantum decay on the lattice

In this Appendix we derive the canonical Fano-Anderson (or Friedrichs-Lee) form of the quantum

decay on the lattice described by the Hamiltonian (18). After letting |ψ(t)〉 = ∑n ψn(t)|n〉, the evolution

equations for the amplitudes ψn(t) read

i
dψn

dt
= −κ(ψn+1 + ψn−1) + Wnψn. (A1)

For the sake of simplicity, we assume that the potential Wn is symmetric around n = 0, i.e. W−n = Wn.

In this case, for the initial condition ψn(0) = δn,0, the solution to Eq.(A1) satisfies the constraint
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ψ−n(t) = ψn(t), so that we can limit to consider the evolution equations for the amplitudes ψ0, ψ1, ψ2,

... which read explicity

i
dψ0

dt
= −2κψ1 (A2)

i
dψ1

dt
= −κψ0 − κψ2 + V0ψ1 (A3)

i
dψ2

dt
= −κψ1 − κψ3 (A4)

i
dψn

dt
= −κ(ψn+1 + ψn−1) + Wnψn (n ≥ 3). (A5)

In the large V0/κ ≫ 1 limit, we can adiabatically eliminate from the dynamics the amplitude ψ1 by

assuming |d(ψ1/dt)| ≪ V0ψ1 in Eq.(A3). This yields

ψ1(t) ≃
κ

V0
(ψ0 + ψ2). (A6)

After letting

ψ0(t) = ϕ0(t) exp(iκ2t/V0), ψn(t) =
1√
2

cn−1 exp(iκ2t/V0) (n ≥ 2) (A7)

from Eqs.(A1-A7) one obtains

i
dϕ0

dt
= Ωϕ0 − κ1c1 (A8)

i
dc1

dt
= −κ1 ϕ0 − κc2 (A9)

i
dcn

dt
= −κ(cn+1 + cn−1) + Vncn (n ≥ 2) (A10)

where we have set

κ1 ≡
√

2κ2

V0
, Ω ≡ − κ2

V0
, Vn ≡ Wn+1 +

κ2

V0
= Wn+1 − Ω. (A11)

To obtain the canonical form of Fano-Anderson model, let us indicate by

u(α) = (u
(α)
1 , u

(α)
2 , u

(α)
3 , ...)T

and ωα the eigenvectors and corresponding eigenvalues (energies) of the semi-infinite matrix

Hamiltonian H, defined by

H =



















0 −κ 0 0 0 0 0 ...

−κ V2 −κ 0 0 0 0 ...

0 −κ V3 −κ 0 0 0 ...

0 0 −κ V4 −κ 0 0 ...

0 0 0 −κ V5 −κ 0 ...

... ... ... ... ... ... ... ...



















(A12)

where α is a discrete index (for localized states) or a continuous variable (for extended states). The

eigenstates are assumed to satisfy the orthonormal condition 〈u(α)|u(β)〉 = δα,β for discrete indices
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(point spectrum), or 〈u(α)|u(β)〉 = δ(α − β) for continuous indices (continuous spectrum). After

expanding the amplitudes cn(t) as a series (or integral) of the eigenstates of H, i.e. after letting

cn(t) = ∑
α

θα(t)u
(α)
n , (A13)

from Eqs.(A8-A10) and (A13) one readily obtains the following set of evolution equations

i
dϕ0

dt
= Ωϕ0 − ∑

α

gαθα (A14)

i
dθα

dt
= ωαθα − g∗α ϕ0 (A15)

where we have set

gα ≡ κ1u
(α)
1 .

In Eqs.(A13) and (A14), it is understood that the sum over α should be replaced by an integral over α

for the continuous part of the spectrum of H. In their present form, Eqs.(A14) and (A15) can be derived

from the single-level Fano-Anderson (or Friedrichs-Lee) Hamiltonian [24,48,49]

ĤFA = Ω|0〉〈0|+ ∑
α

ωα|α〉〈α| − ∑
α

(gα|0〉〈α|+ H.c.) (A16)

which describes the decay of a single level |0〉 of frequency Ω coupled to a discrete or continuous set

of states |α〉 (the bath), with frequencies ωα, by a spectral coupling function gα. We mention that, in

the most general case where the parity condition W−n = Wn is not satisfied, one can still obtain a

Fano-Anderson Hamiltonian as Eq.(A16), but the level |0〉 turns out to be coupled to two baths with

different spectral coupling functions.

After eliminating from the dynamics the variables θα(t) by formally solving Eq.(A15) with the

initial condition θα(0) = 0 and after letting ϕ0(t) = A(t) exp(−iΩt), from Eq.(14) one obtains the

following integro-differential equation describing the decay dynamics of the amplitude A(t)

i
dA

dt
=

∫ ∞

0
dξG(t − ξ)A(ξ) (A17)

where G(τ) is the memory function, defined by

G(τ) = −i ∑
α

|gα|2 exp[−i(ωα − Ω)τ]. (A18)

Only when the single level |0〉 is weakly coupled to a featureless continuum of states with a short

memory time τm – the memory time τm is the characteristic decay time of the memory function G(τ)–
one can use the markovian (or Weisskopf-Wigner) approximation [22], and the decay dynamics is well

described by an exponential law. In this case Eq.(A18) reduces to a simple differential equation, i.e.

i
dA

dt
≃ A(t)(∆R − i∆I) (A19)

where we have set ∆R − i∆I ≡
∫ ∞

0 dτG(τ) defining the Lamb shift (∆R) and decay rate (∆I). After

letting ∑α →
∫

dα in Eq.(A18) and following a standard procedure, the explicit form of the decay rate

∆I and Lamb shift ∆R can be calculated as

∆I = π|g(Ω)|2ρ(Ω) , ∆R = −P
∫

dω
|g(ω)|2ρ(ω)

ω − Ω
(A20)

where g(ω) = gα=α(ω) is the spectral coupling function and ρ(ω) ≡ 1/(dω/dα) is the density of states.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0917.v1

https://doi.org/10.20944/preprints202309.0917.v1


12 of 15

As an example of a nearly-exponential decay, let us consider the quantum decay in the absence of

lateral barriers, i.e. with Wn = 0, corresponding to Vn = −Ω in Eq.(A12). In this case the spectrum

of the matrix Hamiltonian H [Eq.(A12)] is absolutely continuous, and neglecting the small defect

(impurity potential) at the edge, its energy spectrum and corresponding eigenfunctions read (see e.g.

[49])

ωα = −Ω − 2κ cos α , u
(α)
n =

√

2

π
sin(αn) (A21)

where 0 < α < π is a continuous parameter. In this case, the spectral coupling function and density of

states are readily calculated as

g(ω) =

√

1

2π

κ1

κ

√

4κ2 − (ω + Ω)2 , ρ(ω) =
1

√

4κ2 − (ω + Ω)2
. (A22)

Taking into account that |Ω| ≪ κ, from Eqs.(A20) and (A22) one obtains

∆I ≃
κ2

1

κ
(A23)

and thus the lifetime τ reads

τ =
1

2∆I
≃ κ

2κ2
1

(A24)

which is Eq.(17) given in the main text.

Appendix B. Some qualitative properties of the energy spectrum and weak localization

In this Appendix we present some discussion about the energy spectrum of the tight-binding

bipartite Hamiltonian H defined by Eq.(18) in the main text. After letting (an(t), bn(t))T =

(A, B) exp(−iEt), from Eqs.(19) and (20) one obtains the spectral problem

Ean = −κ(bn + bn−1) (A25)

Ebn = −κ(an + an+1) + W2n+1bn. (A26)

It can be readily shown that the energy E = 0 belongs to the spectrum of H with wave function in one

sublattice solely

an = (−1)n , bn = 0 (A27)

corresponding to an extended (improper) eigenstate. For E 6= 0, from Eq.(A25) one can express the

amplitudes an in one sublattice in terms of the amplitudes bn in the other sublattice, i.e.

an = − κ

E
(bn + bn−1). (A28)

Substitution of Eq.(A28) into Eq.(A26), after letting bn = (−1)n ϕn one obtains

− κ(ϕn+1 + ϕn−1 − 2ϕn) +

(

E

κ

)

W2n+1 ϕn =
E2

κ
ϕn. (A29)

Equation (A29) can be regarded as the spectral problem on a tight-binding lattice in the potential

Vn = (E/κ)W2n+1 with an energy-dependent amplitude, vanishing as E → 0.

Clearly, if W2n+1 is constant, like in the example (i) considered in Sec.3, or a periodic function of

index n, the energy spectrum is absolutely continuous and H does not sustain any localized state. In

this case we expect the decay of survival probability to be complete. Conversely, if W2n+1 describes

some disordered potential, such as the Anderson-Bernoulli model [52] considered in the example (ii) of

Sec.3, or a deterministic potential with |W2n+1| monotonously increasing and unbounded as |n| → ∞,
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such as the symmetric Stark potential or the parabolic potentials discussed in the examples (iii) and

(iv) of Sec.3, all eigenstates with E 6= 0 are strictly speaking localized. This is because any uncorrelated

disordered potential of arbitrarily small amplitude in one dimension, or any unbounded potential of

small amplitude which is monotonously increasing with |n|, have all eigenstates localized. However,

an infinitely countable set of eigenenergies, with weakly extended eigenstates, accumulate toward the

zero energy point E = 0 of the extended state, with a diverging localization length of corresponding

eigenstates. Such a property can be proven rigorously in some special potential models, such as the

Stark potential model [53] or other integrable models such as the Maryland model [54]. More generally,

for small energies |E/κ| → 0 the potential entering in Eq.(A5) is almost vanishing and thus we expect

that any eigenstate, if localized, should have a large localization length, diverging as E → 0. For

random potentials, this result, i.e. the divergence of the localization length as E → 0, is rigorously

proven in [55]. Interestingly, from Eq.(A28) it follows that the occupation of the eigenstates with

energy close to zero is mostly restricted to one sublattice, namely |an| ≫ |bn|. Such weakly-localized

eigenstates are nearly resonant with the quasi-bound state localized at site n = 0, between the two high

barriers. The quasi bound state can thus couple with such weakly localized states, while other strongly

localized states with high energy do not play any main role in the decay dynamics. This means that

the decaying quasi-bound state couples to a set of discrete and weakly-localized states of the bath,

which is responsible rather generally for memory (non-markovian) effects and strong deviations from

an exponential decay law. This explains why the long-time dynamics displays strong revival effects

and also limited decay, such as those observed in models (iii), (iv) and (v) discussed in the main text

[see Figure 3(c)].
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